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1 Introduction

In gauge theories an important physical quantity is the Wilson loop defined as the holonomy
of the gauge connection along a one-dimensional contour. This has a natural generalization
to higher dimensional contours, whenever the theory lives in D > 3 dimensions and contains
higher-rank tensor fields. In particular, Wilson Surfaces (WS) are defined in terms of a
surface integral of a two-form tensor [2]

W [σ] = eΓ[σ], with Γ[σ] =
∫
σ
Bµνdx

µdxν (1.1)
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where σ is a two-dimensional submanifold. Notable examples are WS in four dimensions
with Bµν identified with the abelian gauge field strength (electric surface operator), WS in
the six-dimensionalN = (2, 0) theory living on one M5-brane where Bµν is the self-dual two-
form of the tensor multiplet, and WS in ten or eleven dimensions. In topological theories
their expectation values are expected to yield invariants of higher-dimensional knots [3].

In N = 4 SYM theory, general classes of surface operators which support some su-
persymmetry (BPS WS) have been first classified in [4–6]. They naturally arise in string
theory as configurations of intersecting D3-branes [4, 6–8] or fractional D3-branes in orb-
ifold backgrounds [9, 10]. A more general class of supersymmetric surface operators in
N = 4 SYM can be obtained as holographic duals of D3/D7-brane intersections [11].

Similarly, in the context of the AdS7/CFT6 correspondence, BPS WS of the N = (2, 0)
superconformal field theory living on one M5-brane have a dual description in terms of in-
tersecting M5/M2-branes [12]. Explicit M5-brane string soliton solutions in AdS7 × S4

background have been found, which correspond to the expectation value of BPS surface
operators, in different representations and different surface topologies [13–16]. Their field
theory realization is given in terms of a generalized 2-form which is a linear combination
of the 2-form and the five scalar fields of the 6D tensor multiplet [17–19]. This construc-
tion can be understood either by generalizing the formulation of BPS Wilson loops or,
alternatively, in a dimensional reduction approach from M-theory.

Correlation functions of WS’s, and WS with local operators, Wilson and ’t Hooft loops
in four [20–22] and six [23, 24] dimensions have been computed, perturbatively or using
(super)conformal techniques or the dual supergravity description. The dual description
has also been used to compute the Operator Product Expansion of surface operators in the
large N limit [23, 25, 26].

Surface operators exhibit a conformal anomaly [27], as expected for all even dimen-
sional defects. The anomaly in six dimensions has been determined perturbatively [17,
19, 28, 29] and holographically [24, 30], and the results are consistent with what has been
obtained from the entanglement entropy for the bubbling M5/M2 geometry [31, 32], and
exactly from the determination of the corresponding superconformal index [33].

Superconformal surface defects in four dimensional N ≥ 2 superconformal theories have
been used to probe the low energy phases of the four dimensional theory. The low-energy
dynamics of the two-dimensional theory living on a superconformal defect is featured by
a twisted superpotential which controls its interactions with the bulk degrees of freedom.
This 2d/4d system has been extensively investigated by exploiting superconformal tech-
niques, the associated chiral algebra modules [34–37] and equivariant localization [38, 39].
A bootstrap program for solving conformal field theories with conformal defects has been
initiated in [40] and extensively developed along the years (a non-exhaustive list of refer-
ences includes [41–46]).

From a QFT perspective, interest in surface operators is triggered by the fact that they
describe dynamical defects that are charged under two-form global symmetries [47–49].
Moreover, in a continuum field theory description of fractons and lineons [50–55], they
arise as the gauge-invariant phases developed by these observables in their constrained
motion.
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Within the general context of supersymmetric theories, in this paper we introduce
superWS — that is the manifestly supersymmetric version of operators of the form (1.1)
— and study their properties and invariances. This is carried out using supergeometry,
basically rephrasing what has been done in [1] for super-Wilson loops. We first reformulate
expression (1.1) as an integral on the entire manifold by making use of a Poincaré dual
which localizes the integral on the surface. Then we extend this definition to a generic
supermanifold endowed with super-Poincaré duals that localize integrals to supersurfaces
and write the supersymmetric version of Γ in (1.1) as the integral of a top form on the
entire supermanifold (see eq. (4.1)). This has the advantage to make the superWS man-
ifestly invariant under superdiffeomorphisms, from which constraints for supersymmetry
and kappa-symmetry invariances easily follow, as we discuss in details.

In particular, we focus on superWS in the six dimensional N = (2, 0) superconfor-
mal theory, whose tensor supermultiplet contains a self-dual superform B(2|0) suitable for
defining superWS. We study both ordinary superWS defined only in terms of B(2|0) and
generalized superWS which contain also couplings to scalar multiplets. The two kinds
of operators simply differ by a d-exact shift of the corresponding super-Poincaré duals.
The explicit expression for these operators is given in (5.11) in terms of superfields and
in (5.12) in components. For both kinds of operators we determine the constraining equa-
tions which select the class of supersurfaces leading to BPS superWS. This class includes
the 1/2 BPS solutions corresponding to planar and spherical surfaces already discussed in
the literature. More generally, we find that in Minkowski spacetime there are no 1/2 BPS
WS corresponding to spacelike surfaces. This result resembles what is already known for
Wilson loops [56]. Similarly, we determine the conditions which ensure kappa-symmetry
invariance of superWS. Remarkably, they coincide with the conditions for a static super-
membrane to be kappa-symmetric [57].

As WS are objects charged under two-form tensor symmetries, we expect superWS
to be objects charged under symmetries generated by tensorial supercurrents. Aimed at
investigating this question, in the last part of the paper we construct conserved tenso-
rial supercurrents and the corresponding conserved supercharges within the framework of
supergeometry. These are the supersymmetric generalization of the tensorial currents in-
troduced in [47]. We then prove that WS and higher dimensional operators are indeed the
charge carriers for these symmetries.

The plan of the paper is the following. For reader’s convenience, in section 2 we
briefly summarise the main concepts of supergeometry that are used along the paper. As
a warming-up, in section 3 we rephrase ordinary Wilson Surfaces in terms of integrals on
the entire manifold of 2-form fields times the PCO which localizes the integral on a given
surface. Section 4 contains our main proposal, that is the general expression for a superWS
in superspace (see eq. (4.7)). We stick to the abelian case, as non-abelian WS are not well
understood yet, though various proposals for generalizing the concept of normal-ordered
exponential have already appeared in the literature [58–62]. Its behaviour under supersym-
metry and kappa-symmetry depends entirely on the behaviour of the supersurface, as we
discuss in details in sections 5 and 6 for the six dimensional N = (2, 0) theory. Section 7 is
devoted to the study of tensorial conservation laws in supermanifolds, and to the interpre-
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tation of superWS and their higher dimensional super-cousins as the objects charged under
the global symmetries generated by these supercurrents. Finally, section 8 is devoted to
some conclusions and perspectives. In particular, we address the fact that our construction
opens the possibility of studying a continuum theory for fractons and lineons in superspace
(superfractons and superlineons), as we will discuss in a forthcoming paper [63]. Four
appendices follow, one summarising our conventions in six dimensions, one recalling ba-
sic definitions about the Hodge operator in supermanifolds, one including an alternative
discussion of conservation laws that makes use of an explicit surface parametrization, and
finally one where we define a supersymmetric version of the linking number between two
supersurfaces, required to define the action of charge operators on superWS and higher
dimensional objects.

2 Supergeometry and Picture Changing Operators

In this section we briefly review the basics of geometry on supermanifolds and the role of
Picture Changing Operators. A more extensive discussion on supergeometry can be found
in [64–66], whereas applications of this formalism to field theories have been developed
in [67–71]. A geometric formulation of (super) Wilson Loops has been recently proposed
in [1].

A supermanifold SM of dimensions (n|m) is locally described by a set of n even
variables {xa}a=1,...,n and a set of m odd variables {θα}α=1,...,m. On supermanifolds it is
possible to develop the full Cartan calculus. The basic ingredients are super-differential
forms (henceforth superforms), that is elements of the cotangent bundle T ∗SM expanded
on a basis of odd {dxa} and even {dθα} differential forms. Since the dθ’s are commuting
quantities, there is no notion of top form in the complex of superforms. The notion of top
form has to be found into a new complex of forms, known as integral forms. We define such
objects by following the strategy of Belopolsky [64], where integral forms are distributional-
like forms. In particular, forms on supermanifolds are described by the usual form number
p and by a new grading q called picture number.

Precisely, a generic superform in SM locally reads

ω(p|0)(x, θ, dx, dθ) = ω(x, θ) dxa1 . . . dxar (dθα1)g1 . . . (dθαs)gs (2.1)

where p = r +
∑s
i=1 gi and q = 0. By contrast, a generic integral form is written as

ω(p|m)(x, θ, dx, dθ) = ω(x, θ) dxa1 . . . dxar δ(b1)(dθβ1) . . . δ(bm)(dθβm) (2.2)

with p = r−
∑m
j=1 bj and q = m. In this expression there are no dθ’s, due to the following

distributional properties

dθαδ (dθα) = 0 , dθαδ(p) (dθα) = −pδ(p−1) (dθα) (2.3)

In order to keep track of the orientation of the supermanifold we require δ (dθ) to be odd
objects, hence m is the maximum number of δ’s that may appear in a given form. We note
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that the picture number counts indeed the number of δ’s appearing in a given form. While
superforms have q = 0, integral forms have maximal picture number q = m.

The notion of top form used for integration in supergeometry is contained in the
space Ω(n|m) (SM), called Berezinian bundle, analogous to the determinant bundle of usual
geometry. A generic top integral form ω(n|m) ∈ Ω(n|m) (SM) reads

ω(n|m) = f[i1...in][α1...αm](x, θ)dxi1 . . . dxinδ (dθα1) . . . δ (dθαm) = f(x, θ)dnxδm (dθ) (2.4)

As in conventional geometry, we can define the integral of a top form on a superspace en-
dowed with a super-measure [dxdθd(dx)d(dθ)], invariant under coordinate transformations.
Following [65], we write

I[ω] =
∫
SM

ω(n|m) =
∫
T ∗SM

ω(n|m)(x, θ, dx, dθ) [dxdθd(dx)d(dθ)] (2.5)

where dx and d(dθ) define Lebesgue integrals, while the integrations over dθ and d(dx) are
Berezin integrals.

Picture Changing Operators (PCOs) are conveniently introduced to define the inte-
gration of generic superforms in a supermanifold. Let us consider for example a bosonic
submanifold N ⊂ SM, with dimN = (p|0), defined by the embedding ι : N → SM, and
a (p, 0) superform ω(p|0). We define the integration of ω(p|0) on N as∫

N
ι∗ω

(p|0) ≡
∫
SM

ω(p|0) ∧ Y(n−p|m)
N (2.6)

where ι∗ is the pull-back map and Y(n−p|m)
N is the Poincaré dual of the embedding ι, called

Picture Changing Operator, from string theory literature (see e.g. [72]). The PCO in (2.6)
is independent of the surface parametrization, it only depends on the embedding through
its homology class and satisfies the closure, but non-exactness conditions

dY(n−p|m)
N = 0 , Y(n−p|m)

N 6= dΣ(n−p−1|m) (2.7)

When the submanifold N is one-dimensional and ω(1|0) is a gauge connection, equa-
tion (2.6) provides a geometric construction of (super) Wilson loops [1]. Many properties
of the Wilson operator, like supersymmetry and kappa invariance, are dictated by the
behavior of the PCO.

Changing the submanifoldN to an homologically equivalent oneN ′, amounts to chang-
ing the PCO by the addition of a d-exact term

Y(n−p|m)
N → Y(n−p|m)

N ′ = Y(n−p|m)
N + dΩ(n−p−1|m) (2.8)

This mechanism has been extensively used in the context of (super) Wilson loops, in par-
ticular for tuning the amount of supersymmetry preserved by a given operator [1]. As
a remarkable example, it has been proved that the generalized Wilson-Maldacena holon-
omy [12] which leads to a BPS operator in N = 4 SYM theory can be generated from an
ordinary non-BPS holonomy by a d-exact shift of the corresponding PCO. In the present
paper, we are going to generalize this mechanism to the case of Wilson Surfaces.
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3 Wilson surfaces

We begin by considering Wilson Surfaces (WS) in ordinary manifolds with no supersym-
metry. Given an n-dimensional manifold M and a two-dimensional surface σ immersed in
it, a WS corresponding to a 2-form B(2) on M is defined as

WS [σ] = eΓ , Γ =
∫
σ
ι∗B

(2) (3.1)

where ι is the immersion of σ intoM (see for instance [6] for a review on surface operators
in four-dimensional gauge theories).

Generalizing the geometric construction of Wilson loops introduced in [1], we reformu-
late this definition in terms of a suitable PCO which encodes all the geometric data featuring
WS . If the surface is defined by the set of equations φi(xa) = 0, with i = 1, . . . , n − 2, we
introduce the PCO

Y(n−2)
σ =

n−2∏
i=1

δ(φi)dφi (3.2)

dual to the immersion of the two-dimensional surface into the manifold. Therefore, the
WS exponent in (3.1) can be rewritten as a top form integrated on the whole manifold [4]

Γ =
∫
M
B(2) ∧ Y(n−2)

σ (3.3)

Thanks to the d-closure of the PCO this expression is manifestly invariant under U(1)
gauge transformations B → B+ dβ, as long as σ is a compact surface with no boundaries,
or fields vanish at the intersection σ ∩ ∂M. Moreover, under a smooth deformation of the
surface the PCO changes by an exact term, Y(n−2)

σ → Y(n−2)
σ +dηn−3, and correspondingly

Γ varies as
Γ→ Γ +

∫
M
H(3) ∧ ηn−3 (3.4)

where H(3) = dB(2) is the field strength.
Expression (3.3) can be recast in a more familiar form. To this end, we consider the

parametrisation of the surface σ in (3.1) by two real parameters (z, z̄) → {xa(z, z̄)}, with
(z, z̄) ∈ ∆ ⊆ R2. We then define the enlarged manifold M×∆ described by coordinates
(xa, z, z̄) and construct the PCO dual to the embedding (z, z̄)→ (xa(z, z̄), z, z̄) as follows

Y(n)
σ =

n∏
a=1

δ
(
xa − xa(z, z̄)

) n∧
a=1

(dxa − ∂zxadz − ∂z̄xadz̄)

=
n∏
a=1

δ
(
xa − xa(z, z̄)

) n∧
a=1

dxa +
n∑
b=1

(−1)b(∂zxbdz + ∂z̄x
bdz̄)

∧
a 6=b

dxa


+

n∑
b=1,c=1

(−1)b+c
∂zxb∂z̄xcdz ∧ dz̄ ∧

a 6=b,a 6=c
dxa

 (3.5)

Multiplying by the 2-form parametrized as B(2) = Bab dx
a ∧ dxb, it is easy to see that only

the last term survives and we end up with

B(2) ∧ Y(n)
σ = Bbc∂zx

b∂z̄x
c dz ∧ dz̄

n∏
a=1

δ
(
xa − xa(z, z̄)

) n∧
a=1

dxa (3.6)
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Integrating on M×∆ we finally obtain∫
M×∆
B(2) ∧ Y(n)

σ =
∫
σ
Bab(x(z, z̄)) ∂zxa∂z̄xb dzdz̄ (3.7)

which coincides with Γ in (3.1) when σ is parametrized by coordinates (z, z̄). Therefore,
an alternative way to define a WS is

WS [σ] = eΓ , Γ =
∫
M×∆
B(2) ∧ Y(n)

σ (3.8)

The geometric formulation of WS has many advantages. The main one is that the
integral is extended to the whole manifold, the 2-form B(2) is generically defined on it
rather being constrained to live on the surface, while all the information regarding the
surface is totally encoded in the PCO. This makes the study of WS [σ] invariances much
easier. In particular, expression (3.8) is manifestly invariant under diffeomorphisms of
the manifold. The implications of this property will be further investigated in the rest of
the paper.

4 Super Wilson Surfaces

Among the many advantages of formulation (3.3) (or (3.8)) for WS we count the fact that
it allows for a straightforward generalisation to supermanifolds, thus leading to an easy
definition of super Wilson surfaces.

We consider a supermanifold SM described by coordinates ZM ≡ (xa, θα), with
a = 1, . . . , n, α = 1, . . . ,m, and assign a super 2-form B(2|0) on it. If Σ is a dimension-(2|0)
supersurface whose immersion in SM is described by the PCO Y(n−2|m)

Σ , we define the
superWS as

WS [Σ] = eΓ , Γ =
∫
SM
B(2|0) ∧ Y(n−2|m)

Σ (4.1)

The 2-form is generically defined in SM, while the geometrical data featuring the super-
surface are entirely captured by the PCO. This is factorized into a bosonic and a fermionic
part, Y(n−2|m)

Σ = Y(n−2|0)
Σ × Y(0|m)

Σ , where Y(n−2|0)
Σ localizes the bosonic coordinates on Σ

whereas Y(0|m)
Σ localizes the fermionic ones. If the supersurface is defined by means of al-

gebraic equations, the PCO Y(n−2|m)
Σ is the product of the Dirac delta functions localizing

on that surface.
This expression for Γ can be made more explicit if we parametrize the supersurface

Σ in terms of smooth functions (z, z̄) → ZM (z, z̄) on ∆ ⊆ R2. For the bosonic part of
the PCO we can proceed exactly as done in section 3, by including (z, z̄) as extra bosonic
coordinates and extending the integration to the supermanifold SM×∆. A straightforward
supersymmetrization of eq. (3.5) leads to

Y(n|0)
Σ =

n∏
a=1

δ
(
xa − xa(z, z̄)

) n∧
a=1

(V a −Πa
z(z, z̄)dz −Πa

z̄(z, z̄)dz̄) (4.2)

where we have defined V a = dxa + θγadθ, Πa
z(z, z̄) = (∂zxa + θγa∂zθ) and Πa

z̄(z, z̄) =
(∂z̄xa + θγa∂z̄θ).

– 7 –
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For the PCO of the fermionic sector we choose

Y(0|m)
Σ =

m∏
α=1

(
θα − θα(z, z̄)

)
δ
(
ψα − (∂zθα(z, z̄)dz + ∂z̄θ

α(z, z̄)dz̄)
)

(4.3)

=
m∏
α=1

(
θα − θα(z, z̄)

)(1−
∑
β

(∂zθβ(z, z̄)dz + ∂z̄θ
β(z, z̄)dz̄)ιβ

+
∑
β,γ

(∂zθβ(z, z̄)∂z̄θγ(z, z̄)dzdz̄)ιβιγ

)
m∏
α=1

δ(ψα)


where ψα = dθα and in the second line we have expanded the Dirac delta functions ex-
ploiting the presence of the anticommuting one-forms dz and dz̄. Here ιβ is the contraction
along the supercovariant derivative Dβ . Using a shorter notation we can then write

Y(n|m)
Σ ≡ Y(n|0)

Σ ∧ Y(0|m)
Σ = (4.4)

= δ(n)(x− x(z, z̄)) (V −Πzdz −Πz̄dz̄)n ∧ (θ − θ(z, z̄))m δ(m)(ψ − ∂zθdz − ∂z̄θdz̄)

The exponent Γ in eq. (4.1) can then be rewritten as

Γ =
∫
SM×∆

B(2|0) ∧ Y(n|m)
Σ (4.5)

We now elaborate on this expression. Expanding B(2|0) in terms of the superspace
geometric objects, and focusing first on the fermionic part of the PCO, we can write

Γ =
∫
SM×∆

(
Bab(x, θ)V aV b +Baβ(x, θ)V aψβ +Bαβ(x, θ)ψαψβ

)
∧

m∏
α=1

(
θα − θα(z, z̄)

)
×1−

∑
β

(∂zθβdz + ∂z̄θ
βdz̄)ιβ +

∑
β,γ

(∂zθβ∂z̄θγdzdz̄)ιβιγ

 m∏
α=1

δ(ψα) ∧ Y(n|0)
Λ (4.6)

where Bab and Bαβ are bosonic components, whereas Baα are fermionic. Now, due to the
presence of the factor

∏
α δ(ψα) the only non-vanishing contributions come from terms in

the integrand which do not contain any power of ψα, like for instance Bab(x, θ)dxadxb from
the first term, or terms linear and quadratic in ψα on which the action of the contraction(s)
ια has the effect of replacing ψα → ∂zθ

αdz+∂z̄θαdz̄. Therefore, using PCO (4.2) to localize
also the bosonic coordinates on the supersurface Σ, from the previous equation we easily
find

Γ=
∫

Σ

(
BabΠa

zΠb
z̄+Baα(Πa

z∂z̄θ
α + Πa

z̄∂zθ
α) +Bαβ∂zθ

α∂z̄θ
β
)
dzdz̄ (4.7)

This equation provides the supersymmetric version of the WS in (3.7). In fact, if we choose
Σ to be an ordinary two-dimensional surface localised at θα(z, z̄) = 0, the corresponding
PCO reduces to Y(n|0)

Σ ∧ Y(0|m)
0 with

Y(0|m)
0 = θmδ(m)(ψ) (4.8)

and the integral in (4.7) coincides with (3.7).
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Although expression Γ in eq. (4.7) is given in terms of superspace objects, it is in
general non-invariant under all the supersymmetry charges. When it preserves a fraction
of supercharges it gives rise to a BPS WS. How many supercharges are preserved by
an assigned WS strongly depends on the choice of the supersurface, which eventually
translates into the choice of the PCO. For instance, PCO (4.8) breaks supersymmetry
completely, since the corresponding localising condition θα = 0 ∀α is not invariant under
transformations of the form θα → θα + εα. Changing surface Σ → Σ′ to improve the
degree of supersymmetry amounts to changing Y(0|m)

Σ → Y(0|m)
Σ′ , but as we have already

mentioned, the two PCOs necessarily differ by a d-exact term (see eq. (2.8)). Therefore, a
d-varying supersymmetry mechanism can be implemented to span the whole spectrum of
BPS WS, as we are going to discuss in the next section.

5 Super Wilson Surfaces in six dimensions

The previous construction is completely general and can be adapted to different dimensions.
In particular, if we fix n = 11 and m = 32 in eq. (4.1) in principle we obtain a consistent
definition of WS in M-theory.

By dimensional reduction from eleven to six dimensions we land on the N = (2, 0)
superconformal theory living on one M5-brane. This is a convenient framework where
constructing surface operators explicitly. In fact, this is supposed to be a theory of one
tensor multiplet which contains a 2-form suitable for defining WS.

As described in [73–76], the tensor multiplet is given in terms of an anti-symmetric,
Ω-traceless1 superfield WAB(x, θ), satisfying the superspace constraints and the reality
condition

D(A
α WB)C = 0 , WAB = ΩACΩBDW

CD (5.1)

Using the algebra of covariant derivatives (A.8), one can show that the superfield has the
following θ-expansion

W [AB] = ϕ[AB] + λ[A
α ΩB]CθαC +H(αβ)θ

α[AθB]β + derivative terms (5.2)

where the field components ϕ[AB], λAα , H(αβ), which are 5 scalar fields, 8 fermionic fields
and 3 bosonic fields (self-dual anti-symmetric tensor) are put on-shell

∂2ϕ[AB] = 0 , ∂αβλAβ = 0 , ∂αβHβγ = 0 (5.3)

The latter equation implies that the three form Hµνρ ≡ γαβµνρHαβ is the curl of a 2-form

Hµνρ = ∂[µBνρ] (5.4)

A geometrical formulation in superspace can be obtained by adopting the rheonomic con-
struction. Merging Bµν into the general expansion of a (2|0)-form

B(2|0) = BµνV
µV ν +BA

µαV
µψαA +BAB

αβ ψ
α
Aψ

β
B (5.5)

1We refer to appendix A for notations and conventions of six-dimensional superspace.
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and computing the corresponding curvature H(3|0) = dB(2|0), by imposing conventional
constraints (vanishing of spinorial components of the curvature) and using Bianchi identities
one obtains

H(3|0) = V µV νV ρ (γµνρ)αβDA
αD

B
βWAB + V µV ν(ψAγµνDB)WAB + V µ(ψAγµψB)WAB

≡ V µV νV ρHµνρ + V µV νψAH
A
µν + V µψAψBH

AB
µ (5.6)

To compute the number of on-shell degrees of freedom one needs to take into account the
gauge freedom δB(2|0) = dΛ(1|0).

Now, using in (4.7) the 2-form defined in (5.5) we obtain the supersurface operator for
the effective field theory living on the M5-brane. These operators can be obtained from
their eleven dimensional counterparts by dimensional reduction.

5.1 Generalized surface operators

As discussed in [1], in four-dimensional N = 4 SYM theory it is possible to obtain the
generalised Wilson-Maldacena (super)loop, including additional couplings to scalars, from
an ordinary (super)Wilson loop by shifting the original PCO by an exact term. Here we
investigate whether a similar pattern holds for WS in six dimensions.

To this end, we first observe that if in the general expression of Γ for a superWS in six
dimensions

Γ =
∫
SM×∆

B(2|0) ∧ Y(6|16)
Σ (5.7)

we modify the PCO by the addition of an exact term

Y(6|16)
Σ −→ Y(6|16)

Σ + dΩ(5|16) (5.8)

the resulting operator gets modified as

Γ −→ Γ′ = Γ +
∫
SM×∆

H(3|0) ∧ Ω(5|16) (5.9)

where the (3|0)-superfield strength is given in (5.6). The second term originates from
integration by parts assuming trivial boundary conditions. Now, generalizing what has
been done in [1] for one dimensional contours, we choose Ω(5|16) to be given by

Ω(5|16) = dzdz̄
16∏
ρ=1

(
θρ − θρ(z, z̄)

) 6∏
µ=1

δ
(
xµ − xµ(z, z̄)

)
× εµ1...µ6V

µ1 . . . V µ5 NAB(γµ6)[αβ]ιAαι
B
βδ

16(ψ) (5.10)

where ιAα is the contraction respect to the fermionic vector field DA
α , and NAB is a pseudo-

real, antisymmetric2 tensor of the USp(4) R-symmetry group, satisfying NAB=εABCDN
CD.

Inserting this particular Ω(5|16) form in (5.9) and taking into account that H(3|0) is the
sum of three pieces with decreasing powers of V ’s, it is easy to realise that only the term

2The expression (γµ6 )[αβ]ιAαι
B
β is anti-symmetric in A,B since ιAα and ιBβ commute between them.
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linear in V in (5.6) survives. Adapting the expression in (4.7) for Γ to six dimensions and
combining it with

∫
H(3|0) ∧ Ω(5|16) as in (5.9) we are finally led to

Γ′=
∫

Σ

(
BµνΠµ

zΠν
z̄+BA

µα(Πµ
z ∂z̄θ

α
A+Πµ

z̄ ∂zθ
α
A)+BAB

αβ ∂zθ
α
A∂z̄θ

β
B+NABW

AB
)
dzdz̄ (5.11)

where WAB is the tensor superfield (5.2), Bµν , BA
µα, B

AB
αβ are the components of the corre-

sponding (2|0)-form given in (5.5) and Πµ
i = ∂ix

µ + θAΩABγµ∂iθB for i = z, z̄. We note
that the last term of Γ′ has an additional symmetry. In fact, as a consequence of the Ω-
traceless property of WAB, it is invariant under δNAB = NΩAB. This symmetry is useful
to remove one degree of freedom from the NAB tensor.

5.2 Super Wilson Surfaces in components

Equation (5.11) provides the most general superWS in six dimensions. We can rewrite it in
a more explicit form, in terms of the superfield components, in order to better clarify how
the bosonic and fermionic contributions organize themselves. Exploiting expansions (5.2)
and (5.5), we obtain

Γ′=
∫

Σ
dzdz̄

[
Bµν∂zx

µ∂z̄x
ν+NABϕ

AB

+BA
µβ∂z̄x

µ∂zθ
β
A+BA

µβ∂zx
µ∂z̄θ

β
A+NABλ

A
αΩBCθαC

+Bµν∂zxµ θαAΩABγναβ∂z̄θ
β
B+Bµν∂z̄xν θαAΩABγµαβ∂zθ

β
B−B

AB
βδ ∂zθ

β
A∂z̄θ

δ
B+NABH(αβ)θ

αAθβB

+BA
µβθ

α
BΩBCγµαδ∂zθ

δ
C∂z̄θ

β
A−B

A
µβθ

α
BΩBCγµαδ∂zθ

β
A∂z̄θ

δ
C−BµνθαAΩABγµαβθ

γ
CΩCDγνγδ∂zθ

β
B∂z̄θ

δ
D

+O(θ3)
]

(5.12)

where O(θ3) denote higher-order terms in θ’s coming from expansion (5.2). They are all
proportional to NAB and contain derivative terms of ϕ, λ and H.

Expansion (5.12) still contains superfield components of the superform B(2|0). In order
to complete the reduction it is convenient to adopt a Wess-Zumino gauge for B(2|0). This
can be conveniently done by setting θαAB

AB
αβ = 0. This constraint allows to easily recon-

struct the superspace expansion by considering the field equations stemming from Bianchi
identities and conventional constraints imposed on B(2|0).3

Equation (5.12) is the most explicit expression we can provide for a generalized su-
perWS in superspace. Its lowest component, obtained by projecting on the supersurface
θα(z, z̄) = 0, reads

Γ′
∣∣
θ(z,z̄)=0 =

∫
σ
dzdz̄

[
Bµν∂zx

µ∂z̄x
ν +NABϕ

AB
]

(5.13)

and coincides with the operator introduced in [17] and more recently studied in [18, 19, 24],
which includes couplings to the five scalar fields ϕ[AB] of the tensor multiplet, in analogy
with the Wilson-Maldacena loop.

3We refer to [77] for a very clear description of this procedure.
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5.3 BPS surface operators

We now study under which conditions a (super)WS preserves a certain amount of su-
persymmetry. This amounts to determine and solve the Killing spinor equations for the
assigned operator.

We will consider the generic operator

Γζ [Σ] =
∫
SM×∆

B(2|0) ∧
(
Y(6|16)

Σ + ζ dΩ(5|16)
)

(5.14)

which interpolates between the WS in (5.7) (for ζ = 0) and the generalized one (5.9) (for
ζ = 1), with Ω(5|16) given in (5.10).

Expression (5.14) is manifestly invariant under superdiffeomorphisms, being the in-
tegral of a top form on the entire (extended) supermanifold. Since on superforms and
PCOs an infinitesimal superdiffeomorphism generated by a vector field X acts as the Lie
derivative, δX = {d, ιX}, where ιX is the contraction along X, the invariance of Γ can be
explicitly written as

δXΓζ [Σ] =
∫
SM×∆

[
ιXH

(3|0)∧
(
Y(6|16)

Σ + ζ dΩ(5|16)
)

+H(3|0)∧ιX
(
Y(6|16)

Σ + ζ dΩ(5|16)
)]
≡ 0

(5.15)
Here we have used the d-closure of the PCO and assumed the absence of boundary contri-
butions. The first term of the integrand corresponds to the variation in form of Γζ , whereas
the second term, being associated to the variation of the PCO, arises from the variation
of the supersurface. This identity thus states that the variation in form of Γζ induced by
the X-transformation is always compensated by the variation of the supersurface Σ. In
particular, this implies that the X-diffeomorphism is a symmetry for WS [Σ, ζ] = eΓζ [Σ] if
it leaves the supersurface invariant, δXΣ = 0. Differently stated, the set of WS invariances
coincides with the set of Σ symmetries.

A supersymmetry transformation is a particular superdiffeomorphism corresponding
to X ≡ ε = εαAQ

A
α , with QAα being the supersymmetry charges defined in (A.9). Applying

the previous reasoning we can trade the supersymmetry invariance equation δεWS [Σ, ζ] = 0
with the condition δεΣ = 0. This is indeed the Killing spinor equation which can be used
to classify BPS WS.

Explicitly, from eq. (5.15) this equation reads

H(3|0) ∧ ιε
(
Y(6|16)

Σ + ζ dΩ(5|16)
)
∼ 0 (5.16)

where “∼” means that this quantity has to be zero, up to d-exact terms.
For simplicity, we begin investigating the ζ = 0 case. Using the action of ιε on the

supervielbein
ιεV

µ = 2εγµθ, ιεψ
α
A = εαA (5.17)

the application of ιε to the PCO in (4.4) leads to

ιεY
(6|16)
Σ = (5.18)

δ(6)(x− x(z, z̄)) 2εγµθιµ (V −Πzdz −Πz̄dz̄)6 (θ − θ(z, z̄))16 δ(16)(ψ − ∂zθdz−∂z̄θdz̄)

+ δ6(x− x(z, z̄)) (V −Πzdz −Πz̄dz̄)6 (θ − θ(z, z̄))16 εAι
A δ(16)(ψ − ∂zθdz − ∂z̄θdz̄)
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Now, multiplying this expression by the H(3|0) expansion in (5.6), it is easy to see that the
first line in (5.18) let all the terms in (5.6) survive, whereas the second line kills all the
terms except for the V V ψ and V ψψ ones. Assembling everything together, we obtain(

4εγµθΠν
zΠρ

z̄Hµνρ + 2εγµθ (Πν
z∂z̄θA −Πν

z̄∂zθA)HA
µν + 8εγµθ∂zθA∂z̄θBHAB

µ

−2Πµ
zΠν

z̄εAH
A
µν + 2εA (Πµ

z∂z̄θB −Πµ
z̄∂zθB)HAB

µ

)∣∣∣
Σ
×Vol = 0 (5.19)

where we have defined

Vol = δ(6)(x− x(z, z̄))V 6dzdz̄ (θ − θ(z, z̄))16 δ(16)(ψ) (5.20)

This is the most general Killing spinor equation which in principle allows to classify
all the BPS supersurfaces in superspace. Its systematic investigation is beyond the scopes
of the present paper and is left for the future. Here we consider only the special class of
purely bosonic surfaces, namely we set θα (z, z̄) = 0. In this case the previous equation
greatly simplifies and reduces to(

Πµ
zΠν

z̄εAH
A
µν

)∣∣∣
Σ
×Vol = 0 ⇒ ∂zx

µ∂z̄x
ν(εAγµνDB)WAB = 0 (5.21)

where in the last expression all the functions are localized on Σ and the εA spinor is in
general a local function of the point on the surface. If we require this equation to be valid
for any WAB, the Killing spinor equation that we have to solve is

εA ∂zx
µ∂z̄x

νγµν = 0 (5.22)

We look for constant εA solutions, then corresponding to supersymmetry globally re-
alized on the surface. Non-trivial solutions exist if the 4× 4 matrix M ≡ ∂zxµ∂z̄xνγµν has
a non-trivial kernel or, equivalently, if detM = 0. In particular, the rank of the matrix will
determine the BPS degree of the corresponding surface operator.

In order to study this equation in general, it is convenient to trade M for M2 and look
for solutions of detM2 = 0. In fact, rewriting M as

M = εij∂ix
µ∂jx

νγµν = εij(∂ixµγµ)(∂jxν γ̄ν), i, j = z, z̄ (5.23)

and making use of the Clifford algebra and Schouten’s identity for the εij tensor, its square
turns out to be proportional to the 4 × 4 identity matrix

M2 = 2
(
(∂ixµ∂ixνηµν)2 − (∂ixµ∂kxνηµν)(∂ixρ∂kxσηρσ)

)
= 4 det

(
∂zx

µ∂zx
νηµν ∂zx

µ∂z̄x
νηµν

∂zx
µ∂z̄x

νηµν ∂z̄x
µ∂z̄x

νηµν

)
× I (5.24)

Therefore, detM2 is proportional to the determinant in (5.24) and it vanishes if the follow-
ing equation

(∂zxµ∂zxνηµν)(∂z̄xµ∂z̄xνηµν)− (∂zxµ∂z̄xνηµν)2 = 0 (5.25)

is satisfied. This is a non-trivial equation for the xµ coordinates of the surface and selects
a subset of BPS surfaces.
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To solve equation (5.25) we embed the two-dimensional surface into a three-dimensional
manifold N ⊂M whereM is the six-dimensional Minkowskian bosonic slice of the super-
manifold with signature (−,+, . . . ,+).

We begin by considering a timelike three-dimensional slice. In order to prove that at
least one non-trivial solution of (5.25) exists, we make the easiest ansatz

xµ(z, z̄) = (f(z, z̄), 0, 0, 0, z, z̄) (5.26)

where f is a smooth function to be determined. Equation (5.25) then reduces to the
well-known Light Ray Partial Differential Equation (see for instance [78])

(∂zf)2 + (∂z̄f)2 = 1 (5.27)

Using an adapted γ-matrix representation (see appendix A) the corresponding M matrix
takes the 2× 2 block form

M =
(
A 0
0 −A

)
, A = −(∂zf)σ2 + (∂z̄f)σ3 − iσ1 (5.28)

where eq. (5.27) ensures detA = 0 and necessarily corresponds to an even number of zero
eigenvalues for M . Therefore, excluding the case of a null matrix, we conclude that any
solution to equation (5.27) provides a rank-2 matrix M and yields a 1/2 BPS WS.

One class of 1/2 BPS solutions is given by linear functions of the form

f(z, z̄) = C1z + C2z̄ + C3 , C2
1 + C2

2 = 1 (5.29)

For fixed C1, C2, C3 constants, it describes a plane immersed in three dimensions with one
time direction. Another class of 1/2 BPS solutions encodes quadratic functions of the form

f2 (z, z̄) = (z − C1)2 + (z̄ − C2)2 (5.30)

which for fixed constants describes a spherical two-dimensional wavefront.
Things drastically change if we consider immersion into a spacelike three dimensional

submanifold. This amounts to modify ansatz (5.26) for instance as

xµ(z, z̄) = (0, 0, 0, z, z̄, f(z, z̄)) (5.31)

As a consequence of the change in signature, it is easy to realize that constraint (5.27) gets
substituted by

(∂zf)2 + (∂z̄f)2 = −1 (5.32)

and does not allow for any real solution. Therefore, we conclude that in Minkowski signa-
ture there are no spacelike 1/2 BPS WS. This result resembles the Wilson loop situation,
where no spacelike BPS Wilson operators exist in Minkowski spacetime [56].

We now study the BPS constraint (5.16) in the generalized case, ζ 6= 0. This requires
evaluating also the second term H(3|0) ∧ ιεdΩ(5|16). Since from eq. (5.10) we easily obtain4

dΩ(5|16) = ∂µ
[
dzdz̄ (θ−θ(z, z̄))16 δ(6) (x−x(z, z̄))V 6NABγ

µιAιBδ(16) (ψ)
]
+ (5.33)

−2DA
[
dzdz̄ (θ−θ(z, z̄))16 δ(6) (x−x(z, z̄))εµ1...µ6V

µ1 . . .V µ5NABγ
µ6ιBδ(16) (ψ)

]
4For avoiding cluttering we neglect (z, z̄) indices of the NAB components.
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the contraction ιε gives rise to

ιεdΩ(5|16) = 2εγνθ∂µ
[
dzdz̄ (θ−θ(z, z̄))16 δ(6) (x−x(z, z̄)) ινV 6NABγ

µιAιBδ(16) (ψ)
]

+εC∂µ
[
dzdz̄ (θ−θ(z, z̄))16 δ(6) (x−x(z, z̄))V 6NABγ

µιAιBιCδ(16) (ψ)
]

+4εγνθDA
[
dzdz̄ (θ−θ(z, z̄))16 δ(6) (x−x(z, z̄)) ινεµ1...µ6V

µ1 . . .V µ5NABγ
µ6ιBδ(16) (ψ)

]
−2εCDA

[
dzdz̄ (θ−θ(z, z̄))16 δ(6) (x−x(z, z̄))εµ1...µ6V

µ1 . . .V µ5NABγ
µ6ιBιCδ(16) (ψ)

]
(5.34)

This result, when multiplied by H(3|0) in (5.6), leads to(
− 4∂µHAB

ν γµNABεγ
νθ − 4DAγµHB

νµεγ
νθNAB + 4DAHBC

µ εCNABγ
µ
)∣∣∣

Σ
×Vol (5.35)

where the volume form is given in (5.20). Summing this result with (5.19) we obtain the
generalized Killing spinor equations in superspace.

As before, the discussion simplifies in the particular case θ (z, z̄) = 0, that is when we
look for ordinary BPS surfaces. In fact, from the previous result we simply obtain

H(3|0) ∧ ιεdΩ(5|16) = 4DAγµW
BCεCNABγ

µ × Vol (5.36)

Here the numerical coefficient comes from manipulating gamma matrices and the su-
perderivative has been moved to act on W by using the Leibniz rule. Combining this
result with (5.21) and paying attention to the relative coefficients, we obtain

(∂zxµ∂z̄xνΩBCεAγµν − 12ζ NBCεA)DBWAC = 0 (5.37)

By suitably rescaling NBC and requiring this equation to be valid for any WAC configura-
tion we finally land on

εA (∂zxµ∂z̄xνΩBCγµν − ζ NBC) = 0 (5.38)

For ζ = 1 this coincides with the Killing spinor equation discussed in [18, 19]. Non-vanishing
solutions require the following consistency condition to be valid

det
(
Πµ
i Πν

j ηµν
)
−NB

AN
A
B = 0 (5.39)

6 Kappa symmetry

We now study the behavior of superWS under kappa symmetry, that is under transfor-
mations generated by the vector field κ̃ = καAD

A
α with supercovariant derivatives given

in (A.8). In the present section we will restrict to six dimensions,5 for which we have the
general decomposition of the superform H(3|0), eq. (5.6). However, the results that we find
do not rely on this particular choice and can be easily adapted to other dimensions.

According to the general discussion above, the generic operator (5.14) is invariant when
the following condition is satisfied

H(3|0) ∧ ικ̃
(
Y(6|16)

Σ + ζ dΩ(5|16)
)
∼ 0 (6.1)

5Kappa-symmetry transformations for the (6|16)-dimensional supermanifold are given in (A.11).
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We first study the ζ = 0 case. Recalling the action of kappa symmetry on the six
dimensional supervielbeins, eqs. (A.12), we can easily compute

ικ̃Y
(6|16)
Σ = δ(6)(x−x(z, z̄)) (V −Πzdz−Πz̄dz̄)6 ∧ (θ−θ(z, z̄))16 καAι

A
αδ

(16)(ψ−∂zθdz−∂z̄θdz̄)
(6.2)

It follows that contracting with H(3|0) the only non-zero terms come from the V V ψ and
V ψψ terms of (5.6). Therefore, we obtain

εij Πµ
i Πν

jΩBC

(
DBWAC

)
γµνκA + εij Πµ

i ∂jθAγµκBW
AB = 0 , i, j = z, z̄ (6.3)

where Πµ
i = ∂ix

µ+ θAΩABγµ∂iθB. Since we require this equation to be true independently
of the particular values of WAB, the two terms have to vanish separately. In order to study
these two conditions we make the conventional ansatz κA = εijγµν

(
Πµ
i Πν

j

)
KA and look

for constant KA solutions in various examples, with an increasing level of generality.
As the simplest case, we look for solutions in the subset of ordinary surfaces, that is

we set θA = 0. Following a procedure similar to the one that in the case of supersymmetry
led to (5.24), we obtain that non-vanishing constant KA solutions exist if the supersurface
coordinates satisfy the following condition

det(Πµ
i Πν

j ηµν) = 0 , i, j = z, z̄ (6.4)

This condition has an interesting interpretation from the point of view of the dual ge-
ometry. In the AdS7/CFT6 correspondence a surface operator W [Σ] for the N = (2, 0)
superconformal field theory (SCFT) living on a M5-brane is holographically dual to an
extremized supermembrane worldvolume whose boundary coincides with the Σ surface on
the M5-brane [12]. If we consider the standard action of a supermembrane in eleven di-
mensional notation as given in [57], the equations of motion for the worldvolume metric
lead to the worldvolume reparametrization constraints

P 2 + det(ΠM
i ΠN

j ηMN ) = 0 , PMΠM
i = 0 (6.5)

where PM is the momentum of the membrane6 while ΠM
i are the spatial (super)tangent

vectors to the membrane. These constraints ensure that the M2-brane action is invariant
under kappa-symmetry transformations [57]. In particular, kappa-symmetry transforma-
tions for the M2-brane supercoordinates read

δθ =
(

ΓMPM + 1
2ε

ijΓMNΠM
i ΠN

j

)
K (6.6)

for some spacetime spinor K. It is easy to see that for a static supermembrane, that
is setting PM = 0, these transformations coincide with the ones that we used, δκ̃θA =
εijγµν

(
Πµ
i Πν

j

)
KA and the equations of motion (6.5) are nothing but constraint (6.4) for

kappa-symmetry invariance of the WS. Therefore, this constraint can be interpreted as the
requirement for the static membrane to be kappa symmetric. Since for θA = 0 the tangent

6Obtained by taking the derivative of the Lagrangian with respect to the time derivative of the 11-
dimensional coordinates ∂0x

µ.
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vectors reduce to Πµ
i = ∂ix

µ, remarkably the kappa-symmetry constraint coincides with
the constraint for supersymmetry studied above.

Now, we look for more general solutions with ∂jθA 6= 0. In this case also the second
term in eq. (6.3) gives a non-trivial constraint for kappa-symmetry invariance. Inserting
there κA = εijγµν

(
Πµ
i Πν

j

)
KA, using the Schouten’s identities and Clifford algebra rules it

can be cast in the following form(
δijΠµ

i Πν
j ηµνΠρ

kδ
kl − δijΠµ

i Πν
kηµνΠρ

jδ
kl
)
∂lθ[AγρKB] = 0 (6.7)

We introduce the matrix Gij = Πµ
i Πν

j ηµν that satisfies det(Gij) = 0, as expressed by (6.4).
In terms of G equation (6.7) reads

Πρ
k

(
δkl −

Gkl
tr(G)

)
∂lθ[AγρKB] = 0 (6.8)

where tr(G) = δijGij . Using the identity G j
i G

k
j = G k

i tr(G) − δ k
i det(Gij) it is easy to

realise that constraint (6.4) implies that the matrix
(
δkl −

Gkl
tr(G)

)
is a projector. It follows

that equation (6.3) admits further solutions when ∂iθ
α
A is in the kernel of this projector.

We note that this is the usual framework of kappa-symmetric dynamics: the equations of
motion for the fermionic coordinates are wave equations with a degenerate wave operator.

6.1 Kappa symmetry for generalized Wilson surfaces

We now study the ζ 6= 0 case corresponding to a generalized WS. Since the first term
in (5.16) has been already discussed above we focus only on the ζ-term.

Applying the ικ̃ operator to (5.33), the first term leads to an expression proportional
to ι3δ16 (ψ). Since in (5.6) the term proportional to ψ3 is zero, it follows that the only
non-trivial expression comes from the second term of (5.33), and we obtain

H(3|0)∧ικ̃dΩ(5|16) = (6.9)

V µψAγµψBW
ABdzdz̄δ6 (x−x(z, z̄))κCιC

[
ψDD

D
(

(θ−θ (z, z̄))16 ινV
6NEFγ

νιEιF δ16 (ψ)
)]

We can now move the spinorial derivative on WAB and perform all the contractions to
obtain

24NACκ
α
BD

A
αW

BC ×Vol (6.10)

where Vol has been defined in (5.20). Inserting this expression in (6.1) and combining with
the rest of the terms (see eq. (6.3)) we finally obtain

(Πµ
zΠν

z̄ΩBCκAγµν−12ζNBCκA)DBWAC−γµWAB (−Πµ
z∂z̄θA+Πµ

z̄∂zθA)κB = 0 (6.11)

As before, if we require this equation to be satisfied for any WAB the two terms have to
vanish separately. In order to solve these two equations we make the more general ansatz
κA = εij(γµνΠµ

i Πν
j δ

B
A + N B

ij,A)KB. Considering for instance the first bracket in (6.11),
suitably rescaling NAB we obtain

det
(
Πµ
i Πν

j ηµν
)
−NB

AN
A
B = 0 (6.12)
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As for the case of Wilson-Maldacena loops [12], the extra terms proportional to the NAB

scalar couplings arise from the dimensional reduction to six dimensions of the eleven-
dimensional constraint det

(
ΠM
i ΠN

j ηMN

)
= 0 for the static supermembrane (see eq. (6.5)).

Remarkably, this constraint coincides with (5.39)) which ensures supersymmetry invari-
ance. Therefore, kappa-symmetry in eleven dimensions implies BPS properties in six
dimensions.

The second piece of eq. (6.11) can be analyzed along the same lines as above.

7 Tensor currents

The geometric construction of (super)surface operators given in sections 3 and 4 can be
easily generalized to define (super)hypersurface operators generated by a (p|0)-form. In a
(n|m)-dimensional supermanifold SM, definition (4.1) generalizes to

Wp[Σ] = eΓ , Γ =
∫
SM
B(p|0) ∧ Y(n−p|m)

Σ (7.1)

where now Σ is a hypersurface of dimensions (p|0). Setting the Grassmann coordinates to
zero, this equation is also a generalization of the WS in (3.3).

Surface operators and, more generally, higher dimensional hypersurface operators
describe objects charged under generalized global symmetries generated by tensor cur-
rents [47]. In order to embed this relation within our geometrical approach, in this section
we formulate tensorial conservation laws in curved (super)manifolds using the PCO for-
malism. The main goal is to generalize the construction of [47] and define conservation
laws in superspace. Moreover, we investigate general conditions which allow to span the
whole set of conserved charges, both for tensor currents and supercurrents, and find the
corresponding charged objects.

Following the recent classification of [47–49] we first investigate the case of U(1) p-
tensor symmetries. In section 7.2 we then construct the supersymmetric version of ten-
sorial conservation laws and interpret the super-hypersurface operators, in particular the
superWS introduced in the previous sections, as the corresponding charged objects.

As a warming-up, we first review in geometrical language the case of an ordinary
bosonic vector current Jµ = (J0, J i) in n-dimensions, whose conservation law in Minkowski
signature reads

∂µJ
µ = 0 ⇔ ∂0J0 = ∂iJ

i (7.2)

Accordingly, we foliate the spacetime manifold as M(n) =M(n−1) × I where I is an open
time interval. We endow the space-slice M(n−1) with a metric structure g = gijdx

i ⊗ dxj

and denote by ? the Hodge dual on M(n−1) with respect to g. The conservation law (7.2)
can then be rephrased as follow

∂0J0 = ?d ? J (1) ≡ d†J (1) (7.3)

where J (1) is the 1-form on M(n−1) and d is the spatial differential. The corresponding
conserved charge is given by

Q =
∫
M(n−1)

?J0 (7.4)
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and thanks to the conservation law in (7.3), is trivially conserved

∂0Q =
∫
M(n−1)

∂0(?J0) =
∫
M(n−1)

d(?J (1)) = 0 (7.5)

as long as non-trivial boundary terms are absent.
In principle the conserved charge could be rewritten as an integral of a top form on

the entire manifold

Q =
∫
M(n)

(?J0) ∧ Y(1) , Y(1) = δ(x0)dx0 = d̂Θ(x0) (7.6)

where Y(1) is the PCO that localizes the integral in the time direction. Here d̂ indicates
the differential on the entire manifoldM(n). We note that the relation Y(1) = d̂Θ(x0) does
not contradict the general statement that PCOs are closed but not exact, since we have
enlarged the domain to distributions with non-compact support.

Keeping this in mind, in the rest of the discussion we will restrict all the integrations
to the constant time slice M(n−1), so avoiding the use of Y(1). This PCO can be easily
reinserted whenever it is more convenient to write Q as the integral of a spacetime top form.

7.1 (p + 1)-form currents

The generalization of conservation law (7.2) to tensorial currents has been first discussed
in [47–49]. Here we consider the case of a U(1) (p+1)-form current decomposed as Ĵ (p+1) =
(J (p)

0 , J (p+1)), where J (p)
0 and J (p+1) are p and (p + 1)-forms in the space-slice M(n−1),

respectively. The spacetime conservation law for the Ĵ (p+1) current can be expressed in
terms of the following two equations

∂0J
(p)
0 = d†J (p+1) , d†J

(p)
0 = 0 (7.7)

or equivalently of their Hodge duals

∂0 ? J
(p)
0 = d ? J (p+1) , d ? J

(p)
0 = 0 (7.8)

Making use of the PCO formalism we write the corresponding conserved charge as

Q(C) =
∫
M(n−1)

?J
(p)
0 ∧ Y(p)

C =
∫
M(n−1)

J
(p)
0 ∧ Y(n−1−p)

C (7.9)

where we have defined Y(n−1−p)
C ≡ ?Y(p)

C . The PCO Y(p)
C is a p-form which localizes the

integral on a submanifold C ⊂ M(n−1) with dimension (n − 1 − p) or equivalently spatial
codimension p. This operator is closed but not exact respect to the space differential
d =

∑n−1
i=1 dx

i∂i (recall thatM is n-dimensional with (n−1)-dimensional space-like slices).
Moreover, any variation inside the class of homological equivalent hypersurfaces in M(n−1)

is d-exact, as recalled in equation (2.8).
As a consequence of the last property the charge Q is independent of the particular

choice of C. In fact, given two homologically equivalent hypersurfaces C and C′ the corre-
sponding PCOs differ by an exact term Y(p)

C′ = Y(p)
C + dΩ(p−1). Therefore, we easily have

Q(C′)−Q(C) =
∫
M(n−1)

?J
(p)
0 ∧

(
Y(p)
C′ − Y(p)

C

)
=
∫
M(n−1)

(d ? J (p)
0 ) ∧ Ω(p−1) = 0 (7.10)
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where we have integrated by parts the differential and used the second conservation law
in (7.8).

Using the first equation in (7.8) the charge conservation reads in general

∂0Q(C) =
∫
M(n−1)

(
d(?J (p+1)) ∧ Y(p)

Σ + ?J
(p)
0 ∧ ∂0Y

(p)
Σ

) ?= 0 (7.11)

While the first term is automatically vanishing due to the space-closure of the PCO, the
vanishing of the second term deserves a separate discussion. In fact, it occurs not only when
∂0Y

(p)
C is zero but more generally when it is d-exact. The first case corresponds to ordinary

conserved charges defined on static hypersurfaces for which the defining equations do not
depend on x0. It is interesting to note that if ∂0Y

(p)
C = 0 then the PCO is closed also respect

to the spacetime differential d̂ =
∑n−1
i=0 dx

i∂i. In the more general case in which ∂0Y
(p)
C is

not vanishing but d-exact7 the PCO depends non-trivially on x0 and the corresponding
hypersurface becomes a dynamical object whose shape varies in time. However, the Q

charge is still conserved thanks to the second equation in (7.8), as long as the hypersurface
variations do not meet singularities.

As a clarifying example we consider the simple representative

Y(p)
C =

p∏
i=1

δ(φi)dφi (7.12)

where φi(x1, . . . , xp) = 0, are the p algebraic equations identifying the geometrical locus of
the codimension-p surface C. Since for the time being we take the φ’s to be independent
of the time coordinate this defines a static PCO. It is easy to verify that dY(p)

C = 0 but it
is not exact.

Now, evaluating Y(n−1−p)
C = ?Y(p)

C and inserting it in (7.9) the corresponding conserved
charge takes the form

Q(C) =
∫
M(n−1)

J
(p)
0 ∧

p∏
i=1

δ(φi) ιX1 . . . ιXp d
(n−1)x (7.13)

where X1, . . . , Xp are vectors normal to the hypersurface Σ. Intuitively the contraction of
the volume form along these vectors removes the dependence from

∏
i dφi. If we move the

contractions on the p-form current, we use the product of Dirac delta functions to localize
the integral and integrate in the directions orthogonal to the hypersurface we finally obtain

Q(C) =
∫
C

(
ιX1 . . . ιXpJ

(p)
0

)
d(n−1−p)x =

∫
C
J

(p)
0,i1...ipX

i1
1 . . . X ip

p d(n−1−p)x (7.14)

This coincides with the expression for the conserved charges that can be found in the
literature [54].

7The origin of this property is better understood if we embed Y(p)
C into a spacetime p-form Ỹ(p)

C =
Y(p−1)

0 dx0 + Y(p)
C . It is then easy to prove that requiring d̂ Ỹ(p)

C = 0 where d̂ is the spacetime differential
implies dY(p)

C = 0 and ∂0Y(p)
C = −dY(p−1)

0 .
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More generally, we consider a PCO of the form (7.12) but now corresponding to locus
equations φi(x0, x1, . . . , xp) = 0 which depend also on the time coordinate x0. Precisely,
we define

Ỹ(p)
C =

p∏
i=1

δ(φi)d̂φi =
p∏
i=1

δ(φi)∂0φidx
0 +

p∏
i=1

δ(φi)dφi ≡ Y(p−1)
0 dx0 + Y(p)

C (7.15)

where Y(p)
C is the previous PCO (7.12) referred to a spatial slice at fixed x0.8 It is easy

to verify that this operator is d̂-closed but not exact, and its d̂-closure is equivalent to
dY(p)
C = 0 and ∂0Y

(p)
C = −dY(p−1)

0 . Therefore, as discussed above, charge (7.9) when
defined in terms of Y(p)

C is conserved.

7.2 (p + 1)-form supercurrents

The geometric formulation of conservation laws discussed above allows for a straightforward
generalization to supermanifolds. Here we discuss the construction of conserved tensorial
supercurrents in a supermanifold SM(n|m).

We begin by considering a (p + 1)-tensorial abelian supercurrent described by the
superform

Ĵ (p+1|0) = Σp+1
k=0 Ja1...akαk+1...αp+1 V

a1 . . . V ak ψαk+1 . . . ψαp+1 (7.16)

where V a = dxa + θγadθ and ψα = dθα are the supervielbeins. We recall that components
Ja1...akαk+1...αp+1 are functions of the (x, θ) coordinates, thus they are superfields.

The conservation law is expressed as usual as d†̂Ĵ (p+1|0) = 0, with the conjugate
differential given by d†̂ = ?̂d?̂, being ?̂ the Hodge dual on the entire supermanifold defined
in appendix B.9

Ordinary vector currents in superspace are obtained by setting p = 0. The correspond-
ing conservation law reads

0 = ?̂d(?̂Ĵ (1|0)) = ?̂d
(
Jag

ab1εb1...bnV
b2 . . . V bnδm(ψ) + Jαg

αβV 1 . . . V nιβδ
m(ψ)

)
= ?̂

(
∂cJaV

cgab1εb1...bnV
b2 . . . V bnδm(ψ) +DγJαg

αβψγV 1 . . . V nιβδ
m(ψ)

)
= ?̂

(
∂aJ

a −DβJαg
αβ
)
V 1 . . . V nδm(ψ)

= (∂aJa +DαJ
α) = Dα

(
Jα + γαβa DβJ

a
)

(7.17)

where in the last line we have used the superspace identity ∂a = γαβa DαDβ . The quantity
J̃α = (Jα+γαβa DβJ

a) is the most general expression for a U(1) supercurrent in superspace
and DαJ̃

α = 0 is the standard conservation law.
We now study supercurrents (7.16) for p > 0. For simplicity we consider the p = 1

case and compute the action of d†̂ on

Ĵ (2|0) = JabV
aV b + JaβV

aψβ + Jαβψ
αψβ (7.18)

8This definition assumes the possibility to foliate the spacetime manifold with space-like submanifolds
and breaks diffeomorphism invariance in n dimensions.

9The complete theory is developed in [67, 68, 79].
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The result is a 1-superform which can be explicitly obtained by the following chain of
identities

d†̂Ĵ (2|0) = ?̂d(?̂Ĵ (2|0)) =

= ?̂d
(
Jab g

ac1gbc2εc1c2c3...cnV
c3 . . .V cnδm(ψ)

+Jaβgac1gβγεc1c2...cnV
c2 . . .V cnιγδ

m(ψ)+Jαβgαγ1gβγ2V 1. . .V nιγ1ιγ2δ
m(ψ)

)
= ?̂
(
∂cJabg

ac1gbc2εc1c2c3...cnV
cV c3 . . .V cnδm(ψ)+∂cJaβgac1gβγεc1c2...cnV

cV c2 . . .V cnιγδ
m(ψ)

+DδJaβg
ac1gβγψδεc1c2...cnV

c2 . . .V cnιγδ
m(ψ)+DγJαβψ

γgαγ1gαγ2V 1. . .V nιγ1ιγ2δ
m(ψ)

)
= ?̂
(
∂cJabg

ac1gbc2εc1c2c3...cnV
cV c3 . . .V cnδm(ψ)+∂cJaβgac1gβγεc1c2...cnV

cV c2 . . .V cnιγδ
m(ψ)

−DγJaβg
ac1gβγεc1c2...cnV

c2 . . .V cnδm(ψ)−DγJαβg
αγgβγ2V 1. . .V nιγ2δ

m(ψ)
)

= (∂aJab−DαJbα)V b+(∂aJaβ−DαJαβ)ψβ

=Dα(γaαβDβJab−Jbα)V b+Dα(γaαγDγJaβ−Jαβ)ψβ (7.19)

In the last line we have used the superspace identity ∂a = γαβa DαDβ . Now, if we define the
two currents J̃αb = (Jαb− (γa)βαDβJab) and J̃αβ = (Jαβ − (γa)γ(αDγJ|a|β)), the conservation
law for a (2|0) supercurrent, d†̂J (2|0) = 0, turns out to be equivalent to the two conservation
laws

DαJ̃αb = 0 , DαJ̃αβ = 0 (7.20)
This result is easily generalizable to (p + 1)-supercurrents with p > 2. Since d†̂ maps

(p + 1)-superforms into p-superforms, the condition d†̂Ĵ (p+1|0) = 0 gives rise to (p + 1)
conserved supercurrents. Following the same procedure highlighted above one can find the
explicit expressions of the (p+ 1) currents in terms of the Ĵ (p+1|0) components.

As done in ordinary manifolds, we can split the supercurrent in its time and spatial
components Ĵ (p+1|0) = (J (p|0)

0 , J (p+1|0)), so that its conservation law reads

∂0J
(p|0)
0 = d†J (p+1|0) , d†J

(p|0)
0 = 0 (7.21)

where now d† = ?d?, being ? the Hodge dual in the constant time slice SM(n−1|m). In
particular, it satisfies identities (B.3) with n→ n− 1.

In order to define a conserved supercharge associated to this supercurrent we use the
PCO technique and write

Q(C) =
∫
SM(n−1|m)

?J
(p|0)
0 ∧ Y(p|0)

C =
∫
SM(n−1|m)

J
(p|0)
0 ∧ Y(n−1−p |m)

C (7.22)

where we have defined Y(n−1−p |m)
C = ?Y(p|0)

C . Here Y(p|0)
C is the PCO localizing the integral

on a spatial submanifold C of dimensions (n − 1 − p |m). Once the integration on the
supermanifold is performed the charge does not depend upon the fermionic coordinates.

The Q charge satisfies the conservation law ∂0Q = 0 as a consequence of identi-
ties (7.21), which in turn encode (p + 1) conservation laws. Moreover, with a reasoning
similar to the one used in the bosonic case (see eq. (7.10)), it is easy to prove that Q(C)
does not depend on the particular choice of the surface, thanks to the second constraint
in (7.21).
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7.3 Charged defects

We now investigate which are the physical objects that are charged under p-form symme-
tries generated by (p+ 1)-form conserved (super)currents. We start discussing the bosonic
case, basically reviewing in our language results of [47, 49], and then generalize to the
tensorial supercurrents that we have just constructed.

Objects that are charged under Q(C) defined in (7.9) are Wilson-type operators of the
form (7.1) with Γ = i

∫
MB(p) ∧Y(n−p)

σ , being σ a dimension-p hypersurface in M [47, 49].
In particular, for p = 2 the charged objects are the Wilson surfaces that we have discussed
in section 3. For generic p, given the Q charge in (7.9) we can write

eiβQ(C)Wp[σ] e−iβQ(C) = eiβI(σ,C)Wp[σ] (7.23)

where I(σ, C) is the linking number of σ and C, or equivalently the intersection number of
σ and a submanifold B whose boundary is C. It is a topological invariant that counts the
number of points in M(n) at which σ intersects B. In our formalism this quantity can be
expressed in a simple manner in terms of the corresponding PCOs (for a general discussion
see appendix D). We first express the Q charge as an integral of a top form on the entire
manifoldM(n) by including the PCO in (7.6). Exploiting the PCOs closure we can write10

Q(C) =
∫
M(n)

?J
(p)
0 ∧ Y(p)

C ∧ Y(1) =
∫
M(n)

?J
(p)
0 ∧ d̂

(
Y(p)
C Θ(x0)

)
≡
∫
M(n)

?J
(p)
0 ∧ d̂Ω(p)

C

(7.24)

Using the general result in appendix D, it follows that the linking number in eq. (7.23) is
explicitly given by11

I(σ, C) =
∫
M(n)

Ω(p)
C ∧ Y(n−p)

σ (7.25)

It is consistently defined as the integral on the whole manifold of a top form as a consequence
of the fact that the dimensions of the hypersurface operator is the same as the tensorial
degree of the symmetry.

We now move to supermanifolds and argue that objects charged under Q(C) in (7.22)
are (p|0)-dimensional hypersurface operators Wp[Σ] defined in (7.1). Generalising to super-
manifolds the construction in eqs. (7.23), (7.25), we obtain that the action of the Q-charge
corresponding to a (p|0)-form symmetry on an hypersurface operator of dimension (q|0)
reads

eiβQ(C)Wq[Σ] e−iβQ(C) = eiβI(Σ,C)Wq[Σ] (7.26)

where I(Σ,C) is the super-linking number between the supermanifolds Σ and C, defined
in appendix D. In order to express it in terms of the PCOs, we first extend the integral
defining Q(C) to the whole supermanifold by using the time PCO in (7.6), now generalized

10As already mentioned, in writing Y(p)
C ∧Y

(1) = d̂Ω(p)
C there is no contradiction with the general statement

that PCOs are not exact, since Ω(p)
C contains a distribution with non-compact support.

11In general, this is known as cup product, see for example [80].
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to a (1|0)-form in supermanifold

Q(C) =
∫
SM(n|m)

?J
(p|0)
0 ∧ Y(p|0)

C ∧ Y(1|0) =
∫
SM(n|m)

?J
(p|0)
0 ∧ d̂

(
Y(p|0)
C Θ(x0)

)
≡
∫
SM(n|m)

?J
(p|0)
0 ∧ d̂Ω(p|0)

C (7.27)

According to eq. (D.4) it then follows that the super-linking number appearing in (7.26) is
given by

I(Σ,C) =
∫
SM(n|m)

Ω(p|0)
C ∧ Y(n−q|m)

Σ (7.28)

where Y(n−q|m)
Σ has been introduced in (7.1). It is now easy to observe that this expression

is non-vanishing only when it corresponds to the integral of a top form in supermanifold,
that is only when q = p. Therefore, we conclude that objects charged under symme-
tries generated by (p+ 1|0)-form supercurrents are Wilson-like (p|0)-dimensional defects in
superspace. Choosing in particular p = 1, we see that the WS operators that we have de-
fined and studied in this paper describe physical defects that are charged under an abelian
(1|0)-form symmetry.

8 Conclusions and perspectives

We have generalized the geometric construction of (super)Wilson loops [1] to the case of
hypersurface operators. In particular, we have considered 2-form Wilson-like operators
defined on (2|0)-dimensional supersurfaces described by a given embedding of bosonic and
grassmanian coordinates in a supermanifold.

In the case of Wilson Surfaces generated by the tensor multiplet of the six-dimensional
N = (2, 0) SCFT and their generalization to include couplings to scalars, we have studied
supersymmetry preserving constraints on the supersurface. By suitably choosing the coho-
mology representative in the set of Picture Changing Operators we have attempted a first
classification of surfaces preserving different sets of supercharges. Although we have worked
in six dimensions, most of the results can be easily proved to be valid in other dimensions.

In six dimensions we have also studied the behavior of WS under kappa-symmetry. We
have found that kappa-symmetry invariance leads to the same constraints as supersym-
metry invariance. Remarkably, the constraints for the invariance of the surface operator
have a M-theory dual interpretation. They coincide with the constraints ensuring kappa-
symmetry invariance of a static supermembrane. This observation hints to quest for a
deeper geometrical understanding using M2/M5 systems, which might help in attempt-
ing a general classification of BPS (super)surfaces. In particular, we have found that the
kappa-symmetry constraint in eleven dimensions, once dimensionally reduced, gives rise
to the PBS conditions for the generalized WS in six dimensions, in analogy with what
happens for Wilson-Maldacena loops.

Since super-hypersurface operators describe objects that should be charged under
global symmetries generated by tensorial conserved supercurrents, in the last part of the
paper we have studied tensorial conservation laws in superspace. To this end, we have first
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reformulated the known bosonic p-form conservation laws in geometric language, in terms of
forms and PCOs. Then we have generalized this construction to the supersymmetric case,
simply by replacing forms defined in manifolds with superforms living in supermanifolds.
In particular, the geometric formulation of conservation laws for p-form supercurrents has
required the use of a Hodge dual suitably extended to supermanifolds. The main result
is that the super-conservation law for a (p|0)-tensor supercurrent leads to p independent
conservation laws. The physical meaning of these multiple conservation laws has still to be
deeply investigated. We have finally discussed the relation between super-hypersurface op-
erators and tensorial (super)symmetries. In particular, the assignment of a p-form charge
to a p-dimensional hypersurface operator has required the generalization to supermanifolds
of the concept of linking number.

Our construction can be generalized to define (p|m)-integral currents, that is conserved
integral forms, or more generally (p|q)-form currents with 0 < q < m described by conserved
pseudo-forms. The physical meaning of this conservation laws and the corresponding exotic
symmetries has still to be understood and will be discussed elsewhere [63].

Furthermore, our approach can be exploited to generalize to supermanifolds the recent
formulation of a continuum field theory for probe particles and dipoles with reduced mo-
bility (fractons and lineons) [50–55]. In the bosonic case, if a dipole symmetry is gauged
by introducing a corresponding tensor gauge field, surface operators can be defined which
probe the motion of charged dipole particles in such a background. Since gauge invariance
highly constrains their motion, these quantities can be used to describe particles with re-
duced mobility (lineons) [53–55]. The introduction of dipole (or more generally multipole)
supercurrents in superspace leads immediately to the possibility of generalizing this physi-
cal construction to supersymmetric theories. Gauging a tensorial symmetry generated by a
conserved multipole supercurrent leads to the introduction of a tensorial gauge superfield,
and the corresponding Wilson-like extended objects should naturally describe new states of
matter with reduced motion in such a super-background (superfractons and superlineons).
The physical properties of such objects and the role of supersymmetry in this game are
presently under investigation [63].

As the last remark, we recall that we have considered only abelian operators, that is
WS or higher dimensional operators constructed with abelian tensor forms. Accordingly, we
have focused only on abelian tensorial supercurrents. It would be interesting to generalize
our construction to the non-abelian case. As already mentioned, the main problem is to
find a consistent definition of normal-ordered exponential when the manifold on which the
Wilson-type operator is localized has dimension greater than one. Some recent proposals
can be found in [58–62]. We plan to go back to this problem in a near future.
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A Conventions in six dimensions

In this appendix we collect some notations and formulae for the six-dimensional N = (2, 0)
superspace. We refer for example to [73–76] for a complete description.

We begin by fixing some index notation. We work in Minkowski spacetime with mostly
plus signature.

∗ We use α, β, γ = 1, . . . 4 to denote SU∗(4) (the spinorial representation of SO(1, 5)
Lorentz group) indices. Upper/lower indices correspond to right-handed/left-handed
spinorial indices, respectively.

∗ We use the middle Greek letters µ, ν, · · · = 0, . . . , 5 to denote vector indices.

∗ Finally, we use capital latin letters A,B,C, . . . ,= 1, . . . , 4 to denote USp(4) indices
of R-symmetry group.

The antisymmetric matrix ΩAB is the symplectic form preserved by USp(4) ∼ SO(5) group
which can be put (using Darboux coordinates) in the form

ΩAB =
(

0 I
−I 0

)
(A.1)

where I is the 2 × 2 identity matrix. The upper-index matrix ΩAB is defined by the
condition ΩABΩBC = −δ C

A and is formally equal to ΩAB. The matrix Ω is used to raise
and lower R-symmetry indices as λA = ΩABλB , λA = λBΩBA.

Explicity, we use the following Dirac Matrix representation ΓM = {Γµ,Γr} (with
µ = 0, . . . , 5 and r = 1, . . . , 5 and the chirality matrix Γ7 = Γ0Γ1Γ2Γ3Γ4Γ5 given (in the
chiral basis)

Γµ =
(

0 γ̄µ
γµ 0

)
⊗ I4 , Γr =

(
−I4 0

0 I4

)
⊗ γ̂r , Γ7 =

(
−I4 0

0 I4

)
⊗ I4 (A.2)

where

γ̄µγν + γ̄νγµ = 2ηµν , γµγ̄ν + γν γ̄µ = 2ηµν , {γ̂r, γ̂s} = 2δrs , [γµ, γ̂r] = 0 (A.3)

Explicitly, we have

γ0 = γ̄0 = iI2 ⊗ I2 , γ1 = −γ̄1 = −iσ1 ⊗ I2 , γ2 = −γ̄2 = −iσ2 ⊗ I2 ,

γ3 = −γ̄3 = iσ3 ⊗ σ1 , γ4 = −γ̄4 = iσ3 ⊗ σ2 , γ5 = −γ̄5 = −iσ3 ⊗ σ3 ,

γ̂1 = σ1 ⊗ σ2 , γ̂2 = σ2 ⊗ σ2 , γ̂3 = σ3 ⊗ σ2 , γ̂4 = I2 ⊗ σ1 , γ̂5 = I2 ⊗ σ3 ,

c = −cT = σ1 ⊗ iσ2 , Ω = iσ2 ⊗ I2 (A.4)

where c is the charge conjugation matrix and Ω is the antisymmetric tensor ΩAB

The six-dimensional N = (2, 0) superspace SM (6|16) is described by the following
coordinates

x[αβ] = γ[αβ]
µ xµ , θαA (A.5)

– 26 –



J
H
E
P
1
1
(
2
0
2
0
)
0
5
0

subject to the Majorana-Weyl pseudoreality condition θAβ = ΩABθαBcαβ , with cαβ the charge
conjugation matrix. The invariant 1-forms are then given by

V [αβ] = dx[αβ] + θ
[α
A ΩABdθ

β]
B , ψαA = dθαA (A.6)

(notice that θ[α
A ΩABθ

β]
B = 0), while the basic Maurer-Cartan are

dV [αβ] = ψ
[α
A ΩABψ

β]
B , dψαA = 0 (A.7)

The superderivatives are defined as

DA
α = ∂

∂θαA
+ iΩABθβB∂αβ , {DA

α , D
B
β } = 2iΩABγµαβ∂µ (A.8)

Similar definitions hold for the QAα supercharges,

QAα = ∂

∂θαA
− iΩABθβB∂αβ , {QAα , QBβ } = 2iΩABγµαβ∂µ (A.9)

The generators LAB of USp(4) form the algebra

[LAB, LCD] = ΩA(CLD)B + ΩB(CLD)A , [LAB, DC
α ] = −ΩC(ADB)

α (A.10)

Kappa symmetry is a superdiffeomorphism generated by the spinorial field κ̃ = καAD
A
α .

It acts on the coordinates as

δκ̃θ
α
A = Lκ̃θ

α
A = κβBι

B
β ψ

α
A = καA

δκ̃x
[αβ] = Lκ̃x

[αβ] = κγCι
C
γ V

[αβ] + κγCι
C
γ iΩABθβBψ

α
A = iκαAΩABθβB (A.11)

where we have used the contractions ικ̃ of the six dimensional supervielbeins as given by

ικ̃ψ
α
A = κβBι

B
β ψ

α
A = κβBδ

α
β δ

B
A = καA , (A.12)

ικ̃V
[αβ] = κγC

[
−iΩCDθδDδ

[α
γ δ

β]
δ + iθ

[α
A ΩABδCBδ

β]
γ

]
= −iκ[α

AΩABθ
β]
B + iκ

[β
B θ

α]
A ΩAB = 0

B Hodge operator in supermanifolds

In this appendix we briefly recall how to define the Hodge operator on a supermanifold.
The general construction and a few applications can be found in [79].

The easiest way to generalize the Hodge operator to a supermanifold is to start from
the representation of the usual Hodge operator in manifolds in terms of an odd Fourier
transform of the “differential part” of a given form. Precisely, given a p-form ω(p)(x, dx) in
a n-dimensional manifold, we introduce n Grassmann variables ηa=1,...,n. It is then easy to
see that the Hodge dual (n − p)-form ?ω(p)(x, dx) can be defined as Berezin-integral over
the η’s

? ω(p)(x, dx) = ip
2−n2F [ω] = ip

2−n2
∫
η
ω(p) (x, η) eidx·η (B.1)

where the integrand is the original p-form with the dx’s substituted by the η’s, the “Fourier
kernel” is given in terms of its (finite) series expansion and dx · η ≡ dxagabηb, being gab the
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metric tensor of the manifold. The overall coefficient is chosen in order to reproduce the
usual identity ? ? ω(p) = (−1)p(n−p)ω(p).

This construction can be easily generalizable to define the Hodge dual on a (n|m)-
dimensional supermanifold SM. Introducing odd variables ηa=1,...,n and even variables
bα=1,...,m, for a given a superform ω(p|q)(x, dx, θ, dθ) ∈ Ω(p|q) (SM) we define

? ω = cF [ω] = c

∫
η,b
ω (x, η, θ, b) eidx·η+idθ·b (B.2)

where c is a suitable normalisation coefficient. The scalar products in the exponential are
given by dx · η = dxagabη

b and dθ · b = dθαgαβb
β , in terms of the metric tensor and an

anti-symmetric tensor gαβ (see [79] for details). In particular, we observe that the Hodge
operator sends superforms into integral forms and viceversa

? : Ω(p|0) → Ω(n−p|m) , ? : Ω(p|m) → Ω(n−p|0) (B.3)

As an easy example, let us consider the flat R(2|2) manifold. In this case the products
in the Fourier kernel are dx · η = dxaδabη

b ≡ dxaηa and dθ · b = dθαεαβb
β ≡ dθαbα and we

have for example that

F [dx1] =
∫
b,η
η1eidx

bηb+idθαbα =
∫
b,η
η1(1 + i dx2η2)eidθαbα = i dx2δ(2) (dθ) (B.4)

and

F [δ(2) (dθ)] =
∫
b,η
δ(2) (b) eidxbηb+idθαbα =

∫
b,η

(1 + i dx1η1)(1 + i dx2η2) = dx1dx2 (B.5)

C Charge conservation in the extended manifold

In this appendix we show that it is possible to rephrase the formalism presented in section 7
in terms of PCOs that contain an explicit dependence on the hypersurface parametrization.

Given a (n − 1 − p)-dimensional hypersurface Σ embedded in the spatial manifold
M(n−1), we parametrize it as (τ1, . . . , τp) → xa(τ1, . . . , τp), a = 1, . . . , n − 1 − p, and
τi ∈ ∆ ⊆ Rn−1−p. We enlarge the manifold to M(n−1) ×∆, with coordinates (xa, τi). In
this framework, the charge Q in (7.9) can be rewritten as

Q =
∫
M(n−1)

J0 ∧ Y(n−1)
Σ =

∫
M(n−1)×∆

J0 d
(n−1−p)x ∧ Ỹ(n−1)

Σ (C.1)

where

Ỹ(n−1)
Σ =

n−1∏
a=1

δ (xa − xa (τ1, . . . , τn−1−p))
n−1∧
a=1

(
dxa − ∂ixadτ i

)
(C.2)

The operator Ỹ(2n−2−p) ≡ d(n−1−p)x∧Ỹ(n−1) is the dual to the embedding τi → (xa(τi), τi).
According to the procedure described in section 7, the charge conservation requires

evaluating the Hodge dual of the PCO. Since now we work in the enlarged manifold, we
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define an enlarged Hodge dual ?g̃ with respect to the metric g̃ = g ⊗ I on M(n−1) ×∆. It
is then straightforward to evaluate

?g̃ Ỹ(2n−2−p) =
n−1∏
a=1

δ (xa − xa (τ1, . . . , τn−p−1)) =
n−1∏
a=1

1
n− 1

(
ι∂xa −

(
∂xa

∂τ i

)−1
ι∂τi

)
Ỹ(n−1)

(C.3)
and check that Q in (C.1) is conserved. As a guiding example, we can explicitly verify it
in the simple case of the plane z = 0 in R3. We have the following chain of identities

∂0Q=
∫
M(3)×∆

∂0J0 d
2x∧Ỹ(3) =

∫
M(3)×∆

?g̃d(?g̃J (1))d2x∧Ỹ(3) =

=
∫
M(3)×∆

d(?g̃J (1))δ (x−τ1)δ (y−τ2)δ (z) =

=
∫
M(3)×∆

(?g̃J (1))d [δ (x−τ1)δ (y−τ2)δ (z)] =

=
∫
M(3)×∆

[dydzdτ1dτ2Jx−dxdzdτ1dτ2Jy+dxdydτ1dτ2Jz]d [δ (x−τ1)δ (y−τ2)δ (z)]

=
∫
M(3)×∆

[
Jx∂xδ (x−τ1)δ (y−τ2)δ (z)+Jyδ (x−τ1)∂yδ (y−τ2)δ (z)+

+Jzδ (x−τ1)δ (y−τ2)∂zδ (z)
]
dxdydzdτ1dτ2 =

=
∫
M(3)×∆

[
2Jyx∂xδ (x−τ1)∂yδ (y−τ2)δ (z)+2Jzy δ (x−τ1)∂yδ (y−τ2)∂zδ (z)+

+2Jxz ∂xδ (x−τ1)δ (y−τ2)∂zδ (z)
]
dxdydzdτ1dτ2 =

=
∫
M(3)×∆

[
2Jyx∂τ1δ (x−τ1)∂τ2δ (y−τ2)δ (z)−2Jzy δ (x−τ1)∂τ2δ (y−τ2)∂zδ (z)+

−2Jxz ∂τ1δ (x−τ1)δ (y−τ2)∂zδ (z)
]
dxdydzdτ1dτ2 = 0 (C.4)

where we have used ∂xδ (x− τ1) = −∂τ1δ (x− τ1), ∂yδ (y − τ2) = −∂τ2δ (y − τ2) and, af-
ter integration by parts, ∂τ1J

i
j = 0 = ∂τ2J

i
j , since the current does not depend on the

parameters of the hypersurface.
This construction can be easily generalized to the case of supermanifolds. It is suffi-

cient to include the parametrization of the spinorial coordinates in the immersion equations
τi → (xa(τi), θα(τi)). The rest of the procedure remains the same with the obvious modi-
fications due to the replacement of manifolds with supermanifolds.

D Linking number and PCO

In this appendix we first recall the basic definition of linking number between two curves in
three dimensions and prove that it can be expressed in terms of the PCOs describing the
immersion of the two curves (so recovering the formula given in [80] for the S3 case). This
alternative formulation allows for a straightforward generalization to n dimensions where
it defines the linking number between two hypersurfaces. It also allows for a generalisation
to super-hypersurfaces in supermanifolds, as we are going to discuss.
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In a three-dimensional manifoldM(3), we consider two closed (oriented) curves γ1 and
γ2 defined by the two sets of equations φ1(~x) = ρ1(~x) = 0 and φ2(~x) = ρ2(~x) = 0. The
corresponding PCOs localizing on the two curves read explicitly

Y(2)
γ1 = dφ1δ(φ1)dρ1δ(ρ1) , Y(2)

γ2 = dφ2δ(φ2)dρ2δ(ρ2) (D.1)

We note that both of them can be rewritten as

Y(2)
γi = [dΘ(φi)] dΘ(ρi) = d [Θ(φi)dΘ(ρi)] ≡ dΩ(1)

γi , i = 1, 2 (D.2)

where Ω(1)
γi are 1-forms with non-compact support.

Let us consider the Gauss’ formula for the linking number of γ1, γ2

l (γ1, γ2) =
∮
γ1

∮
γ2

(~x1 − ~x2)
||~x1 − ~x2||3

· d~x1 ∧ d~x2 (D.3)

where ~x1 and ~x2 are the position vectors on the two loops. We state that this formula
can be rephrased in terms of PCO’s in (D.1), (D.2) according to one of the two equivalent
expressions

l (γ1, γ2) =
∫
M(3)

Y(2)
γ1 ∧ Ω(1)

γ2 or l (γ1, γ2) =
∫
M(3)

Ω(1)
γ1 ∧ Y(2)

γ2 (D.4)

In order to prove the equivalence between expressions (D.3) and (D.4), we first note that the
integrand in (D.3) (that we denote briefly as G) is the Green’s function of the d operator.

Introducing the laplacian ∆ = {d, d†} we can then formally write G = d†1
∆ Vol1, where

Vol1 = d3x1δ
(3) (x1 − x2). Moreover, if in (D.3) we make use of the PCOs to rewrite the

integrals over the closed curves as integrals over the entire manifold M, we obtain the
following chain of identities

l(γ1, γ2) =
∮
γ1

∮
γ2

d†1
∆ Vol1 =

∫
M(3)

∫
M(3)

d†1
∆ Vol1 Y(2)

γ1 ∧ d2Ω(1)
γ2

= −
∫
M(3)

∫
M(3)

d2d
†
1

∆ Vol1 Y(2)
γ1 ∧ Ω(1)

γ2 =
∫
M(3)

∫
M(3)

d1d
†
1

∆ Vol1 Y(2)
γ1 ∧ Ω(1)

γ2

=
∫
M(3)

Y(2)
γ1 ∧ Ω(1)

γ2 (D.5)

readily leading to the first expression in (D.4). Writing Y(2)
γ1 = dΩ(1)

γ1 and integrating by
parts, we obtain the second expression in (D.4).

We have considered the particular case of two intertwined lines. However, it is easy to
realize that a non-trivial linking number could arise also between a point P =(x1,P , x2,P , x3,P )
and a surface σ embedded by φ(~x) = 0. In fact, assigned the corresponding PCOs

Y(3)
P = dx1δ(x1 − x1,P )dx2δ(x2 − x2,P )dx3δ(x3 − x3,P )

Y(1)
σ = dφδ(φ) = dΘ(φ) ≡ dΩ(0)

σ (D.6)
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the linking number is a well-defined three-dimensional integral of a 3-form, whose value is

l (P, σ) =
∫
M(3)

Y(3)
P ∧ Ω(0)

σ =
∫
M(3)

d3x δ(3)(x− xP ) Θ(φ) =

1 , if P ∈ σ
0 , if P /∈ σ

(D.7)

This formulation straightforwardly applies to higher dimensional cases and provides
constraints on the possible pairs of submanifolds which can link non-trivially.

In a generic n-dimensional manifold M(n) we consider two hypersurfaces σ1, σ2 of
dimension (n − p1) and (n − p2) respectively, with embedding equations φk(x) = 0,
k = 1, . . . , p1 and ψk(x) = 0, k = 1, . . . , p2. The corresponding PCOs localizing on the
two submanifolds are then p1- and p2-forms, given by

Y(p1)
σ1 =

p1∏
k=1

dφkδ(φk) ≡ dΩ(p1−1)
σ1 , Y(p2)

σ2 =
p2∏
k=1

dψkδ(ψk) ≡ dΩ(p2−1)
σ2 (D.8)

where, as for the three-dimensional case, we have written one of the delta functions as the
derivative of the Heaviside step function and pulled out the differential. Therefore, the
linking number is defined as

l (σ1, σ2) =
∫
M(n)

Y(p1)
σ1 ∧ Ω(p2−1)

σ2 or l (σ1, σ2) =
∫
M(n)

Ω(p1−1)
σ1 ∧ Y(p2)

σ2 (D.9)

This expression is non-vanishing if and only if p1 + p2 = n + 1. Therefore, assigned the
dimension of the manifold, this constraint selects which are the dimensions of submanifolds
that can actually intertwine. For example, in four dimensions we have (p1 + p2) = 5 and
the two consistent cases of linkable objects are the case of a point and a three-volume
(p1 = 4, p2 = 1) and the case of a line and a surface (p1 = 3, p2 = 2).

We now generalize definition (D.9) to the case of a (n|m)-dimensional supermanifold.
Given a purely bosonic (n−p1|0)-dimensional hypersurface Σ1 and a (n−p2|m)-dimensional
super-hypersurface Γ2, the corresponding PCOs are12

Y(p1|m)
Σ1

= Y(p1|0)
Σ1

m∏
α=1

θαδ(dθα) = dΩ(p1−1|m)
Σ1

, Y(p2|0)
Σ2

= dΩ(p2−1|0)
Σ2

(D.10)

where, as before, the right hand side is obtained by writing one delta function as the
derivative of the step function and pulling out the differential.

Generalizing the previous construction, the super-linking number is defined as

L(Σ1,Σ2) =
∫
SM(n|m)

Y(p1|m)
Σ1

∧ Ω(p2−1|0)
Σ2

=
∫
SM(n|m)

Ω(p1−1|m)
Σ1

∧ Y(p2|0)
Σ2

(D.11)

We note that these integrals are well-defined only if the bosonic dimensions satisfy
p1 + p2 = n+ 1. Instead, the sum of the corresponding odd dimensions already saturates
m, having chosen from the very beginning to link a bosonic surface (odd dimension zero)
with a super-hypersurface (odd dimension m).

12The definition of super linking number could be extended to the case of generic pseudo-surfaces of
dimensions (p|q) with 0 < q < m. However, since in the body of the paper we only deal with bosonic
surfaces (q = 0) and supersurfaces (q = m), here we stick only to these two cases.
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Whenever the sum of the odd dimensions of the two hypersurfaces does not equal m,
the super-linking number is zero even if the bosonic dimensions sum up to (n + 1). For
instance two purely bosonic hypersufaces whose bosonic dimensions satisfy the constraint
would anyway have super linking number equal to zero. This means that they can be
somehow unlinked “deforming them in the fermionic directions”.

If, instead, the odd dimensions sum up to m, the super-linking number (D.11) is well-
defined and possibly non-vanishing. We note that, thanks to the particular structure of
the PCOs, it actually reduces to the ordinary linking number. In fact, taking for instance
the case in (D.10), we find

∫
SM(n|m)

Y(p1|0)
Σ1

m∏
α=1

θαδ(dθα) ∧ Ω(p2−1|0)
Σ2

=
∫
M(n)↪→SM(n|m)

Y(p1|0)
Σ1

∧ Ω(p2−1|0)
Σ2

(D.12)

The same behavior can be detected in any case. This is somehow not surprising, since
the linking number is related to the topological nature of the two hypersurfaces and the
fermionic sector never affects topology.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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[19] N. Drukker, M. Probst and M. Trépanier, Surface operators in the 6d N = (2, 0) theory, J.
Phys. A 53 (2020) 365401 [arXiv:2003.12372] [INSPIRE].

[20] N. Drukker, J. Gomis and S. Matsuura, Probing N = 4 SYM With Surface Operators, JHEP
10 (2008) 048 [arXiv:0805.4199] [INSPIRE].

[21] M.-C. Tan, Nonlocal Operators and Duality in Abelian Gauge Theory on a Four-Manifold,
arXiv:1312.5494 [INSPIRE].

[22] L. Bianchi and M. Lemos, Superconformal surfaces in four dimensions, JHEP 06 (2020) 056
[arXiv:1911.05082] [INSPIRE].

[23] R. Corrado, B. Florea and R. McNees, Correlation functions of operators and Wilson
surfaces in the d = 6, (0, 2) theory in the large N limit, Phys. Rev. D 60 (1999) 085011
[hep-th/9902153] [INSPIRE].

[24] N. Drukker, S. Giombi, A.A. Tseytlin and X. Zhou, Defect CFT in the 6d (2, 0) theory from
M2 brane dynamics in AdS7 × S4, JHEP 07 (2020) 101 [arXiv:2004.04562] [INSPIRE].

[25] D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product
expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999) 105023
[hep-th/9809188] [INSPIRE].

[26] B. Chen, C.-Y. Liu and J.-B. Wu, Operator Product Expansion of Wilson surfaces from
M5-branes, JHEP 01 (2008) 007 [arXiv:0711.2194] [INSPIRE].

[27] C. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT
correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [INSPIRE].

[28] M. Henningson and K. Skenderis, Weyl anomaly for Wilson surfaces, JHEP 06 (1999) 012
[hep-th/9905163] [INSPIRE].

[29] A. Gustavsson, On the Weyl anomaly of Wilson surfaces, JHEP 12 (2003) 059
[hep-th/0310037] [INSPIRE].

– 33 –

https://doi.org/10.1088/1126-6708/2007/12/101
https://arxiv.org/abs/0710.5170
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.5170
https://doi.org/10.1103/PhysRevLett.80.4859
https://arxiv.org/abs/hep-th/9803002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803002
https://doi.org/10.1088/1126-6708/2007/10/014
https://arxiv.org/abs/0704.3442
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.3442
https://doi.org/10.1088/1126-6708/2007/08/067
https://doi.org/10.1088/1126-6708/2007/08/067
https://arxiv.org/abs/0707.3978
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.3978
https://doi.org/10.1140/epjc/s10052-008-0534-5
https://doi.org/10.1140/epjc/s10052-008-0534-5
https://arxiv.org/abs/0710.2593
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.2593
https://doi.org/10.1007/JHEP08(2018)119
https://doi.org/10.1007/JHEP08(2018)119
https://arxiv.org/abs/1804.09932
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09932
https://doi.org/10.1088/1126-6708/2004/07/074
https://arxiv.org/abs/hep-th/0404150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0404150
https://doi.org/10.1007/JHEP08(2019)165
https://arxiv.org/abs/1812.07572
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.07572
https://doi.org/10.1088/1751-8121/aba1b7
https://doi.org/10.1088/1751-8121/aba1b7
https://arxiv.org/abs/2003.12372
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.12372
https://doi.org/10.1088/1126-6708/2008/10/048
https://doi.org/10.1088/1126-6708/2008/10/048
https://arxiv.org/abs/0805.4199
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.4199
https://arxiv.org/abs/1312.5494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.5494
https://doi.org/10.1007/JHEP06(2020)056
https://arxiv.org/abs/1911.05082
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.05082
https://doi.org/10.1103/PhysRevD.60.085011
https://arxiv.org/abs/hep-th/9902153
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902153
https://doi.org/10.1007/JHEP07(2020)101
https://arxiv.org/abs/2004.04562
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.04562
https://doi.org/10.1103/PhysRevD.59.105023
https://arxiv.org/abs/hep-th/9809188
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9809188
https://doi.org/10.1088/1126-6708/2008/01/007
https://arxiv.org/abs/0711.2194
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0711.2194
https://doi.org/10.1016/S0550-3213(99)00055-3
https://arxiv.org/abs/hep-th/9901021
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9901021
https://doi.org/10.1088/1126-6708/1999/06/012
https://arxiv.org/abs/hep-th/9905163
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9905163
https://doi.org/10.1088/1126-6708/2003/12/059
https://arxiv.org/abs/hep-th/0310037
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0310037


J
H
E
P
1
1
(
2
0
2
0
)
0
5
0

[30] D. Young, Wilson Loops in Five-Dimensional Super-Yang-Mills, JHEP 02 (2012) 052
[arXiv:1112.3309] [INSPIRE].

[31] J. Estes, D. Krym, A. O’Bannon, B. Robinson and R. Rodgers, Wilson Surface Central
Charge from Holographic Entanglement Entropy, JHEP 05 (2019) 032 [arXiv:1812.00923]
[INSPIRE].

[32] K. Jensen, A. O’Bannon, B. Robinson and R. Rodgers, From the Weyl Anomaly to Entropy
of Two-Dimensional Boundaries and Defects, Phys. Rev. Lett. 122 (2019) 241602
[arXiv:1812.08745] [INSPIRE].

[33] A. Chalabi, A. O’Bannon, B. Robinson and J. Sisti, Central charges of 2d superconformal
defects, JHEP 05 (2020) 095 [arXiv:2003.02857] [INSPIRE].

[34] D. Gaiotto, Surface Operators in N = 2 4d Gauge Theories, JHEP 11 (2012) 090
[arXiv:0911.1316] [INSPIRE].

[35] D. Gaiotto, S. Gukov and N. Seiberg, Surface Defects and Resolvents, JHEP 09 (2013) 070
[arXiv:1307.2578] [INSPIRE].

[36] C. Cordova, D. Gaiotto and S.-H. Shao, Surface Defect Indices and 2d-4d BPS States, JHEP
12 (2017) 078 [arXiv:1703.02525] [INSPIRE].

[37] C. Cordova, D. Gaiotto and S.-H. Shao, Surface Defects and Chiral Algebras, JHEP 05
(2017) 140 [arXiv:1704.01955] [INSPIRE].

[38] S.K. Ashok et al., Surface operators, chiral rings and localization in N = 2 gauge theories,
JHEP 11 (2017) 137 [arXiv:1707.08922] [INSPIRE].

[39] S.K. Ashok et al., Surface operators, dual quivers and contours, Eur. Phys. J. C 79 (2019)
278 [arXiv:1807.06316] [INSPIRE].

[40] P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTd, JHEP
07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

[41] D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03
(2014) 100 [arXiv:1310.5078] [INSPIRE].

[42] F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and Interface CFTs from the
Conformal Bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].

[43] F. Gliozzi, Truncatable bootstrap equations in algebraic form and critical surface exponents,
JHEP 10 (2016) 037 [arXiv:1605.04175] [INSPIRE].

[44] P. Liendo and C. Meneghelli, Bootstrap equations for N = 4 SYM with defects, JHEP 01
(2017) 122 [arXiv:1608.05126] [INSPIRE].
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[48] C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-Group Global Symmetries,
JHEP 02 (2019) 184 [arXiv:1802.04790] [INSPIRE].

– 34 –

https://doi.org/10.1007/JHEP02(2012)052
https://arxiv.org/abs/1112.3309
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.3309
https://doi.org/10.1007/JHEP05(2019)032
https://arxiv.org/abs/1812.00923
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.00923
https://doi.org/10.1103/PhysRevLett.122.241602
https://arxiv.org/abs/1812.08745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08745
https://doi.org/10.1007/JHEP05(2020)095
https://arxiv.org/abs/2003.02857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.02857
https://doi.org/10.1007/JHEP11(2012)090
https://arxiv.org/abs/0911.1316
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.1316
https://doi.org/10.1007/JHEP09(2013)070
https://arxiv.org/abs/1307.2578
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.2578
https://doi.org/10.1007/JHEP12(2017)078
https://doi.org/10.1007/JHEP12(2017)078
https://arxiv.org/abs/1703.02525
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.02525
https://doi.org/10.1007/JHEP05(2017)140
https://doi.org/10.1007/JHEP05(2017)140
https://arxiv.org/abs/1704.01955
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.01955
https://doi.org/10.1007/JHEP11(2017)137
https://arxiv.org/abs/1707.08922
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08922
https://doi.org/10.1140/epjc/s10052-019-6795-3
https://doi.org/10.1140/epjc/s10052-019-6795-3
https://arxiv.org/abs/1807.06316
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06316
https://doi.org/10.1007/JHEP07(2013)113
https://doi.org/10.1007/JHEP07(2013)113
https://arxiv.org/abs/1210.4258
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.4258
https://doi.org/10.1007/JHEP03(2014)100
https://doi.org/10.1007/JHEP03(2014)100
https://arxiv.org/abs/1310.5078
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.5078
https://doi.org/10.1007/JHEP05(2015)036
https://arxiv.org/abs/1502.07217
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.07217
https://doi.org/10.1007/JHEP10(2016)037
https://arxiv.org/abs/1605.04175
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.04175
https://doi.org/10.1007/JHEP01(2017)122
https://doi.org/10.1007/JHEP01(2017)122
https://arxiv.org/abs/1608.05126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05126
https://doi.org/10.1007/JHEP01(2019)010
https://doi.org/10.1007/JHEP01(2019)010
https://arxiv.org/abs/1808.08155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.08155
https://doi.org/10.1007/JHEP04(2020)135
https://doi.org/10.1007/JHEP04(2020)135
https://arxiv.org/abs/1812.04034
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.04034
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.5148
https://doi.org/10.1007/JHEP02(2019)184
https://arxiv.org/abs/1802.04790
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.04790


J
H
E
P
1
1
(
2
0
2
0
)
0
5
0

[49] N. Seiberg, Field Theories With a Vector Global Symmetry, SciPost Phys. 8 (2020) 050
[arXiv:1909.10544] [INSPIRE].

[50] M. Pretko, Subdimensional Particle Structure of Higher Rank U(1) Spin Liquids, Phys. Rev.
B 95 (2017) 115139 [arXiv:1604.05329] [INSPIRE].

[51] M. Pretko, The Fracton Gauge Principle, Phys. Rev. B 98 (2018) 115134
[arXiv:1807.11479] [INSPIRE].

[52] A. Gromov, Towards classification of Fracton phases: the multipole algebra, Phys. Rev. X 9
(2019) 031035 [arXiv:1812.05104] [INSPIRE].

[53] N. Seiberg and S.-H. Shao, Exotic Symmetries, Duality, and Fractons in 2 + 1-Dimensional
Quantum Field Theory, arXiv:2003.10466 [INSPIRE].

[54] N. Seiberg and S.-H. Shao, Exotic U(1) Symmetries, Duality, and Fractons in
3 + 1-Dimensional Quantum Field Theory, SciPost Phys. 9 (2020) 046 [arXiv:2004.00015]
[INSPIRE].

[55] N. Seiberg and S.-H. Shao, Exotic ZN Symmetries, Duality, and Fractons in
3 + 1-Dimensional Quantum Field Theory, arXiv:2004.06115 [INSPIRE].

[56] H. Ouyang, J.-B. Wu and J.-j. Zhang, BPS Wilson loops in Minkowski spacetime and
Euclidean space, Eur. Phys. J. C 75 (2015) 606 [arXiv:1504.06929] [INSPIRE].

[57] N. Berkovits, Towards covariant quantization of the supermembrane, JHEP 09 (2002) 051
[hep-th/0201151] [INSPIRE].

[58] I. Chepelev, NonAbelian Wilson surfaces, JHEP 02 (2002) 013 [hep-th/0111018] [INSPIRE].

[59] C. Hofman, NonAbelian 2 forms, hep-th/0207017 [INSPIRE].

[60] J.C. Baez and J. Huerta, An Invitation to Higher Gauge Theory, Gen. Rel. Grav. 43 (2011)
2335 [arXiv:1003.4485] [INSPIRE].

[61] P.-M. Ho and Y. Matsuo, Note on non-Abelian two-form gauge fields, JHEP 09 (2012) 075
[arXiv:1206.5643] [INSPIRE].
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