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1 Introduction

We consider the N = 1 anti-de Sitter supergravity action in d = 3, realized as the differ-

ence of two Chern-Simons actions [1], with respectively OSp(1|2) and Sp(2) connections.

Starting from the Chern-Simons formulation, we derive the supergravity action following

the steps of the Achucarro and Townsend construction. One obtains a theory whose funda-

mental 1-form fields are (after a simple redefinition) the dreibein V a, the spin connection

ωab and the Majorana gravitino ψ. The action is invariant by construction under the gauge

transformations of OSp(1|2)⊗Sp(2). The transformations generated by the spinorial (Ma-

jorana) charge of the supergroup yield the N = 1 supersymmetry transformations, and

close off-shell without need of auxiliary fields since they are really part of a gauge algebra.
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The action, being the integral of a 3-form on a 3-dimensional manifold, is also invariant by

construction under 3d diffeomorphisms. The latter are distinct from the gauge symmetries

generated by the translation charges of the gauge supergroup.

Next we consider the (super)group-geometric construction of N = 1, d = 3 anti-de Sit-

ter supergravity [2]. In this framework the basic 1-form fields live on the whole supergroup

manifold OSp(1|2)⊗Sp(2), and the spacetime coordinates are identified with the parameters

of the translation subgroup. Here supersymmetry is realized as a diffeomorphism in this su-

pergroup manifold, in the fermionic directions. We will call it worldvolume supersymmetry

to distinguish it from the gauge supersymmetry of the Chern-Simons action (see [3, 4], see

also [5] where the difference between gauge symmetries and diffeomorphisms was studied

for supergravity actions). To obtain a spacetime action (involving fields that depend only

on spacetime coordinates), so as to be able to compare it with the Achucarro-Townsend

action, it is necessary to integrate out the dependence on the Lorentz and Grassmann coor-

dinates of the supermanifold. The resulting spacetime action coincides with the Achucarro

and Townsend action, and is worldvolume supersymmetric provided some conditions are

fulfilled, called “rheonomic” conditions. We show how these conditions can be imposed as

constraints on the “outer” (i.e. along Grassmann differentials) components of the 2-form

curvatures, and how this leads to a local supersymmetry that not surprisingly coincides

with the gauge supersymmetry. Here the origin of supersymmetry is geometric, whereas

the gauge supersymmetry of the Chern-Simons action is totally algebraic. A peculiarity of

the d = 3 theory is that there exist additional symmetries, due to other possible rheonomic

conditions, that close only on-shell. In particular the action is also invariant under a su-

persymmetry that has an extra term in the spin connection transformation with respect

to the gauge supersymmetry of the CS action.

Supergravity in d = 3 AdS spacetime can also be formulated with an additional bosonic

auxiliary field, to balance off-shell degrees of freedom (the superspace formulation can be

found in [6–8]). In this formulation we find that worldvolume supersymmetry does not

require all curvatures to be horizontal in the Grassmann directions, and that Bianchi

identities are satisfied off-shell. The resulting theory extends the Achucarro-Townsend

action with terms depending on the auxiliary field. Once the auxiliary field is eliminated

via its (algebraic) field equation, the Achucarro-Townsend action is recovered.

2 N = 1, d = 3 AdS supergravity as Chern-Simons

Here we treat the simplest N = 1 case. We consider therefore the difference between a CS

action for OSp(1|2) and a CS action for Sp(2):

S = κ

∫
M3

STr

(
RΩ +

1

3
Ω3

)
− κ

∫
M3

Tr

(
R̃Ω̃ +

1

3
Ω̃3

)
(2.1)

where the 1-form OSp(1|2) and Sp(2) connections are given respectively by the 3 × 3

supermatrix Ω and the 2× 2 matrix Ω̃:

Ω =

(
Aaγa

1√
λ
ψ

i√
λ
ψ̄ 0

)
, Ω̃ = Ãaγa (2.2)
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and the 2-form curvatures are

R = dΩ−Ω ∧Ω ≡

(
Ra(A)γa

1√
λ

Σ
i√
λ

Σ 0

)
, R̃ = R̃a(Ã)γa (2.3)

with

Ra(A) = dAa + εabcA
bAc − 1

2λ
ψ̄γaψ (2.4)

R̃a(Ã) = dÃa + εabcÃ
bÃc (2.5)

Σ = dψ −Aaγaψ (2.6)

Σ = dψ̄ − ψ̄γbAb (2.7)

Carrying out the traces in (2.1) leads to the action

S = 2κ

∫
M3

Ra(A)Aa − R̃a(Ã)Ãa −
1

3
(AaAbAc − ÃaÃbÃc)εabc − ψ̄Σ (2.8)

Defining now the dreibein V a and the spin connection ωab as combinations of the Aa and

Ãa connections:

Aa =
1

2

(
ωa +

1

λ
V a

)
, Ãa =

1

2

(
ωa − 1

λ
V a

)
(2.9)

the action (2.8) becomes:

S = −κ
λ

∫
M3

(
RabV cεabc −

1

3λ2
V aV bV c + 2iψ̄Σ

)
(2.10)

where

Rab ≡ dωab − ωacωcb (2.11)

is the Lorentz curvature, and the gravitino curvature Σ is expressed as

Σ = dψ − 1

4
ωabγabψ −

1

2λ
V aγaψ (2.12)

Symmetries. The action (2.1) or equivalently (2.10) is invariant (up to boundary terms)

under the gauge transformations:

δεΩ = dε−Ωε + εΩ, ⇒ δεR = −Rε + εR (2.13)

δε̃Ω̃ = dε̃− Ω̃ε̃ + ε̃Ω̃, ⇒ δε̃R̃ = −R̃ε̃ + ε̃R̃ (2.14)

where ε and ε̃ are the OSp(1|2) and Sp(2) gauge parameters:

ε =

(
ηaγa

1√
λ
ε

i√
λ
ε̄ 0

)
, ε̃ = η̃aγa (2.15)

On the component fields the gauge transformations (2.13) and (2.14) take the form:

δAa = dηa + 2Abηcεabc +
i

λ
ε̄γaψ (2.16)

δÃa = dη̃a + 2Abη̃cεabc (2.17)

δψ = dε−Aaγaε+ ηaγaψ (2.18)
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Using now the definitions (2.9), the gauge transformations on the supergravity fields read:

δV a = Dεa + εabV
b + iε̄γaψ (2.19)

δωab = Dεab − 2

λ2
V [aεb] − i

λ
ε̄γabψ (2.20)

δψ = Dε− 1

2λ
V aγaε+

1

4
εabγabψ +

1

2λ
εaγaψ (2.21)

The translation and Lorentz rotation parameters εa and εab are defined in terms of ηa and

η̃a as

εa ≡ λ(ηa − η̃a), εab ≡ εabc(ηc + η̃c) (2.22)

and D is the Lorentz covariant derivative:

Dεa ≡ dεa − ωabV b (2.23)

Dεab ≡ dεab − ωacεcb + ωbcε
ca (2.24)

Dε ≡ dε− 1

4
ωabγabε (2.25)

Field equations. Varying the action (2.10) in V a, ωab and ψ leads to the field equations:

Rab − 1

λ2
V aV b +

i

2λ
ψ̄γabψ = 0 (2.26)

DV a − i

2
ψ̄γaψ = 0 (2.27)

Dψ − 1

2λ
V aγaψ = 0 (2.28)

The left hand sides are the curvatures of the OSp(1|2)× Sp(2) supergroup, in the rotated

basis (V a, ωab, ψ). These equations in fact are just the Cartan-Maurer equations of the

supergroup, and are the starting point of the group-geometric construction of next section.

3 N = 1, d = 3 AdS supergravity in the group geometric approach

The OSp(1|2) × Sp(2) Cartan-Maurer equations yield the definitions of the super-AdS

curvatures:

Rab = dωab − ωac ωcb −
1

λ2
V aV b +

i

2λ
ψ̄γabψ (3.1)

Ra = dV a − ωab V b − i

2
ψ̄γaψ ≡ DV a − i

2
ψ̄γaψ (3.2)

Σ = dψ − 1

4
ωabγabψ −

1

2λ
V aγaψ = Dψ − 1

2λ
V aγaψ (3.3)

The Cartan-Maurer equations are invariant under the rescalings

ωab → ωab, V a → uV a, ψ → u
1
2ψ, λ→ uλ (3.4)

Taking exterior derivatives of both sides yields the Bianchi identities:

DRab +
2

λ2
R[aV b] +

i

λ
ψ̄γabΣ = 0 (3.5)

DRa +Rab V
b − i ψ̄γaΣ = 0 (3.6)

DΣ +
1

4
Rabγab ψ +

1

2λ
Raγaψ −

1

2λ
V aγaΣ = 0 (3.7)
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3.1 The Lagrangian

Applying the building rules of the geometric approach [9–11] yields the Lagrangian 3-form

L = RabV cεabc + 2iψ̄Σ +
2

3λ2
V aV bV c − i

2λ
ψ̄γabψV cεabc =

= RabV cεabc −
1

3λ2
V aV bV c + 2iψ̄Σ (3.8)

and is formally identical to the Achucarro-Townsend Lagrangian of the previous section.

Note however that in the present framework this 3-form lives on the whole N = 1 superspace

M3|2. It is obtained by considering the most general Lorentz scalar 3-form, given in terms

of the super AdS curvatures and fields, invariant under the rescalings discussed above, and

such that the variational equations admit the vanishing curvatures solution

Rab = Ra = Σ = 0 (3.9)

3.2 Action and symmetries

The action is now an integral over the whole superspace M3|2

S =

∫
M3|2

L ∧ ηM3 (3.10)

and ηM3 is the Poincaré dual of the 3-dimensional Minkowski space M3 immersed into the

superspace M(3|2) (see e.g. [12–15]). ηM3 is a 2-form in superspace1 that after integration

localizes the Lagrangian on the d = 3 bosonic subspace, i.e.

S =

∫
M3

Lθ=dθ=0 (3.11)

The action then exactly reproduces the Achucarro-Townsend spacetime action. Written as

in (3.10) the action is automatically invariant under superdiffeomorphisms in superspace,

since it is a 5-form integrated on a 5-dimensional superspace. The superdiffeomorphisms

along a tangent vector v in superspace act on the 1-form fields in the Lagrangian L with

the Lie derivative `v ≡ dιv + ιvd, i.e.

δvV
a = d(ιvV

a) + ιvdV
a = d(ιvV

a) + ιvR
a + ιv(ω

a
bV

b) +
i

2
ιv(ψ̄γaψ)

= D(ιvV
a) + ιvR

a + ιv(ω
a
b)V

b +
i

2
ιv(ψ̄γaψ) (3.12)

and similarly

δvω
ab = D(ιvω

ab) + ιvR
ab +

1

λ2
ιv(V

aV b)− i

2λ
ιv(ψ̄γ

abψ) (3.13)

δvψ = D(ιvψ) + ιvΣ +
1

4
ιv(ω

ab)γabψ +
1

2λ
ιv(V

aγaψ) (3.14)

1ηM3 is really a (0|2)-integral form in superspace and the Lagrangian has to be considered as a (3|0)-

superform so that the whole integrand is a (3|2) top form in superspace.
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These are the built-in invariances of the action (3.10). Here resides most of the power

of the group manifold formalism: if one considers the “mother” action (3.10) on M3|2,

the guaranteed symmetries are all the diffeomorphisms on M3|2, generated by the Lie

derivative `v along the tangent vectors v of M3|2. But how do these symmetries transfer

to the spacetime action (3.11)?

The variation of the superspace action under diffeomorphisms generated by `v is2

δS =

∫
M3|2

`v(L ∧ ηM3) =

∫
M3|2

(`vL) ∧ ηM3 + L ∧ `vηM3 = 0 (3.15)

modulo boundary terms. One has to vary the fields3 in L as well as the submanifold

embedded in M3|2: the sum of these two variations gives zero4 on the superspace action

S. But what we need in order to have a spacetime interpretation of all the symmetries of

S, is really

δS =

∫
M3|2

(`vL) ∧ ηM3 = 0 (3.16)

If this holds, varying the fields φ inside L with the Lie derivative `v as in (3.12)–(3.14),

and then projecting on spacetime (θ = 0, dθ = 0), yields spacetime variations

δφ(θ = 0, dθ = 0)) = `vφ(x, θ)|θ=0,dθ=0) (3.17)

that leave the spacetime action (3.11) invariant. We call them spacetime invariances. They

originate from the diffeomorphism invariance of the group manifold action, and give rise

to symmetries of the spacetime action (3.11) only when (3.16) holds. This happens when

`vL is exact, since η is closed [2]. Exactness of `vL is equivalent to the condition

ιvdL = dα (3.18)

The Lagrangian L depends on the basic fields V a, ωab, ψ and their AdS curvatures

RA = Ra, Rab,Σ so that also dL, using the Bianchi identities, is expressed in terms of

the fields and their curvatures. Then condition (3.18) translates into conditions on the

contractions ιvR
A, i.e. conditions on the curvature components. In the jargon of the

group-geometric approach, these are called “rheonomic” conditions, and must be consis-

tent with Bianchi identities. The symmetry transformations of the theory are then given

by equations (3.12)–(3.14), where the contractions ιvR
a, ιvR

ab, ιvΣ are replaced by their

expressions given by the rheonomic conditions.

3.3 Curvature parametrizations and symmetries of the spacetime action

Computing the exterior derivative of the Lagrangian in (3.8) and using the Bianchi

identities (3.5)–(3.7) yields:

dL = RabRcεabc + 2i ΣΣ (3.19)

2Recall that `v(top form) = d(ιv top form).
3Since `v satisfies the Leibniz rule, `vL can be computed by varying in turn all fields inside L.
4In the following the vanishing of action variations will always be understood modulo boundary terms.
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The condition

iεdL = dα (3.20)

where ε is a tangent vector in fermionic directions is satisfied if all curvatures have no

“legs” in fermionic directions, i.e. if iεR
A = 0. This leads to the parametrizations of the

curvatures

Rab = RabcdV
aV b (3.21)

Ra = RabcV
bV c (3.22)

Σ = ΣabV
aV b (3.23)

and the transformations generated by the Lie derivative along the supergroup directions are:

δV a = δgauge V
a + 2εbRabcV

c (3.24)

δωab = δgauge ω
ab + 2εcRabcdV

d (3.25)

δψ = δgauge ψ + 2εaΣabV
b (3.26)

where δgauge are the gauge variations of the Achucarro -Townsend action given in (2.19)–

(2.21). The difference are terms proportional to the AdS curvatures: these terms are

necessary for the transformation parametrized by εa to be a spacetime diffeomorphism,

rather than a gauge translation.

The spacetime reduced action being equal to the Achucarro-Townsend action, it also

has its gauge symmetries. These coincide with the ones expressed by eqs. (3.24)–(3.26),

except for gauge translations, that are an additional symmetry. In other words, the ac-

tion is invariant under the CS gauge symmetry (2.19)–(2.21), and ordinary spacetime

diffeomorphisms.

But there is an additional symmetry, due to another solution of (3.20), provided by

the parametrizations:

Rab = Rabcd V
cV d + θ̄abc ψV

c (3.27)

Ra = 0 (3.28)

Σ = ΣabV
aV b (3.29)

with

θ̄abc = c1 Σ
[a
c γb] + c2 Σ

ab
γc (3.30)

The coefficients c1, c2 are fixed by the Bianchi identity (3.6) to the values:

c1 = 2i, c2 = −i (3.31)

However the other Bianchi identities hold only on-shell, i.e. for Rab = Ra = Σ = 0. Then

the invariances generated by the Lie derivative:

δV a = δgauge V
a (3.32)

δωab = δgauge ω
ab + 2εcRabcdV

d + θ̄abcεV
c − θ̄abcψεc (3.33)

δψ = δgauge ψ + 2εaΣabV
b (3.34)

are still invariances of the action, but only close on-shell.
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Notice that the origin of supersymmetry is completely algebraic for the Chern-Simons

action, while it is geometric (due to superdiffeomorphism invariance of a superspace action)

for the rheonomic action.

4 Off-shell N = 1, d = 3 AdS supergravity

4.1 Off-shell degrees of freedom

The mismatch between the 3 off-shell bosonic degrees of freedom of the dreibein (d(d−1)/2

in d dimensions), and the 4 off-shell degrees of freedom of the gravitino ((d − 1)2[d/2] in

d dimensions for Majorana or Weyl) can be cured by introducing an extra bosonic d.o.f.,

here provided by a bosonic 2-form auxiliary field B.

4.2 The extended superAdS algebra

The algebraic starting point is the FDA (Free Differential Algebra, see [9–11]) that enlarges

the d = 3 superAdS Cartan-Maurer equations to include the auxiliary 2-form field B. This

extension of the superAdS algebra is possible due to the existence of the d = 3 cohomology

class Ω = ψ̄γaψV
a, which is closed because of the d = 3 Fierz identity (A.11).

The FDA yields the definitions of the AdS Lorentz curvature, the supertorsion, the

AdS gravitino field strength and the 2-form field strength:

Rab = dωab − ωac ωcb −
1

λ2
V aV b +

i

2λ
ψ̄γabψ (4.1)

Ra = dV a − ωab V b − i

2
ψ̄γaψ ≡ DV a − i

2
ψ̄γaψ (4.2)

Σ = dψ − 1

4
ωabγab −

1

2λ
V aγaψ ψ ≡ Dψ − 1

2λ
V aγaψ (4.3)

R⊗ = dB − i

2
ψ̄γaψ V a +

1

3λ
V aV bV cεabc (4.4)

The generalized Cartan-Maurer equations are invariant under the rescalings

ωab → ωab, V a → uV a, ψ → u
1
2ψ, B → u2B (4.5)

Taking exterior derivatives of both sides yields the Bianchi identities:

DRab +
2

λ2
R[aV b] +

i

λ
ψ̄γabΣ = 0 (4.6)

DRa +Rab V
b − i ψ̄γaΣ = 0 (4.7)

DΣ +
1

4
Rabγab ψ +

1

2λ
Raγaψ −

1

2λ
V aγaΣ = 0 (4.8)

dR⊗ − i ψ̄γaΣV a +
i

2
ψ̄γaψ Ra − 1

λ
RaV bV cεabc = 0 (4.9)

4.3 Curvature parametrizations

As in the preceding section, we impose some algebraic constraints on the curvature compo-

nents to ensure invariance of the spacetime action under local supersymmetry. In this case,

– 8 –
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the presence of the auxiliary field B allows the off-shell closure of the symmetry algebra

and now Bianchi identities hold also off-shell. The required parametrization is given by

Rab = Rabcd V
cV d + θ̄abc ψ V c + c1 f ψ̄γ

abψ (4.10)

Ra = 0 (4.11)

Σ = ΣabV
aV b − c2 f V aγaψ (4.12)

R⊗ = f V aV bV cεabc (4.13)

df = ∂af V
a + ψ̄Ξ (4.14)

with

θ̄abc = c3 Σ
[a
c γb] + c4Σ

ab
γc , Ξα = c5 ε

abcγaΣbc (4.15)

The coefficients c1, c2, c3, c4, c5 are fixed by the Bianchi identities to the values:

c1 =
3i

2
, c2 =

3

2
, c3 = 2i, c4 = −i, c5 = − i

3!
(4.16)

The V V V component f of R⊗ scales as f → u−1f , and is identified with the auxiliary

scalar superfield of the superspace approach of ref. [6]. Thanks to the presence of the

auxiliary field, the Bianchi identities do not imply equations of motion for the spacetime

components of the curvatures.

4.4 The Lagrangian

The usual building rules of the geometric approach lead to the Lagrangian 3-form

L = RabV cεabc + 2iψ̄Σ +
2

3λ2
V aV bV c − i

2λ
ψ̄γabψV cεabc+

+ α

(
fR⊗ − 1

2
f2V aV bV cεabc

)
(4.17)

The remaining parameter is fixed to α = 6 by requiring ιεdL
3|0 = exact, i.e. supersymmetry

invariance of the spacetime action. Indeed with α = 6 we find dL = 0 on the (off-shell)

field configurations satisfying the curvature parametrizations (4.10)–(4.14).

4.5 Off-shell supersymmetry transformations

The off-shell closure of the supersymmetry transformations is ensured because the Bianchi

identities hold without recourse to the spacetime field equations. The action is invariant

under these transformations, given by the Lie derivative of the fields along the fermionic

directions:

δεV
a = −iψ̄γaε (4.18)

δεψ = Dε− 1

2λ
V aγaε+

3

2
fV aγaε (4.19)

δεω
ab = θ̄abc εV

c − 3if ψ̄γabε+
i

λ
ψ̄γabε (4.20)

δεB = −iψ̄γaεV a (4.21)

δεf = ε̄ Ξ (4.22)
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4.6 Field equations

Varying ωab, V a, ψ, B and f in the action S =

∫
M3|2

L3 ∧ ηM3 leads to the equations of

motion:

Ra = 0 (4.23)

Rab = 9f2V aV b − 6f

λ
V aV b +

3i

2
f ψ̄γabψ (4.24)

Σ = −3

2
V aγaψf (4.25)

df = 0 (4.26)

R⊗ = f V aV bV cεabc (4.27)

5 Equivalence of transformations: trivial gauge transformations

Here we show that the gauge transformations of super CS action are equivalent to the

diffeomorphism transformations on the supergravity counterpart, modulo trivial gauge

transformations, i.e. transformations which are proportional to the equations of motion

(these transformation were first introduced in [16] in describing quantisation of reducible

gauge systems).

Let us start from the CS side: we analyse first the bosonic symmetries and therefore

we restric ourselves to a pure gravity theory. From the gauge fields A and Ã we can obtain

the dreibein V a and the spin connection ωab as linear combinations of A and Ã. Let us

focus on their bosonic gauge transformations:

δV a = Dεa + εabVb , δω
ab = Dεab (5.1)

On the other hand, let us see how V transforms under diffeomorphisms and Lorentz

symmetries:

δ̃V a = `XV
a + λabV

b , δ̃ωab = `Xω
ab +Dλab (5.2)

where X is a vector field and λab are the Lorentz parameters. We can recast the transfor-

mations in (5.2) as follows:

δ̃V a = `XV
a + ωab ∧ V b

= ιX

(
dV a − ωab ∧ V b

)
+ ιX

(
ωab ∧ V b

)
+D (ιXV

a) + ωab ∧ ιXV b + λab ∧ V b

= ιXR
a + ιXω

a
b ∧ V b +D (ιXV

a) + λab ∧ V b

= ιXR
a +D (ιXV

a) + (λ+ ιXω)ab ∧ V
b . (5.3)

We have therefore distinguished three pieces: the first one is written in terms of the torsion

Ra, the second may be identified with Dεa if we identify

ιXV
a ≡ εa =⇒ XµV a

µ ≡ εa , (5.4)

and the last term is identified with ε if we identify

ε ≡ λ+ ιXω . (5.5)
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Therefore, the difference between the gauge and Lorentz transformations and the diffeo-

morphisms and Lorentz transformations is(
δ − δ̃

)
V a = −ιXRa . (5.6)

We can perform the same manipulations of (5.3) for the spin connection as well:

δ̃ωab = ιX (dω − ω ∧ ω)ab +D
(
ιXω

ab
)

+DΩab = ιXR
ab +D (λ+ ιXω)ab . (5.7)

The first term is written in terms of the curvature Rab, while the second term can be

identified with (5.2) by setting

ε ≡ λ+ ιXω . (5.8)

Again, the difference between gauge + Lorentz and diffeomorphism + Lorentz transforma-

tions reads (
δ − δ̃

)
ωab = −ιXRab . (5.9)

Recall that, given the Einstein-Hilbert action, we can recast Rab and Ra as

δS

δV a
= εabcR

bc ,
δS

δωab
= εabcR

c . (5.10)

We can therefore recast (5.6) and (5.9) as(
δ − δ̃

)
V a
µ = εabcXνε

νρ
µ

δS

δωbcρ
,

(
δ − δ̃

)
ωabµ = εabcXνε

νρ
µ

δS

δV c
ρ

. (5.11)

These kind of transformations, defined by a parameter multiplying the equations of mo-

tions, are called trivial gauge transformations ; any action is invariant under these trans-

formations and they can be cast in the following from

δφA = µAB
δS

δφB
(5.12)

for any field φA of the model. The gauge parameters µAB are local, possibly field-dependent

gauge parameters. They are antisymmetric µAB = −µBA and leave any action invariant

δS =

∫
δφA

δS

δφA
=

∫
µAB

δS

δφB
δS

δφA
= 0 . (5.13)

The commutator of any gauge transformation of the theory

δTS = TA
δS

δφA
= 0 , (5.14)

with trivial gauge transformations (5.12)

[δµ, δT ]φA =

(
δTA

δφB
µBC − δTC

δφB
µBA − TA δµ

BC

δφB

)
δS

δφC
(5.15)
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leads again to a trivial gauge transformation. This set of trivial gauge transformations

forms a normal (i.e. invariant) subgroup of the full gauge group. They are not physically

relevant since: 1) they exist independently of the action; in other words, they do not

restrict at all the form of the Lagrangian and no non-trivial Noether identity is associated

with them. 2) they imply no degeneracy of the action and in the Hamiltonian formalism,

there is no corresponding constraint. Actually, the conserved charges associated with those

gauge transformation, when rewritten as phase space functions, vanish identically. 3) The

trivial gauge transformations vanish on-shell, i.e., do not map solutions of the equations of

motion on new, different solutions. 4) There is accordingly no need for a “gauge fixing”.

On this basis, it is natural to disregard them and, being a normal subgroup, this is well

defined procedure [17–20].

Notice that (5.6) and (5.8), once inserted into the action, give rise to

ιX

(
RaRbcεabc

)
= ιX (dL) = 0 , (5.16)

since dL = 0 being L a 3-form in a 3-dimensional manifold.

Now, we proceed with the local supersymmetry transformations for d = 3 supergravity.

We write the susy transformations as Lie derivatives along fermionic directions:

δ̃V a = `εV
a = dιεV

a + ιεdV
a = ιεR

a + ιε (ω ∧ V )a + ιε

(
i

2
ψ̄γaψ

)
=

= ιεR
a + [ιε (ω)V ]a + iεγaψ = ιεR

a + iεγaψ , (5.17)

where we have used ιεV
a = 0 = ιεω

ab since they have no “legs” in the fermionic directions.

We can repeat the same manipulations for ω and ψ in order to obtain

δ̃εω
ab = ιεR

ab − 1

λ
ε̄γabψ , δ̃εψ = ιεΣ +Dε+ V aγaε . (5.18)

We can now compute the difference between the supersymmetry transformations and the

superdiffeomorphisms along fermionic directions:(
δ − δ̃

)
V a = −ιεRa , (5.19)(

δ − δ̃
)
ωab = −ιεRab , (5.20)(

δ − δ̃
)
ψ = −ιεΣ . (5.21)

Notice that once these transformations are inserted into the Lagrangian we obtain(
δ − δ̃

)
L = ιε

(
RaRbcεabc + 2iΣ̄Σ

)
= ιεdL , (5.22)

which is the contraction of the exterior derivative of the Lagrangian discussed in section 3.3.

As mentioned in section 4.4, these trivial gauge transformations vanish identically if the

Lagrangian is closed, which is the condition that we discuss in the following section while

constructing super Chern-Simons theory on supergroups.
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6 Supersymmetric Achucarro-Townsend model

The model discussed up to this point shows a gauge supersymmetry which is translated into

a local supersymmetry in the supergravity re-interpretation. Now, we would like to choose a

different path and before rewriting the Achucarro-Townsend Chern-Simons theory in terms

of vielbein V a, the spin connection ωab and the gravitino ψ, we promote it to a worldvolume

supersymmetric Chern-Simons model. For that, we introduce the worldvolume vielbein ea

and a worldvolume gravitino χα (where the index α = 1, 2 denotes the two components of

the wordvolume spinor) such that

dea = χ̄γaχ , dχα = 0 , (6.1)

i.e. assume a flat worldvolume. To translate the CS action given in (2.1) into a worldvolume

supersymmetric model, we recall the properties of the OSp(1|2) super algebra (we consider

here only the OSp part of the CS action (2.1)); it can be described in terms of the generators

Ta, Qα with the commutators

[Ta, Tb] = iε c
ab Tc , [Ta, Qα] = γβaαQβ , {Qα, Qβ} = 2iγaαβTa . (6.2)

The indices are a = 1, . . . , 3 and α, β = 1, . . . , 2. The invariant tensors are defined as

follows

Str(TaTb) = ηab , Str(QαQβ) = εαβ , Str(TaQα) = 0 . (6.3)

The first one is symmetric ηab = ηba and the second one is anti-symmetric εαβ = −εβα.

They are both invertible.

The supergroup connection Ω is defined as (2.2)

Ω = AaTa + ψαQα . (6.4)

To respect the statistics of Ω, Aa is an anticommuting connection (bosonic 1-form) and

ψα is a commuting connection (fermionic 1-form). Promoting both Aa and ψα to (1|0)-

superforms (for a discussion on forms on supermanifolds see e.g. [12–15]), they read

Aa = Aabe
b +Aaβχ

β , ψα = ψαb e
b + ψαβχ

β , (6.5)

where Aab and ψαβ are commuting superfields and Aaα and ψαb anticommuting superfields.

The field strengths are defined as (for simplicity we set λ = 1 in the following and to

distinguish them from the x-dependent Ω connection, we will rename the superspace-

dependent connection with A)

F = dA− [A,A} ,

F a = dAa + εabcA
b ∧Ac − 1

2
ψ̄γaψ ,

Fα = dψα −Aa(γaψ)α . (6.6)
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Notice that (6.6) coincide with the OSp(1|2) part of (2.4) and (2.6) but hold on the whole

superspace. Their rheonomic parameterizations are the following

F = Fabea ∧ eb + (Wγaχ) ∧ ea ,

∇Wα = ea∇aWα −
1

4
(γabχ)Fab ,

F a = F abce
b ∧ ec + (Ξaγbχ) ∧ eb ,

∇Ξa = eb∇bΞa −
(

1

4
γbcχ

)
F abc ,

Fα = Fαabe
a ∧ eb + (Gαγaχ) ∧ ea ,

∇Gα = ea∇aGα −
(

1

4
γabχ

)
Fαab , (6.7)

and satisfy the Bianchi identities

dF + [A,F} = 0 . (6.8)

The superfield W is a 0-form spinor superfield and its components are defined as

W = ΞaTa +GαQα . (6.9)

The fields Ξa (anticommuting) and Gα (commuting) are 0-form woldvolume spinors with

indices in the vector and spinor representation of SO(1, 2), respectively. Their covariant

derivatives are defined as follows

∇W = dW + [A,W}
(∇Ξ)a = dΞa + εabcA

bΞc + γaαβG
αψβ ,

(∇G)α = dGα − γαaβ(AaGβ + Ξaψβ) . (6.10)

The supersymmetry transformations can be easily obtained by using the rheonomic

parameterization (6.7)

δεA
a = LεAa = ιεF

a +∇Λa = (Ξaγbε)e
b +∇Λa ,

δεψ
α = Lεψα = ιεF

α +∇Λα = (Gαγaε)e
a +∇Λα , (6.11)

where Λa = ιεA
a and Λα = ιεψ

α. The fields Ξa and Gα are the superpartners of Aa and

ψα. No auxiliary field is needed and the matching is achieved both off-shell and on-shell.

All the symmetries close off shell because gauge symmetries close by construction in SCS

theories and the supersymmetries close off-shell in d = 3 supergravity.

The action invariant under both gauge and worldvolume symmetries is given by [21]

L(3|0) = Str

(
AdA− 2

3
A[A,A}+WαWβε

αβVol3
)

(6.12)

Vol3 is the volume form on the three-dimensional manifold, Vol3 = 1
3!εabce

aebec.5 We use

the notation W ·W =WαεαβWβ .

5dVol3 = 1
2
εabcχ̄γ

aχebec = 1
2
ραε

αβρβ with ρα = (V aγaψ)α and dρα = 0.
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Computing the super trace explicitly we have

L(3|0) =

(
ηabA

adAb − 2

3
εabcA

aAbAc + ηabΞ
a · ΞbVol3

+ εαβψ̄
αdψβ +Aaψ̄γaψ + εαβG

α ·GβVol3
)
. (6.13)

The Chern-Simons gauge symmetries are given by

δA = dC + [A, C} , δW = [W, C} , C = CaTa + CαQα , (6.14)

where C is the gauge superfield parameter with values in the super-Lie algebra.

Let us compute the differential of L(3|0)

dL(3|0) = Str

(
F ∧ F + 2dW ·WVol3 +

1

2
W2εabc(χ̄γ

aχ)ebec
)

= Str

(
2Fabea ∧ eb(Wγcχ) ∧ ec + (Wγaχ) ∧ ea(Wγbχ) ∧ eb

+ 2− 1

4
(Wγabχ)Vol3Fab +

1

2
W2εabc(χ̄γ

aχ)ebec
)

= 0 (6.15)

which agrees with the fact that the rheonomic Lagrangian is closed if there are auxiliary

fields or if they are not needed. We get also the interesting equation

Str (F ∧ F) = −d
(
Str(W2)Vol3

)
(6.16)

Both members are gauge invariant under super gauge transformations. Since we have

dL(3|0) = 0, this implies

δdL(3|0) = 0 =⇒ δL(3|0) = dΩ
(2|0)
1 (6.17)

where Ω
(2|0)
1 is a (2|0) form. In turn, this implies that the action is gauge invariant up to

boundary terms.

We can now add the other part of the supergroup: we consider as in the previous

sections OSp(1|2)×Sp(2) and this rerequires to subtract a super Chern-Simons sction (i.e.

with worldvolume supersymmetry) to the action (6.13):

L(3|0) =

(
ηabA

adAb +
2

3
εabcA

aAbAc + ηabΞ
a · ΞbVol3

+ εαβψ̄
αdψβ +Aaψ̄γaψ + εαβG

α ·GβVol3
)

+

−
(
ηabÃ

adÃb +
2

3
εabcÃ

aÃbÃc + ηabΞ̃
a · Ξ̃bVol3

)
. (6.18)

Again the Lagrangian is closed because of the presence of the “auxiliary fields” Ξ, G and Ξ̃

and its exterior derivative takes the form (using the parametrisations (6.7) when calculat-

ing dΞ)

0 = dL(3|0) = F ∧ F − F̃ ∧ F̃ + (∇ψ)2 − 1

2
Vol3χγcdηab

(
ΞaF bcd − Ξ̃aF̃ bcd

)
+ (6.19)

+ ηab

(
ΞaΞb − Ξ̃aΞ̃b

)
3εabcχ̄γ

aχebec − 1

2
εαβγ

abχFαabG
βVol3+

+ εαβG
αGβ3εabcχ̄γ

aχebec .

– 15 –



J
H
E
P
0
5
(
2
0
2
0
)
1
1
0

If we set Ξ = Ξ̃, we have that the first term of the second line vanishes, while the last term

of the first line becomes
1

2
Vol3χγcdηabΞ

a
(
F bcd − F̃ bcd

)
. (6.20)

This term vanishes if

Fab = F̃ab + χ̄γabχ , (6.21)

because of the Fierz identities (A.11). Once we identify the difference of the gauge fields

with the dreibein V as in (2.9), (6.21) is exactly the vanishing torsion-condition, as we can

see from (4.2):

Fab = F̃ab + χ̄γabχ =⇒ Ra = 0 . (6.22)

Consider the counting of the degrees of freedom. For the fields of starting Lagrangian

counting is

A : 9− 3 = 6 , Ξ : 6

Ψ : 6− 2 = 4 , G : 4

Ã : 9− 3 = 6 , Ξ̃ : 6

8 8

The matching is established by construction since the Lagrangian itself has been built by

associating a partner to each field. The condition Ξ = Ξ̃ removes 6 d.o.f. on the right, but

since it implies the torsionless condition it removes 3 d.o.f. on the left as well. Now, the

counting is 5 vs 2. The matching is established by requiring that out of the 4 d.o.f. of the

auxiliary field G only 1 is nontrivial; this is obtained via the parametrisation

Gαα′ = Gδαα′ . (6.23)

This field G can be identified with auxiliary field f of section 4.

7 Supersymmetry

We clarify some issues regarding supersymmetry matching of d.o.f. We also point out that

here we do not take a supergravity interpretation of Chern-Simons theory, but we explore

the matching of d.o.f.’s as in a pure Chern-Simons gauge theory. Later, we discuss its

supergravity interpretation and discuss different supergroups.

First consider the supersymmetry on the worlvolume. In that case, for each gauge field

Aa there is a corresponding spinor field Ξa. The matching off-shell is achieved by noting

that, because of the gauge symmetry δAa = ∇Ca, we can remove one degree of freedom

(for each generator of the Lie algebra) from Aa. Then, the remaining d.o.f.’s matche with

those of the gauginos Ξα. On the other hand, using the equations of motion, we find that

there are no propagating d.o.f. for the gauge fields, since their field strength vanishes, and

for the gauginos which have algebraic (non dynamical) equations.

The same argument applies also in the case of the gauge fields ψα associated to the

supercharges. Gauge symmetry removes one d.o.f. from ψα and the remaining d.o.f. match

those of Gα. Again, on-shell there are no propagating degrees of freedom and the matching

is trivial.
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We consider now a different type of matching. We would like to compare the d.o.f.’s of

the gauge fields Aa with those of ψα. They are both gauge fields and off-shell correspond

2 × bosonic generators and 2 × fermionic generators of the gauge supergroup. Consider

then the supergroup OSp(p|q). The counting of bosonic vs fermionic generators gives(
p(p− 1)

2
+
q(q + 1)

2

∣∣∣pq) (7.1)

and therefore the matching is achieved when p = q or p = q + 1. In that case, the bosonic

and fermionic d.o.f.’s match. For example the case q = 2 and p = 2 or p = 3 are example

of d = 3 supergravities already known in the literature. However, in general, the matching

is not achieved.

If p 6= q we have to follow a different path. Assuming that p > q, then we have that the

super coset OSp(p|q)/SO(p− q) has the same number of bosonic and fermionic generators

(pq|pq). On the other side, if p < q, we find that the supercoset OSp(p|q)/Sp(q − p) has

the same number of bosonic and fermionic generators. Lastly, we have the case p = 1 and

q = 2r. In that case, the coset with the matching is OSp(1|2r)/SO(r, r).

We can distinguish the bosonic gauge fields Aa between those with the index

I = 1, . . . , pq (the number of fermionic generators) AI and those belonging to the sub-

groups SO(p− q), or Sp(q− p) or SO(r, r) (depending on p > q, p < q or p = 1, q = 2r) Ai

where i runs over the generators of the subgroup). Then, the field strengths can be divided

as follows

F I = dAI + f IiJA
i ∧AJ = ∇AI , F i = dAi + f iIJA

I ∧AJ + f ijkA
j ∧Ak . (7.2)

The torsion condition the equation

F I = 0 , (7.3)

can be solved in terms of Ai, the gauge fields of the subgroup. In this way, by going

(partially) on-shell with those degrees of freedom, we achieve the off-shell matching for the

remaining d.o.f.’s. Once this equation is solved in terms of Ai, we can reinstate them in the

rest of the action and derive the corresponding equations of motion. Through the Bianchi

identities, we have that

∇F I = f IiJF
i ∧AJ (7.4)

and therefore, imposing F I = 0, we find a condition on AI (this is analogous to impose the

vanishing of the torsion in general relativity, solving the spin connection in terms of the

vielbein; then, this implies the condition E ∧ R = 0 for the curvature). This corresponds

to the reduced holonomy

f IiJF
i ∧AJ = 0 . (7.5)

Even in this reduced holonomy situation, eq. (7.3) is not always solvable. Indeed, counting

the independent contained in (7.3) we have that the index I runs from 1 to pq, but they

are 2-form equations which have pq(pq − 1)/2 independent components. The unknowns

given by the gauge fields Ai are 1-form (with pq components for each value of the index i),
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therefore there are pq(p− q)2(p− q − 1)/2 unknowns. To solve the equations we need the

matching

p2q2(pq − 1) = pq(p− q)(p− q − 1) (7.6)

which can be achieved only if p = 1, ∀q, or q = −1, ∀p and q = p/(p + 1), ∀p 6= −1.

However, p and q must be positive integers, this excludes the last two solutions. The

remaining one, p = 1, is the only possible case for any q. This corresponds to the case

OSp(1|2r) with the subgroup SO(r, r) which is a subgroup of Sp(2r). In that case we can

solve the equation (7.3) in terms of Ai. We have the interesting cases OSp(1|2)/SO(1, 1),

OSp(1|4)/SO(2, 2), OSp(1|6)/SO(3, 3) and the OSp(1|32)/SO(16, 16).

8 Conclusions and outlook

In this note we have clarified the issues regarding the relation between the Achucarro-

Tonwsend supergravity models and the group manifold approach to the same theory. In

the first case, the gauge symmetry is promoted to a super gauge symmetry and there-

fore closes off-shell. In the second case, the supersymmetry closes off-shell only after the

introduction of auxiliary fields. In the second part of the paper, we construct a dou-

ble supersymmetric version with worldvolume and gauge supersymmetry and discuss how

supergravity can be retrieved. The present work prepares the way to construct Achucarro-

Tonwsend supergravities with extended supersymmetries corresponding to orthosymplectic

groups OSp(p|2) × OSp(q|2). Only few cases are studied (see for example [22–32]) in the

superspace language, but not in the group manifold approach. In the latter, the question

of auxiliary fields has never been tackled.

A Gamma matrices in D = 3

We summarize in this appendix our gamma matrix conventions in D = 3.

γ0 =

(
i 0

0 −i

)
, γ1 =

(
0 1

1 0

)
, γ2 =

(
0 −i
i 0

)
(A.1)

ηab = (−1, 1, 1), {γa, γb} = 2ηab, [γa, γb] = 2γab = −2εabcγ
c, (A.2)

ε012 = −ε012 = 1, (A.3)

γ†a = γ0γaγ0, γTa = −CγaC−1, CT = −C, C2 = 1 (A.4)

A.1 Useful identities

γaγb = γab + ηab = −εabcγc + ηab (A.5)

γabγc = ηbcγa − ηacγb − εabc (A.6)

γcγab = ηacγb − ηbcγa − εabc (A.7)

γaγbγc = ηabγc + ηbcγa − ηacγb − εabc (A.8)

γabγcd = −4δ
[a
[c γ

b]
d] − 2δabcd (A.9)

where δabcd = 1
2(δac δ

b
d−δadδbc), and index antisymmetrizations in square brackets have weight 1.
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A.2 Fierz identity for two Majorana one-forms

ψψ̄ =
1

2
(ψ̄γaψ)γa (A.10)

As a consequence

γaψψ̄γ
aψ = 0 (A.11)
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