
 

1 

UNIVERSITY OF PIEMONTE ORIENTALE 

“Department of Health Science” 

 

 

Doctoral course in MEDICAL SCIENCES AND BIOTECHNOLOGY 

Cycle XXXI 

 

 

 

Three-dimensional oral mucosa models: 

development and applications 

  

  

  

  

 Candidate: Rita Sorrentino   

                                Coordinator: Marisa Gariglio  

Supervisor: Lia Rimondini 

 

 

 

 

2019-2020 



 

2 

Index 
 
Abstract…………………………………………….………………………………...........................................7 

Graphical Abstract…………………………….………………………………………………..........................9 

Chapter 1: Background…………….……………………………………………………………………………...10 

I. Introduction……………………………………………………………………………………………………….10 

1.1. Tissue engineering (TE)………………………………………………………………………………….10 

1.1.1. In-vivo models for biocompatibility assessment of implants……………….10 

1.1.1.1. Legislature……………………………………………………………………………......10 

1.1.1.1.1. Reduction…………………………………………………………………….…12 

1.1.1.1.2. Refinement…………………………………………………………………….12 

1.1.1.1.3. Replacement………………………………………………………………….12 

1.1.1.1.3.1. In vitro models – 2-Dimensional VS 3-Dimensional.13 

1.1.1.2. Animal models for oral implantology: An overview…………………...16 

1.2. Oral Cavity…………………………………………………………………………………………..…..……19 

1.2.1. Anatomy………………………………………………………………………………………..…….19 

1.2.2. Oral mucosa………………………………………………………………………………………...21 

1.2.2.1. Oral epithelium………………………………………………………………………….22 

1.2.2.2. Basement membrane……………………………………………………………….23 

1.2.2.3. Lamina Propria………………………………………………………………………….24 

1.2.3. Periodontium………………………………………………………………………………..……25 

1.3. Oral mucosa model…………..……………………………………………………………………..……27 

1.3.1. Monolayered Keratinocytes cultures……………………………………………….…..27 

1.3.2. Histotypic oral epithelial models…………………………………………………….……28 

1.3.2.1. Bilayer cultures……………………………………………………………………..…..28 

1.3.2.2. Commercial models……………………………………………………………………28 

1.3.2.3. Organotypic oral mucosa model………………………………………………..29 

1.3.2.4. Scaffolds…………………………………………………………….………………….…..30 

1.3.2.4.1. Naturally Derived Scaffolds………………………….……………..……30 

1.3.2.4.2. Collagen-based Scaffolds………………..…………….…………..…….30 

1.3.2.4.3. Gelatin-based Scaffolds……………………………….….……………….31 

1.3.2.4.4. Synthetic and hybrid Scaffolds…………………….….……………….31 

1.3.3. Cell Source and culture medium……………………………………………………..……31 

1.3.4. Applications and development of engineered oral mucosa……………..…. 32 

1.3.4.1. Oral mucosal toxicity evaluation …………………………………………….32 



 

3 

1.3.4.2. Mucosa model implementation…………………………………………………32 

1.3.4.3. Infected model development…………………………………………………….33 

1.4. Aims and Thesis structures………………………………………………………………………….34 

II. Bibliography……………………………………………………………………………………………….…..…..36 

 

Chapter 2: Models setting and optimizations…………………………………………………..………42 

III. Introduction……………………………………………………………………………………………….……… 42 

3.1. Human mesenchymal stem cells (hMSC) and the osteogenic differentiation.42 

3.1.1. Osteoblast and bone engineering…………………………………………………………45 

3.2. Human gingival fibroblast……………………………………………………………………….……46 

3.3. Human oral keratinocytes……………………………….……..…..………………………….……47 

3.4. Cross-talk between mesenchyme and keratinocytes..………………………………….47 

IV. Materials and methods………………………………..…………………………..…………………………49 

4.1. Standard Cells culture condition…..……………….……………….……………………….……49 

4.1.1. Primary cells culture condition………………..…………..………………………..….…49 

4.1.2. Cell lines culture condition………………..…………………………………………..…….49 

4.1.3. Optimization of culture media for every cell type………………………….…….50 

4.1.4. Viability assay………………...…………………………………………………………….……..50 

4.1.5. Migration assay………………...….….………………………………………………………….51 

4.2. Osteogenic differentiation protocol………………..……………………………………..…….51 

4.2.1. Osteogenic differentiation protocol evaluation: Alkaline Phosphatase 

(ALP), Von Kossa and Alizarin Red staining………………………………………………51 

4.3. Bone substitute optimization……………………………………………………………………… 52 

4.3.1. Scaffold preparation …………………………………………………………………..……….52 

4.3.2. Scaffold repopulation…………………………………………………………………..……...52 

4.3.3. Dynamical Mechanical Properties (DMA) analysis………………………..………52 

4.3.4. Transmission electron microscopy (TEM) imaging…………………………..…..53  

4.3.5. Confocal imaging……………………………………………………………………………..…..53 

4.4. Established a custom made keratinized oral mucosa model…………………….….53  

4.4.1. Haematoxylin and eosin stain……………..……………………………………………….54 

V. Results………………………………………………………………………………………………………………..55 

5. Establishment of the common media for co-culture…………………………………………..55 

5.1.1. Monolayer growth condition establishment: Viability Assay……………….55 

5.1.2. Evaluation of hMSCs secretory capability into EpiLife medium: Migration 

assay………………………………………………………………………………………………….……57 

5.2. hMSC osteogenic differentiation……………………………………………….…………………58 



 

4 

5.3. Scaffold development………………………………………………………………..…………………60 

5.3.1. Preliminary data…………….………………………..………………………..…………………60 

5.3.2. Mechanical properties evaluation…………..………………………….………………..61 

5.3.3. hMSC viability evaluation……………….…………………………………………………….62 

5.4. Establishment of the 3D parakeratinized (masticatory) epithelium model…..65 

VI. Discussion……………………………………………………………………….…………..………………………68 

VII. Bibliography……………………………………………………………..…………………………………...70 

 

Chapter 3: Epithelial -Mesenchymal cross-talk.………………………………………………………..73 

VIII. Introduction……………………………………………………………………………………………………73 

8.1. Oral epithelium……….……………………………………………………………………………………73 

8.1.1. Keratinized epithelia…………………………………………………………………………….73 

8.1.2. Non-Keratinized epithelium…………………………….……….………………………….76 

8.1.3. Cytokeratin……………………………………………………………….............................76 

8.2. Gingival mucoperiosteum ……………………………………………………………………78 

8.3. Oral mucosa models……………………………………………………..……………………..79 

IX. Materials and methods…………………………………………………………………….…………..…….81 

9.1. Evaluation of hMSC on Oral Mucosa model…………………….……………………..….81 

9.1.1. Paracrine effect of hMSC on Oral Mucosa model…………..………………….81 

9.1.1.1. hMSC and Oral Mucosa Co-Cultures……………………………………..…..81 

9.2. Evaluation of hMSC derived Osteoblast effect on Oral Mucosa………………….…82 

9.2.1.  Paracrine effect of hMSC-derived Osteoblast onto keratinocytes 

stratification and differentiation..................................................................82 

9.2.2. Osteogenic induced hMSC and Oral Mucosa Co-Cultures……….….82 

9.3. Haematoxylin and eosin stain………………………………………………………………….…82 

9.4. Immunohistochemistry analysis…………………………………………………..……………...83 

9.5. Proteomic Array. ……………………………..……………..………………………………………….83 

9.6. Elisa...………………………………………………….……..……………..…………………………83 

9.7. Mucoperiosteum model……………………………………………………………………………….84 

9.7.1. Masson Trichrome assay…………………………………………………………………….84 

X. Results…………………………………………………………………………………………………………………85 

10.1. Paracrine effect evaluation….………………………………………………………………………85 

10.1.1. hMSCs paracrine effect on keratinocytes stratification and 

differentiation…………………………………………………………………………………………85 

10.1.2. Paracrine effect of hMSCs-derived osteoblast effect on 

keratinocytes stratification and differentiation……………………………….………85 



 

5 

10.1.3. Proteomic array and ELISA ….…………………………………….………………89 

10.2. Co-Culture of the oral mucosa and hMSCs with or without differentiation 

factors: cross-talk effects….………………….………..………………………………………….…93 

10.2.1. hMSCs affects keratinocytes stratification and differentiation……93 

10.2.2. Mucosa model affects hMSC osteogenic differentiation …………….95 

10.3. Connective tissue development: fibroblast-hMSCs interactions effect 

onto keratinocytes stratification and differentiation…………………………………….96 

10.4. 3D composite model…………………………………………………………………………….96 

10.4.1. Histological evaluation………………………………………………………………96 

10.4.2. Mechanical properties evaluation………………………………………………96 

XI. Discussion………………………………………………………………..………………………………………….99 

XII. Bibliography……………………………………………………………………………….........................103 

 

Chapter 4: Innervated Mucoperiosteal model development…………………….…………...106 

XIII. Introduction…..…………………………………………………………………………………………….106 

13.1. Periodontium innervation……………………………………………………………………….106 

13.2. Innervated epithelial model………………………………………...….……………………..107 

13.3. Aims…………………………..…………………………………………………………………….……..107 

XIV. Materials and methods….……………………………………………………..……………………..108 

14.1. Mucosa model effect on nervous system….……………………………………….……….108 

14.1.1. Axonal outgrowth evaluation….….……………………………………………108 

14.1.2. DRG Isolation….…………………………………………………………………..….108 

14.1.3. Quantification of axonal growth………………………………..…………….108 

14.2. Mucoperiosteum model…………………….……………………………..……….…….109 

14.2.1. Masson Trichrome assay………………………………………..………………109 

14.2.2. Immunofluorescence analysis…………………………………………………109 

XV.    Results………………………………………………………………………………….……………………….110 

15.1. Effect of oral mucosa on the neuronal compart…………………….……………………110  

15.1.1. ND7/23………………………………………………………..……………….…………110 

15.1.2. Dorsal Root Ganglia………..…………………………………………..…………..113 

15.2.  3D composite model…………………………..…………………………………..……….115 

15.2.1. Scaffold suitability…………………..……………………………………………….115 

15.2.1.1. Histological analysis………………………………………………………………...115 

XVI. Discussion………………………………………………………………………………....…………………117 

XVII. Bibliography………………………………………………………………………………………………...119 

 



 

6 

XIX. Conclusion and future prospective.………………….……………………..………………….121 

XX.       Abbreviation list………………………………………………………………….……………………….123 

XXI. Figure index………………………………………………………………………..……………………….125 

XXII. Table index……………………………………..…………………………………..……………………….127 

XXIII. Acknowledgement……………………………………..…………………………………..………….128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 

Abstract 

  INTRODUCTION: Animal experimentation has been extensively and for a long time applied in several research 

fields, but since 2011 it has been substantially limited by the Commission of the European Parliament to ensure 

people/animals safety and reduce research costs. To respond to these directives, many attempts have been focused on 

the development and validation of new in vitro 3D systems, bypassing the traditional 2D cell cultures. In this regard, 

diverse approaches to tissue-engineered bone and oral mucosa have been developed. Despite the promising premises 

and the cutting-edge results, the used 3D in vitro bone-oral mucosal models still lack interaction between the mucosal 

and the bone components. Therefore, this project aimed to create 3D models, entirely made with primary human cells 

(keratinocytes, fibroblasts, and osteoblasts), able to mimic the natural structure and interaction of bone and oral 

mucosa. A direct future application will be the multi-tissue periodontal regeneration, needing synchronized restoration 

of the gingival and bone compartments, besides cementum and periodontal ligament. 

  EXPERIMENTAL METHODS: For the in vitro 3D oral mucosa assessment, a collagen-based lamina propria was 

enriched with a pool of primary human fibroblasts (HGF), freshly obtained from the normal gingiva of young healthy 

and informed consent donors, put into a culture insert and submerged into defined culture media. A pool of primary 

human oral keratinocytes (HOK) were seeded upon the gel. When keratinocytes reached confluence, they were grown 

at the air-liquid interface, stratifying in about two weeks. The oral mucosa model, obtained as above described, was 

used to evaluate the effect of two mesenchyme cell types, mesenchymal stem cells (hMSC) and osteoblast (hFOB) on 

keratinocytes stratification. Mesenchyme effect was assessed in 3 different set-ups: paracrine effect (conditioned 

media, CM), indirect co-culture (transwell system), and direct co-culture (hMSC embedded in the connective tissue 

substitute). Oral mucosae were, after that, histologically examined. The conditioned media from those experiments 

were used to growth murine nervous system cells (immortalized ND7/23 and primary dorsal root ganglia DRGs) and 

quantified the effect on axonal outgrowth. 

Regarding the bone compartment, a bovine tendon collagen (BTC) and nano-hydroxyapatite (nHA) sponges developed 

by Salgado et al., (2015) was synthesized by lyophilization process. The sponge was subsequently implemented with a 

fibrin coating to increase the stiffness and mechanically characterized by the dynamic mechanical analysis machine. 

Primary human osteoblasts (hFOB) were integrated into the BTC/nHA sponge diluted directly in the fibrin gel. Oral 

mucosae, produced as above described, were air-lifted onto the repopulated bone substitute and co-cultivated for 

others 12 days to allow cell-interaction and keratinocytes stratification. This latter innovative model was histologically 

and mechanically characterized.   

RESULTS AND DISCUSSION: the histological analysis showed an unexpected effect of osteogenically induced 

hMSC (hMSC-OB) onto keratinocyte stratification. Under the hMSC-OB stimulation, the ratio between the spinosum and 

the corneum strata resulted impaired due to the increase of the keratinization in treated 3D models. This impairment 

results correlated to a higher expression of the cytokeratin 10 (typical of keratinized epithelia) with a slight reduction of 

the cytokeratin 13 (typical on non-keratinized epithelia). These results suggest that hMSC and, in particular, one of their 

differentiated forms, the osteoblasts (hOB), play a crucial role in mucosal differentiation fate. The proteomic analysis 

revealed that during osteogenic differentiation, hMSCs increase the production and release of KGF, a factor which 
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induces keratinocytes proliferation and differentiation. The KGF production (amount increased to 208±36 pg/ml after 

14 days of differentiation and to 347±15 pg/ml after 28 days of differentiation), confirmed in ELISA, may explain why, 

despite the increase in keratin production, most of the keratinocytes retain the nuclei producing a para-keratinized 

phenotype. At the same time, two 3D hMSC-OM co-cultures was developed. In the first one, hMSC and oral mucosae 

were kept in contact with a transwell porous system. The histological analysis of 3D culture shows that the crosstalk 

between oral mucosa and hMSCs improve the keratinocytes behaviour ensuring a complete stratification process. The 

differentiation analysis of co-cultured hMSC showed that, in the presence of osteogenic factors, oral mucosae halve the 

time required for hMSC differentiation. In the second model, hMSC were seeded with HGF within the collagen matrix 

used as lamina propria substitute. The histological analysis showed that hMSC speeded up the keratinocyte proliferation 

and stratification, obtaining the fully epithelium resembling the native one in only 7 days. Once again, the proliferative 

state induced by hMSCs resulted uncontrolled. Indeed, after another 1 week of direct co-culture, keratinocytes lose 

their organized structure. The obtained results were used to set-up a mucoperiosteal model composed of an engineered 

oral mucosa air-lifted and let stratified onto an osteoblast repopulated hard-sponge mimicking the bone counterpart. 

The mechanical evaluation of this model suggested that mesenchymal cells (hMSC and HGF) and epithelial cells 

collaborate to remodel the synthetic bone matrix. Moreover, the effect of those models on the nervous system was 

evaluated by calculating the axonal outgrowth of both immortalized neuronal cells and murine dorsal root ganglia 

(DRGs). Although the treaded models induce a slight increase of axonal elongation on immortalized neuronal cells, an 

adverse impact is registered on the ganglia of the back. These recent results suggest that oral mucosae produce pro-

innervation factors (i.e., NGF observed by IF analysis) but also specific molecules that inhibit the migration/elongation 

of unsuitable axons. Finally, the obtained results were used to set-up an innervated mucoperiosteal model composed 

of an engineered oral mucosa enriched with ND7/23 let stratified at the air/liquid interface directly onto an osteoblast 

repopulated hard-sponge mimicking the bone counterpart enriched with ND7/23. In the innervated model, it is possible 

to observe several cells migrating within the bone counterpart; these cells were characterized by immunofluorescence 

analysis and, at the interface between bone and oral mucosa, several TBR1/β-tubulin type III positive cells identified as 

ND7/23. However, any axonal prolongations were found despite the presence of secreted NGF within the model. 

CONCLUSION: In the present work, the regulatory role of the mesenchymal tissue onto epithelia was evaluated. 

The main results showed that that during the differentiation hMSC produce and secrete factors that induce the 

keratinization and the expression of the marker of differentiation CK10; in particular in the middle stage of 

differentiation (OB14).  The proteomic analysis revealed that this effect can be ascribable to KGF secretion. This finding 

may impact the design of new implantable devices able to induce, alone, the epithelial growth and keratinization to 

improve implant graft avoiding epithelial graft linked to the morbidity of another zone. Moreover, we also showed that 

OM might have a pro-innervation effect, at least during the last stages of keratinocytes stratification. Finally, we 

characterized an innervated mucoperiosteal model that could open new in vitro frontiers for oral biomaterials validation 

as well as improve knowledge regarding the mesenchymal stem cells roles onto oral mucosa development. 
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Graphical Abstract 

 

 

Figure 1  Graphical Abstract. Assessment of stromal-epithelial crosstalk and mucoperiosteal development.   JE: junctional 
epithelium, OSE: oral sulcular epithelium, OE: oral epithelium, PIE: peri-implant epithelium, PISE: peri-implant sulcular epithelium. 
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Chapter 1 

Background 

I. Introduction 

 

1.1. Tissue engineering (TE) 

In 1993, Langer and Vacanti described the tissue engineering (TE) as “an interdisciplinary field that applies the 

principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or 

improve tissue function or a whole organ”. This definition still well represents many TE applications and nowadays, even 

comprises the development of biological substitutes aimed to mimicking the tissue environment and function in vitro 

(as a tissue model) for being used in the cell biology and embryology fields as a tool to study the cell and tissue response 

to exterior influences (i.e., drugs, biomaterials, etc.) (Olson et al., 2011; Ikada et al., 2006)   

Starting from this background, in vitro models have been recently developed to mimic not only the single tissue 

function but also the complexity of whole organs, including tissue interfaces (Atala et al., 2012). These multi-tissue 

models have been mainly proposed as tools for analysing the cells-cells interaction within a physiological 

microenvironment (Gothard et al., 2014) and the fundamental mechanisms involved in cell signaling during tissue repair.  

These in vivo models represent valuable tools to speed-up the biocompatibility assessment of implantable 

materials by reducing the recourse to in vivo experimentation.    

1.1.1. In vivo models for biocompatibility assessment of implants 

The term “in vivo” is referred to all the experiments conducted in living organisms. Currently, they still represent a 

necessary tool to evaluate both the safety and the efficacy issues of new drugs or implantable devices. Indeed, despite 

several drawbacks mainly related to i) ethical dilemmas, ii) model handlings complexity, iii) long experiments duration, 

iv) limited accessibility, v) expensive management of animal facilities and vi) inflexible limiting laws (Knight et al., 2011) 

in vivo models use remain irreplaceable.  

1.1.1.1. Legislature 

In 2015, nine European countries presented a petition to the European Commission (EC) to ban the use of 

animals in research. The EC reject the petition but stated that ethical justification and adoption of protocol which follow 

the 3Rs (Replacement, Reduction, and Refinement) must be approved before proceed with each experimental studies 

(http://ec.europa.eu/environment/chemicals/lab_animals/pdf/vivisection/en.pdf), not only for ethical purposes but 

also because the use of healthy animals growth in adequate animal facility (accordingly to actual European directive 

and 2Rs statements) allow the production of more robust and reliable results, underlying valid scientific outputs (Hurst 

http://ec.europa.eu/environment/chemicals/lab_animals/pdf/vivisection/en.pdf
http://jeb.biologists.org/content/220/17/3007.long#ref-38
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and West, 2010; Singhal et al., 2014). Globally, legislation differs between countries and geographical regions, but in 

general, the well-being of the animal used in research is protected. 

The 3Rs concept was first developed by Russell and Burch (1959) and has become rooted in legislation and 

guidelines concerning animal experimentation in many Countries (fig. I-1). The 3 Rs stay for “Replacement” which stated 

that, when applicable, alternative methods must be applied to avoid or reduce animal use in research, “Reduction” 

which encourage the use of strategies that enable the obtainment of reliable data starting from as few animals as 

possible, or, at least, to obtain more information from the same number of animals and “Refinement” which impose 

the use of methods that alleviate or minimize potential pain, suffering or distress, and enhance animal welfare for the 

animals used.  

The directive 2010/63/EU follow the 3D principles and states that "every project proposal in EU member states 

involving procedures on living non-human vertebrates and cephalopods has to be approved in a review process, 

including a harm-benefit-analysis (HBA), to assess whether the harm to the animals in terms of suffering, pain, and 

distress is justified by the expected outcome taking into account ethical consideration and may ultimately benefit 

human beings, animals or the environment"(Eggel et al., 2018).  

 

  

Figure I-1 Graphical representation of the significant ethical concepts and key questions that scientists must address under the 

traditional view of the 3Rs – Replacement, Reduction, and Refinement – to justify the use of animals in experimentation, from planning 

the program of work through to publication.  (http://jeb.biologists.org/content/220/17/3007#ref-85)  

 

 

 

http://jeb.biologists.org/content/220/17/3007.long#ref-38
http://jeb.biologists.org/content/220/17/3007.long#ref-85
http://jeb.biologists.org/content/220/17/3007.long#ref-78
http://jeb.biologists.org/content/220/17/3007.long#F1
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1.1.1.1.1. Reduction 

‘Reduction’ requires the limitation in the number of animals used for experimentation in "just enough data and 

no more". The better strategies to overcome this limitation involve the improvement of the experimental design and 

the precision of measurement as well as the addition of reliable concomitant measurements (that can be used as 

internal control) to reduce the variability in the pilot studies (i.e., sex or age). At the same time, it is essential to include, 

for each experimentation, adequate control groups and to choose the correct animal model (i.e. use aged animal if in 

the investigation must be considered the senescence) to obtain reliable translational results (McClelland et al., 2000; 

Eng et al., 2003; de Boo and Hendriksen, 2005). Moreover, the guidelines state that the calculation of statistical 

power should be included to optimize the sample size. 

1.1.1.1.2. Refinement 

Refinement is an "integral component of improving laboratory animal welfare, which is vital for healthy biological 

functioning and a normal behaviour repertoire". This part allows more reliable results since the scarce animal condition 

can interfere with the measurement. However, for most species, the adequate tools or protocols to assess their health 

and welfare (i.e., pain assessment is highly developed for mammals compared with other animal groups) were upgraded 

only in the last few years (Sneddon et al., 2014; Sneddon, 2015). The EC Directive (2010; http://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:32010L0063) proposes that “all protected animals should have enriched environments in 

which to live”. Indeed, an adequate environment, improve with social housing and apparatus to allow exercise or 

sensory stimulation reduce the stress in animals reducing the effect of this factor on the experiment outcomes (Singhal 

et al., 2014).  

The term "refinements" is also referred on the experimental procedures; handle animals with proper procedure 

reduce the stress related to invasive procedures. For instance, to minimize mice anxiety is suggested to avoid collection 

them by their tail. In general, when applicable, it is recommended the use of painkillers after surgery and non-invasive 

imaging techniques to collect data (O'Farrell et al., 2013).  

 

1.1.1.1.3. Replacement 

According to several regulatory organs, the youngest forms of many species do not suffer. For instance, the UK 

Animals (Scientific Procedures) Act 1986 (https://www.gov.uk/government/publications/consolidated-version-of-aspa-

1986) and European Directive 2010/63/EU (http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063) 

allow the use of fish until they acquire the capability of independent feeding and allows the use of embryos (i.e., from 

chickens) (Tazawa et al., 2002). However, this approach is not valid in several research fields and in particular, it is not 

valid for biomaterials studies. Due to EU's decision to ban animal testing for cosmetics (EU1223/2009) and the restriction 

in animal use occurs after 2015, several in vitro models platform including 3D cell cultures have been developed to 

bridge conventional 2D tissue cultures and animal experimentation Those platforms are often aimed to identify 

potentially dangerous chemicals and recently, extensive research has gone into i) mammalian tissue studies, used to 

develop ex vivo tissue techniques such as the precision-cut tissue slice (Fisher RL and Vickers AE, 2013) and ii) stem cell-

http://jeb.biologists.org/content/220/17/3007.long#ref-58
http://jeb.biologists.org/content/220/17/3007.long#ref-26
http://jeb.biologists.org/content/220/17/3007.long#ref-21
http://jeb.biologists.org/content/220/17/3007.long#ref-88
http://jeb.biologists.org/content/220/17/3007.long#ref-87
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063
http://jeb.biologists.org/content/220/17/3007.long#ref-85
http://jeb.biologists.org/content/220/17/3007.long#ref-85
http://jeb.biologists.org/content/220/17/3007.long#ref-72
https://www.gov.uk/government/publications/consolidated-version-of-aspa-1986
https://www.gov.uk/government/publications/consolidated-version-of-aspa-1986
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063
http://jeb.biologists.org/content/220/17/3007.long#ref-94
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derived organoid 3D cultures to improve the translational potency of the studies (Liu et al., 2016; Muthuswamy, 2017).  

A precision-cut tissue slice is a technique in which an organ, or a part of it, is sectioned in identical portions (usually 0,3 

mm thick) and kept in cultures for a limited time. These latter represent an in vitro model able to closely mimics the 

organ complexity since the “slice” maintain the structural and functional features of the whole organ while organoids 

are in vitro derived 3D cell aggregates with organ functionality which offer a comparable structure to primary tissue and 

a stable system for prolonged cultivation, and that can be easily cryopreserved. 

One of the main advantages of 3D cultures is to facilitate the adherence to the 3Rs ethical concepts. 

1.1.1.1.3.1. In vitro models – 2-Dimensional vs 3-Dimensional 

The term in vitro refers to experiments carried out on segments derived from living organisms and cultivated 

on external support. In vitro models are mainly divided in 2 categories, the models growth in 2-"dimension"-D (length 

and width) that are represented by isolated cells growth as monolayer on synthetic supports (such as coated tissue 

culture plastic, TCP) and 3-"dimension"-D (length, width, and thickness) that can be referred both to the same cells 

grown as a multi-layered system on or within heterogenic supports or to tissue sections ex-vivo cultivation (Duval et al., 

2017).   

Two-dimensional culture techniques have been one of the foremost breakthroughs in the biomedical field. 

They’ve been represented, since the early ‘900, the possibility to carry out experiments with living biological specimens 

in highly standardized and controlled conditions (Vanderburgh et al., 2017). However, there are several differences 

between monolayered cells and the natural tissues, and they include tissue-specific substrate stiffness, the spatial cues 

(such as cell-matrix and cell-cell interaction or receptor topography), and, consequently, the concentration gradients of 

nutrients, secreted factors and gas (i.e., oxygen). Since the early '90, several researchers focused on the mechanical 

stimulation of different cell types, and, nowadays, it is well-known that the mechanical stimulus has the same 

importance of chemical stimuli. Accordingly, the substrate stiffness has a significant effect on cell behaviours such as 

differentiation and migration process, and substrate morphology severely affects cell appearance via cytoskeleton 

regulation (Pedersen et al, 2005). 

Moreover, the presence of the ECM influences the gene expression; for instance, Mishra et al. (2012) compared 

metalloproteinase (MMPs) expression in 2D and 3D culture and showed a low or absent expression of some MMPs, 

indispensable marker for evaluating the pro-metastatic capability of cancer cells, in monolayer condition.  Finally, the 

absence of the third dimension imposes several changes in cellular morphology and receptors topography, and this 

induces several complications in translate dose/response curve in more complex models (Bradbury et al., 2012).   

To overcome these limitations, several 3D models have been developed. Indeed, 3D models have the potential 

to overcome not only 2D cultures unable to mimic the physiological tissue behaviour but also some animal models 

because of the lower financial disbursement. The main advantages and disadvantages of 2D and 3D models are 

summarized in table I-1. 

http://jeb.biologists.org/content/220/17/3007.long#ref-51
http://jeb.biologists.org/content/220/17/3007.long#ref-61
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As previously described, the organ complexity influences the difficultness in obtaining reproducible and affordable 

models. The modern methods in the production of functional tissue and/or organ models entail a multi-disciplinary 

approach in which engineering, chemical, physical, mathematics, biological, and physiological knowledge are exploited 

in a trial-and-error tactic (Sharifikia et al., 2017).  The development of biological 3D multi-tissue models, intended to 

mimic physiological tissues, is a complex but promising way to improve the power of biological studies. With these 

models, the understanding and prediction of human organ response to external stimuli (i.e., xenobiotic molecules roles, 

mechanical stress, paracrine cross-talk, biomaterials compatibility, drugs safety, etc.) or the cytofunctionality analysis 

[i.e., the study of the de novo production of extracellular matrix (ECM)] could be assessed in a physiological context. 

This study approach can provide reliable information on cell interaction useful in implant substrate design. 

 This methodology has so far become a pivotal tool for evaluating necessary processes such as matrix 

remodelling, cell crosstalk, growth factor secretion, gene expression, regulation, etc. of human cells in their 

microenvironment. Moreover, as previously described, these models represent a high 3Rs-friendly approach by 

reducing the use of small animal models (and by lowering the animal-related cost for researchers).  

Table I-1 Principal differences between 2D and 3D cultures 

2D Cell Culture Systems 3D Cell Culture Systems 
 

Advantages Disadvantages Advantages Issue and Future 
Prospective 

 

Low-cost 

 
The absence of real cell 

environments 

 
More relevant cell 

models 

 
Throughput 

(the initial study is more 
expensive and time-

consuming; however, results 
are trustable) 

Well established Lack of predictivity 
(with increasing cost and 

failure rate of further 
studies) 

Direct interaction 
between different types 

of cells 
(organotypic models) 

Guarantee the right 
oxygenation to the inner part 

of the model 

A lot of comparative 

literature 

False results caused by the 
growth media and 
expansion of cells 

Presence of 
connective/stromal 

tissue or barrier tissues 

Standardize protocols 

Easier cell observation 

and measurement 

 Better simulation of 
conditions in a living 

organism 

Increase the complexity 

  Reduces the use of 
animal models 

 

  Represent a more 
realistic way to grow and 

treat cancer cells 

 

 

The general approach to design engineering materials is peculiar when the main goal is to obtain implantable 

tissue instead of tissue models. Implantable tissue required to be safe, fully biomimetic and biocompatible, and the 

ideal mechanical properties and morphology of the implanted scaffold are studied to guarantee the first phases of the 

graft and ensure the host tissue migration within both acellular and repopulated implant. On the contrary, tissue models 

need to resemble, as close as possible, all the features of the mimicked tissue.  
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 Indeed, it is expected that healthy resident cells can invade the free space of the scaffold and interact with 

implant structure and resident cells to secrete new ECM proteins and structures to re-activate the biological function of 

the tissue (Antoni et al., 2015). On the contrary, tissue models are designed to mimic, ex vivo, all the features and the 

three-dimensional topography of the single (histotypic model) or the composite (organotypic model) tissue of interest. 

When histotypic and organotypic models are considered, the priority is to obtain an easy-handling model 

suitable for a wide range of tests. These models are mainly developed as platforms for evaluating different biological 

responses to external stimuli, such as microbial infections, drugs, materials application, or mechanical stress. Above all, 

these models are addressed to give information regarding gene regulation and expression, macromolecules or vesicles 

secretion, receptor polarity, and tissue morphology changes in response to certain stimuli. To reach the targets, 

histotypic and organotypic models must be realized with highly standardized and reproducible protocols and with fully 

characterized cells (Antoni et al., 2015). This enables to easily and separately identify each variable or cell components 

offering a considerable advantage in comparison with animal models, where the contributions of some tissue type or 

cells are often overlapped and hidden by other biological parts. 

Besides, another essential advantage of 3D models in comparison with in vivo models is found in the study 

cost, as shown in table I-2.   

In both 3D and in vivo models, a key role is played by connective tissue. Indeed, in both pathological and healthy 

condition, the connective tissue support and regulate the behaviour of all the other tissues. For instance, in tumours, 

the surrounding fibroblast (nowadays known as tumour-associated fibroblast, TAF) interacts and regulates cancer 

behaviour. In healthy condition, the connective tissue secretes crucial molecules which regulate and drive the fate of 

other cells such as the ones which form the lining epithelia. Thus, several studies have been focused on elucidating the 

interaction between the connective or stromal tissue and the covering epithelia, and in reproducing this interaction in 

refined 3D models. To pursue this research term, several types of 3D cell culture techniques have been designed to 

replicate lining epithelia such as gastric epithelium, alveolar epithelium, corneal, skin, or oral mucosa. 

Pluristratified squamous epithelia may be resembled by using tissue-specific basal-like keratinocytes on natural 

or synthetic connective tissue substitutes repopulated by tissue-specific fibroblasts. In this case, keratinocytes stratify 

at the air-liquid interface, retaining the specific epithelial belongings.  Among them, one of the most engineered 

specialized tissues is the keratinized pluristratified squamous epithelium of the oral cavity (Gibbs et al., 2000). 

 

 

 

 

 

 

 



 

16 

Table I-2 Toxicity test costs, in animals and in vitro, as reported by Human Society International 

(http://www.hsi.org/issues/chemical_product_testing/facts/time_and_cost.html) 

TYPE OF TOXICITY TEST TYPE STUDY COST ($ US) 

GENE TOXICITY   

CHROMOSOME ABERRATION In Vivo 30000 

 In Vitro 20000 

SISTER CHROMATID EXCHANGE In Vivo 22000 

 In Vitro 8000 

UNSCHEDULED DNA SYNTHESIS In Vivo 32000 

 In Vitro 11000 

EYE IRRITATION/CORROSION   

DRAIZE RABBIT EYE TEST In Vivo 1800 

BOVINE CORNEAL OPACITY In Vitro 1400 

SKIN CORROSION   

DRAIZE RABBIT SKIN TEST In Vivo 1800 

EPIDERM™ In Vitro 1600 

CORROSITEX® In Vitro 500 

   

   

 

1.1.1.2. Animal models for oral implantology: An overview 

In the last three decades, several researchers have been focused on their osteointegration and soft tissue 

integration study of dental implants using several animal models. 

Literature reports several papers focused on histological responses to implants in primates (forbidden in 

Europe) or in dogs with all expected related ethical concerns since no life-saver devices are involved. 

Rodents (mice, rats, and rabbits), ovine, and swine have been also used with less restriction; choosing the 

appropriate animal model for each experimentation allows the production of reliable and reproducible data. 

The mouse is the most used animal model in research, and, through the years, several syngeneic and transgenic 

strains have been established to meet experimental protocols requirements. Mice are moderately inexpensive, easy to 

handle and reproduce quickly in laboratory settings. The mouse genome has high homology with human one and can 

be easily modified to mimic human disease, included bone defects and age-related disease. However, mice models are 

not often used to test oral implantable materials or devices mainly because of their reduced size, which requires to 

scaled-down the devices (Rahal et al., 2000; Beppu et al., 2011) and makes the surgical procedures almost tricky.  

Rats, in particular, Wistar and Sprague-Dawley strain, have been extensively used in the implantology field. 

Wistar rats are variants of the congenital albino rat, whereas Sprague-Dawley rats are of an outbred origin. Due to their 

bigger size, male rats are more often used than females, and as for mice, extra-oral bones are preferred for dental 
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material implantation. Some authors, such as Haga et al. (2009), preferred to use mini implants for teeth replacement 

and evaluating the maxillary bone formation and maturation processes around implants. Following similar strategies, 

Rinaldi and Arana-Chavez (2010) were able to examine implants in contact with the periodontal ligament of adjacent 

teeth in the mandible while Hou et al. (2009) shown that the mechanical force of oral environment improves titanium 

integration. Torricelli et al. (2002) suggested the use of aged rats, instead of young rats, for bone implants evaluation 

since they showed a reduction in bone formation in aged rats. In the same work, the authors suggest the use of a 

demineralized bone matrix to improve bone healing and re-mineralization in osteoporotic condition. Genetically-

modified rat strains or diseased animals have also been used to mimic human diseases such as diabetes (Biobreeding 

diabetes-prone rats) or hypertension (Zucker rat); for instance, Hasegawa et al. (2008) showed that the osteointegration 

and bone volume are reduced in diabetic mice in comparison with non-diabetic rats.  Similarly, ovariectomized rats were 

used to assess the effect of implanted materials onto osteopenic bones. In 2002, Fini et al. compared the 

osteointegration of titanium (Ti6AI4V) implants in ovariectomized and sham-aged rats and sheep. In their experiments, 

the author demonstrated that the titanium implants were less osteointegrated in both trabecular and cortical 

osteopenic bone in comparison with those in normal bone; the authors also observed a decrease of bone microhardness 

in both trabecular and cortical bone, but this decrease resulted widespread in the osteopenic bone suggesting implant-

associated delay in both bone formation and maturation.  

Despite the positive results, the bone structure of rodents is poorly representative of human ones and lacks 

Haversian-type remodelling. Due to this factor, data obtained by those models are not always confirmed in pre-clinical or 

human models (Li et al., 2015).  

Rabbit is one of the most used models in musculoskeletal studies. It is often used in implant dentistry (Neyt et 

al., 1998) mainly because its knees are large enough to host dental implants designed for humans. 

  Rabbit has faster bone turnover than human with significant intracortical Haversian remodelling, which 

corresponds to a quicker osteointegration and to a reduction of time requires for the experimentation (Pearce et al., 

2007). For this reason, it is considered as a pre-translational animal model useful to screen new oral implant 

technologies.  

Among all rabbit strains, the New Zealand White with a bodyweight between 2 and 5 kg is the most (Vidigal et 

al., 2009). 

Nowadays, one of the elective models for implant dentistry is represented by sheep and/or goat since their 

bone dimension is comparable with the human one despite the higher bone density (around 2-fold) (Rasmusson et al., 

1999). Domestic sheep are easy-handling animals that are widely used to study numerous musculoskeletal pathologic 

conditions or to test different kinds of implants. The use of adult sheep is strongly suggested since the complete bone 

maturation occurs a long time after puberty (average age: nine months within different breed). The sheep trabecular 

bone well resembles the human one while the cortical bone presents slight differences in the bone mineral composition 

and Haversian canals content, lower in sheep than in humans (Ravaglioli et al.,1996; Aerssens et al., 1998). Although, 

the sheep bone healing and a bone remodeling rate are comparable with that of humans (Pastoureau et al., 1989; 

Chavassieux et al., 1991; Turner et al., 1993). The critical size defect (CSD) for long sheep bone conventionally 

corresponds to a 40 mm long segmental defects (Gugala et al., 1999). Moreover, ovariectomized and Vitamin D deficient 
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sheep under hormone treatments are a suitable model for osteoporosis (Dvorak et al. 2011). Due to those features, 

sheep is a standard model in the implantology field even if more expensive and time-consuming (the healing and 

recovering time is higher) then rodents. 

Swine is often used for translational purposes in pharmaceutical research. However, for the dental 

implantology field have been created specific "mini-pig" since the domestic adult one (suitable for dental implants) are 

too complicated to handle (difficulties in housing because of size and in surgically widening oral tissues) (Pearce et al., 

2007). Different strains of mini-pig were developed since the sixties: Yucatan (in its two forms of minipig and micropig), 

Hanford, Sinclair Hormel (also called Minnesota), Pitman-Moore, Kangaroo Island, Ohmini, Lee Sung, Morini, and 

Göttingen. Despite small differences in plaque formation and bone structures between minipig strains and in 

comparison, with human, minipig bone is considered one of the most representative of human bone in terms of bone 

remodelling processes, density and mineralization (Mosekilde et al., 1987 and 1993; Aerssens et al., 1998; Ma et al., 

2009). 

Animal model studies enabled a considerable improvement in several research fields. However, the time and 

financial disbursement required for experimentation with adult and/or diseased animals are higher in comparison with 

3D models, and also the reliability for getting reliable results is not 100% (Shanks et al.; 2009). Moreover, these models 

require highly specialized personnel to be correctly used, and besides, they are subjected to ethical issues and the strict 

control of national and international regulatory authorities. The regulation regarding in vivo model is described in 

paragraph 1.1.1  

  

http://www.sinclairbioresources.com/miniature-swine/yucatan/
http://www.sinclairbioresources.com/miniature-swine/hanford/
http://www.sinclairbioresources.com/miniature-swine/sinclair/
https://www.pestsmart.org.au/the-kangaroo-island-strain-of-pig-in-biomedical-research/
https://www.marshallbio.com/gottingen-minipigsr
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1.2. Oral Cavity  

1.2.1. Anatomy 

The oral cavity is the first segment of the digestive system, 

bounded externally by the lips and internally by the pharynges. It is 

formed by different structures composed of hard and soft tissue. The 

first and outer portion of the oral cavity, named vestibule or vestibulum 

oris, includes the lips and the cheek externally while the inner part is 

formed by gums and teeth (fig. I-2).   

The lips, or vermilion zone, are lined by a thin keratinized layer 

balanced out by a prominent stratum lucidum and its basal layer results 

full of melanocytes. The upper lips are innervated by the maxillary (V2) 

and the mandibular (V3) branches of the trigeminal nerve (V) and the 

infraorbital branch of the V2 while the lower lips are innervated by V2, 

V3 and the mental nerve branch of V3, the latter also innerve the oral 

mucosa (Sadrameli and Mupparapu, 2018). 

The teeth are composed of a crown that projects into the mouth, and roots which are connected with the 

alveolar bone by a flexible but reliable joint called periodontal ligaments. The enamel and the dentin compose the hard 

and external part of the teeth. In contrast, the soft and inner part, the pulp, is mainly composed of stromal connective 

tissue supplied by nerve, lymphatics vessel, and blood capillaries. The dental pulp contains fibroblasts (PF) and oral 

mesenchymal stem cells (O-MSCs) (fig. I-3). 

 

Figure I-3 Diagram illustrating the anatomy of the tooth and the and foremost function of its components 

(https://www.printablediagram.com/diagrams-of-teeth-printable/diagram-of-teeth-anatomy/) 

The teeth are surrounded by gingival tissue, which is the only clinically visible component of the periodontium 

inside the mouth. Gingiva covers, as well, the alveolar bone and other inner structures, and it's firmly attached to them. 

Figure I- 2 Diagram illustrating the anatomy and 

central structures of the oral cavity 

(https://pocketdentistry.com/1-oral-structures-

and-tissues/ 

https://www.printablediagram.com/diagrams-of-teeth-printable/diagram-of-teeth-anatomy/
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The gingival margin has a scalloped-like course across the dentition due to interdental papillae that fill the interdental 

spaces beneath the tooth contacts. Moreover, the gingiva is histologically divided into two portions:  

• The free gingiva, which is characterized by two 

non-keratinized epithelia in its inner part, known 

as sulcular epithelium (in the free part) and the 

junctional epithelium (in direct contact with the 

teeth). The sulcular epithelium forms the wall of 

the sulcus and, together with the junctional 

epithelium, form the dento-gingival junction. The 

junctional epithelium has two basal lamina, the 

internal one that faces the tooth and the external 

one that meets connective tissue; due to this 

characteristic, it results in the most permeable 

epithelium and the lamina propria underlying 

the junctional epithelium is characterized by a 

chronic inflammatory state derived by the filtration of several microbial antigens. On the contrary, the outer 

surface which is mainly keratinized.  

• The attached gingiva, which is covered by a keratinized epithelium and extends apically from the free gingiva 

towards the alveolar mucosa. The latter is defined "attached" because it is firmly adherent to the alveolar 

bone and in case of bone fenestration to the root cementum. 

(Hall and Lundergan, 1993; Garnick and Ringle, 1988).   

The lamina propria of both free and attached gingiva is rich in nerve, blood, and lymphatic vessels and resident 

innate immune system cells. Gingival tissues structures are summarised in figure I-4 

The second and inner part of the mouth, known as the oral cavity proper, start with the alveolar process of the 

mandibular and maxillary bone, where teeth are located fixed and enclosed by the periodontium, covered by a soft 

tissue called mucosa. In the superior zone, the hard and soft palate separates the oral cavity by the nasal cavity while 

the lower part of the oral cavity is filled by the tongue and the floor of the mouth. 

The hard palate is composed of the upper mouth bones lined by a keratinized epithelium while the soft palate 

is located behind the hard palate and doesn't contain bone but is mainly composed of muscle lined by a non-keratinized 

epithelium and is innervated by the V3 and the vagus nerve. 

The tongue surface is covered by 4 types of lingual papillae named circumvallate, foliate, filiform, and fungiform 

positioned in different parts of the tongue and assign to taste different savours. Fifth cranial nerve supplies general 

sensory innervation (not the gustative one) to the anterior 2/3 of the tongue. Finally, the flour of the mouth borders 

the lower limit of the oral cavity and connect, with the lingual frenum, the gingival tissue with the tongue. 

 

Figure I-4 Structures of gingival tissues. 

https://sites.google.com/site/dentalhygieneportfoliofelicia/hom

e) 
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1.2.2. Oral mucosa 

The oral mucosa is the linin organ of the oral cavity; from a histological point of view, it shares several 

characteristics with the skin, the dry lining organ of the human body, and other covering membranes such as the 

oesophagus. Structurally, both skin and lining membranes are composed of two interconnected tissue: a connective 

tissue covered by a lining epithelium, mostly a squamous pluristratified epithelium. These two components are strictly 

interconnected with the epithelial cells that infiltrate within the connective tissue forming the rete ridge. The lining 

epithelia and the connective tissue are attached by a thin but complex structure known as basement membrane. 

The principal function of the oral 

mucosa is to protect the surrounded 

tissue and glands against external stimuli 

such as microbial pathogens as well as 

resident bacteria to avoid the infection 

and consequent damage of underlying 

tissue.   Physiologically, the oral cavity is 

daily subject to different mechanical 

stimuli, such as compression, stretching, 

and shearing force, towards which the 

oral mucosa developed a high withstand.   

As above mentioned, the oral 

mucosa can be distinguished in three 

different types of stratified squamous 

epithelia underlined by a connective 

tissue named lamina propria, accordingly to their structures and function. The lining mucosa is the most broaden type 

of the oral mucosa and covers the lips, the cheeks, the soft palate, and the floor of the mouth. On the contrary, the 

specialized mucosa which coats the tongue and the masticatory mucosa that include the hard palate and the gingiva 

covers less than the 40% or the total area (fig. I-5).   

The oral mucosa and the skin shared several features. However, albeit they are composed of the same type of 

cells, mainly keratinocytes and fibroblast, skin and mucosal membranes are considerably different between each other. 

The first and microscopical difference notable is the colour. Indeed, the coloration depends on several factors, such as 

the thickness of the epithelium, the degree of keratinization, the dilatation of underlining capillary, and the quantity of 

melanin pigment. Moreover, accordingly to the anatomic position, also the structure present in the connective tissue 

diverges. The connective tissue of the skin, named dermis, contains numerous hair follicles and sweat and sebaceous 

glands, while the lamina propria contains mainly salivary glands that release the salivary trough the duct and within the 

oral cavity. Within the membranes, the differences depend primarily on their firmness; the masticatory mucosa is a 

fixed and immobile structure while the lining mucosa is softer and bendable. This difference has an essential application 

in clinical applications; indeed, injections are easy in loose structures such as the one of lining mucosa, so it is preferable 

to choose the last one for injecting drugs such as local anaesthetic. This characteristic makes the lining mucosa less 

Figure I-5 Anatomic location of masticatory mucosa (deep gray), lining mucosa 

(white), and specialized mucosa (light gray). (Squier and Brogden, Human Oral 

Mucosa: Development, structure and function, 2011) 



 

22 

sensible to the inflammation process since the inflammatory fluid can be easily resorbed while in the masticatory 

mucosa, the provoke pain and swallowing. However, the firm masticatory mucosa is most suitable for biopsy since the 

lining mucosa requires suturing when surgically incise while masticatory mucosa may not. 

Finally, differently by other body structures, oral mucosa misses the musculature structure that bounded the 

mucosa by underlying tissue.  To separate the mucosa lining cheek, lips and a part of the hard palate from the underlying 

bone or muscle there is a loose stromal tissue full of glands and fat named submucosa while the oral mucosa covering 

the gingiva and the more significant part of the hard palate are directly attached to the bone. This latter arrangement 

is called mucoperiosteum and provide a stable and rigid attachment (fig. I-6). 

 

Figure I-6 Arrangement of the leading tissue components of the oral mucosa. (Squier and Brogden, Human Oral Mucosa: 

Development, structure and function, 2011) 

 

1.2.2.1. Oral epithelium 

Oral epithelium is a covering and lining epithelium composed of different squamous pluristratified epithelia 

consisting of cells tightly attached to each other and to the basement membrane which are well organized in distinct 

layers. Each layer, or stratum, is easily recognized in cross-sectional histological analysis and have a specific role.  The 

main histological difference between the epithelia is the keratinization degree.  

Epithelia are classified in keratinized and non-keratinized epithelium; the first is characteristic of the 

masticatory and the second of the lining mucosa (fig. I-7). The features and differences between oral epithelia are 

described in Chapter 3.  
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Figure I-7 Histological features of the leading oral epithelial type. (Squier and Brogden, Human Oral Mucosa: Development, structure 

and function, 2011) 

1.2.2.2. Basement membrane 

The basement membrane is a thin and fibrous layer that connects the epithelial tissue with the underlying 

connective tissue. It is mainly composed of ECM protein, in direct contact with the epithelial tissue are more prominent 

the laminin, the type IV collagen and the type XVII collagen (present within the hemidesmosome) while in contact with 

the connective tissue are mainly present type VII collagen, anchoring fibrils and microfibrils (Kamaguchi et al., 2019). 

The upper layer is a thin electron-dense membrane in which thick collagen IV fibrils are strongly interconnected and 

supported by the heparan sulphate-rich proteoglycan perlecan, laminin, integrins, entactin, and dystroglycan. On the 

contrary, the lower part, which strongly binds the stromal tissue, is rich in substrate adhesion molecules (SAMs). Those 

protein have also been evaluated as a coating for 2D or 3D cultures. For instance, perlecan is necessary for epithelial 

formation since it not only supports the collagen structures but also regulates survival and terminal differentiation of 

3D keratinocytes (Sher et al., 2006). Laminin, and in particular the sub-unit α-5, is involved in epithelial-mesenchymal 

signaling and hallow keratinocytes adhesion similarly as a feeder layer (Wegner et al., 2016; Tjin et al., 2018). 

Glycosaminoglycans improve fibroblast shaping in 3D and increase the number of seeded fibroblasts in S or G2 phases; 

in this way, an enhanced re-epithelialization process was guaranteed (Belvedere et al., 2018). 

The basement membrane is also necessary for several other processes such as the angiogenesis, since 

basement membrane proteins stimuli endothelial differentiation, or barrier function towards malignant cells invasion. 

 

 

 

https://en.wikipedia.org/wiki/Fiber
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1.2.2.3. Lamina Propria 

The connective tissue which underly the oral epithelia is named "lamina propria" and it is characterized by a huge 

heterogenicity in terms of cell types, fibres density, and organization. Generally, it is histologically divided into two 

principal types: the superficial papillary layer (which interval the epithelial ridges) and the deeper reticular layer 

(characterized by a "net-like" collagen-based structures). The two layers are characterized by an abundant and dense 

type I collagen fibres that in the papillary layer are thin and loosely arranged while in the reticular layer has collagen 

fibres arranged in thick bundles that tend to lie parallel to the surface plane. 

The lamina propria can be in direct contact with bone, the mucoperiosteal structures (attached gingiva and hard 

palate) or a looser connective structure of the reticular layer characterized by the presence of type III collagen and 

others elastic fibres. The lamina propria is also rich in cell types (macrophages, plasma cells, mast cells, and lymphocytes, 

endothelial cells, and mesenchymal stem cells), blood vessels, and neural elements.  

The lamina propria is made of three-dimensional fibres network (mainly collagen, elastin, and fibronectin) and a 

ground substance composed of water, glycoproteins, and proteoglycans and serum-derived proteins (Mohd at al., 

2017). 

Currently, at least 28 different collagen subtypes, composed of 46 distinct polypeptide chains have been identified 

(Shoulders and Raines, 2009). Collagen is typically organized as three parallel α-polypeptide strands coiled in a helical 

conformation around each other; each triple helix auto-assemble in a complex structure that can be easily observed 

under the macroscopic. The helix conformation leads the classification of different collagen subtypes; for instance, 

collagen type I, II, III, and V can be identified with an electron microscope by a characteristic helix arrangement that 

arises by fibrils with a banding pattern of 64 nm under SEM analysis 

The elastic fibres are composed of elastin, which guarantees the elasticity and the support of mature fibres, and 

microfibrils, which is composed of fibrillin, a glycoprotein, microfibril associated glycoproteins (MAGPs), fibulins and 

elastin microfibril Interface Located Protein (EMILIN) (Wagenseil and Mecham, 2007). The elastic fibres can be stained 

by aldehyde fuchsin, orcein, or Weigert's elastic stain and are abundant in the lining mucosa, which needs more 

flexibility. 

The ground substance consists of two heterogeneous protein/ carbohydrate complexes groups: proteoglycans (the 

polypeptide core with attached glycosaminoglycans chains) and glycoproteins (branched polypeptide chains to which 

only a few simple hexoses are attached).  

The nerve supplying oral mucous membrane is predominantly sensory and arises mainly from the second and third 

divisions of the trigeminal nerve; afferent fibres of the facial (VII), glossopharyngeal (IX), and vagus (X) nerves are also 

involved. The myelin sheaths are lost in the reticular layer, where the bare fibres form network terminating in a 

subepithelial plexus between the epithelial ridges (Basbaum et al., 2009).  

Finally, lymphatic and blood vessels are in the lamina propria while ducts, arising from different glands, are located 

in the deeper submucosa. 
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The main cell type found in lamina propria is fibroblast. Fibroblasts play an essential role in several processes, including 

epithelial morphogenesis (keratinocytes adhesion or integrin expression for the cellular junction formation). Moreover, 

they can be easily isolated and maintain their ECM secretion capability when cultivated in 3D, and they are essential for 

keratinocytes proliferation in vivo (see chapter 2).  

1.2.3. Periodontium 

The periodontium is the specialized multi-tissues structures composed by gingiva, periodontal ligament (PDL), 

cementum, and alveolar bone. The main role of the periodontium is protecting the bordered teeth (fig. I-8). The 

periodontal ligament, formed by 

specialized fibroblasts, provides a firm 

but flexible connection for the teeth, 

necessary to give the proper 

withstand towards the mechanical 

stress. The alveolar bone, the 

thickened ridge of bone that contains 

the tooth sockets,  forms the alveolar 

arch and confers stiffness. Like other 

bones, alveolar bone regularly 

undergoes a remodelling process 

regulated by mechanical stimulation. 

In particular, the tooth pocket is highly 

subject to this physiologic 

phenomenon. The bone-forming cells, osteoblast and osteocytes, act on the areas of tension while the bone resorption 

cells, the osteoclast, line the areas of compression. This process guarantees the "high-quality" of the bone and, 

consequently, the adequate support to teeth. Periodontium development seems to be regulated mainly by the negative 

regulation of Sfrp3/Frzb derived from the Wnt pathway (de Jong et al., 2017).  

Recently, human mesenchymal stem cells (hMSCs) have been found in the periodontium, especially close to 

the periodontal ligaments and in the gingiva and in dental pulp. That specific dental pulp hMSC (DPMSCs) subpopulation 

showed an enhanced differentiation potential when compared with bone-marrow-derived hMSC since they can 

reproduce the entire periodontium but also easily trans-differentiate in neuron-like cells.  In the last decades, the 

secretome of MSCs, isolated from different sources, has acquired interest by researchers involved in tissue regeneration 

since it has shown impressive potential both in vivo and in vitro studies.  

MSCs secrete several types of soluble factors, such as cytokines, chemokines, or growth factors, which mediate 

diverse functions and regulates the crosstalk between different cell types.  

MSCs are well-known to act a pivotal role in tissue regeneration both locally, with the differentiation in specific 

cell type to cover defects, and distantly, by secreting several paracrine and trophic molecules which can act directly on 

the injured cells or indirectly, by inducing other cell type to produce other soluble factor increasing exponentially the 

Figure I-8 Histology and morphology of the periodontium. https://pocketdentistry.com/1-

a-whistle-stop-tour-of-the-periodontium/ 

https://en.wikipedia.org/wiki/Bone
https://en.wikipedia.org/wiki/Frzb
https://pocketdentistry.com/1-a-whistle-stop-tour-of-the-periodontium/
https://pocketdentistry.com/1-a-whistle-stop-tour-of-the-periodontium/
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signalling potential. For instance, after injuries, MSCs are reduce the cellular damage by inhibiting the fibrotic tissue 

formation, promoting angiogenesis to increase the nutrients available to the damaged site, modulating the immune 

response, and recruiting progenitors and other stem cells to the injured site to start the tissue renewal. The principal 

involved factors in tissue regeneration are summarized in figure I-9.   

MSC features are better described in chapter 2 

 

Figure I-9. Role of various paracrine factors released by mesenchymal stem cells. Maumus et al. Biocheme 2013 
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1.3. Oral mucosa model 

1.3.1. Monolayered Keratinocytes cultures 

The first successful monolayer culture of keratinocytes was performed in 1975 by Rheinwald and Green; to 

improve the viability and proliferation of keratinocytes in vitro they coated the plastic support with a feeder layer 

composed of irradiated 3T3 mouse fibroblasts. Keratinocytes were then cultivated in a home-made enriched culture 

medium named Green’s medium.  

This method has been lately development to obtain a single-layer epithelial sheet; however, the derived models 

were often described as challenging to handle due to their fragility. Thus, these monolayer cultures have been improved 

and used for decades to study the basic biology of oral keratinocytes. For example, several studies showed that oral and 

skin keratinocytes have different behaviour in terms of differentiation, mitotic ratio, gene expression, and stimuli 

response. However, those monolayer cultures miss the typical structures and gene expression change to whom 

keratinocytes undergo in vivo during the terminal differentiation process. Thus, the development of a three-dimensional 

multilayer culture system was a vital innovation in epithelial biology studies, and this innovation will be fully analysed 

in chapter 3.2. 

Nowadays, oral and skin keratinocytes are cultivated in 2D using polarized plastic support coated with collagen 

and serum and calcium-free media (such as the KGM from Gibco or EpiLife from Thermofisher). Thus, several 2D-based 

co-culture systems, mainly based on transwell systems, have been used to evaluate keratinocyte interaction with other 

cell types. As previously described, epithelial cells growth on the top of a stromal tissue mainly repopulated by fibroblast 

and, although in lower numbers, by mesenchymal stem cells. Due to hMSCs potential in tissue regeneration, several 

authors tried to establish the relation which intercourse between SCs and keratinocytes. For instance, Sivamani et all. 

(2015) showed that keratinocytes induce the epithelial trans-differentiation of hMSCs in direct co-culture and 

myofibroblast differentiation of hMSCs when they are co-cultivated with a transwell model.  

Keratinocytes behaviour is severely affected by the growth condition. Alike for other cell types, keratinocytes gene 

expression, behaviour, proliferation potential, and morphology are deeply related to the three-dimensional 

stratification. However, differently by other cells, in the 3D histological structure are represented all differentiative 

stages of keratinocytes. For instance, in the basal layer keratinocytes are characterized by stem capability, which results 

lost in the spinosum layer. This peculiarity is crucial in the toxicological and pharmaceutical test since the same 

molecules can have different effects on the fourth layer, which characterizes the epithelium.  Despite this intrinsic ability 

of keratinocytes to differentiate during the stratification, the particularities of each stratum are under the regulation of 

the closest mesenchyme in both healthy and damaged condition.  

3D cell culture endowments the possibility to grow simultaneously different cellular populations in their proper 

microenvironment; thus, the resulting co-cultures can accurately mimic the cellular functions and the effect of crosstalk 

in terms of paracrine and autocrine regulation, and cell-cell interaction can be effectively studied. On the contrary, when 

cells are grown in 2D-based co-cultures, several phenomena cannot be appropriately evaluated. During the years, this 

statement resulted true in particular for mesenchyme-epithelial interaction. 
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1.3.2.  Histotypic oral epithelial models  

In the last three decades, several advances in tissue engineering have provided an alternative approach to in 

vivo studies. Indeed, several three-dimensional models of oral epithelia (keratinocytes alone) or oral mucosa 

(keratinocytes growth on a fibroblast repopulated scaffold) were established as in vitro model aimed to study the 

developmental or wound healing processes and to evaluate the muco-toxicity and the biocompatibility of new 

biomaterials and drugs to be used for clinical application  Scaffolds and ECM substitutes for connective tissue 

engineering, and optimization of technique for keratinocytes cultivations are technological key points for three-

dimensional model developing.  

 

1.3.2.1. Bilayer cultures 

Rosdy et al. (1990), in the first nineties, started to cultivate the keratinocytes from a different source on a 

permeable cell culture membranes support at the air/liquid interface. This cultivation method allows keratinocytes to 

arrange multilayer epithelia with different cytokeratin expression accordingly to the layer and the presence of keratin 

for the keratinized mucosa.  

 

1.3.2.2. Commercial models 

Some companies, such as SkinEthic Laboratories (Nice, France) MatTek Corp. (Ashland, MA, USA), developed 

their own 3D models. The SkinEthic Laboratories model consists of a polycarbonate cell culture inserts on which human 

TR146 keratinocyte cells or gingival-derived cells are growth at air/liquid interface. However, TR146 are cancer cells 

derived by a squamous cell carcinoma and miss the capability to differentiate and form the keratin layer.   

MatTek Corp developed two specific tools, called EpiOralTM and EpiGingivalTM, respectively mimicking the lining 

non-keratinized epithelium and the gingival keratinized epithelium arising, respectively, by buccal and gingival 

keratinocytes. Both models express the CK13 and produce cytokines, growth factors, and antimicrobial peptide as IL-

10, VEGF, and the β-defensins and are made by primary single-donor cells. Both companies also provide models 

modification such as co-culture with fibroblast or pathological models. However, the media provided are under patent, 

and models cannot be furtherly developed. Indeed, as shown in table I-3, those models are mainly used for 

cytocompatibility and genotoxicity tests.  

http://www.episkin.com/HGE-Gingival-Epithelium
https://www.mattek.com/products/epioral-epigingival/
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Table I-3 In this table are summarised the principal application of commercially available oral mucosa 

MODEL COMPANY APPLICATION AUTHOR JOURNAL DATE 
EPIGINGIVAL MatTek Cytomegalovirus 

infection 

Hai et al Virology 

Journal 

2006 

EPIORAL, 

EPIGINGIVAL 

MatTek Toxicological tests Klausner et al Toxicol in 

vitro 

2007 

EPIORAL MatTek Irritancy tests Delves et al Toxicology 2008 

SKINETHIC RHO Episkin Microbial tests and 

genotoxicity 

Challacombe 

Stephen at al 

Microbiology 2008 

EPIORAL MatTek Mucoadhesive test Hu et al Ph.D. Thesis 2010 

SKINETHIC RHO Episkin Microbial tests and 

genotoxicity 

Challacombe at 

al 

Cell Host & 

Microbe 

2010 

EPIORAL MatTek Permeability study Koschier et al Food Chem 

Toxicol 

2011 

EPIGINGIVAL MatTek Oral care tests Yang et al International 

dental 

Journal 

2011 

SKINETHIC RHE, 

SKINETHIC RHO 

Episkin Oral care tests Alonso at al AAPS Pharm 

Sci Tech 

2011 

EPIORAL, 

EPIGINGIVAL 

MatTek DNA repair 

evaluation 

Mitchell et al Photochem 

Photobiol 

2012 

EPIGINGIVAL MatTek UV-radiation tests Agrawal et al Photochemist

ry and 

Photobiology 

2013 

EPIORAL MatTek Xerogels insulin 

delivery tests 

Boateng et al Protein pept 

Lett 

2014 

EPIORAL, 

EPIGINGIVAL 

MatTek Toxicology test Schalge et al Toxicol Mech 

Methods 

2014 

EPIORAL MatTek γ-irradiation study Lambros et al Evid Based 

Complement 

Alternat Med 

2015 

EPIORAL MatTek Mucoahesive test MucoLox PCCA 2015 

EPIORAL MatTek Tobacco tests Zanetti et al Chem Res 

Toxicol 

2016 

EPIGINGIVAL MatTek Tobacco tests Sundar et al Virology 

Journal 

2016 

EPIORAL, 

EPIGINGIVAL 

MatTek Ag nanoparticles 

tests 

Pinďáková et al Int J Pharm. 2017 

EPIORAL MatTek Mucoahesive test Song at al AAPS Pharm 

Sci Tech 

2017 

 

1.3.2.3.  Organotypic oral mucosa model 

The models named “full thickness engineered oral mucosa” are characterized by a lamina propria substitute 

and an overlying stratified epithelium. The lamina propria is represented by a biocompatible scaffold fully repopulated 

with viable and matrix-secreting oral fibroblasts. This structure has a supporting role in keratinocyte differentiation and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219813/
https://www.ncbi.nlm.nih.gov/pubmed/27404394
https://www.ncbi.nlm.nih.gov/pubmed/27645471
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219813/
https://www.ncbi.nlm.nih.gov/pubmed/27645471
https://www.ncbi.nlm.nih.gov/pubmed/27645471
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219813/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219813/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326035/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326035/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326035/
https://www.ncbi.nlm.nih.gov/pubmed/27645471
https://www.ncbi.nlm.nih.gov/pubmed/27404394
https://www.ncbi.nlm.nih.gov/pubmed/27404394
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219813/
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pin%C4%8F%C3%A1kov%C3%A1%20L%5BAuthor%5D&cauthor=true&cauthor_uid=28506800
https://www.ncbi.nlm.nih.gov/pubmed/28506800
https://www.ncbi.nlm.nih.gov/pubmed/27645471
https://www.ncbi.nlm.nih.gov/pubmed/27645471
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proper behaviour. The appropriate scaffold has, ideally, a withstand but porous structure developed to enable fibroblast 

infiltration while counteracting the shrinkage that begin with fibroblasts growth. The stratified squamous epithelium, 

fixed on the lamina propria by a self-produced basement membrane, is represented by densely packed keratinocytes 

with stemness potential. They undergo to differentiation as they migrate to the surface. The positioning to the air/liquid 

interface of proliferating oral keratinocytes usually induces this phenomenon in a chemically defined medium. The 

scaffold, the cell source, and culture medium composition could be modified and improved to optimize the full-thickness 

oral mucosa accordingly to the research purpose.   

 

1.3.2.4.  Scaffolds 

As mentioned above, the lamina propria scaffolds play a crucial role in obtaining adequate oral mucosa. The 

proper scaffold should have satisfactory biocompatibility, porosity, biostability, and mechanical properties to support 

both fibroblast and keratinocytes growth. The scaffold developed during the years are numerous and can be divided 

into the sequent categories:  naturally-derived scaffolds, collagen-based scaffolds, gelatin-based scaffolds, fibrin-based 

materials, synthetic scaffolds, and composite scaffolds.  

1.3.2.4.1. Naturally Derived Scaffolds 

In the late nineties, Izumi et al. used a commercially available De-epidermalized dermis (DED; AlloDermTM) as 

lamina propria substitute. The AlloDermTM was chosen since is non-immunogenic but maintain the basal lamina which 

helps keratinocytes adhesion; on the other side, it presents that have a polarity by which one side has a basal lamina 

suitable for epithelial cells, and the other hand, it has intact vessel channels which allow for fibroblast infiltration. DED 

can be prepared by removing the cellular components from the dermis using different chemical procedures and can be 

preserved in glycerol for extended storage. The main advantages of using DED as lamina propria substitute are related 

to size stability and the low immunogenicity. Both commercial and home-made prepared DED have been used for years 

to produce oral mucosa since they induce a proper differentiation in epithelial progenitor cells. However, the fibroblasts 

were unable to migrate toward keratinocytes. Thus, this method has been abandoned because it missed the cellular 

interaction needed for an appropriate mimic the oral mucosa. De-epithelialized bovine tongue mucosa has been used 

in the same way. 

During the years, several companies have developed their own dermis substitute for skin models that can be 

adapted to mimic oral mucosa: DermagraftTM, developed by Advanced Tissue Sciences Inc. (Coronado, CA, USA), 

ApligrafTM (Graft skin), developed by Organogenesis, Inc. (Canton, MA, USA), which is based on a  fibroblast-repopulated 

bovine collagen gel and the OrcelTM (Ortec International Inc., New York, NY, USA), PolyactiveTM (HC Implants, Leiden, 

The Netherlands), and Hyalograft 3DTM (Fidia Advanced Biopolymers, Padua, Italy).  

 

 

 

http://hcp.alloderm.com/
http://www.dermagraft.com/home/
http://www.apligraf.com/
https://www.accessdata.fda.gov/cdrh_docs/pdf/p010016b.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjPksvv9Z3gAhVKzqQKHcWrDfoQFjAAegQIABAC&url=http%3A%2F%2Fwww.afinitica.com%2Farnews%2Fsites%2Fdefault%2Ffiles%2Ftechdocs%2FPolyActive_Nov20061%255B1%255D.pdf&usg=AOvVaw2nFUmjGsBDJBRbLW2jbttv
https://www.fidiapharma.com/it/
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1.3.2.4.2. Collagen-based Scaffolds 

The first collagen-based scaffold repopulated by fibroblast was developed by Masuda et al. about 20 years ago. 

The collagen used was isolated by bovine skin and, ones repopulated with oral fibroblast were allowed contract for one 

week before being used for culturing keratinocytes. On this base, keratinocytes were able to stratify and to reproduce 

a tissue histologically resembling the native tissues, but with an extreme presence of invasive epithelial cell within the 

connective counterpart. To avoid this, Moriyama et al. added a honeycomb structured collagen sponge to improve 

elasticity and withstand of the lamina propria substitute and prevent the epithelial invasion. 

Notwithstanding the improvement in the epithelial part, fibroblasts were poorly active in their connective 

tissue substitute, and they were not able to produce de novo extracellular matrix (ECM).  This resulted in a poorly 

formatted basement membrane, with the total absence of type IV collagen expression and few hemidesmosome-like 

structures recognizable. In 2002, Rouabhia et al. reproduced a model similar to the Masuda’s one, and they showed 

that stratified keratinocytes were able to express CK14, 19, and 10, proliferation marker Ki-67, integrins (β1 and α2β1) 

and to secrete laminins in the basement membrane. Moreover, the same Authors detected the interleukins IL-1β, IL-8, 

TNF-α, and different metalloproteinases, including the gelatinase released into the medium.   

During the years, several improvements have proposed starting from this model, including collagen cross-link. 

However, has shown by Ma et al. these processes enhance calcification process in the lamina propria substitute. The 

collagen-based scaffold has also been improved with the addition of chitosan (a cellulose-like substance which improves 

the cross-linking efficacy of glutaraldehyde) or glycosaminoglycans (GAG, indispensable components of the ECM) such 

as chondroitin sulphate and hyaluronic acid to enhance the mechanical properties of the scaffold itself. Those 

developments improved the ECM secretion by embedded fibroblasts.  

1.3.2.4.3. Gelatin-based Scaffolds 

Gelatin is the denatured form of collagen, and it has been often used in tissue regeneration because it promotes 

fibroblast proliferation and the re-epithelialization while the immune system does not recognize it. As collagen-based 

scaffold, gelatin-based scaffolds have been improved with chitosan and hyaluronic acid which increase the stability and 

reduced the contraction rate during the experiments. Combination with glucan, an antimicrobial polysaccharide, is 

reported to promote wound healing and reduce the coagulation process.  

1.3.2.4.4. Synthetic and hybrid Scaffolds 

In 2004, El-Ghalbzouri successful developed a biodegradable segmented copolymer of poly (ethylene glycol 

terephthalate)-poly (butylene terephthalate) (PEGT/PBT). Due to its porous nature, the PEGT/PBT scaffold can be 

repopulated with the injection of fibroblasts embedded in fibrin or collagen to obtain better results, as made by Wang 

et al. in 2005.  
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1.3.3. Cell Source and culture medium 

Epithelial and stromal cells sources are important for epithelial model engineering. Usually, early passage 

fibroblasts, isolated by oral mucosal biopsy, are used to repopulate the stromal compartment. They can be maintained 

with high proliferation potential and ECM secretion capability for 10 to 15 passages. Regarding the epithelial 

compartment, keratinocytes can be isolated from different oral cavity sites to mimic the corresponding epithelium 

properly, but they are difficult to expand, and they must be used in the very early passages, between 1 and 2, to enable 

their adhesion and proper stratification. During the years, several immortalized keratinocytes lines have been proposed 

to overcome the low availability and the patient-related behaviour of keratinocytes. The most used model is the cancer 

cell line TR146; the differentiation of this latter transformed keratinocytes is incomplete since neoplastic cells cannot 

undergo through the terminal differentiation process. Similarly, both home-made and commercially available h-tert 

immortalized or spontaneously immortalized keratinocytes have been proposed. However, being immortalized, those 

cells type not always behave differ by primary cells and the resulted models are not suitable for assays such the 

tumorigenic assay.  

The most used medium for oral mucosa reconstruction is Dulbecco’s modified Eagle medium (DMEM)-Ham’s 

F-12 medium (3:1), supplemented with foetal calf serum (FCS), glutamine, epidermal growth factor (EGF), 

hydrocortisone, adenine, insulin, transferrin, tri-iodothyronine, fungizone, penicillin, and streptomycin. This media can 

be enriched with ascorbic acid, calcium chloride, and glycerol to modulate the keratin production. 

 

1.3.4. Applications and development of engineered oral mucosa 

Compared with organotypic skin cultures, full-thickness oral mucosa has not yet been commercialized for 

clinical applications. In the last decades, several researchers started to evaluate the capability of engineered oral mucosa 

to drive the tissue regeneration of other squamous based epithelial tissue such as the cornea or the urethra. Still, the 

use of this technique is forbidden in clinical practice. 

1.3.4.1. Oral mucosal toxicity evaluation 

Nowadays, the main application of full-thickness oral model is the evaluation of the biocompatibility and 

immune-tolerance of new biomaterial or compounds such as dentifrices (Mostefaoui et al.2002; Moharamzadeh et al., 

2008), implants (Chai et al., 2010; McGinley et al., 2013), mercury chloride (Khawaja et al. 2002) and surfactants (Hagi-

palvli et al., 2014).   This in vitro model is a reliable tool for mucotoxicity evaluation of dental biomaterials since they 

better reflect the clinical situation than monolayer cell culture.  Cytokines released and toxic metabolites generation 

may be easily and accurately quantified using oral mucosa equivalent. Moreover, the effects of the external stimuli on 

the outer layer cell morphology and behaviour can be exclusively assessed in 3D model considering that the outer layer 

is absent in the monolayer cultures. 
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1.3.4.2. Mucosa model implementation 

Recently, literature has reported the development of osteo-mucosa models mimicking the physiological 

appearance of the hard palate, gingiva, and alveolar mucosa to test biomaterials or compounds in contact with the soft-

hard tissue interface. In 2014, Bae et al. proposed a model composed of a mice calvaria bone, used as a bone substitute, 

and an engineered fully stratified oral mucosa growth on the top of the calvaria bone. From a histological point of view, 

the model mimics the physiologic appearance of the osteo/mucosa. However, during the model characterization, the 

interaction between the cellular components, and the role of paracrine signaling were not evaluated. In this work, the 

authors localized a fluorescently labelled bisphosphonate in their 3D models thanks to an acellularized collagen matrix 

used to connect the hard and the soft tissue. Another may disadvantage of this model is that the histomorphometry of 

the calvaria do not represent the one of the alveolar bone.   

In 2016 and 2018 Almela et al., developed other bone-mucosa models that are deeper analysed in chapter 4. 

1.3.4.3. Infected model development 

Full-thickness oral mucosa has been described for assessing host-microbial interaction. In 2004, Andrian et al. 

mimic a gingivitis model adding Porphyromonas gingivalis on an oral mucosa model evaluating the P. gingivalis invasion 

within the epithelial part and toward the lamina propria while Pinnock et al., compared the response induced by P. 

gingivalis in 2- and 3-dimensional condition. Among the infected models, the intracellular survival of P. gingivalis and 

the newly formed bacterial units released by cells were significantly increased in the oral mucosa model in comparison 

with monolayer cultures. This phenomenon was accounted to the multi-layered nature and exfoliation of epithelial cells 

in the organotypic models. Furthermore, since P. gingivalis have the capability to degrade host cytokines, the authors 

quantified the released cytokine in the culture media and found that CXCL8 and IL6 were present in higher 

concentrations in the 3D cultures. 

Similar works were performed by Dongari-Bagtzoglou and her group between 2010 and 2018; their works were 

mainly focused on evaluating the interaction between different streptococcus strains during co-infection with Candida 

albicans. They showed that C. albicans biofilms create hypoxic or anoxic micro-niches via mitochondrial oxygen 

consumption that allow obligate anaerobic bacteria growth also in the presence of oxygen.  

In the last 25 years, the oral mucosa models have been continuously improved to better resemble the native 

tissue by focusing on the epithelial arrangements and on lamina propria engineering. However, the native oral mucosa 

is not only composed of keratinocytes and fibroblast but many other components such as Langerhans cells, melanocytes 

endothelial, macrophages, monocytes, and resident MSC contribute to the complexity of native tissue. For this reason, 

recently, researchers have advanced the oral mucosal model by incorporating the: i) endothelial cells for promoting and 

evaluating the angiogenetic process, ii) immune cells to better assess the immune-tolerance and the host response to 

microbial infection and iii) dysplastic cells to elucidate oral disease pathologies. 

Optimization of the scaffold matrix, porosity and biodegradability and improvement of isolation and cultivation 

techniques of oral keratinocyte subtypes are the gaps to fill.  The latter remains one of the main drawbacks when the 
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oral mucosa models are used because of the huge number of cells needed for a single test. Nowadays, these models, in 

particular those with primary cells, shown a high batch-depended variability.  

 

1.4. Aims and Thesis structures 

Mesenchymal stem cells have a huge potential in regenerative medicine field since the capacity to differentiate into 

various cell types (such as osteoblast, chondrocytes, adipocytes, neuronal-like cells etc.). MSCs provide paracrine and 

autocrine effect by secreting cytokines, chemokines and growth factors. MSCs secretome has a huge potential in wound 

healing by increasing the migration and proliferation of several cell types, improving axonal outgrowth and 

myelinization, by physically support the vascularization, by suppressing inflammatory process and so forth. Moreover, 

several studies in which hMSCs were injected into murine model, have showed that the implanted cells migrate towards 

different tissue and acquire the resident cells’ phenotype. In the decades, MSC has been found in mostly all tissues, and 

even in oral cavity. 

As already described, the oral cavity is a complex body site characterized by several organ interactions. The 

mechanism regulating the epithelial differentiation is intricate and still poorly understood. The widely used in vivo 

models and the retrospective studies often failed to identify the actors involved in keratinocytes differentiation due to 

the presence of several cell types acting both in a synergic or antagonist way.     

However, to elucidate cell crosstalk mechanisms in their specific microenvironment it is crucial to improve the 

engineering of human-based three-dimensional model. 

As previously described, in dental implantology field, the use of animal models is particularly complicated. For 

instance, rodents can be implanted only with scaled-down scaffolds and, more often, in extra-oral site because of their 

size while other animal models are considered pre-clinical and rarely can be used as a screening model.  

To overcome those limitations, in the present thesis work, a three-dimensional mucoperiosteal model was 

developed. Indeed, despite the several oral mucosa models already existing, none includes the bone counterpart which 

is essential to evaluate the materials at the hard-soft tissue interface.  

Moreover, in this work, were developed three different set-ups to assess the effect of MSC and nervous system 

onto mucosal behaviour. They were at the end suitable for both developmental and implantology fields. 

 To obtain these models, different human primary cell types (keratinocytes, fibroblast, mesenchymal stem cells, 

and osteoblast) in both 2 and 3-dimensional conditions not only as a single compartment but also in co-culture. The 

main challenge was to establish suitable protocols to growth all cell types in the same experimental state without losing 

their specific properties. The results related to this part of the work are described in the second chapter and are divided 

in:   

• The evaluation of serum-added and serum-free media on monolayered cultures  

• The optimization of the bone scaffold mechanical properties 

• The establishment of a home-made keratinized oral mucosa 
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   In the third chapter, the effect of bone-marrow-derived MSC on the keratinized oral mucosa behaviour was 

studied. In particular, the following aspects were studied:  

• the paracrine effect of hMSC in “stem” condition or under osteogenic induction on keratinocytes 

differentiation 

• the secretome composition 

• the crosstalk between the oral keratinized mucosa and hMSC, in the presence or absence of osteoblastic 

differentiation factor, using both direct and indirect co-cultures condition.  

Finally, in the fourth chapter, are described:  

• the effect of oral mucosa and MSC-implemented oral mucosa on innervation 

• the development of an innovative human-based mucoperiosteal model.  

 

 

 

 

 



 

36 

II. Bibliography 

• Aaboe M, Pinholt EM, Hjørting-Hansen E. Unicortical critical size defect of rabbit tibia is larger than 8 mm. J Craniofac 

Surg. 5(3):201-3. (1994) 

• Adams D. Keratinization of the oral epithelium. Ann R Coll Surg Engl. 58(5):351-8. Review. (1976) 

• Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential 

implications for in vivo bone research. Endocrinology. 1 39 :663-670. (1998) 

• Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci. 16(3):5517-27. 

(2015) doi:10.3390/ijms16035517. 

• Artzi Z, Tal H, Moses O, Kozlovsky A. Mucosal considerations for osseointegrated implants J Prosthet Dent. 70(5):427-32. 

(1993) 

• Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 4(160):160rv12. (2012). doi: 

10.1126/scitranslmed.3004890. 

• Atsuta I, Ayukawa Y, Kondo R, Oshiro W, Matsuura Y, Furuhashi A, Tsukiyama Y, Koyano K. Soft tissue sealing around 

dental implants based on histological interpretation. J Prosthodont Res. 60(1):3-11. (2015) 

doi:10.1016/j.jpor.2015.07.001.  

• Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 16;139(2):267-84. (2009) 

doi: 10.1016/j.cell.2009.09.028. Review.  

• Belvedere R, Bizzarro V, Parente L, Petrella F, Petrella A. Effects of Prisma® Skin dermal regeneration device containing 

glycosaminoglycans on human keratinocytes and fibroblasts. Cell Adh Migr. 4;12(2):168-183. (2018) doi: 

10.1080/19336918.2017.1340137. 

• Beppu K, Kido H, Watazu A, Teraoka K, Matsuura M. Peri-implant bone density in senile osteoporosis-changes from 

implant placement to osseointegration. CIin. Implant. Dent. Relat. Res. 15(2):217-26. (2011). doi: 10.1111/j.1708-

8208.2011.00350. x. 

• Berkovitz BK, Barrett AW. Cytokeratin intermediate filaments in oral and odontogenic epithelia. Bull Group Int Rech Sci 

Stomatol Odontol. 40(1):4-23. (1998) 

• Blumenberg M, Connolly DM, Freedberg IM. Regulation of keratin gene expression: the role of the nuclear receptors for 

retinoic acid, thyroid hormone,and vitamin D3. J Invest Dermatol. 98(6 Suppl):42S-49S. (1992) 

• Blumenberg M, Savtchenko ES. Linkage of human keratin genes. Cytogenet Cell Genet.42(1-2):65-71. 1992;61(2):160. 

(1986) 

• Blumenberg M, Tomić-Canić M. Human epidermal keratinocyte: keratinization processes. EXS. 78:1-29. (1997). Review.   

• Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously 

immortalized aneuploid human keratinocyte cell line J Cell Biol. 106(3):761-71 (1988) 

• Bradbury P, Fabry B, O'Neill GM. Occupy tissue: the movement in cancer metastasis. Cell Adh Migr. 6(5):424-32. (2012) 

doi: 10.4161/cam.21559.  

• Calenic B, Greabu M, Caruntu C, Tanase C, Battino M. Oral keratinocyte stem/progenitor cells: specific markers, molecular 

signaling pathways and potential uses. Periodontol 2000. 69(1):68-82. (2015) doi: 10.1111/prd.12097. 

• Castaneda S, Largo R, Calvo E, Rodriguez-Salvanes F, Marcos ME, Diaz-Curiel M, Herrero-Beaumont G. Bone mineral 

measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 35: 34-41. (2006) 

• Ceccarelli S, Romano F, Angeloni A, Marchese C. Potential dual role of KGF/KGFR as a target option in novel therapeutic 

strategies for the treatment of cancers and mucosal damages. Expert Opin Ther Targets. 16(4):377-93. (2012) doi: 

10.1517/14728222.2012.671813.  

• Chavassieux, P, Pastoureau P, Boivin G, Chapuy MC, Delmas PD, Milhaud G, and Meunier PJ. Fluoride-induced bone 

changes in lambs during and after exposure to sodium fluoride. Osteoporosis Int. 2:26-33. 38. (1991) 

• Chen J, Li Y, Hao H, Li C, Du Y, Hu Y, Li J, Liang Z, Li C, Liu J, Chen L. Mesenchymal Stem Cell Conditioned Medium Promotes 

Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway. 

Cell Physiol Biochem. 37(5):1830-46. (2015) doi: 10.1159/000438545. 

• de Boo J and Hendriksen C. Reduction strategies in animal research: a review of scientific approaches at the intra-

experimental, supra-experimental and extra-experimental levels. ATLA 33, 369. (2005).  



 

37 

• de Jong T, Bakker AD, Everts V, Smit TH. The intricate anatomy of the periodontal ligament and its development: Lessons 

for periodontal regeneration. J Periodontal Res. 52(6):965-974. (2017) doi: 10.1111/jre.12477.  

• Del Angel-Mosqueda C, Gutiérrez-Puente Y, López-Lozano AP, Romero-Zavaleta RE, Mendiola-Jiménez A, Medina-De la 

Garza CE, Márquez-M M, De la Garza-Ramos MA. Epidermal growth factor enhances osteogenic differentiation of dental 

pulp stem cells in vitro. Head Face Med. 3; 11:29. (2015) doi: 10.1186/s13005-015-0086-5. 

• Deo PN, Deshmukh R. Pathophysiology of keratinization. J Oral Maxillofac Pathol. 2018 22(1):86-91. (2018) doi: 

10.4103/jomfp.JOMFP_195_16. 

• Desando G, Cavallo C, Tschon M, Giavaresi G, Martini L, Fini M, Giardino R, Facchini A, Grigolo B. Early-term effect of adult 

chondrocyte transplantation in an osteoarthritis animal model. Tissue Eng Part A.18(15-16):1617-27. (2012) doi: 

10.1089/ten.TEA.2011.0494. 

• Donati D, Di Bella C, Gozzi E, Lucarelli E, Beccheroni A, Di Maggio N, Fini M, Giavaresi G, Martini L, Aldini NN, Mercuri M, 

Giardino R. In vivo study on critical defects using the sheep model. Chir Organi Mov. 90(1):31-9. (2005) 

• Dongari-Bagtzoglou A. and Kashleva H. Development of a highly reproducible three-dimensional organotypic model of 

the oral mucosa. Nat Protoc 1: 20128 (2006) 

• Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. 

Physiology (Bethesda). 32(4):266-277. (2017) doi: 10.1152/physiol.00036.2016.  

• Dvorak G, Reich K, Tangl S, Goldhahn J, Haas R, Gruber R. Cortical porosity of the mandible in an osteoporotic sheep 

model. Clin. Oral Impl. Res. (2011) 

• Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug 

discovery and cell-based biosensors. Assay Drug Dev Technol. 12(4):207-18. (2914) doi: 10.1089/adt.2014.573. 

• El-Ghalbzouri A, Lamme EN, van Blitterswijk C, Koopman J, Ponec M. The use of PEGT/PBT as a dermal scaffold for skin 

tissue engineering. Biomaterials 25:2987-2996. (2004) 

• Eng J. Sample size estimation: how many individuals should be studied? Radiol. 227, 309-313. (2003) 

doi:10.1148/radiol.2272012051 

• Ennever G, Noonan T, and H. Rosenkranz H. The predictivity of animal bioassays and short-term genotoxicity tests for 

carcinogenicity and noncarcinogenicity to humans. Mutagenesis, 2(2):73–78, (1987) 

• Evans EW. Treating Scars on the Oral Mucosa. Facial Plast Surg Clin North Am. 25(1):89-97. (2017) doi: 

10.1016/j.fsc.2016.08.008.  

• Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential 

for epithelial protection and repair. Adv Cancer Res. 91:69-136. (2004) 

• Fini M, Giavaresi G, Giardino R, Lenger H, Bernauer J, Rimondini L, Torricelli P, Borsari V, Chiusoli L, Chiesa R, Cigada A. A 

new austenitic stainless steel with a negligible amount of nickel: an in vitro study in view of its clinical application in 

osteoporotic bone. J Biomed Mater Res B Appl Biomater.71(1):30-7. (2004) 

• Fini M, Giavaresi G, Rimondini L, Giardino R. Titanium alloy osseointegration in cancellous and cortical bone of 

ovariectomized animals: histomorphometric and bone hardness measurements. Int J Oral Maxillofac Implants. 17(1):28-

37. (2002) 

• Fini M, Torricelli P, Giavaresi G, Carpi A, Nicolini A, Giardino R. Effect of L-lysine and L-arginine on primary osteoblast 

cultures from normal and osteopenic rats. Biomed Pharmacother 55:213–220. (2001) 

• Fisher RL, Vickers AE. Preparation and culture of precision-cut organ slices from human and animal. Xenobiotica. 43(1):8-

14. (2013) doi:10.3109/00498254.2012.728013. 

• Freilich M, M Patel C, Wei M, Shafer D, Schleier P, Hortschansky P, Kompali R, Kuhn L. Growth of new bone guided by 

implants in a murine calvarial model. Bone. 43: 78 1-8. (2008) 

• Garnick JJ, Ringle RD. The dento-gingival junction as seen with light microscopy and scanning electron microscopy. 

Scanning Microsc. (1988) 

• Gartner LP. Oral anatomy and tissue types. Semin Dermatol. 13(2):68-73. Review. (1994) 

• Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys 

Acta. 1840(8):2506-19. (2014). doi: 10.1016/j.bbagen .2014.01.010. 

• Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment 

of bone regeneration strategies. Lab Anim 45: 14-24. (2010) 

• Gothard D, Smith EL, Kanczler JM, Rashidi H, Qutachi O, Henstock J, Rotherham M, El Haj A, Shakesheff KM, Oreffo RO. 

Tissue engineered bone using select growth factors: A comprehensive review of animal studies and clinical translation 

studies in man. Eur Cell Mater.28:166-207. (2014) 



 

38 

• Gugala, Z., and S. Gogolewski. Regeneration of segmental diaphyseal defects in sheep tibia using resorbable polymeric 

membranes: a preliminary study. J. Orthop. Trauma. 3:187-195. (1999) 

• Haga M, Fujii N, Nozawa-Inoue K, Nomura S, Oda K, Uoshima K, et al. Detailed process of bone remodeling after 

achievement of osseointegration in a rat implantation model. Anat. Rec. (Hoboken). 292:38-47. (2009) 

• Hagi-Pavli E, Williams DM, Rowland JL, Thornhill M, Cruchley AT. Characterizing the immunological effects of oral 

healthcare ingredients using an in vitro reconstructed human epithelial model. Food Chem Toxicol. 74:139-48. (2014) doi: 

10.1016/j.fct.2014.09.007.  

• Hall WB, Lundergan WP. Free gingival grafts. Current indications and techniques. Dent Clin North Am. 37(2):227-42. (1993) 

Review.  

• Hasegawa H, Ozawa S, Hashimoto K, Takeichi T, Ogawa T. Type 2 diabetes impairs implant osseointegration capacity in 

rats. Int. J. Oral Maxilloføc. Implants. 23: 231-246 (2008) 

• Hassan NT, AbdelAziz NA. Oral Mucosal Stem Cells, Human Immature Dental Pulp Stem Cells and Hair Follicle Bulge Stem 

Cells as Adult Stem Cells Able to Correct Limbal Stem Cell Deficiency. Curr Stem Cell Res Ther. 13(5):356-361. (2018) doi: 

10.2174/1574888X13666180223124936.  

• Herson MR, Mathor MB, Altran S, Capelozzi VL, Ferreira MC. In vitro construction of a potential skin substitute through 

direct human keratinocyte plating onto decellularized glycerol-preserved allodermis. Artif Organs 25:901-906 (2001) 

• Hildebrand HC, Hakkinen L, Wiebe CB, Larjava HS. Characterization of organotypic keratinocyte cultures on 

deepithelialized bovine tongue mucosa. Histol Histopathol 17:151-163. (2002). 

• Hou X, Weiler MA, Winger JN, Morris JR, Borke JL. Rat model for studying tissue changes induced by the mechanical 

environment surrounding loaded titanium implants. Int. J. O ral Maxillofac. Implant s. 24:800-807 (2009) 

• Hurst JL and West RS. Taming anxiety in laboratory mice. Nat. Methods 7, 825-826. (2010). doi:10.1038/nmeth.1500 

• Ikada Y. Challenges in tissue engineering; J R Soc Interface. 3(10): 589–601. (2006) doi: 10.1098/rsif.2006.0124. 

• Izumi K, Feinberg SE, Iida A, Yoshizawa M. Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary 

report. Int J Oral Maxillofac Surg 32: 188-97 (2003) 

• Izumi K, Takacs G, Terashi H, Feinberg SE. Ex vivo development of a composite human oral mucosal equivalent. J Oral 

Maxillofac Surg 57: 571-7; discussion 577-8 (1999) 

• Izumi K, Terashi H, Marcelo CL, Feinberg SE. Development and characterization of a tissue-engineered human oral mucosa 

equivalent produced in a serum-free culture system. J Dent Res. 79: 798-805. (2000) 

• Izumi K, Tobita T, Feinberg SE. Isolation of human oral keratinocyte progenitor/stem cells. J Dent Res.  86(4):341-6. (2007) 

• Kamaguchi M, Iwata H, Nishie W, Toyonaga E, Ujiie H, Natsuga K, Kitagawa Y, Shimizu H. The direct binding of collagen 

XVII and collagen IV is disrupted by pemphigoid autoantibodies. Lab Invest. 99(1):48-57. (2019) doi: 10.1038/s41374-018-

0113-9. 

• Khawaja RA, Qureshi R, Mansure AH, Yahya ME. Validation of Datascope Accutorr Plus™ using British Hypertension 

Society (BHS) and Association for the Advancement of Medical Instrumentation (AAMI) protocol guidelines. J Saudi Heart 

Assoc. 22(1):1-5. (2010) doi: 10.1016/j.jsha.2010.03.001.  

• Knight A. The Costs and Benefits of Animal Experiments. Basingstoke, Hampshire, UK: Palgrave Macmillan. (2011) 

• Langer R, Vacanti JP. Tissue engineering. Science. 260(5110):920-6. Review. (1993) 

• Lee DY, Ahn HT, Cho KH. A new skin equivalent model: dermal substrate that combines de-epidermized dermis with 

fibroblastpopulated collagen matrix. J Dermatol Sci 23:132-137. (2000) 

• Lee KH. Tissue-engineered human living skin substitutes: development and clinical application. Yonsei Med J 41:774-779. 

(2000). 

• Li M, Zhao Y, Hao H, Dai H, Han Q, Tong C, Liu J, Han W, Fu X. Mesenchymal stem cell-conditioned medium improves the 

proliferation and migration of keratinocytes in a diabetes-like microenvironment. Int J Low Extrem Wounds. 14(1):73-86. 

(2015) doi: 10.1177/1534734615569053. 

• Li Y, Chen SK, Li L, Qin L, Wang XL, and Lai YX. Bone defect animal models for testing efficacy of bone substitute 

biomaterials. Journal of Orthopaedic Translation. 3(3):95–104, (2015). 

• Liebschner MA. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials. 25: 

1697-1714. (2004) 

• Liu F. Huang J, Ning B, Liu Z, Chen S and Zhao W. Drug discovery via human-derived stem cell organoids. Front. Pharmacol. 

7, 334. (2016). doi:10.3389/fphar.2016.00334 

• Ma JL, Pan JL, Tan BS, Cui FZ. Determination of critical size defect of minipig mandible. J. Tissue Eng. Regen. Med. 3(8):615-

22. (2009). doi: 10.1002/term.203. 



 

39 

• Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, et al. Collagen/chitosan porous scaffolds with improved biostability for skin 

tissue engineering. Biomaterials. 24:4833-4841. (2003). 

• Martini L, Fini M, Giavaresi G, Giardino R. Sheep model in orthopedic research: a literature review. Comp Med.  51(4):292-

9. (2001) Review.  

• Masuda I. An in vitro oral mucosal model reconstructed from human normal gingival cells. Kokubyo Gakkai Zasshi. 

63(2):334-53. (1996). doi: 10.5357/koubyou.63.334 

• McClelland GH. Increasing statistical power without increasing sample size. Am. (2000).  

• McGonigle O, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem. Pharmacol. 

87(1):162-71. (2014). doi: 10.1016/j.bcp.2013.08.006. 

• Mishra DK, Sakamoto JH, Thrall MJ, Baird BN, Blackmon SH, Ferrari M, Kurie JM, Kim MP. Human lung cancer cells grown 

in an ex vivo 3D lung model produce matrix metalloproteinases not produced in 2D culture. PLoS One. 7(9):e45308. (2012) 

doi: 10.1371/journal.pone.0045308. 

• Mohd Nor NH, Berahim Z, Ahmad A, Kannan TP. Properties of Cell Sources in Tissue-Engineered Three-dimensional Oral 

Mucosa Model: A Review. Curr Stem Cell Res Ther. 12(1):52-60. (2017) Review. 

• Moriyama T, Asahina I, Ishii M, Oda M, Ishii Y, Enomoto S. Development of composite cultured oral mucosa utilizing 

collagen sponge matrix and contracted collagen gel: a preliminary study for clinical applications. Tissue Eng 7:415-427. 

(2001) 

• Mosekilde L, Kragstrup J, Richards A. Compressive strength, ash weight, and volume of vertebral trabecular bone in 

experimental fluorosis in pigs. Calcif. Tissue Int. 40:318-22. (1987) 

• Mosekilde L, Weisbrode S, Safron J, Stills H, Jankowsky M, Ebert D, et al.Calciumrestricted ovariectomized Sinclair S-1 

minipigs: an animal model of osteopenia and trabecular pl ate perforation. Bone. 4:37 9 -82. (1993) 

•  Mostefaoui Y, Claveau I, Ross G, Rouabhia M. Tissue structure, and IL-1beta, IL-8, and TNF-alpha secretions after contact 

by engineered human oral mucosa with dentifrices. J Clin Periodontol. 29(11):1035-41. (2002) 

• Müller T, Bain G, Wang X, Papkoff J. Regulation of epithelial cell migration and tumor formation by beta-catenin signaling. 

Exp Cell Res. 280(1):119-33. (2002) 

• Muthuswamy SK. Bringing together the organoid field: from early beginnings to the road ahead. Development 144, 963-

967. (2017) doi:10.1242/dev.144444 

• Neupane S, Adhikari N, Jung JK, An CH, Lee S, Jun JH, Kim JY, Lee Y, Sohn WJ, Kim JY. Regulation of mesenchymal signaling 

in palatal mucosa differentiation. Histochem Cell Biol. 2018 Feb;149(2):143-152. (2018) doi: 10.1007/s00418-017-1620-

2.  

• Neyt JG, Buckwalter JA, Carroll NC. Use of animal models in musculoskeletal research. Iowa Orthoph J. 18:118-23. (1998) 

• O’Loughlin PF, Morr S, Bogunovic L, Kim AD, Park B, Lane JM. Selection and development of preclinical models in fracture-

healing research. J Bone Joint Surg Am 90 Suppl 1: 79-84. (2008) 

• O'Farrell AC, Shnyder SD, Marston G, Coletta P L and Gill JH. Non-invasive molecular imaging for preclinical cancer 

therapeutic development. Br. J. Pharmacol. 169, 719-735. (2013) doi:10.1111/bph.12155 

• Okazaki M, Yoshimura K, Suzuki Y, Harii K. Effects of subepithelial fibroblasts on epithelial differentiation in human skin 

and oral mucosa: heterotypically recombined organotypic culture model. Plast Reconstr Surg. 112:784-792. (2003) 

• Olson JL, Atala A, Yoo JJ. Tissue Engineering: Current Strategies and Future Directions; Chonnam Med J. 47(1): 1–13. (2011) 

doi: 10.4068/cmj.2011.47.1.1.  

• Pastoureau P, Arlot ME, Caulin F, Barier JP, Meunier PJ, and Delmas PD.  Effects of oophorectomy on biochemical and 

histological indices of bone turnover in ewes. J. Bone Miner. Res. 4:S237. 39. (1989) 

• Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. 

Eur Cell Mater 13: 1-10. (2007) 

• Pedersen JA, Swartz MA. Mechanobiology in the third dimension. Ann Biomed Eng.;33(11):1469-90. (2005) Review.  

• Peehl DM, Rubin JS. Keratinocyte growth factor: an androgen-regulated mediator of stromal-epithelial interactions in the 

prostate. World J Urol. 13(5):312-7. (1995) 

• Rahal MD, Delorme D, Brånemark PI, Osmond DG. Myelointegration of titanium implants: B lymphopoiesis and 

hemopoietic cell proliferation in mouse bone marrow sed to titanium implants. Int. J. Oral Maxillofac. Implants. 15(2):175-

84. (2000) 

• Rakhorst HA, Tra WM, Posthumus-van Sluijs SJ, de Groot E, van Osch GJ, van Neck JW, Hofer SO. Mucosal keratinocyte 

isolation: a short comparative study on thermolysin and dispase. Int J Oral Maxillofac Surg.  35(10):935-40. (2006).  



 

40 

• Rasmusson L, Meredith N, Kahnberg KE, Sennerby L. Effects of barrier membranes on bone resorption and implant 

stability in onlay bone grafts. An experimental study. Cljn. OraI Implanls Res. 10(4):267-77. (1999) 

• Ravaglioli, A., A. Krajewski, G. C. Celotti, A. Piancastelli, B. Bacchini, L. Montanari, G. Zama, and L. Piombi. Mineral 

evolution of bone. Biomaterials. 17:617-622. (1996). 

• Rinaldi JC, Arana-Chavez VE. Ultrastructure of the interface between periodontal tissues and titanium mini-implants. 

Angle Orthod.  80(3):459-65. (2010). doi: 10.2319/032509-177.1. 

• Rosdy M, Clauss LC. Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on 

inert filter substrates at the air-liquid interface. J Invest Dermatol. 95(4):409-14. (1990) 

• Rouabhia M, Deslauriers N. Production and characterization of an in vitro engineered human oral mucosa. Biochem Cell 

Biol. 80:189-195. (2002) 

• Sadrameli M, Mupparapu M. Oral and Maxillofacial Anatomy. Radiol Clin North Am. 56(1):13-29. (2018) doi: 

10.1016/j.rcl.2017.08.002. 

• Saintigny G, Bonnard M, Damour O, Collombel C. Reconstruction of epidermis on a chitosan cross-linked collagen-GAG 

lattice: effect of fibroblasts. Acta Derm Venereol. 73:175-180 (1993) 

• Schroeder HE, Listgarten MA. The gingival tissues: the architecture of periodontal protection. Periodontol 2000. 13:91-

120. (1997) 

• Sculean A, Gruber R, Bosshardt DD. Soft tissue wound healing around teeth and dental implants. J Clin Periodontol. 41 

Suppl 15:S6-22. (2014) doi:10.1111/jcpe.12206.  

• Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med. 4: 2. (2009) doi: 

10.1186/1747-5341-4-2 

• Sharifikia D, Salem M, Yafia, Fradet G, Mohammadi H. Design and Fabrication of a 3D Scaffold for the Aortic Root Tissue 

Engineering Application. Journal of Medical and Biological Engineering, Volume 38, Issue 2, pp 211–221 (2017) 

• Sher I, Zisman-Rozen S, Eliahu L, Whitelock JM, Maas-Szabowski N, Yamada Y, Breitkreutz D, Fusenig NE, Arikawa-

Hirasawa E, Iozzo RV, Bergman R, Ron D. Targeting perlecan in human keratinocytes reveals novel roles for perlecan in 

epidermal formation. J Biol Chem. 281(8):5178-87 (2006) 

• Shetty S; Gokul S. Keratinization and its disorders. Oman Med J.27(5):348-57. (2012) doi: 10.5001/omj.2012.90. 

• Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 78:929-58. (2009) doi: 

10.1146/annurev.biochem.77.032207.120833. Review.  

• Singhal G, Jaehne EJ, Corrigan F and Baune BT. Cellular and molecular mechanisms of immunomodulation in the brain 

through environmental enrichment. Front. Cell. Neurosci. 8, 971. (2014) doi:10.3389/fncel.2014.00097 

• Sivamani RK, Schwartz MP, Anseth KS, Isseroff RR Keratinocyte proximity and contact can play a significant role in 

determining mesenchymal stem cell fate in human tissue. FASEB J. 25(1):122-31. (2011) doi: 10.1096/fj.09-148775 

• Sneddon LU, Elwood RW, Adamo S and Leach MC. Defining and assessing pain. Anim. Behav. 97, 201-212. (2014) 

doi:10.1016/j.anbehav.2014.09.007 

• Sneddon LU. Pain in aquatic animals. J. Exp. Biol. 218, 967-976. (2015) doi:10.1242/jeb.088823 

• Sonkoly E, Wei T, Pavez Loriè E, Suzuki H, Kato M, Törmä H, Ståhle M, Pivarcsi A. Protein kinase C-dependent upregulation 

of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol. 130(1):124-34. (2010) doi: 

10.1038/jid.2009.294.  

• Squier CA. Keratinization of the sulcular epithelium--a pointless pursuit? J Periodontol. 52(8):426-9. (1981) 

• Tamama K, Kawasaki H, Wells A. Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible 

enhancement of therapeutic potential of MSC. J Biomed Biotechnol.795385. (2010) doi: 10.1155/2010/795385  

• Tazawa H, Aliyama R, Moriya K. Development of cardiac rhythms in birds. Comp. Biochem. Physiol. 132(4):675-89. (2002). 

doi:10.1016/S1095-6433(02)00125-3 

• Tjin MS, Chua AWC, Moreno-Moral A, Chong LY, Tang PY, Harmston NP, Cai Z, Petretto E, Tan BK, Tryggvason K. 

Biologically relevant laminin as chemically defined and fully human platform for human epidermal keratinocyte culture. 

Nat Commun. 9(1):4432. (2018) doi: 10.1038/s41467-018-06934-3.  

• Torricelli P, Fini M, Giavaresi G, Rimondini L, Giardino R. Characterization of bone defect repair in young and aged rat 

femur induced by xenogenic demineralized bone matrix. J Periodontol. 73(9):1003-9. (2002) 

• Torricelli P, Fini M, Rocca M, Giavaresi G, Giardino R. In vitro pathological model of osteopenia to test orthopedic 

biomaterials. Artif Cells, Blood Subs, Immob Biotech. 28:181–192. 18. (2000) 

•  Turner AS, and Villanueva AR. Histomorphometry of the iliac crest in 9-10 year old ewes. Proc. Vet. Surg. 22:413. (1993) 



 

41 

• Vanderburgh J, Sterling JA, Guelcher SA. 3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease 

Progression and Drug Screening. Ann Biomed Eng. 45(1):164-179. (2017) doi: 10.1007/s10439-016-1640-4.  

• Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA. Design, materials, and mechanobiology of biodegradable scaffolds 

for bone tissue engineering. Biomed Res Int. 729076.(2015)  doi: 10.1155/2015/729076. 

• Vidigal GM Jr, Groisman M, Gregório LH, Soares Gde A. Osseointegration of titanium alloy and HA-coated implants in 

healthy and ovariectomized animals: a histomorphometry study. Clin. Oral Implants. 20(11):1272-7. (2009). doi: 

10.1111/j.1600-0501.2009.01739.x. 

• Wagenseil JE, Mecham RP. New insights into elastic fiber assembly. Birth Defects Res C Embryo Today. 81(4):229-40. 

(2007) doi: 10.1002/bdrc.20111.  

• Wang H, Pieper J, Peters F, van Blitterswijk CA, Lamme EN. Synthetic scaffold morphology controls human dermal 

connective tissue formation. J Biomed Mater Res A. 74:523-532. (2005) 

• Wegner J, Loser K, Apsite G, Nischt R, Eckes B, Krieg T, Werner S, Sorokin L. Laminin α5 in the keratinocyte basement 

membrane is required for epidermal-dermal intercommunication. Matrix Biol. 56:24-41. (2016) doi: 

10.1016/j.matbio.2016.05.001. 

• Westerhof W, Dingemans KP. The morphological details of globular keratohyalin granules. J Cutan Pathol. 13(5):375-82. 

(1986) 

• Westerhof W, Dingemans KP. The morphology of keratohyalin granules in orthokeratotic and parakeratotic skin and oral 

mucosa. Int J Dermatol. 26(5):308-13. (1987) 

• You HL, Eng HL, Hsu SF, Chen CM, Ye TC, Liao WT, Huang MY, Baer R, Cheng JT. A PKC-Sp1 signaling pathway induces early 

differentiation of human keratinocytes through upregulation of TSG101. Cell Signal. 19(6):1201-11. (2007) 

• Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for Bone Regenerative Engineering. Adv Healthc Mater. 4(9): 1268–

1285. (2015) doi: 10.1002/adhm.201400760 

• Zhang L, Peng LP, Wu N, Li LP. Development of bone marrow mesenchymal stem cell culture in vitro. Chin Med J (Engl). 

125(9):1650-5. (2002) Review.  

 

 

 

 

 

 

 

  



 

42 

Chapter 2 

Models setting and optimizations 

III. Introduction 

Mucoperiosteum is a complex structure composed of three main compartments: epithelium, connective tissue, 

and bone. These components are strongly interconnected, and their interaction plays a fundamental role in the 

regenerative and homeostasis processes. In the dental implantology, most of the devices are designed to be integrated 

even with the mucoperiosteum complex. 

The final goal of this thesis project was to develop an interconnected mucoperiosteal model able to mimic all the 

fundamental interplay.  To pursue this aim, the most critical cell types composing the mucoperiosteum were considered: 

mesenchymal stem cells (MSC), MSC-derived osteoblast (OB), gingival fibroblast and oral keratinocytes. 

3.1.  Human mesenchymal stem cells (hMSC) and the osteogenic differentiation 

Human mesenchymal stem cells (hMSC) are defined as non-hematopoietic multipotent stem cells with the 

capability to differentiate toward all the mesenchyme cell lineage: osteoblasts, chondrocytes, adipocytes, fibroblast and 

smooth, cardiac and skeletal myofibroblast. MSCs are mainly found in the stromal tissues such as the bone marrow (the 

first sources of hMSC identified; Gartner et Kaplan, 1980), the fat tissue, the periosteum, the periodontium, the 

periosteum and the dental pulp (Klees et al., 2007) and in all tissue close to the perivascular niches (Hass et al., 2011). 

The different tissue-specific population present similar properties, such as the self-renewal, the regenerative potential, 

the immunomodulatory properties and some surface markers (necessary for a correct hMSC selection) such as the 

cluster of differentiation (CD) (CD29, CD44, CD73, CD90, CD105) and they lack the expression of CD14, CD34, CD45 and 

HLA (human leukocyte antigen)-DR (Hass et al., 2011) as summarized in table III-1.  

However, hMSC from difference source present a considerable variance in their trans-differentiation potential, 

for instance, oral-hMSC can be easily trans-differentiate in the endodermal lineage cells such as neurons in comparison 

with bone marrow-derived -hMSC (Fawzy El‐Sayed et al., 2018) while the latter can be easily trans-differentiate in 

cardiomyocyte in comparison with O-hMSC (Eisenberg et al., 2006).  

 

 

 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Fawzy+El-Sayed%2C+Karim+M
https://www.deepdyve.com/search?author=Eisenberg%2C+Carol+A.
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Table III- 1 Specific surface marker expression characteristic of mesenchymal stem cells isolated from adipose tissue, bone marrow, 

and oral cavity. 

 Adipose 

hMSC 

Bone-Marrow 

hMSC 

Oral 

hMSC 

 

Positive Marker 

CD9, CD13, CD29, CD44, 

CD54, CD73, CD90, CD105, 

CD106, CD146, CD166, HLA I, 

STRO-1 

CD13, CD29, CD44, CD73, 

CD90, CD105, CD166, STRO-

1 

CD13, CD29, CD44, CD73, 

CD90, CD105 

Negative Marker CD11b, CD14, CD19, CD31, 

CD34, CD45, CD79α, CD133, 

CD144, HLA-DR 

CD14, CD34, CD45 CD34, CD38, CD45, CD54 

References Schaffler et al., 2007 

Zulk et al., 2002 

Pittenger et al., 1999 

De Ugarte et al., 2003 

Ponnaiyan et al., 2014 

Mitrano et al., 2010 

From a microscopical point of view, hMSCs arising from different tissue cannot be morphological distinguished. 

Within hMSC populations, 3 different subpopulations can be recognized: small rapidly self-renewing cells (the most 

“stem” subtype), spindle-shaped cells (the most abundant subtype) and large, flattened cells (differentiated cells) 

(Haasters et al., 2009).  

MSCs have a paracrine and immuno-modulatory capability since they secrete several classes of soluble factors, 

such as cytokines, chemokines, or growth factors, which mediate diverse functions and regulates the crosstalk between 

different cell types. 

The immunomodulatory properties of hMSC have been a stimulating topic, even for clinicians. Recently, adult 

hMSCs produced by Prochymal (Osiris Therapeutics, Inc.) for the treatment of acute graft versus host disease (GVHD) in 

paediatric allogeneic transplant has been approved in Canada and New Zealand. Several studies have highlighted the 

effect of MSCs in the bone marrow microenvironment, where they act both as support for co-transplanted 

hematopoietic cells and donor stem cell engraftment (Newell et al., 2014). 

Locally, MSCs interact with all immune cell types by secreting both anti-inflammatory and pro inflammatory 

factors influencing the immune cells behaviour (Soleymaninejadian et al., 2012). Above all, MSCs secrete TGF-β and IL-

6 and to induct the T regulatory cells (Th17), the chemo-attractants IL-8, MCP-1, CCL8, and prostaglandins E2 and F1 

which induce the migration of monocyte and macrophages towards the inflamed site (Bettelli et al., 2006; Hoogduijn et 

al., 2010).  

In addition, MSC membranes express several co-stimulatory and co-inhibitory molecules, such as CD40 and 

programmed death-ligand 1 (PD-L1), via which MSC directly modulate immune cell activity and proliferation (Augello et 

al., 2005; Franco et al., 2014) as well cell adhesion molecules (ICAM-1 and VCAM-1), via which MSC recruit activated 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ponnaiyan%20D%5BAuthor%5D&cauthor=true&cauthor_uid=25202208
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immune cells to increase their exposure to anti-inflammatory signals (Ren et al., 2010). Those features might be 

particularly crucial in the implantology field, where the uncontrolled inflammation may lead to implant failure. 

hMSC are well-known to act a pivotal role in tissue regeneration both locally, with the differentiation in specific 

cell type to cover defects and at a distance, by secreting several paracrine and trophic molecules which act directly on 

the injured cells or indirectly, by inducing other cell type to produce soluble factor thus increasing exponentially the 

signaling potential. For instance, after injuries, MSCs reduce the cellular damage by inhibiting the fibrotic tissue 

formation, promoting angiogenesis to increase the nutrients available to the damaged site, modulating the immune 

response, and recruiting progenitors and other stem cells to the injured site to start the tissue renewal. The principal 

factors involved in tissue regeneration are summarized in figure I-9.  

MSCs, and in particular the foetal ones, possess a damage-site-homing capacity; several distinctive steps 

characterize this migration process. The homing starts with the expression of homing receptors (i.e., VLA-4) by 

circulating MSCs, which bind the corresponding co-receptors presented on endothelium (i.e., VCAM-1). Their interaction 

leads to the connection of circulating cells to the endothelium and induces a rolling effect on the cell surface and 

subsequent extravasation (Sohni et al., 2013; Eggenhofer et al., 2014). MSCs express a considerable number of this 

adhesion/homing molecules, including integrins and selectins, this is particularly interesting in the cell therapy field 

because MSC can be direct toward specific tissue by regulating this receptor (Marquez-Curtis et al., 2013). 

Another important factor involved in the homing process is fibronectin (FN), which binds to the ECM 

components such as collagen, fibrin, and heparan sulfate, playing a fundamental role within the processes of cell 

adhesion, growth, migration, differentiation, and wound healing (Valenick et al., 2005). FN binds VLA-4 by exposing the 

V-region to increase MSC adhesion to the ECM, improving and regulating the homing process. This process is regulated 

by several growth factors such as PDGF or IGF-1, which binds tyrosine kinase receptors; indeed, the hMSCs expressing 

the PDGF receptor (PDGFRβ) have a superior migratory capacity (Anderse et al., 2015). Various chemokines (CCR2, CCR3, 

CCR4, and CCL5) are also involved in the homing process (Honczarenko et al., 2006) with an enhanced effect in presence 

of TNF-α and IL-1β (which induce the chemotactic cytokine CXCL family); those suggesting that the inflammatory state, 

both local or systemic, influence the homing process (Sohni et al., 2013; Eggenhofer et al., 2014).  

Due to their stemness potential, hMSC easily adhere to different substrates. Indeed, hMSC are widely growth 

onto common plastic surfaces in basal media such as DMEM or DMEM/F12 enriched with 10% of hMSC certified FBS 

(which guarantee the stem potential for higher passage numbers [(Pal et al., 2009)]. Another suggestion for prolonged 

the stem features keeps their confluence between 50 and 80%, since the low confluence may induce an excessive 

proliferation rate with a faster differentiation and the high confluence induce the osteoblastic phenotype.  Finally, 

Haque et al. (2013) showed that a hypoxic environment (2-9 % O2) could considerably improve growth kinetics, genetic 

stability, and expression of chemokine receptors during the in vitro expansion of MSC. In particular, the hypoxia 

condition allows the maintenance of the homing molecules CXCR4 and CX3CR1 that are physiologically expressed at 

high levels in the bone marrow and ischemic tissues. 

Recently, the role of mechanical forces on MSC differentiation fate has been intensively studied. Indeed, it has 

been observed that the mechanical stimulation can control MSC differentiation. The cytoskeleton, already known to be 
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a key component in the mechanotransduction processes, has been recognized as a crucial component in MSC 

differentiation processes. Indeed, when MSC spread onto stiff materials and several focal adhesion structures are 

visible, the hMSCs are prone to differentiate towards osteoblast lineage (as happened for hard and porous structures) 

while the spherical morphology is associated with chondrogenic and adipogenic fate (Mathieu et al., 2012). Finally, MSC 

can be easily induced toward the osteoblastic fate using the differentiation factors. The most used differentiation 

cocktail includes of Dexamethasone, Ascorbic acid, and β-glycerol phosphate; however, the use of EGF, recombinant 

bone morphogenetic proteins (BMPs), Vitamin D and other proteins have been successfully employed (Augello et al. 

2010). 

3.1.1. Osteoblasts and Bone engineering 

Bone is a specialized hard connective tissue that supports and protects the inner organs and provides structural 

integrity (Brotto et al., 2014; Kang et al., 2016). During human life, bone undergoes numerous remodelling, which 

guarantees the high quality and stability of bone itself and acts as the calcium reservoir (Saraanan et al., 2018; 

Arumugam et al., 2018). The bone structure is mainly composed of collagen fibres (organic part), and calcium phosphate 

(apatite) crystals (the inorganic part) that are infiltrated within the collagen matrix and form the inorganic portion of 

the bone (Saraanan et al., 2018). Within each bone, two different structures are found: cortical bone (the compact and 

exterior part) and the trabecular (the internal, flexible and porous portion were calcium ions exchange and other 

metabolic activities of the bone take part) connected by thin vessels which guarantee the communication between the 

two components. The cortical bone consists of several osteons (metabolically active column composed of osteoblast 

and osteoclast, which surround the Haversian canal) and is covered by a periosteum (outer surface), and an endosteum 

(the inner surface covered by a thinner layer of osteoblast). The endosteum is the boundary between the cortical bone 

and the trabecular bone. The trabecular bone is composed of trabeculae that are aligned towards the mechanical load 

distribution that a bone experiences within long bones such as the femur. The bone is actively remodelled throughout 

life by bone cells to guarantee the optimal quality of the bone itself. This process is activated by the osteocytes, which 

act as mechanosensory and orchestrate the activities of the other bone cell. In particular, the action of osteoblast 

(known as bone-forming cells), osteoclast (known as bone resorption cells) that act in equilibrium with osteoblast 

(Laurin et al., 2011).   

Osteoblasts are polarized and cuboidal cells that show morphological characteristics of protein-synthesizing 

cells, such as the abundant rough endoplasmic reticulum (RER), a prominent Golgi apparatus, and several different 

secretory vesicles. In particular, osteoblasts secrete the osteoid (the unmineralized organic part that forms before bone 

maturation) (Marks et al., 1988; Demoulis et al., 1997; Capulli et al., 2014). 

As previously showed, hMSC under osteogenic factors stimulation express the following molecules: the bone 

morphogenetic proteins (BMPs), members of the Wingless (Wnt) pathways, Runt-related transcription factors 2, Distal-

less homeobox 5 (Dlx5) osterix (Osx) and Runx2; the latter upregulate osteoblast-related genes such as ColIA1 and ALP 

(characteristics of preosteoblast), BSP, BGLAP, and OCN (characteristic of mature osteoblast) (Grigoriadis et al., 1988; 

Nakashima et al., 2001; Fakhry et al., 2013).  Moreover, several authors reported that other factors such as fibroblast 

https://en.wikipedia.org/wiki/Periosteum
https://en.wikipedia.org/wiki/Endosteum
https://en.wikipedia.org/wiki/Femur
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growth factor (FGF), microRNAs, and connexin 43 play essential roles in osteoblast differentiation (Kapinas et al., 2010; 

Buo et al., 2014).   

The synthesis of bone matrix by osteoblasts occurs in two main steps: deposition of an organic matrix (by 

secretion of ECM proteins such as type I collagen, OCN, osteonectin, BSP II, osteopontin, decorin, and biglycan) and its 

mineralization. Also, the mineralization itself is divided into two steps; the first step is named the vesicular phase, in 

which osteoblast release negatively charged matrix vesicles which bind proteoglycans immobilizing calcium ions on the 

immature bone matrix. Then, calcium is released and, with the phosphate obtained by ALP activity on phosphate-based 

compounds, form the hydroxyapatite crystals. The second step is named the fibrillar phase and occurs when the 

supersaturation of calcium and phosphate ions inside the matrix vesicles leads to the rupture of these structures, and 

the hydroxyapatite crystals spread to the surrounding matrix (Glimcher et al., 1998; Boivin et al., 2002 and 2008).  

Currently, osteoblast is a valuable tool in several research fields in particular to investigate i) the biochemistry 

and physiology of bone formation, ii) the molecular and cellular basis of human bone disease, iii) the mechanisms by 

which bone resorption is coupled to bone formation, iv) the anabolic agents and in general the meatbolosm, v) the 

safety and efficacy of new biomaterials  (Dillon et al., 2012).  

In the last decades, several porous scaffolds for bone regeneration, design to be repopulated with MSC, have 

been developed.  

 A successful bone scaffold should promote cell adhesion, infiltration, and growth associated with suitable 

mechanical properties. To obtain this, the 3D-structures should possess well-interconnected pores that allow cell 

infiltration and nutrient exchange. Moreover, the degradation rate should follow the natural bone remodelling process, 

and the waste product must be non-toxic or non-immune-interactor compounds (Barradas et al., 2010; Gentile et al., 

2014; Prasadh et al., 2018) 

One of the most updated trends in bone tissue engineering involves the use of the 3D-printer to obtain highly 

reproducible geometry improving the MSC differentiation even in the absence of differentiation factors (Zhang et al., 

2019). Another strategy often employed is the use of sponge materials; the advantages of these materials, characterized 

by high resistance to the compression and easy handling, is the tuneable resorbability. The literature reports a huge 

variety of different materials ranging from collagen-based material that can be easily functionalized with pro-

regenerative moieties  (Kowalczewski et al., 2018) to piezoelectric material which provides the electric stimulation 

(Tandon et al., 2018).   

3.2. Human gingival fibroblast 

Fibroblasts are a mesenchymal cell type that drive several functions during development and regeneration 

processes. Morphologically, fibroblasts have the characteristics of all secretory cells, including numerous mitochondria, 

the extended RER, the prominent Golgi apparatus, and numerous vesicles. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kowalczewski%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=29896102
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Physiologically, fibroblasts are involved in the synthesis of extracellular matrix protein of the connective tissue (such 

as collagen and proteoglycans) and play important roles in wound healing. During wound healing, fibroblast proliferates 

faster to support the regeneration of the damaged site acting with several strategies: i) breaking down the fibrin clot 

formed during the damage allowing the new ECM and collagen structures formation, ii) becoming "contractile" by 

developing intracytoplasmic actin filaments to participate in wound contraction, iii) secreting growth factors and 

cytokines, such as TGF-β to induce keratinocytes migration. However, sometimes, due to the excess of collagen 

production during the wound healing process, fibroblasts may lead to chelodids scar formation (Bainbridge, 2013). 

Fibroblasts are one of the most available mammalian cell types (small biopsy are enough to obtain a large amount 

of fibroblast) and one of the most accessible types of cells to grow in culture (being mesenchyme-like cells they easily 

adhere on the plastic surface). Gingival fibroblasts are the major constituents of gingival tissue and express a wide 

variety of surface molecules, including CD9, CD26, CD55, CD59, CD63, CD71, CD86 CD95, CD99 and CD117 (Palaiologou 

et al., 2011). 

3.3. Human oral keratinocytes 

Oral keratinocytes form the primary barrier to physical, microbial, and chemical agents that cause injury in the 

mouth. They are involved in the proinflammatory process through the production of cytokines either constitutively or 

after a variety of stimuli. Indeed, oral keratinocytes also participate in controlling oral infections through an 

inflammatory process that involves the secretion of different interleukins, such as IL-1β and IL-18, in collaboration with 

local macrophages. Oral keratinocytes express a variety of differentiation markers highly dependent on their 

microenvironment and influenced by calcium-induced changes in the transcription of target genes (chapter 3).  

The pluristratified squamous epithelia are composed of several layers of keratinocytes at different 

differentiation stages and monolayer culture conditions cannot mimic this characteristic.  In particular, drugs 

penetration and cytokine secretion and microbial interaction are completely impaired in 2D versus 3D condition. To 

overcome those limitations, several researchers focused their attention on producing complex and highly organized 3D 

models of pluristratified squamous epithelia (chapter 1 and 3).  

3.4. Crosstalk between mesenchyme and keratinocytes 

Squamous pluristratified epithelia are composed of several layers of keratinocytes, organized in 4 groups of 

keratinocytes at different stages of differentiation. Accordingly, to the body site, keratinocytes are intercalated by other 

cells type such as melanocytes and Langerhans cells and covers different types of connective tissue. The most common 

pluristratified epithelia are the epidermis, underlined by the dermis, and the oral epithelia, underlined by the lamina 

propria. The main components of the connective tissue are the fibroblast, which shown an enormous heterogeneity 

accordingly to the body site function. Several studies have proved that fibroblasts from lamina propria influence 

keratinocytes behaviour (Sharpe et al., 1988) in the 3D epithelial model. In particular, the fibroblast density plays a key 

role in obtaining an optimal epithelial developed (Almeda et al. 2016).   
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Different epithelia have been developed to provide the optimal support and protection to the underlining 

structures such as glands, bones, or muscle (Gibbs et al. 2000).  In particular, the epithelial thickness and the 

keratinization varied accordingly to epithelial function. The oral mucosa represents an interesting context to study the 

epithelial differentiation (Clausen et al., 1986). Indeed, although oral keratinocytes have the same embryological origin, 

in the oral cavity, they are differently arranged in both keratinized (masticatory mucosa), non-keratinized (lining 

mucosa) and miscellaneous (tongue and palate) epithelia (Squier, 1991).  The explanation of these phenomena cannot 

be ascribable only to mechanical stress but, accordingly to other studies, the underlining connective tissue plays a vital 

role (Squier et al., 1981; Neupane et al., 2018).  

Although several old studies suggested that the epithelial differentiation is an intrinsic property of 

keratinocytes which are “programmed” to produce a specific epithelium (de Luca et al., 1990; Gibbs and Ponec, 2000), 

the most recent and accredited theory is that mesenchymal tissue strongly influences the epithelial cell differentiation. 

For instance, recombinant study on the palate development showed that, exchanging the stromal counterpart of hard 

and soft palate, the patterns of keratinization changed (Mackenzie et al., 1979; Neupane et al., 2018), other studies 

reported changing in in morphogenesis and cytodifferentiation (Schweizer et al., 1984) and in cytokeratin expression in 

particular when immortalized keratinocytes are used. Merne and Syrjänen, showed, in 2003, that the immortalized 

HaCaT cells, which usually do not express the terminal differentiation marker such as CK10, can be induced toward 

terminal differentiation by young primary dermal fibroblast. 

The lamina propria contains several mesenchymal stem cells, and in 2015, Sivamani et al. showed that MSC 

and keratinocytes influence each other. The phenomenon is related to the cultivation methods: when MSC was grown 

in direct contact with keratinocytes, they acquired epithelial phenotype while when they were grown using a transwell 

system, they expressed early neuronal or myofibroblast markers. However, the effect on keratinocytes differentiation 

was not well established since the latter was grown in monolayer. 

The primary intent of the first part of the present Ph.D. thesis was the set-up of advanced 3D in-vitro 

organotypic models, including oral epithelium and the underlined tissues, which is composed of the variety of cells not 

available in the commercial models. 

To do this, we had to deal with several technical issues including the optimization of the protocols to the co-

cultivating different cell types in both 2D and 3D. To pursue this aim we: 

• assessed and selected the best shared conventional media to co-cultivate mesenchyme and epithelial 

cells without losing the stem and secretory properties of MSC  

• optimized an already available bovine tendon collagen/nano-hydroxyapatite (BTC/nHA) scaffold, 

developed for in-vivo implantation, as optimal support to mimic bone features in static conditions. 

• established a custom made keratinized oral mucosa model, starting by a commercially available 

primary oral keratinocytes (HOK; CliniScience) and primary gingival fibroblast. 
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IV. Materials and methods 

4.1. Standard Cells culture condition: 

4.1.1. Primary cells culture condition 

Human Oral Keratinocytes (HOK) were purchased from CliniScience (Rome, Italy) and maintained in EpiLife® 

Medium (Invitrogen, Milan, Italy) supplemented by HKGS factors. Human Mesenchymal Stem Cells (hMSC) were 

obtained from Lonza (Milan, Italy) and maintained in DMEM low glucose supplemented with 10% FBS (all provided from 

Sigma, Milan, Italy). Human Gingival Fibroblasts (HGF) and Dermal Fibroblast (HDF) were isolated from healthy donors 

and maintained in DMEM high glucose plus 10% heat-inactivated fetal bovine serum (FBS).  

Before confluence, all cell types were trypsinized, resuspended, and plated for the experiments 104 cells/cm2.   

The primary cells used, and their media, are summarized in table IV-1.  

Table IV-1 Summary of primary cell used and their gold-standard medium  

Cell type Company Medium 

Oral keratinocytes CliniScience Epilife+HKGS 

hMSCs Lonza DMEM-LG+10% hMSC optimized 

FBS 

Fibroblast Isolated DMEM-HG+10% FBS 

 

4.1.2. Cell lines culture condition 

H-tert immortalized Human Foreskin Keratinocytes (ATCC® CRL-4048™) Ker CT 1080 were obtained from Lonza 

(Milan, Italy) and maintained in EpiLife® Medium (Invitrogen, Milan, Italy). ND7/23 (Mouse neuroblastoma x Rat neuron) 

were purchased from Sigma Aldrich (Milan, Italy) and maintained in DMEM high glucose plus 10% heat-inactivated fetal 

bovine serum (FBS). Human fetal osteoblasts (HFOB; ATCC® CRL-11372™) were purchased by ATCC (Manassas, Virginia) 

and maintained in a mixture of 1:1 DMEM/F12 media enriched with 10% FBS. Before confluence, all cell types were 

trypsinized, resuspended and plated for the experiments 104 cells/cm2.   

The immortalized cells used, and their media, are summarized in table IV-2.  
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Table IV-2 Summary of immortalized cell used and their gold-standard medium   

Cell type Company Medium 

Ker CT 1080 Lonza Epilife+HKGS 

ND7/23 Sigma Aldrich DMEM-HG+10% FBS 

HFOB ATCC DMEM/F12+10% FBS 

 

4.1.3. Optimization of culture media for every cell type 

In order to assess the best common culture condition for HOK and hMSC, both cell types were kept in cultured with 

different culture media: EpiLife, OKM (CliniScience), DMEM low-glucose with 10% FBS and FAD2 medium (70% DMEM, 

25% F12, 5% FBS enriched with 1,88 mM CaCl2, 50 mM Glycerol, 10-10 mM Cholera Toxin, 10 ng/ml EGF, 5 µg/ml Insulin, 

0.4 µg/ml Hydrocortisone, 5 µg/ml, apotransferrin and 2*10-3 nM Triiodo-thyronine) enriched or not with osteoblast 

differentiation factors (DF) as summarized in table IV-3. 

 Cell Type 

 hMSC HOK 

 

M
e

d
ia

 

DMEM 10% FBS OKM 

OKM OKM+DF 

EpiLife EpiLife 

FAD2 EpiLife+DF 

 FAD2 

 FAD2+DF 

 

Table IV-3 Summarizing of media tested for each cell type. 
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4.1.4. Viability assay 

The colorimetric AlamarBlue assay was performed after 1 and 7 days of culture to assess the viability HOK and 

hMSC kept in their respective media, in presence or absence of the corresponding differentiation factors. Following the 

manufacturer instruction, 50 µL of AlamarBlue™ (Sigma Aldrich, Milan, Italy) solution (0.1% in PBS) were spotted into 

each well containing 500 µl medium; plates were incubated for 4 hours in the dark in an incubator at 37°C, 5% CO2. The 

medium was then collected and spotted in 96-well black plate and the fluorescence evaluated by a spectrophotometer 

(Ex 540, Em 590; Sensibility 75%). Cells growth in their "gold standard" medium were taken as control (100% of viability), 

and results were expressed as viability percentage according to that control.  

4.1.5. Migration assay 

Scratch assays were performed to evaluate if hMSCs promote keratinocytes migration and to compare if this 

effect is different between oral and skin keratinocytes. 

Briefly, HOKs and Ker CT 1080 were seeded in 24-well plates and maintained in culture until confluence. Once 

confluent, a sterile p200 tip was used to scratch the cells that subsequently were washed with pre-warmed DPBS and 

treated with EpiLife media kept in contact with hMSCs for two days in an incubator. Keratinocytes growth in fresh media 

were used as control. Images were collected after 0, 6, 18 and 24 hours using a ZOE Fluorescent Cell Imager (Bio-Rad).  

4.2. Osteogenic differentiation protocol  

Uncommitted hMSCs were seeded at 5x104 cells/cm2 and maintained in culture until 80% confluence. When 

hMSCs reached the desired confluence, the medium was enriched with 50 µM Ascorbic Acid, 10 mM β-glycerol-

phosphate and 100 nM Dexamethasone (osteogenic medium) to induce the differentiation toward osteoblastic (OB) 

phenotype. The differentiation medium was freshly prepared and changed every third day; cells were fixed every week 

until complete differentiation was reached. At each medium change, the medium was collected, centrifuged for 5 

minutes at 1200 rpm and stored at -20° until use.  

4.2.1. Osteogenic differentiation protocol evaluation: Alkaline Phosphatase (ALP), Von Kossa 

and Alizarin Red staining 

In order to verify the differentiation state of hMSCs, Alkaline Phosphatase (ALP) staining was performed every 

week of culture in osteogenic medium. For each time point, differentiated control and undifferentiated cells were fixed 

for 15 minutes at 4° C, washed in bi-distilled water, and then stained. ALP stain solution (1:0.04 Fast Violet and Naphthol) 

was added to dry wells and plates were then incubated for 45' at room temperature. Subsequently, cells were washed 

several times in PBS and let dry. 

Von Kossa and Alizarin Red staining were made after 3 and 4 weeks to check the formation of calcium and 

phosphate nodules. 
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To perform Von Kossa staining, cells were incubated with 1% silver nitrate solution and treated for 30’ under 

UV lamp; un-reacted silver was removed with 5% sodium thiosulfate solution. Wells were washed several times in bi-

distillate water and let dry at RT.  

Alizarin Red solution was prepared by solving 0.2 g of Alizarin Red powder in 10 ml of bi-distilled water and the 

pH was adjusted to 4.2 before use; then, the solution was applied for 15' at room temperature and the excess stain was 

washed out and wells were let dry. 

Finally, images were collected using a stereomicroscope. 

4.3.  Bone substitute optimization 

4.3.1. Scaffold preparation  

The scaffold selected was composed by 50:50 nano Hydroxyapatite (nHA) and Bovine Tendon Collagen (BTC) 

and prepared following the method from Salgado et al. (2015). Briefly, Type I insoluble collagen was diluted in 100 mM 

chloride acid solution to a 2% concentration homogenized for 2 hours and kept at 4 °C. After, 0.5 g of nHA were solved 

in 100 mM chloride acid and mixed with an equivalent volume of collagen solution. Subsequently, 10 mM N-

Hydroxysuccinimide (NHS) and 40 mM 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were added to the 

collagen/nHA solution and transferred to a cylindric mold with a diameter of 5 mm, then freeze at -18 °C for 24 hours 

to complete the crosslinking. Afterward, it was thawed at room temperature and the scaffold washed with distilled 

water. Finally, the scaffold was dried in a vacuum oven at -80° with 0.1 bar for 24 h and stored at 4°. Before use, the 

scaffold was cut in 0.5 cm length piece and sterilized with at least three passages in EtOH 70% (30 minutes each) and 

several washes in PBS 1x in sterile conditions.  

4.3.2. Scaffold repopulation 

In order to improve cells penetration inside the scaffold, the suitability of the fibrin gel drop seeding method 

was evaluated. Briefly, hMSCs were trypsinized, counted, and resuspend 2x106 cell/ml in fibrinogen (6 mg/ml in 

complete medium). Next, 1,5 U/ml thrombin were added immediately before seeding for each sample, and a drop 

containing 105 cells was added to each scaffold. Subsequently, the fibrin gel formation was inducted by mechanical 

stimulation and hMSCs were let adhere in the incubator. After 2 hours of incubation, scaffolds were submerged with 

1.5 ml of DMEM 10% FBS and enable to grow for 24 hours. Finally, differentiation factors were added as described in 

section 4.2, and the viability was evaluated after 1, 3, 7, 14, 21 and 28 days as defined in section 4.1.4. 

4.3.3. Dynamical Mechanical Properties (DMA) analysis 

Dynamical mechanical analysis. Dynamical mechanical analysis (DMA) was conducted in order to characterize 

the mechanical behavior of collagen-nanoHA biocomposite scaffolds in the wet state under dynamic compression 

solicitation. Before any measurements, the specimens (4 mm thick, and 7 mm wide) were immersed in the culture 

medium until equilibrium swelling. The scaffolds were then subjected to compression cycles of increasing frequencies 
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ranging from 0.1 to 10 Hz at room temperature for 10 min, using a Tritec2000 dynamic mechanical analyzer (Triton 

Technology, UK). Three samples were measured for each type of scaffold.  

For each sample, the storage modulus and the loss factor were evaluated. 

The storage modulus representing the elastic component of a material is an indicator of the capability of the 

material to store energy during deformation and it is in inverse relation with the material stiffness. 

The loss factor is the ratio between the amount of energy dissipated by viscous mechanisms and the energy 

stored in the elastic component, this formula provides essential information about the viscoelastic properties of the 

material.  

Those properties quantify the stiffness and the resistance of a polymer and allow the prediction of polymer 

behaviour, in terms of withstanding and elasticity under compression.  

4.3.4. Scanning electron microscopy (SEM) imaging  

To observe the intracellular localization of the nanohydroxyapatite particles, the same samples of the 

subcutaneous implants for histological analysis (paraffin blocks) were used for SEM analysis. The tissues were 

reprocessed, according to Lighezan et al. (2009). Briefly, the tissues were de-waxed with xylene (12 h) and rehydrated 

(100%, 90%, 80%, 70% of ethanol-water and PBS solution). Afterward, the tissues were post-fixed with 1% OsO4 for 1 

h. The samples were dehydrated with increasing concentrations of ethanol-water (50%, 70%, 90%, 95%, and 100%) and 

embedded in epoxy resin (Epon 812V R, Shell Chemical). 

4.3.5. Confocal imaging 

To determine cell morphology immunofluorescence assay was performed the samples were fixed with 3.7% 

paraformaldehyde (Sigma) for 30 min and then washed twice in PBS. Then, the materials were incubated for 5 min with 

0.1% Triton X100 solution (Sigma), washed twice with 1% bovine serum albumin solution in PBS (BSA, Sigma) and the 

cytoplasm was stained with Alexa fluor conjugated phalloidin 594 (1:400, Invitrogen) at 2.5% in 1% BSA solution for 1 

hour at room temperature and protected from the light. Samples were washed twice with BSA 1% and nuclei were 

stained with DAPI (4’-6-diamidine-2phenylindole at 0.2%, Invitrogen) for 5 min. After that, the scaffolds were washed 

twice with PBS and images were acquired with a Confocal Laser Scanning Microscopy (Leica SP2 AOBS SE camera), using 

the excitation lasers of 405 and 594 nm. Finally, videos were prepared using ImageJ software.  

4.4. Established a custom made keratinized oral mucosa model  

3D epithelial cultures were prepared according to the protocol described by Lambert et al. (2005) and 

Squarzanti et al. (2018). Briefly, a lamina propria substitute was prepared by enriching a collagen premix (20 ml Rat tail 

collagen type I 6.6 mg/ml, 2.5 ml 10x F12, 2.5 ml FBS, 250 µL PEN/Strep 100x, 60 µl NaOH 1 M) with 5x106 HGFs, then 

allowed to contract to the appropriate shape for 2 days. When ready, 6x105 HOKs were seeded onto each lamina propria 

substitute, let to adhere and become confluent. After four days of submerged culture, the 3D system was positioned at 

the air/liquid interface by adding cotton pads on the bottom to allow keratinocytes stratification. Culture media were 
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collected every third day and refreshed. After other 12 days, 3D cultures were formalin-fixed and embedded in paraffin 

for histological analysis. As control, a previously established dermal substitute composed of 20 ml Rat tail collagen type 

I 6.6 mg/ml, 2.5 ml 10x F12, 2.5 ml FBS, 250 µL PEN/Strep 100x, 60 µl NaOH 1 M with 5x106 HDFs was used as the 

mucosal base.   

4.4.1. Haematoxylin and eosin staining 

HE staining was carried out onto the 4 µm thick tissue sections obtained from formalin-fixed paraffin-

embedded 3D tissue cultures (Bio-Separation System, YSD-310, Yoshuda). Briefly, slides were rehydrated and stained 

with Hematoxylin for 10 minutes at room temperature (RT) and counterstained with Eosin for 5 minutes at RT. Lastly, 

tissue slides were rapidly dehydrated and mounted. Tissue morphology was finally optically evaluated under a Leica 

DM750 optical microscope at magnifications ranging between 10x and 20x (Leica Microsystems, Basel, Switzerland). 
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V. Results 

5.1. Establishment of the common media for co-culture 

5.1.1. Monolayer growth condition establishment: Viability Assay 

Human mesenchymal stem cells (hMSCs) and human oral keratinocytes (HOK) growth in different chemically 

composite media. In particular, hMSCs growth in basal media enriched with 10% of highly nutrient foetal bovine serum 

(FBS) while HOK growth is severely affected by serum. Indeed, several types of serum-free media implemented with 5% 

of growth factor mixture. The most common media used for keratinocytes growth are: KSFM from Gibco, the OKM from 

CliniScience (both supplemented with the bovine pituitary extract), the Epilife from Gibco (supplemented by a mixture 

of recombinant protein, in particular, EGF) and the KGM from Lonza (supplemented with several recombinant proteins. 

Only KSFM has been previously used for hMSC/keratinocytes co-cultivation; a comparison between this medium and 

the others was impossible due to the presence of valid patents on all the keratinocytes media. Likewise, there were not 

found any papers in which hMSCs were growth in FAD media (used for the organotypic cultures) or in which 

keratinocytes were grown in the presence of osteogenic/differentiation factors (DF). Due to the lack of literature on this 

topic, preliminary experiments were performed to establish the suitability of the different media involved in the 

experimentation and follow protocol comparable with the previous works. The first experiments were performed to 

select a suitable common media to use for both hMSC and HOK in 2D and 3D conditions and assure that DFs do not 

affect HOK viability. To asses that purpose, both cell types were incubated for one week with all the media and their 

viability monitored by Alamar blue assay. In particular, hMSCs were growth with Epilife, OKM and FAD media, and the 

viability was compared with the gold standard medium DMEM supplemented with 10% of certified FBS while HOKs were 

growth in OKM, EpiLife and FAD media with or without differentiation factors. Epilife was selected as gold-standard. 

Regarding hMSC, the viability assay shows that keratinocytes media, OKM, and EpiLife, initially increase hMSC 

metabolic activity but at the last experiment time point (7 days) the viability decreased until values comparable to the 

control. On the contrary, in FAD medium, hMSCs viability resulted steadily higher in comparison with the controls, but 

the slope of the growth curve results lower than the others.  

Concerning HOK, a massive viability decrease is observed when cells are incubated with FAD; however, after 

seven days, all the viability levels were comparable and similar to the control. In all conditions tested, the DFs do not 

alter keratinocytes viability. As expected, for both cell types, cells viability value recorded for incubation with OKM and 

EpiLife results similar. All those findings are summarized in figure V-1. Considering the data shows, EpiLife was select as 

a common medium for hMSC and keratinocytes in 2D condition, and FAD medium was selected as the common medium 

for hMSC and keratinocytes in 3D. This preliminary data demonstrate that the effect showed by hMSC/HOK interaction 

depends on the cells crosstalk and is not an artificially contrived produced by the chemical composition of different 

media or the differentiation factors. 
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Figure V-1 Graphics represent respectively, hMSC and HOK viability when incubated with each medium or combination of media.  Data are presented as viability % percentage calculate 

on the control average (considered as 100%).  
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5.1.2. Evaluation of hMSCs secretory capability into EpiLife medium: Migration assay 

As already described in the introduction, hMSCs have an essential role in the wound healing process and in tissue 

regeneration; in particular, Walter et al. (2010) shown a pro-proliferative effect of hMSC conditioned medium 

(hMSC_CM) onto both fibroblast and keratinocyte. To confirm that hMSC, growth in EpiLife medium, keeps secreting 

the molecules that are involved in both skin and oral migration, a similar experiment was performed to evaluate the 

effect of hMSC_CM on keratinocytes migration and proliferation using a 2D scratch assay. For this assay, hMSCs were 

growth in EpiLife; the hMSC_CM was collected after two days of cultures, centrifuged to remove the dead cells traces 

and supplemented with fresh HKGS (EpiLife growth factors) before use. In the meanwhile, skin (ker CT 1080) and oral 

(HOK) keratinocytes were growth to 95% confluence. Immediately before incubating keratinocytes with hMSC_CM, a 

scratch was performed for each well on confluent cells.  

Compared with Walter et al. (2010) results, both keratinocyte types migrate faster in the presence of hMSC 

secretome in comparison with the control (fig V-2). Because of the keratinocytes specific doubling time, the wound 

closure started after 12 hours for HOK and after 24 hours for ker CT 1080. However, HOK showed a faster proliferation 

and migration rate of ker CT 1080. This data is particularly important to validate the 3D tests described in chapter 3.  

 

Figure V-2 Pictures show skin and oral keratinocytes response to hMSC CM. White circle point keratinocytes migration area. In the 

first row, untreated skin keratinocytes start to migrate within the scratch after 24 hr while, at the same time point, treated skin 

keratinocytes invaded a larger scratched area. In the third and fourth row, both untreated and treated oral keratinocytes started 

their migration after 12 hr. Despite, after 24 hr, treated oral keratinocytes covered a larger scratched area. Magnification 10x, bar 

scale 100 µm. 
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5.2. hMSC osteogenic differentiation  

Before proceeding with keratinocytes treatments, the correct osteogenic differentiation of hMSC was 

evaluated. To pursue this aim, hMSCs were treated for one month with the osteogenic factor as described in paragraph 

4.2 and every week 4 wells per stain were fixed and stained with alkaline phosphatase (ALP), Von Kossa and Alizarin red 

staining to follow the differentiative phases.  

The phosphatase alkaline is expressed by osteogenic lineage-committee cells and can be detected by ALP stain 

while Von Kossa and Alizarin red respectively stain the calcium and phosphate deposits characteristic of the 

mineralization process. The differentiation factors are supposed to induced ALP expression in hMSC within the first two 

weeks and the mineralization of the matrix after the third week. 

In accordance with other authors (Kulterer et al., 2007), between the second and the third week of 

differentiation, protein expression changes to promote mineralization (here proved by Von Kossa and alizarine Red 

staining) of the matrix. This switch is related to the downregulation of the proliferation gene such as TGF-β2 or matrix 

protein genes such as collagen 1 with the consequent up-regulation of mineralization genes such as osteopontin, and 

osteonectin. 

As shown in figure V-3, ALP stain resulted positive already after 1 week of differentiation treatment, the 

expression of alkaline phosphatase indicates the hMSC gene expression shift toward osteoblastic lineage. Regarding 

Von Kossa and Alizarin red staining, both resulted negative until the second weeks of differentiation while red and black 

dots, the respectively characteristic stain of Alizarin Red and Von Kossa, were detected at the mineralization nodules 

after the third week. 

In order to assess the appropriate differentiation, for all experiments in which CM was collected, hMSC were 

seeded in control wells weakly stained to evaluate the expression of the phosphatase alkaline and the mineralization. 

To avoid methodological bias, media obtained by incorrectly differentiated cells were discarded.   
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Figure V-3 hMSC osteogenic differentiation assessment at all time points via ALP: alkaline phosphatase; VK: Von Kossa; AR: Alizarine Red assay. ALP stain (1° raw) resulted positive since the first week 

as expected. AR and VK resulted positive after three weeks (2° and 3° row; 3° and 4° column). Alizarin red counterstains the negative cells (3° row; 1° and 2° column) in pink.  Magnification 6,2x, bar 

scale 50 µm
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5.3. Scaffold development 

5.3.1. Preliminary data 

To obtain a composite and functional mucoperiosteum model, the sponge-like bone substitute developed by 

Salgado et al. (2015) was selected.  The nominated sponge is made by a bovine tendon collagen (BTC) hydrogel, 

supported by nano-hydroxyapatite (nHA), lyophilized to obtain the porous. 

In particular, this biological cryogel scaffold was chosen considering the needing of growth keratinocytes to the 

air-liquid interface, a bone substitute with the capability to mediate the passage of nutrients from the medium.  

The development and biological validation of BTC/nHA scaffold were performed by Salgado et al. (2015). They 

showed by TEM analysis the homogeneous presence of the nHA among the collagen structures and by IF analysis the 

correct hMSC adhesion and spreading within the materials, as showed in figure V-4.  

However, this scaffold was studied for implantation and the stiffness parameter appeared suboptimal to mimic 

the bone features and the randomise porous structures reduced the cell penetration in the middle of the scaffold. Due 

to the lower availability of oxygen in the middle of the scaffold, most cells migrate in the upper layer of the structures 

(as shown by confocal analysis; V-4 b). 

To overcome those limitations, the suitability of a fibrin-based gel coating was evaluated as shown in the next 

two paragraphs.  

 

Figure V-4 (a) Scanning Electron Microscopy (SEM) images show the composite scaffold after 21 days of incubation in SBF solution. 

(b) CLSM images of HB-MSC cultured for 21 days within the composite scaffold. Image a) bar scale 10 µm; image b) bar scale 50 µm. 
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5.3.2. Mechanical properties evaluation 

As shown by Kilian et al. (2010), mimicking the physiological microenvironment is crucial to induce the correct 

phenotype of hMSCs in vitro.  In particular, bones are characterized by a high stiff correlated to a withstand to 

compression stress. In order to improve the stiffness of the BTC/nHA, the effect of a fibrin gel coating was evaluated. 

The preliminary tests were performed with scaffold swollen in the medium for 24 hours with or without fibrin gel 

interpenetration. Storage modulus (E’) and the loss factor (tan delta) in relation to the frequency are shown in Fig. V-5 

As shown in fig. V-5, the fibrin gel increased the scaffold stiffness of 4 times but induced a peculiar viscoelastic 

behaviour; indeed, the tan delta modulus increased under low-frequency compression force due to an elastic response 

of fibrin matrix but, at high frequency, the matrix broke down with a spreading of fibrin gel itself within the scaffold 

revealed by the tan delta value (figure V-5 b).  

 

Figure V-5 The graphics represent the viscoelastic behaviour of empty and fibrin gel.  In particular, the storage modulus (a) and the 

tan delta (b) under dynamic compression solicitation of increasing frequencies ranging from 0.1 to 10 Hz after 24 hr of incubation in 

the medium. 
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5.3.3. hMSC viability evaluation 

The cytocompatibility of interpenetrated scaffold in comparison with empty scaffold and monolayered 

cultivated hMSCs was evaluated. As shown in figure V-6, the growth curve of hMSCs growth within the interpenetrated 

scaffold is characterized by a higher slope, which indicates a higher growth in the function of time. 

This effect can be ascribable to a better repopulation of the fibrin gel implemented scaffold in comparison with 

the basal one (as shown in the video in figure V-7 and V-8). 

After 14 days, all the curve reached a plateau state induced by the differentiation factor, which promotes the 

differentiation reducing the self-renewal and the proliferative capability of hMSCs. 

Taken together, the mechanical and cytocompatibility results suggested the use of fibrin gel for better 

mimicking not only the bone alone but also to produce the mucoperiosteum model. 
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Figure V--6 The graphic represents the time-depending growth ratio of hMSC seeded insight the scaffold with or without fibrin gel. As shown, the viability is consistent with control cells growth 

constantly and reaches the plateau after 14 days under differentiation stimuli. 
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Saffold BTCnHA.avi

           

Figure V-7 Confocal and HE analysis of hMSC repopulated BTC/nHA scaffold. The video shows several layers of the central and inner part of the unfixed and repopulated BTC/nHA scaffold (10x 

magnification). As showed by nuclear stain (DAPI; blue), cells are few and concentrated in a thin portion. In the HE image (60x magnification) was observed that hMSCs were poorly integrated into 

the scaffold. Bar scale 20 µm. 

Saffold BTCnHA 

fibrin gel.avi
      

Figure V-8 Confocal and HE analysis of hMSC repopulated BTC/nHA scaffold implemented with fibrin gel. The video shows several layers of the central and inner part of the unfixed and repopulated 

BTC/nHA-fibrin gel scaffold (10x magnification). As showed by nuclear stain (DAPI; blue) cells are several and distributed among the entire analysed portion. In the HE image (60x magnification) 

was observed that hMSCs were poorly integrated into the scaffold. Bar scale 20 µm. 
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5.4. Establishment of the 3D parakeratinized (masticatory) epithelium model 

Commercially available primary oral keratinocytes HOK (CliniScience) were used to set up a keratinized mucosa 

model previously described (Squarzanti et al., 2018). 

To produce the lamina propria substitute, a buffered rat tail collagen solution was repopulated with human 

gingival fibroblast (HGF) or human dermal fibroblast (HDF). The latter was used as the control.   

To evaluate HOK ability to stratify and set the best culture condition, two different protocols were tested, the 

P946 protocol and the “standard protocol”. In the P946 protocol, organotypic cultures were grown to the air/liquid 

interface for 10 days in FAD medium enriched with 4% FBS, 0,9 mM CaCl2 and 25 µM Glycerol. In the “standard 

protocol”, the organotypic cultures were grown to the air/liquid interface for 12 days in FAD medium enriched with 

5% FBS, 1.88 mM CaCl2 and 50 µM Glycerol. For each condition, 6x105 HOKs were seeded on the top of a collagen 

matrix enriched with HDF or HGF and let to adhere submerged for 4 days; after that, models were lifted to air-liquid 

interface and treated with the two protocols. HOKs were able to stratify and, contextually, differentiate under all 

conditions tested but the epithelia were characterized by different morphology.    

In the P946 HDF protocol (fig V-9a), the oral epithelium appears parakeratinized. Following this protocol, 

keratinocytes shaped a well-formed basal layer, a thick spinosum layer (the thicker in comparison with the other 

conditions), composed of cells with abundant cytoplasm but without the prickle or elliptical shape and a poorly 

formed and fragile keratinized layer. The keratin filaments (stained in dark pink filaments) are still observable but 

appear detached and degraded. 

In the standard HDF protocol (fig. V-9 b) the oral epithelium appeared parakeratinized. Following this protocol, 

keratinocytes shaped a poorly formed basal layer characterized by small and columnar, but loose, keratinocytes, a 

thin and poorly formed spinosum layer, with an irregular and non-homogeneous structure and a poorly formed 

keratinized layer (despite few keratin filaments still observable. It is possible to speculate that, the higher amount 

of differentiation factors which characterize the standard protocol, in addition to the dermal fibroblast stimuli, 

reduce the HOK capability of self-organization 

In the P946_HGF protocol (fig. V-9 c), the oral epithelium appeared as a keratinized epithelium. Following this 

protocol, keratinocytes shaped a well-formed basal layer, a thin but well-formed spinosum layer, characterized by 

cells with abundant cytoplasm, a well-formed keratinized layer characterized by few filamentous layers. 

In the standard HGF protocol (fig. V-9 d) the oral epithelium appeared as a keratinized epithelium. Following 

this protocol, keratinocytes shaped a well-formed basal layer and a fully formed spinosum layer characterized by 

keratinocytes with a large cytoplasm and a prickle appearance. The keratinized layer is presented and characterized 

by flat cells with most of the nuclei pyknotic, as typical for squamous cells and few filamentous layers. It is possible 

to speculate that the presence of tissue-specific fibroblasts improved the HOK capability of self-organization 

independently by the amount of differentiation factors.   

Results are summarized in table V-1 
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In general, the histological observation showed that in all conditions, HOKs mimicked the physiological layer 

differentiation at the basal layer, characterized by small and columnar shaped cells while the rest of the layer 

appeared different in both thickness and cell morphology. The spinous was strongly affected both by the applied 

protocol and fibroblast subtypes (the dermal fibroblasts reduce the self-organization capability of oral 

keratinocytes). The keratinization appeared improved by gingival fibroblast and proportional to the amount of 

differentiation factor (Glycerol, CaCl2 and FBS).  

Therefore, all further experiments were performed following the standard protocol, which resembled the 

physiological features better than the other tested protocols.  

 

Figure V-9 Haematoxylin and eosin staining show different epithelium features depending on the applied protocol. 

Magnification 10x; bar scale 200 µm. 
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Table V-1 Comparison table of tested condition for oral mucosa 3D model development.  

 Stratum basal 
 

Stratum Spinosum Stratum corneum 

 
P946_HDF 

Normally formed 
 

Small and columnar cells 

Thick (>20 layers) 
 

Absence of prickle or pyknotic cells 

Thin and degraded 

 
Standard_HDF 

Poorly formed 
 

Loose cells 

Thin (<3 layers) 
 

Inhomogeneous 
 

Absence of prickle or pyknotic cells 

Thin and degraded 

 
P946_HGF 

Normally formed 
 

Small and columnar cells 

Normally formed (>10 layers) 
 

Elliptical cells 

Well-Formed 
 

Visible and intact filaments 
 

 
Standard_HGF 

Normally formed 
 

Small and columnar cells 

Normally formed (>10 layers) 
 

Elliptical and pyknotic cells 

Well-Formed 
 

Visible and intact filaments 
 

Presence of few pyknotic flat cells 
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VI. Discussion  

Nowadays it is well-known that epithelial-mesenchymal interaction plays a key role in the regulation of 

several processes such as wound healing or epithelial response to external stimuli. However, for many years this 

crosstalk has been thought of as a binary axis. Fibroblasts have a valuable role of fibroblast in epithelial 

differentiation and stratification has been proved (Gibbs et al., 2000; Chinnathambi et al., 2003; Dongari-Bagtzoglou 

et al.; 2006) but, probably, they are not the only cell types involved in epithelial development since the connective 

tissue is characterized by several cells type. Recently, have been showed that stromal tissues are a suitable source 

of MSCs that share several characteristics with the most characterized bone marrow derived MSCs (Mushahary et 

al., 2018). Gingival tissues offer several sources of MSCs: the gingiva itself, the alveolar bone, the ligaments and the 

dental pulp. Their role mucosa development is still to clarify. 

  In the present chapter, several technical optimizations were performed to evaluate the MSCs and 

osteoblasts role in epithelial keratinization better. Monolayered preliminary experiments were performed to 

evaluate if the commercially available media were suitable to support the growth of the different cell types 

simultaneously and to check the effect of keratinocytes medium (EpiLife) onto MSC. The viability assay showed that 

hMSCs growth well in both tested keratinocytes' media. On the contrary, keratinocytes differentiated earlier in 

media containing FBS than in FBS free media (i.e., Epilife medium), as generally described by the literature. However, 

in comparison with other works the pro-proliferative effect MSC_CM during the scratch assay showed a delay. In 

our experimental set-up, the proliferative differences between treated and untreated keratinocytes result clear only 

after 24 hr (fig. V-2) while other authors (Li et al., 2015; Chen et al., 2015), observed the MSC effect after 6 hours.  

This effect can be explained by the enhanced production of chemoattractant and pro-proliferative factors 

for macrophages and monocytes, such as MCP-1 and GM-CSF, which also improve keratinocytes proliferation, that 

were over-expressed in the inflammatory microenvironment used by Li et al., (2015) and Chen et al., (2015). 

Regarding the 3D model system test, hMSCs were not affected by keratinocytes differentiation factors 

present in FAD medium, which was subsequentially used for the coculture system (chapter 3). Indeed, during the 

viability assay, hMSC viability increase (fig. V-1). 

Finally, the bone counterpart was evaluated, starting from bone scaffold able to mimic the alveolar bone. 

As previously shown (Almela et al., 2016) permeable matrix is needed for nutrient passage to support the 

keratinocytes growth in a pluristratified squamous epithelial at the air-liquid interface (Gibbs et al., 2000). Thus, a 

scaffold composed of bovine tendon collagen and nano-hydroxyapatite (BTC/nHA) was selected (Salgado et al., 

2015) to mimic the bone components. 

Because it is well-known that stiff material with rough surface improves hMSC differentiation toward 

osteoblastic lineage (Olivares-Navarrete et al., 2017; Noori et al., 2017), a BTC/nHA sponge was coated with a fibrin 

gel (FG). This FG was created with a low amount of thrombin (1,5 U/ml) since, accordingly to Bluteau et al. (2006), 

low thrombin concentrations (0.5–5 U/mL) should upregulate the expression of the osteoblastic markers improving 

hMSCs differentiation and, at the same time, allowing both hMSCs and OB migration and proliferation.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Olivares-Navarrete%20R%5BAuthor%5D&cauthor=true&cauthor_uid=28095466
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From a mechanical point of view, the FG quadruplicates the storage modulus (E’) during the formation and 

increases the stiffens of the sponge (fig V-5).  

The modified scaffold was characterized regarding the MSCs cytocompatibility (fig. V-6) and, as shown by 

the histogram, a continuous increase in the whole metabolic activities of hMSC was noted during the first 2 weeks, 

suggesting that hMSC proliferated over the time. Remarkably, the growth curve slope was higher for the FG 

improved BTC/nHA sponge, probably because of bone ECM formation and a better distribution of oxygen and 

nutrients mediated by the fibrin gel itself. As expected, the growth curve reached a plateau after 2 weeks. Moreover, 

both confocal and histological analysis, showed an improvement in scaffold repopulation and focal adhesion 

formation in the presence of the fibrin gel (fig. V-7 and V-8). These results suggested the modified scaffolds are 

suitable to be used in the mucoperiosteum 3D cell model (see Chapter 4).  
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Chapter 3 

Epithelial-Mesenchymal crosstalk 

VIII. Introduction 

8.1. Oral epithelium 

The oral epithelium is a covering and lining epithelium composed of different squamous pluristratified 

epithelia; it consists of cells tightly attached to each other and to the basement membrane. They are well organized 

in distinct layers, or stratum, each of them with a specific role and easily recognisable in histological cross-sections.   

The main histological difference between the epithelia is the keratinization degree (Schroeder et al., 1997), 

and therefore, they are classified in keratinized and non-keratinized epithelium; the first is typical of the masticatory 

mucosa and the second of the lining mucosa (fig. I-7).  

8.1.1. Keratinized epithelia 

The masticatory mucosa is characterized by a firm and withstands tissue firmly attached to the connective 

counterpart. This feature is strongly related to the keratin layer, which covers the masticatory mucosa and is formed 

during the keratinization or cornification of the epithelium. The keratinized epithelia are divided into 4 distinct layers: 

basal, spinosum, granular and keratinized (or cornified) (Gartner et al., 1994).   

The basal layer or stratum basale is in direct communication with the basement membrane and it is 

composed of small and packed cuboidal or columnar cells. This layer contains both keratinocyte progenitor (essential 

for epithelium renewal) and the maturing population.  This latter cellular subtype is characterized by a faster mitotic 

ration in comparison with the progenitor and a differentiation process (or maturation) essential to produce all the 

keratinocytes layers (Calenic et al. 2015). The progenitor population is divided into two other subpopulations. The 

first one is considered a “stem cell” population (or basal epithelial cells) since they retain the self-renewal capability 

(the asymmetric mitosis) to maintain the proliferative potential of the tissue, and the amplifying cells which have 

the role of increasing the amount of the cells in the maturing population when necessary. Izumi et al. (1999) showed 

that the stem progenitors of the oral mucosa are much smaller than the other progenitor cells and that they express 

a low-affinity neurotrophin receptor, named p75 or NGFR (Nerve growth factor receptor).  

P75 contains an extracellular domain composed of 4 chains with 40 aminoacids (AA) repeats each, a single 

transmembrane domain, and a 155-amino acid cytoplasmic domain. The AA repeats are characterized by 6 cysteine 

residues at conserved positions, containing the nerve growth factor binding domain, followed by a serine/threonine-

rich region. In addition, those cells express the integrin β1 (ITGβ1 or CD29) and the peroxisome proliferator-activated 

receptor-gamma (PPAR-γ).  
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ITGβ1 is a membranes receptor encoded by the ITGβ1 gene; integrin receptors are mainly involved in cell 

adhesion and their intracellular domain is linked to the actin. Integrins are able to mediate bidirectional signals from 

the extracellular matrix to the cytoplasm. ITGβ1, in particular, work in complex or with the integrins α1 and α2 to 

form the heterogenic complex that works as collagen receptors or with the isoforms α3 to form the receptors for 

netrin 1 and reelin. Moreover, ITGβ1 retains the ability to target α-integrins to their cellular localization to allow the 

formation of focal adhesion. As other integrins, ITGβ1 also mediate the formation of cell-cell junctions known as 

desmosomes.  

PPAR-γ, also known as glitazone receptor, or NR1C3 (nuclear receptor subfamily 1, group C, member 3) is a 

type II nuclear receptor that in humans is encoded by the PPARG gene. Induce the cell differentiation and the cell-

cycle block by a PTEN mediated pathway.  

In addition to keratinocytes, in the basal layer are present also other cell types such as melanocytes, 

Langerhans cells, and Merkel cells (Calenic et al., 2015).  

The spinosum layer is composed of several rows of large and elliptical cells. The cells of the spinosum layer 

are known as prickle cells due to the appearance they often acquire after histological processing since they shrink 

away from each other and remain connected by the desmosomes (the intracellular junction). Physiologically, those 

two layers represent around two-thirds of the epithelium (Gibbs et al., 2000).   

 The third layer, knows as granular layer or stratum granulosum, is the thinnest layer and consists of broad 

but flattened cells full of keratohyalin granules (KHG). When the KHG of different epithelia are compered, it can be 

noted that their ultrastructure is an exciting clinical cue; indeed, those features seem to be strictly related to the 

speed of cell turnover (Westerhof et al., 1986). Westerhof et all. (1987) compared the KHG of oral mucosa and 

epidermis and showed that globular KHG is typic of quickly dividing epithelia in contrast with the irregular or stellate 

KHG, mainly found in average but slowly dividing epithelia. However, the KHG patter in not regular; for instance, 

gingiva has miscellaneous KHG related to its fast-mitotic ratio.  

The most superficial layer, the stratum corneum, is characterized by flat (squamous) pyknotic or anucleate 

cells full of keratin. This latter characteristic is easily visualized during the histological analysis since the squamous 

cells, or squames, are strongly stained by eosin. Among the keratinized epithelia, are present different degrees of 

keratinization accordingly to the mechanical stress the epithelia them-self endure. This keratinized degree mainly 

depends from the nuclei retention of squamous cells, when most of the cells lost their nucleus, and the keratinization 

pattern is completed the epithelium is termed ortho-keratinized, and the cells appear while when the squames are 

mostly pyknotic or shrunken and the keratinization is incomplete, the epithelium is termed parakeratinized (Izumi 

et al., 2000; Boukamp et al., 1988)   

The principal features are summarized in table VIII-1 
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Table VIII-1 General characteristic of keratinized oral epithelia  

English layer lame 

 

 

Latin layer lame 

Basal layer 

 

 

Stratum basal 

Spinous (prickle) layer 

 

 

Stratum spinosum 

Granular layer 

 

 

Stratum granulosum 

Cornified layer 

 

 

Stratum corneum 

Cell layer 2-3 2/3 of the total layers 1-3  

Shape Cuboidal or columnar Elliptical cells (larger 

than the basal cells) 

 

Flat cells with regular 

& close to each other 

surfaces (larger & 

wider than the spinous 

cells) 

Flat Cells (larger & 

flatter than the 

granular cells) 

 

Marker p75, CD29, PPAR-γ, 

CK5/14 

CK1/10, CK6/16, 

CK2 

 Acidophilic (dark 

pink staining with 

H&E) 

Function Mitotic Function (DNA 

Synthesis providing new 

cells) 

Mitotic Function and 

protein synthesis (most 

active) 

Mitotic Function and 

Protein Synthesis (at a 

lower rate) 

Protection 

Characteristics Contain: 

Desmosomes 

Hemidesmosomes 

 

Cell capability: 

Self-renewal 

Intercellular space with 

a prickly appearance 

Contains: 

Keratohyalin granule 

Pyknotic nuclei 

Only a few nuclei 

are retained in 

the para-

keratinized 

epithelia 

 

The time needed for the renewal of the epithelium is known as turn over time and it is differently affected 

by the epithelial anatomical position. For instance, oral epithelia are faster in comparison with skin; this 

phenomenon explains the higher sensitivity of oral mucosa to the chemotherapeutic drugs, which act on mitotic 

cells. 

The turnover time is regulated and activated by different factors such as cytokines and growth factors. The 

most critical factors for epithelial proliferation are the epidermal growth factor (EGF), the keratinocytes growth 

factor (KGF) and the interleukin-1 (IL-1) while the principal inhibitory factors are the transforming growth factors 

(TGFα and TGFβ) (Peehl et al., 1995; Ceccarelli et al., 2012; Finch et al., 2004). EGF, which is a  6-kDa protein with 53 

amino acid residues and three intramolecular disulphide bonds formed within a conserved domain rich in cysteine 

(CX7CX4-5CX10-13CXCX8GXRC), stimulates cell growth and differentiation by binding the membrane epidermal growth 

factor receptor (EGFR). EGF-EGFR binding stimulates the EGFR dimerization with the consequent tyrosine kinase 

phosphorylation activates the MAP kinase cascade. From a biochemical point of view, this pathway activates several 

processes: intracellular calcium concentration for cellular mobility, glycolysis, and DNA and protein synthesis to 

support cell proliferation and metabolism and the upregulation of EGFR itself. 

Interestingly, Del Angel-Mosqueda et al. (2015) showed that EGF acts as an enhancer during the osteogenic 

differentiation of dental pulp stem cells, promoting extracellular matrix mineralization. Besides, Muller et al. (2002) 

showed that EGF pathway can be amplified by interaction with integrins and inhibits by cadherins (which mediates 

the cellular-matrix adhesion). Tamana et al. (2010) showed that soluble EGF acts in a similar way also toward bone 

marrow-derived MSC which were induced to proliferate, migrate and differentiate following the osteogenic fate.  

https://en.wikipedia.org/wiki/Cysteine
https://en.wikipedia.org/wiki/Cysteine
https://en.wikipedia.org/wiki/Cysteine
https://en.wikipedia.org/wiki/Cysteine
https://en.wikipedia.org/wiki/Cysteine
https://en.wikipedia.org/wiki/Glycine
https://en.wikipedia.org/wiki/Arginine
https://en.wikipedia.org/wiki/Cysteine
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This suggests that EGF acts both as autocrine and paracrine effector for keratinocytes-fibroblast-resident 

mesenchymal stem cells axis, necessary to both mucoperiosteum development and repair. 

 

8.1.2. Non-Keratinized epithelium 

Lining mucosa is the most abundant epithelium in the oral mucosa and it is characterized by a thick non-

keratinized epithelium. The first two layers are characterized by the same cells and structural features; however, the 

ridges of the basal layer are broader in comparison with the ones of keratinized epithelia and the prickle cells are 

larger. The last two layers are known as intermediate and superficial layer or stratum intermedium and stratum 

superficialis, respectively. The latter shows high flexibility in comparison with the keratinized layer and the cells 

retain the nuclei. Under the histological evaluation with hematoxylin and eosin, this layer usually appears stained. 

The nonkeratinized epithelium, however, can undergo a keratinization process mechanically induced by shear stress 

or chemical trauma. From a histological point of view, this hyperkeratinization transmutes a non-keratinized 

epithelium in an orthokeratinized ones. Although the hyperkeratinization is often a physiological response of 

epithelia toward exogenous stimuli, not dissimilar to a callous formation in the skin, this phenomenon is sometimes 

related to a neoplastic transformation (squamous cell carcinoma, SCC) (Gibbs et al., 2000; Izumi et al. 2003) 

The principal features are summarized in table VIII-2 

Table VIII-2 General characteristic of non- keratinized oral epithelia 

English Layer Name 
 
 

Latin Layer Name 
 

Basal layer 
 
 

Stratum basale 

Intermedium layer 
 
 

Stratum intermedium 

Superficial layer 
(third and fourth layer) 

Stratum superficialis 

Cell layer 1 2/3 of the total layers 1-3 

Shape Cuboidal or columnar Large ovoidal cells without 
prickly 

Slightly flat cells 
with few pyknotic cells 

Marker p75, CD29, PPAR-γ, CK5/14 CK4/13, CK19  

Function Mitotic function (DNA synthesis 
providing new cells) 

Mitotic function and protein 
Synthesis (most active) 

 

Characteristics Contain: 
Desmosomes 

Hemidesmosomes 
 

Cell capability: 
Self-renewal 

 Contains: 
Most of the nuclei 

 
Few organelles 

 
Dispersed filaments 

 

8.1.3. Cytokeratin 

Epithelial cells contain tonofilaments as an intracellular bridge. Tonofilaments, mostly known as cytokeratin 

(CK), are classified as intermediate filaments and are the most used markers to study epithelial differentiation.  Like 

other proteins, keratin synthesis is strictly regulated (Berkovitz et al., 1988). Each specific cytokeratin is regulated by 
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transcription factors with specific DNA binding sites. The transcription factor mostly involved in CK expression are 

Sp1, AP1, and AP2 but also extracellular signals, such as growth factors, can regulate CK expression, driving the 

epithelial fate. CKs are mostly expressed in pairs; the most critical pair for the basal layer are CK5 and CK14, and they 

are expressed in both keratinized and non-keratinized epithelia. During the differentiation, specific pairs are 

expressed in keratinized and non-keratinized, respectively CK1/10 and CK4/13.  As above mentioned, CK5 and CK14 

are mainly expressed by the undifferentiated keratinocytes of the basal layer. The mechanism which down-regulate 

the CK5/14 expression in the supra-basal and spinosum layer seems to be related to the expression of POU 

homeodomain factors Skn-1a and Tst-1. Indeed, the mRNA analysis of a double knockout murine model (Skn-1-/Tst-

1-) reveals that CK14 mRNA stays stable in the absence of those two repressor factors. However, the inhibitory effect 

of POU containing proteins is counteracted by the presence of CBP/p300. Though using a gel-retardation and DNA-

mediated cell-transfection assays, Blumenberg (1997) showed that CK5 regulation is complex. CK5 promoter has 

three binding sites, two with activation properties and one with the inhibitory property; he found that the principal 

transcription factors are Sp1 and AP2, which act with the other three transcription factors still unknown. Blumenberg 

also showed that NF-κB families counteract AP1 in CK regulation. AP1 induces the co-expression of CK5/14 by c-Fos 

and c-Jun, while p65, one of the main components of NF-κB pathways, suppresses the CK5/14 promoters. This 

suggests that the interplay between AP1 and NF-κB plays a crucial role in driving epithelial gene expression not only 

during physiological development but also during all processes in which NF-κB physiologically increases, such as 

during infection or wound healing.   

Regarding the regulation of CK 1 and CK10, it has been showed several times that intracellular calcium is a 

key regulator. In particular, Ca2+ acts on a 249-bp region situated near to CK1 promoter, and its activity is mediated 

by AP1. Another key factor in CK1 and CK10 expression is C/EBPβ. This latter strongly up-regulates the expression of 

those two early-stage differentiation markers (CK1/10) but seems unable to induce the expression of loricrin and 

involucrin, two of the late-stage differentiation markers. C/EBPβ is expressed in combination with AP2 in the 

suprabasal layer, and it regulates only the early events of keratinocyte differentiation. Similar effects are observable 

when a winged-helix/forkhead transcription factor Whn (Hfh11, Foxn1), is overexpressed. The latter is active only 

on CK1 promoter and contextually, it down-regulates profilaggrin, loricrin, and involucrin. On the opposite, the 

transcription factor C/EBPα and AP2 are active only on CK10 promoter, C/EBPα expression is induced in the spinosum 

layer by the decreased expression of AP2 (fig. VIII-1). 
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Figure VIII-1 Schematic representation of CK1/10 induction 

CK13, together with its partner CK4 is expressed in the spinosum layers of non-keratinized epithelia. CK13 

promoter contains a TATA box and several other transcription factors binding sites. Moreover, it has two 

transcription-start sites upstream ATG codon. The overexpression of CK13 is frequently observed in epithelial tumor 

and it can be upregulated by Ca2+ or retinoic acid (Blumenberg et al., 1986, 1988, 1992, 1997; Boukamp et al., 1988; 

Berkovitz et al., 1998; Adams et al., 1976; Shetty et al., 2012) (fig. VIII-2). 

 

 

Figure VIII-2  Schematic representation of CK4/13 induction 

8.2. Gingival mucoperiosteum  

Mucoperiosteum is a composite structure composed of the mucous membrane lining the outer part of the 

alveolar bone known as periosteum. The oral mucosa is characterized by the absence of the submucosa (described 

in chapter 1) and it is directly connected to the bone. This structure is typically found in the gingival tissue and, in 

https://en.wikipedia.org/wiki/Mucous_membrane
https://en.wikipedia.org/wiki/Periosteum
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that contest, takes part in a more complex structure known as the periodontium. The periodontium also includes 

the periodontal ligaments (PDL) and the cementum and is responsible for protecting the teeth (Atsuta et al., 2016). 

The gingival margin follows a scalloped-like course across the dentition due to the interdental papillae, 

which fill the interdental spaces beneath the tooth contacts. Moreover, the gingiva is histologically divided into two 

portions: 

• The free gingiva, which is characterized by two non-keratinized epithelia in its inner part, known as sulcular 

epithelium (in the free part) and the junctional epithelium (in direct contact with the teeth). The sulcular 

epithelium forms the wall of the sulcus and, together with the junctional epithelium, form the dentogingiva 

junction. The junctional epithelium has two basal lamina, the internal one that faces the tooth and the 

external one that faces connective tissue; due to this characteristic, it results in the most permeable 

epithelium and the lamina propria underlying the junctional epithelium is characterized by a chronic 

inflammatory state derived by the filtration of several microbial antigens. On the contrary, the outer 

surface which is mainly keratinized.  

• The attached gingiva, which is covered by a keratinized epithelium, extends apically from the free gingiva 

towards the alveolar mucosa. The latter is defined as "attached" because it is firmly adherent to the 

cementum and the alveolar bone. 

This structure is interesting because it is encircled by several types of pluripotent stem cells and have the 

capability to adapt its histological features to protect the regeneration of the underlying tissue. Despite can be 

easily imagined that mesenchymal stem cells play a key role in epithelial adaptation, the mechanisms which 

regulate this phenomenon are not well understood. 

 

8.3.  Oral mucosa models 

The full-thickness engineered oral mucosa is characterized by a lamina propria substitute and a stratified 

epithelium. The lamina propria is represented by a biocompatible scaffold fully repopulated with vital and matrix-

secreting oral fibroblasts. This structure has a supporting role in keratinocyte differentiation and proper behaviour. 

The proper scaffold has, ideally, a porous structure to allow fibroblast infiltration but should withstand to the 

shrinkage began by fibroblast growth. The stratified squamous epithelium, fixed on the lamina propria by a self-

produced basement membrane, is represented by densely packed keratinocytes with the stem potential to undergo 

differentiation as they migrate to the surface. This phenomenon is usually induced by the airlifting of proliferating 

oral keratinocytes in a chemically defined medium. The scaffold, the cells source and culture medium composition 

could be modified and improved in order to optimize the full-thickness oral mucosa accordingly to the research 

purpose (Izumi et al., 2000 and 2003; Dongari-Bagtzoglou et al., 2006). 

As mentioned above, the lamina propria scaffolds play a crucial role in obtaining adequate oral mucosa. 

The proper scaffold mast has satisfactory biocompatibility, porosity, biostability, and mechanical properties to 

support both fibroblast ad keratinocytes growth. The scaffold developed during the years are numerous and can be 

divided into the sequent categories:  naturally-derived scaffolds, collagen-based scaffolds, and synthetic scaffolds 

and composite scaffolds. These models and their applications are fully described in chapter 1. 
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In general, the gingival tissue is part of a more complex structure characterized by a fine, but not fully 

understand yet, crosstalk between cell types. In particular, MSCs role, either when in "stem" state or under tissue 

damaged induced differentiation, is under investigation. In this part of the work, we focused our study on the role 

of hMSC or osteoblast (OB) on keratinocytes in their three-dimensional physiological environment.  

To asses this aim, the engineered 3D organotypic oral mucosa model, described in the previous chapter (2), 

was employed in 4 different set-ups.   

Indeed, this part of the present Ph.D. thesis is aimed to clarify: 

• the paracrine effect of mesenchymal stem cells (hMSC) under differentiation condition onto 

keratinocytes behavior 

• the crosstalk between oral epithelia and hMSC in presence or absence of osteoblastic 

differentiation factor 

• the main factor mediating the interaction between the mesenchyme and the oral epithelia 

  



 

81 

IX. Materials and methods 

9. Evaluation of hMSC on Oral Mucosa model 

9.1.  Paracrine effect of hMSC on Oral Mucosa model 

hMSCs were maintained in DMSM 10% FBS and the conditioned medium (CM) was collected every third 

day, centrifuge at 1200 rpm for 5 minutes and store at -20° until use. 

In order to evaluate  CM effect onto 3D epithelial cultures, the FAD medium, generally used for growing 3D  

cultures (¾ DMEM, 5% FBS plus ¼ Ham's-F12 medium enriched with 1.88 mM CaCl2, 50 mM Glycerol, 10-10 M Cholera 

Toxin, 10 ng/ml EGF, 5 µg/ml Insulin, 0.4 µg/ml Hydrocortisone, 5 µg/ml Apotransferrin and 2x10-8 nM Triiodo-

thyronine), was modified by substituting the DMEM 5% FBS part with the conditioned medium produced by 

differentiating HMSCs.  

Freshly produced osteogenic medium mixed with ¼ Ham's-F12 plus the above-listed growth factors was 

used as the control medium.  The experimental procedures are summarized in figure IX-1. 

 

Figure IX-1 Schematic reproduction of OB conditioned engineered oral mucosa 

9.1.1. hMSC and Oral Mucosa Co-Cultures 

Oral Mucosae were prepared as described in paragraph 4.2 in p12 transwell. Briefly, each lamina propria 

substitute was prepared by enriching a collagen premix (1.65 ml Rat tail collagen type I 6.6 mg/ml, 105 µL 10x F12, 

105 µL FBS, 10.5 µL PEN/Strep 100x, 2.5 µl NaOH 1 M) with 1.25x106 Human Gingival Fibroblasts (HGF), the mixture 

was left untouched for two days. Following, 1.5x105 HOKs were seed onto each lamina propria substitute, let adhere 
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and growth in submersed condition until confluent. After 4 days, each 3D system was moved on the top of hMSC -

populated well and positioned at air/liquid interface by reducing of medium volume to 450 µL. The medium was 

changed every day for 12 days and then OMs were formalin-fixed and paraffin-embedded for histologic analysis 

while hMSC were fixed and stained as described in paragraph 4.1.6. 

9.2. Evaluation of hMSC derived Osteoblast effect on Oral Mucosa 

9.2.1.  Paracrine effect of hMSC-derived Osteoblast onto keratinocytes 

stratification and differentiation 

Osteoblast (OB) and OB conditioned media (CM) were obtained as described in paragraph 4.1.5 

FAD2_OB_CM was prepared thawing OB7_CM, OB14_CM, OB21_CM and OB28_CM at room temperature and 

mixing them with ¼ F12, 5% FBS, 1,88 mM CaCl2, 50 mM Glycerol, 10-10 Cholera Toxin, 10 ng/ml EGF, 5 µg/ml Insulin, 

0.4 µg/ml Hydrocortisone, 5 µg/ml Apotransferrin and 2*10-3 nM Triiodo-thyronine. Finally, all FAD2_OB_CM were 

filtrated before use. 

Oral Mucosa was prepared as described in paragraph 4.2 but, from the air/liquid interface OM was 

cultivated in the different FAD2_OB_CM, growth for other 12 days and then formalin-fixed and paraffin-embedded 

for histologic analysis.  

9.2.2. Osteogenic induced hMSC and Oral Mucosa Co-Cultures 

Oral Mucosa was prepared as described in paragraph 4.2 in p12 transwell. Briefly, each lamina propria 

substitute was prepared by enriching a collagen premix (1.65 ml Rat tail collagen type I 6.6 mg/ml, 105 µL 10x F12, 

105 µL FBS, 10.5 µL PEN/Strep 100x, 2.5 µl NaOH 1 M) with 1.25x106 Human Gingival Fibroblasts (HGF) then allowed 

to contract to the appropriate shape for 2 days. When ready, 1.5x105 HOKs were seed onto each lamina propria 

substitute, let adhere and growth in submersed condition until confluent. After 4 days, each 3D system was moved 

on the top of the hMSC-populated wells and positioned at air/liquid interface by reducing of medium volume to 450 

µL. Contextually, FAD medium was enriched OB differentiation factors. Medium was changed every day for 12 days 

and then OMs were formalin-fixed and embedded in paraffin for histologic analysis while hMSCs were fixed and 

stained as described in paragraph 4.1.6. 

9.3. Haematoxylin and eosin stain 

HE staining was carried out onto the 4 µm thick tissue sections obtained from formalin-fixed paraffin-

embedded 3D tissue cultures. Briefly, slides were rehydrated and stained with Hematoxylin for 10 minutes at room 

temperature (RT), then counterstained with Eosin for 5 minutes at RT. Finally, tissue slides were rapidly dehydrated 

and mounted. Tissue morphology was finally optically evaluated under a Leica DM750 optical microscope (Leica 

Microsystems, Basel, Switzerland). 
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9.4. Immunohistochemistry analysis 

IHC staining was carried out onto, at least, three tissue sections obtained from formalin-fixed paraffin-

embedded 3D epithelial tissue cultures. Briefly, slides were deparaffinized and re-hydrated with sequential passages 

in xylene and descending concentrations of ethanol (100, 95, 90, 70 and 70%); once rinsed, slides were unmasked in 

EDTA buffer 0,1 M pH 8 (Sigma Aldrich; Milano, Italy) for 20’ at 100°C, saturated for 1 hour in PBG (0,5% BSA and 

0,2% gelatin in PBS) and incubated overnight with the respective primary rabbit antibodies against CK10 (1:200), 

CK13 (1:300) and CK5 (1:300) (Abcam; Cambridge, UK). Signals were developed by using a universal ABC kit and DAB 

substrate (both from Vectastain). Finally, nuclei were counterstained with Hematoxylin for 1 minute at room 

temperature and mounted in an aqueous mounting medium. Tissue morphology was finally optically evaluated, as 

above described. Three randomly selected pictures from each slide were collected at 40x magnification. Nuclei and 

positive cells were manually counted using the cell counter plugin of ImageJ softener. The degree of CK5, CK10 and 

CK13 expressions were categorized and scored on a scale of 0-3+, as follows: 0: immune-negativity, +: 1-15% positive 

cells, +: 16-49% positive cells and +++: 50-100% positive cells (the most intense staining visualized). 

Statistical analysis was performed using Friedmann’ s ANOVA followed by Dunn’s post-hoc test. 

9.5. Proteomic Array 

Protein array (Proteome Profiler™ Human Angiogenesis Array Kit, R&D, Minneapolis, MN, USA; ARY007) 

charted 55 proteins in conditioned media from hMSCs, OB14 and OB28. The proteomic array was performed 

according to manufacturer's instructions. Briefly, pre-coated membranes were blocked with the blocking buffer 

number 7 for 1 hr on a rocking shaker; after that, CMs diluted in Array Buffer 4, were used to incubate the 

membraned overnight. The second day, the adherent proteins were retrieved by sub-sequential addition of the 

Detection Antibody Cocktail conjugated with biotin (1 hr), the Streptavidin-HRP solution (30 minutes) and Chemi 

Reagent Mix (1 minute). Finally, images were collected with a ChemiDoc (Bio-Rad) and profiles of mean spot pixel 

density were measured using ImageLab Software. A mix of 3 to 4 independently collected CM for each condition 

were used to perform the analysis. 

9.6. Elisa 

ELISA (Quantikine® ELISA Human KGF/FGF-7 Immunoassay, R&D, Minneapolis, MN, USA; DKG00) was 

performed to quantified KGF amount in CM derived by hMSCs, OB14 and OB28 cultivated both in 2D and 3D 

conditions. The ELISA was performed according to the manufacturer's instructions. Briefly, selected wells were 

activated with Assay Diluent RD1-25 and samples were added in triplicate. After 3 hr of incubation, the Human KGF 

Conjugate was used to detect the adherent protein amount. After that, the substrate solution was added to develop 

the signal. Finally, the absorbance was quantified with the Spectrophotometer UltroSpec 100 set to 450 nm with a 

correction wavelength set to 570 nm. Three to 4 independently collected CM were used to perform the analysis. 

After that, the absorbance values were converted in pg/ml with the standard curve equation. Finally, the unpaired 

t-student test, as statistical analysis, was performed using GraphPad Prism 6. 
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9.7. Mucoperiosteum model 

The mucoperiosteum model was prepared following the scheme below (fig. IX-2). Briefly, hMSCs were 

trypsinized, count by trypan blue stain, and resuspend 2x106 cell/ml in 1:1 fibrinogen (12 mg/ml) and complete 

medium. Next, 30 mU/ml thrombin were added immediately before seeding, and 105 cells were seeded for in each 

scaffold. Subsequently, the fibrin gel formation was fastened by mechanical stimulation, and hMSCs were let adhere 

in the incubator. After 2 hours of incubation, scaffolds were submersed with 1.5 ml of DMEM 10% FBS and let it 

grow for one week before preparing the connective tissue substitute. The connective substitute solution (1.65 ml 

Rat tail collagen type I 6.6 mg/ml, 105 µL 10x F12, 105 µL FBS, 10.5 µL PEN/Strep 100x, 2.5 µl NaOH 1 M) was 

prepared, filled with 3,3x105 HGF/ml, pour in 48 well plate and let solidify for 2 days in incubator. Then, 50 µl of 

fibrin glue (10 mg/ml fibrin mixed with 0,5 NIH U thrombin and activated with 2,4 mM CaCl2) were used to coat the 

upper surface of the repopulated BTC/nHA scaffold and the connective layer was moved with a sterile spoon-like 

spatula on the top of the fibrin glue and left untouched for 30 minutes. Later, 2,5x105 HOKs were seeded in 20 µl on 

each model, left adhere for 2 hours in the incubator and submerged in FAD medium for 4 days. Finally, the system 

was cultivated for 12 days with the bone part submerged and the mucosa counterpart at the air-liquid interface. 

And formalin-fixed and paraffine embedded (paragraph 4.2) for histological analysis (paragraph 9.7.1) or used for 

mechanical analysis (paragraph 4.3.3)  

 

 

Figure IX-2 Schematic representation of the mucoperiosteum setting methods 

9.7.1. Masson Trichrome assay 

The histological analysis was carried out on, at least, three tissue sections obtained from formalin-fixed 

paraffin-embedded 3D epithelial tissue cultures. Briefly, slides were deparaffinized and re-hydrated with sequential 

passages in xylene and descending concentrations of ethanol (100, 95, 90, 70, and 50%). Once rinsed, slides were 

stained with the Bio-Optica kit 04-010802 and following the manufacturer instructions. Briefly, slides were incubated 

for 10 minutes with the Weigert's iron hematoxylin, drained out and re-incubated with the Picric acid alcoholic 

solution; after that, slides were rapidly washed and incubated for other 4 minutes in the Mallory's Ponceau acid 

fuchsin, washed and reintubated in a Phosphomolybdic acid solution for other 10 minutes. Finally, slides were 

counterstain for 5 minutes in Masson aniline blue and mounted with a water-based mounting media (Bio-Optica).  
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X.Results 

10.1. Paracrine effect evaluation 

10.1.1. hMSCs paracrine effect on keratinocytes stratification and differentiation 

Hematoxylin and eosin staining of the treated 3D oral mucosa (fig. X-1) shows that hMSC derived CM (X-1 

c) strongly affects the normal stratification; both spinosum and cornified layers are absent or poorly organised, while 

basal layer cells appear loose and flat in comparison with the untreated control mucosa. On the opposite, control 

mucosa (b) well resembles the normal mucosal structure (a). The finding is particularly interesting if compared with 

the monolayer experiment presented in chapter 2. Indeed, when the hMSC CM is applied on the monolayer, 

keratinocytes metabolism is speeded up while in the three-dimensional structures, the excessive amount of growth 

factors umpired the correct stratification. 

 

Figure X-1 a) oral mucosa b) 3D reconstructed oral mucosa, c) 3D reconstructed oral mucosa after treatment with hMSC 

derived CM and an untreated one. H&E staining, Magnification 30X, bar scale 50 µm. 

 

10.1.2. Paracrine effect of hMSCs-derived osteoblast effect on keratinocytes 

stratification and differentiation 

To evaluate the effect of osteoblast secretome onto the keratinocyte differentiation, conditioned media 

(CM), produced by hMSCs under differentiating conditions and collected at the above described time points (7, 14, 

21 and 28 days), were mixed with ¼ Ham’s-F12 and FAD2 growth factors and used to growth an oral mucosa at the 

air-liquid interface and follow its differentiation and keratinization.  

A control mucosa was also produced by growing it in a freshly produced osteogenic medium mixed with ¼ 

Ham’s-F12 plus the above listed FAD2 factors.  

It was observed that the stratification process was affected by OB secretomes. As shown by the HE stainings 

(fig. X-2) of the control mucosa, despite osteogenic factors fostered the development of the cornified layer (which 

appeared like a para-keratinized-masticatory mucosa), the cytokeratin pattern expression was not alternated and 
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the high presence of the specific CK13 was observed in all conditions as well as the expression of CK5 in the basal 

layer (fig. X-3).  

However, the IHC analysis reveals that OB secretome impairs the development of the spinosum layer by 

interfering with the balance between CK10 and CK13. The MSCs addressed towards osteogenic differentiation 

increased the CK10 expression in the engineered mucosa with a contextual impairment of the CK13 expression (table 

X-1), usually expressed homogeneously among the oral mucosa. In particular, we observed that the effect induced 

by  OB14_CM correspond to a  statistically significant increase in the keratinization status and in the expression of 

CK10 differentiation marker in comparison with others condition in both spinosum (p<0,05) ad keratinized layer 

(p<0,01).
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Figure X-2 Hematoxylin and eosin staining of 3D reconstructed oral mucosa treated with osteogenic factor (DF) or conditioned medium (CM) collected by osteoblast (OB) in different stages of 

differentiation (OB7, OB14, OB21, OB28). Upper Images magnification 10X, bar scale, 50 µm. Lower images magnification 20x, bar scale 200 µm. 
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Figure X-3 CK5, CK10 and CK13 immunolocalization in 3D reconstructed oral mucosa treated with osteogenic factor (DF) or conditioned medium (CM) collected by osteoblast (OB) in different stages 

of differentiation (OB7, OB14, OB21, OB28). Magnification 15X, bar scale 100 µm
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Table X-1 CKs intensity scores.  

Marker Layer Control OB7_CM OB14_CM OB21_CM OB28_CM 

 Basal +++; H +++; H +++; H +++; H +++; H 

Ck5 Suprabasal/Spinosum ++; H ++; H ++; H ++; H ++; H 

 Cornified - - - - - 

 Basal - - - - - 

Ck10 Suprabasal/Spinosum +; E ++; E ++; E +; E +; E 

 Cornified - ++; E +++; E ++; H ++; E 

 Basal - +; E - +; H +; H 

Ck13 Suprabasal/Spinosum +++; H +++; E +++; E +++; E +++; E 

 Cornified +; H +; H +; H +; H +; H 

       

Note: Stainings were scored from 0 (no staining) to 3+ [for the most intense staining the expression pattern was classified as 

homogeneous (H) or heterogeneous (E)] 

10.1.3. Proteomic array and ELISA  

In order to detect which factors affected the epithelium proliferation and stratification, media protein profiles 

were analysed using a 55-proteins-profiler kit. Among the selected proteins, 15 (Serpin E1, Serpin F1, VEGF, FGF-1, 

IGFBP-3, Pentraxin-3, Persephin, CD26, Angiopoietin-2, TIMP-1, Thrombospindin-1, Thrombospindin-2, Coagulation 

Factor 3, uPA and Vasohibin) resulted down-regulated, 8 (CXCL16, IGFBP-1, Angiopoientin-1, Angiogenin, PK-1, TIMP-4, 

KGF and EG-VEGF) up-regulated, 8 (Amphiregulin, Artemin, GDNF, IGFBP-2, CXCL8, MCP-1, MMP-9 and PIGF) showed 

an irregular trend during the hMSC differentiation in vitro, 5 (VEGF-C, IL-1β, HGF, GM-CSF, CD105 and ADAMTS-1) were 

expressed only by hMSCs, 4 (CXCL4, Leptin, TGF-β1 and HB-EGF) were expressed only during the differentiation and the 

basic FGF was expressed only by OB14. The results are summarized in figure X-4 and in table X-2. Among these factors, 

several have been proven to be involved in wound healing process (ADAMTS-1, Angiogenin, GM-CSF, Angiopoietin and 

MCP-1) and keratinocytes growth and migration (FGF, IGFBP and TIMP families, MMP-9, Amphiregulin, HGF and KGF). 

Since we were interested in a factor which directly interact with keratinocytes, we selected KGF as candidate gene and 

quantified its production with ELISA technique.  
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Figure X-4 The histogram represents the amounts of proteins expressed during hMSCs differentiation. Bars represents relative pixel 

intensity. 
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Table X-2 Protein over, under or irregularly expressed among MSC osteogenic differentiation 

DOWN-REGULATED UP-REGULATED IRREGULAR TREND 

Serpin E1/PAI-1 CXCL16 Amphiregulin 

Serpin F1/PEDF IGFBP-1 Artemin 

VEGF Angiopoietin-1 GDNF 

FGF-1 Angiogenin IGFBP-2 

IGFBP-3 PK-1 CXCL8 

Pentraxin-3 TIMP-4 MCP-1 

Persephin KGF MMP-9 

DPPIV/CD26 EG-VEGF PIGF 

Angiopoietin-2 
  

TIMP-1 
  

Thrombospondin-1 
  

Coagulation Factor 3 
  

Vasohibin 
  

Thrombospondin-2 
  

uPA 
  

 

ELISA assay highlighted a statistically significant difference (p<0,05) between the KGF produced during the 

hMSC differentiation and that produced by the undifferentiated hMSCs. KGF amount increased to 208±36 pg/ml after 

14 days of differentiation and to 347±15 pg/ml after 28 days of differentiation (fig. X-5 a) The low or absent presence of 

KGF among the different OM-CMs tested suggests that all the KGF produced is metabolized by oral keratinocytes. 
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Figure X-5 KGF quantification by ELISA assay. The absorbance values were converted in pg/ml with the formula obtained with the standard curve. a) KGF amounts for each independent replicate; b) 

KGF amounts calculated for each condition. Bars indicate means and standard deviations, * p<0.05
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10.2. Co-Culture of the oral mucosa and hMSCs with or without differentiation 

factors: crosstalk effects 

10.2.1. hMSCs affects keratinocytes stratification and differentiation 

To evaluate if the hMSCs secretome affects oral mucosa differentiation, a 3D hMSC-OM co-cultures was 

developed. Histological analysis of the control 3D culture shows that the crosstalk between oral mucosa and hMSCs 

improve the keratinocytes behaviour ensuring a complete stratification process, both in the presence and absence of 

differentiating factors (fig. X-6 a). 

In particular, hMSCs seem to induce a stratification well-resembling the masticatory epithelium; above all the 

co-cultured oral mucosae growth without differentiation factors are characterized by 2 to 4 columnar-shaped and small 

cells which form a dense layers characteristic of the basal stratum, by a thick spinosum layer with some squamous cells 

and few pyknotic nuclei, a granulosum stratum and a thin keratinized layer with few nuclei retained. When the oral 

mucosa is co-cultured with hMSC in the presence of the differentiation factors, despite the basal layer appears similar 

to that formed in absence of differentiation factors, the spinous layer appears thicker and denser of nuclei. CK10 

expression was enhanced by the presence of hMSC differentiating a toward osteoblast lineage, indicating a role of this 

latter in fostering parakeratinized differentiation of the engineered mucosa.  
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Figure X-6 HOK differentiation patterns in response to the undifferentiated and differentiated hMSC secretome. Immunohistochemical staining of CK10 and CK13 shows the effect of the hMSC co-

cultivation with or without differentiation factors. Magnification 20x, bar scale 100 µm
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10.2.2. Mucosa model affects hMSC osteogenic differentiation  

To evaluate the effect of oral mucosae models onto hMSC differentiation, the hMSC, growth in co-cultures 

with oral mucosae, were fixed and stained. As previously shown, hMSCs need 3 to 4 weeks under differentiation stimuli 

to fully differentiate into osteoblasts and produce the deposits of calcium/phosphate that can be successfully stained. 

Nevertheless, as shown in figure X-7, both Von Kossa and Alizarin Red stains, specific for calcium and phosphate deposits 

respectively, gave positivity strongly already after 12 days co-culture in the presence of differentiation factors. All the 

other tested conditions used as controls (monocultured hMSCs in DMEM and FAD2 media with or without 

differentiation factors and co-culture hMSC and oral mucosa in FAD medium without differentiation factors) gave 

negative signals.  

 

Figure X-7 Von Kossa and Alizarin Red calcium and phosphate deposits staining after 12 days co-cultured hMSC with oral mucosa in 

FAD medium with or without differentiation factors or monocultured hMSC in DMEM or FAD media with or without differentiation 

factors. Magnification 4x, bar scale 75 µm  
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10.3. Connective tissue development: fibroblast-hMSCs interactions effect onto 

keratinocytes stratification and differentiation.  

The effect of hMSCs embedded within the connective tissue, together with HGF was assessed. As shown in 

figure X-8, hMSCs influenced keratinocytes stratification and differentiation also when embedded in the connective 

tissue. The histological analysis showed that hMSC speeded up the keratinocyte proliferation and stratification, 

obtaining the fully epithelium resembling the native one in only 7 days. Once again, the proliferative state induced by 

hMSCs resulted uncontrolled. Indeed, after another 1 week of direct co-culture, keratinocytes lose their organized 

structure.  

 

Figure X-8 Haematoxylin and eosin analysis of oral mucosa growth in direct contact with hMSC for, respectively, 7 and 14 days. 

Magnification 20x, bar scale 50 µm 

 

10.4. 3D composite model 

10.4.1. Histological analysis 

Masson Trichrome stain was used (fig X-9 a) to evaluate the mucoperiosteum model morphology. As shown by 

the histological sections, the connective tissue adapts to the scaffold surface following the porous structures of the 

scaffold itself. The keratinocytes layers are less in comparison with the base models and the basal cells appear flatter 

than their usual morphology. However, the spinosum layer is well-formed with a sufficient thickness. The keratinization 

was not observed. 

10.4.2. Mechanical properties evaluation 

The storage modulus (E') and the variation of loss factor (tan delta) in the meaning of the frequency were 

evaluated after mucoperiosteum development. The basal scaffold, interpenetrated with the fibrin gel (BTC/nHA_FG) 

was considered the control for the composite model: i) BTC/nHA_FG repopulated with HFOB (BTC/nHA_FG_HFOB), ii) 
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BTC/nHA_FG lined by the oral mucosa (BTC/nHA_OM), and iii) the full model composed by BTC/nHA_FG_HFOB lined by 

the oral mucosa (BTC/nHA_FG_HFOB_OM). 

As shown in figure X-9 b the storage modulus showed a similar trend for the pair BTC/nHA_FG (blue line) / 

BTC/nHA_FG_HFOB_OM (yellow line) and the pair BTC/nHA_FG_HFOB (orange line) / BTC/nHA_FG_OM (gray line). In 

particular, at high frequency, the first pair present values 3 times higher than the second pair. 

E' modulus decrease when the control BTC/nHA_FG is compared with the repopulated scaffold 

BTC/nHA_FG_HFOB. On the contrary, E' modulus increase when the BTC/nHA_FG_OM is grown in the presence of 

osteoblasts (BTC/nHA_FG_HFOB_OM). 

The E’ modulus variation among the samples indicated a degradation of the fibrin gel actuated or by the HFOB 

or by the HGF contained within the connective tissue. On the contrary, the storage modulus trend registered for the 

mucoperiosteum model results similar to the one listed for the control (BTC/nHA_FG). Those data indicated that the 

interaction between the OM and the HFOB increase the matrix production by osteoblast cells.  

The presented results are confirmed by Tan delta curves (fig. X-9 c). The Tan delta value registered highlighted 

an opposite trend when the full model (BTC/nHA_FG_HFOB_OM) is compared to the others. This attest an increasing 

of the elastic property in comparison with the viscous one, suggesting the formation of a more physiological matrix 

within the model. 
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Figure X-9 a) Histological images show the development of a mucoperiosteum model. 10x magnification; 150 µm bar scale. The curves represent the viscoelastic behaviour of BTC/nHA improved 

with the fibrin gel used as base for a mucoperiosteum model.  In particular, the (b) storage modulus E’ and the (c) the loss modulus Tan Delta are expressed in meaning of to the frequency
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XI. Discussion 

For the last 4 decades, several researchers have been focused on the development of novel three-dimensional 

(3D) cultures resembling cells behaviour physiological stimuli response and pathological development. The first 

examples of such models were developed in oncology to evaluate epithelial-mesenchymal transition (Mishra et al., 

2012). Currently, 3D cultures have been largely advanced and employed in several medical-related fields, also including 

tissue engineering (TE) and regenerative medicine fields. Despite 3D cultures have been applied in TE for evaluating 

porous scaffold cytocompatibility and effectiveness as implantable tools, the effect of the three-dimensional matrix on 

cells (both primary and immortalized cancer cells) has not been often well-thought-out. Indeed, the parameters that 

were usually evaluated for those cultures were limited to the cell adhesion capability onto the newly developed matrix, 

to the middle-term viability of seeded cells and, eventually, to differentiative potential of progenitor or stem cells was 

retained (Yu et al., 2015). Consequently, several engineered tissues models have been developed to resemble the 

physiological microenvironment to be applied in the biomaterial and prosthetic fields (Velasco et al., 2015). Despite the 

effort, most of them still lack the physiological complexity and the tissue interface connection.  

In the dentistry field, several research lines have been focused on the hard-soft tissue interface, especially in 

dental implantology, where the devices are for hard and soft tissue integration. In particular, the soft tissue of the oral 

mucosa is composed of a heterogenic group of pluristratified squamous epithelia underlined by a connective tissue layer 

in direct contact with different deep structures such as bones or muscles (Gibbs et al., 2000). In addition, the soft tissue 

at the peri-implant interface displays histological properties different from the soft tissue around natural teeth and if 

not maintained properly, the peri-implant mucosal barrier fails and leads to peri-implant disease.  

Although several factors are responsible for implant failure or of poorly peri-implant tissue integration, a critical 

role is played by the quality and the quantity of existing or augmented peri-implant mucosa. Several works report that 

the soft tissue integration is essential to improve implant graft and final clinical success (Artzi et al., 1993; Chiu et al., 

2015; Esfahanizadeh et al. 2016). In particular, a contextual soft tissue graft is recommended when the keratinized oral 

epithelium on the apical free gingiva is limited, or the space between the apical sulcus and the junctional epithelium is 

lower than 2 mm. However, this solution is not always applicable due to the lower availability of tissue for the allograft 

and the morbidity associated with the autograft (Artzi et al., 1993).  

Therefore, new strategies to improve soft tissue recovering and integration with implants should be developed. 

However, the literature still lacks clear information regarding the molecular mechanism driven the keratinocytes to 

differentiate towards a keratinized on the non-keratinized epithelium. To overtake this limitation, the first part of this 

thesis was focused on the evaluation of this phenomenon.   

As shown by several studies, keratinocytes can be chemically induced toward keratinized fate by chemical 

factors such as Calcium ions (Ca2+), glycerol, 12-O-tetradecanoylphorbol-13-acetate (TPA) and vitamin D3. Glycerol and 

Calcium Chloride (CaCl2) are often used to improve the formation of the stratum corneum in skin 3D models. However, 

https://www.researchgate.net/profile/Nasrin_Esfahanizadeh2
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despite those factors induce the Ck10 expression in monolayered cells, they are not able to induce it in 3D models 

(Lamber et al., 2006; Pol et al., 2002).   

Sonkoly et al. (2010) and You et al. (2007) showed, in two independent studies, that the pathways dependent 

by protein-kinase C (PKC) can be activated by TSG101, a protein implicated in multiple biological functions including 

regulation of gene transcription, vesicular trafficking, cellular growth and differentiation. TSG101-PKC signaling activates 

the miR-203, which induce CK10 expression and keratinocytes differentiation. However, those studies were conducted 

on skin models and the mechanism troughs the activities of TSG101 is upregulated remain unclear. 

Like other researchers, Neupane et al. (2018) focused their research on the connective tissue underlying the 

epithelia. In particular, they focused on the anteroposterior axis of hard-soft palate development in a mouse model. 

They conducted a tissue recombination assay of the embryos palate at (E16) for 2 days they demonstrated the role of 

Meox2 to induce the non-keratinized fate during the soft palate development.  

Since the sulcular epithelia follow a similar trend, in the first part of this thesis, the effect of stromal cells on 

keratinocytes differentiation was evaluated using a custom-made 3D organotypic mucosa model. 

We demonstrated that stromal compartment affects the epithelial stratification. In particular, the fibroblast 

subtype and the concentration of glycerol, CaCl2 and FBS influenced the stratum spinosum appearance and, 

consequently, the differentiation grade and keratin production of the stratum corneum (fig. X-1). This finding reinforced 

the idea that the mesenchyme substrate strongly influences keratinocytes behaviour. However, this observed 

phenomena cannot explain what happens in vivo since there are not evidences, until now, of different gingival fibroblast 

subset.  Thus, we hypothesised that cells other than fibroblasts might influence the epithelia stratification:  i) 

mesenchymal stem cells, present in the periosteum and ii) osteoblasts which are nearby located in the alveolar bone. 

Due to the potential of hMSC to migrate toward the damaged site and differentiate in loco, we decide to evaluate the 

effect of hMSC onto keratinization not only in the undifferentiated condition but also during the differentiation.  

The first parameter taking into the account was the paracrine effect of hMSC secretome in undifferentiated 

condition and during the differentiation. Interestingly, the hMSC_CM have a negative effect towards keratinocytes 

stratification. Indeed, the keratinization was induced during the proliferative stage of the basal layer with the 

consequent impairment of the spinosum layer.  

The effect of secretome derived from hMSC grown in pro-osteogenic condition was also evaluated.  

As expected, the full differentiation of hMSCs into osteoblasts (OB) occured in 28 days. During this period, according to 

the literature, mineralization (Iwamoto et al., 2016; Kulterer et al., 2007), gene expression (with downregulation of pro-

proliferation genes such as TGF-β2, and upregulation of pro-mineralization gene such osteopontin, osteocalcein and 

osteonectin), and secretome composition changed and promoted the bone matrix formation.  

During our experiments, the differentiative state of hMSC was weekly checked by specific stain, and the media 

collect. OB_CM effect was visually assessed by haematoxylin and eosin staining (Fig. X-2) which revealed a huge increase 

of the keratinized layer in all tested conditions and the impairment of the spinosum layer in contrast with that observed 

when hMSC_CM was used. Actually, the latter did not affect the stratum spinosum, which was well represented, and 

neither the epithelium thickness that was comparable with the control.  



 

101 

Intriguingly, studying the specimens treated with OB_CM with immunohistochemical analysis, we observed 

that thi effect corresponds to an up-regulation of the CK10 induced by the CM (fig. X-3) and that the OB14_CM more 

induced in a statistically significative manner the expression of CK10 than any other condition. Our results suggest that 

keratinized gingival formation is mediated by MSC which migrated toward the healing bone around the implant during 

the differentiation so inducing keratinization.  

To elucidate which secretome factor mediates this effect, a protein array was performed. Among the 55 

evaluated proteins, 15 of them (Serpin E1, Serpin F1, VEGF, FGF-1, IGFBP-3, Pentraxin-3, Persephin, CD26, Angiopoietin-

2, TIMP-1, Thrombospindin-1, Thrombospindin-2, Coagulation Factor 3, uPA and Vasohibin) were down-regulated, 8 

(CXCL16, IGFBP-1, Angiopoietin-1, Angiogenin, PK-1, TIMP-4, KGF, and EG-VEGF) up-regulated, 8 (Amphiregulin, 

Artemin, GDNF, IGFBP-2, CXCL8, MCP-1, MMP-9, and PIGF) showed an irregular trend during the hMSC differentiation 

in vitro, 5 (VEGF-C, IL-1β, HGF, GM-CSF, CD105, and ADAMTS-1) were expressed only by hMSCs, 4 (CXCL4, Leptin, TGF-

β1, and HB-EGF) were expressed only during the differentiation, and the basic FGF was expressed only by OB14 (fig. X-

4). 

Among the possible factors, KGF was selected to be quantified by the ELISA technique since it has been 

previously showed that KGF is a critical mediator in keratinocytes proliferation and it acts directly on keratinocytes 

without influence fibroblast. ELISA test mainly confirmed the data obtained by the proteomic array. Indeed, KGF 

resulted secreted only by OB, and its secretion increased during the differentiation in a statistically significant way. 

Interestingly, this trend was also observed when hMSCs were grown and differentiated in three-dimensional condition. 

KGH was not detected in oral mucosa treated with the conditioned media. This data suggests that KGF available might 

be quickly metabolized by keratinocytes.  

To confirm the above described results, two cocultures systems were developed. One defined indirect, in which 

the oral mucosa and the MSCs were grown in the same system but without contact, and one defined direct, in which 

the three cell types (HGF and HOK of the oral mucosa and the MSC) were grown in contact.   

In the indirect co-culture, mucosae moved to the air-liquid interface were grown in transwell positioned onto 

repopulated deep well. Histological analysis revealed that the co-cultivation of OM with hMSC improve the cells 

differentiation and stratification since the 4 layers seems to better resemble the native tissue. In particular, the basal 

layer resulted well-formed with the presence of firmly attached, compact and cuboidal keratinocytes at the interface 

with the connective tissue. However, the spinosum layer of OM grown on co-culture with hMSC in the absence of 

osteogenic factor presented more prickle cells in comparison with the OM grown in the presence of the osteogenic 

factors. 

The described effect is bi-directional; our results demonstrated that hMSCs differentiation was speeded up by 

the presence of OM. Indeed, after the 12 days of co-cultivation in the presence of osteogenic factors, hMSCs resulted 

positive both to Von Kossa and Alizarin red staining while, in the other condition, staining was negative (figure X-7). Our 

results showed, for the first time, that oral mucosa play a role in MSC differentiation even if the crosstalk between 

keratinocytes and MSC are well known. For instance, Sevamani et al. (2015) observed that hMSC differentiate toward 

myofibroblast in transwell co-cultivation with keratinocytes.  
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We also tested the effect of direct co-cultivation of hMSC with the oral mucosa by embedding the MSC 

themselves within the collagen matrix with the HGF (hMSC:HGF 1:10). The histological analysis showed that despite 

hMSC were able to improve keratinocytes proliferation (indeed, a fully stratified epithelium was observed after only six 

days of cultivation. After one more week of cultivation, the basal keratinocytes retain their proliferative state, and 

keratinocytes lose their organized structure. 

Finally, to conclude this work, the knowledge acquired during the other experiments were used to develop an 

innovative mucoperiosteum model mimicking the anatomical association between oral mucosal tissue and the 

underlying bone. This new engineer tissue equivalent is designed to be a valuable tool in testing new material intended 

to be implanted near the hard-soft tissue interface. The main advantages of this model, in comparison with the others 

presented in the introduction (Almeda et al., 2016, 2018 a and b) is that the mucosal model and the bone model are let 

growth together, allowing the cross-talk between the three cell-type involved. 

The bone counterpart was accurately selected accordingly to the literature analysis. Firstly, we considered that 

most of the newly implanted materials are developed to face different challenges.  Implanted material, indeed, must 

be able to counteract, or at least reduce, bacteria adhesion while improving the tissue regeneration around the implant 

itself. Indeed, we excluded bone scaffolds with intrinsic immunomodulatory or antibacterial properties or unsuitable 

for further improvements such as the vascularization. Next, we considered bone physiological composition. 

Since calcium phosphate is the main element of the bone ECM, a basic bovine tendon collagen (BTC) based 

sponge enriched with nano-hydroxyapatite (nHA) was selected. The BTC/nHA model was subsequently improved with 

the fibrin gel to increase the stiffness and improve hMSC proliferation and differentiation. The advantage of this 

collagen-based model in comparison with the printed ceramic-based scaffold used by Almeda et al. (2018) is that the 

hydrogel allows nutriment passage between medium and the mucosal model and the fibrin gel expand this effect. This 

characteristic allowed the keratinocytes growth at air-liquid directly on the top of the bone matrix. 

Indeed, the mucoperiosteum model was successfully developed, as showed by the histological analysis (fig X-

9 a). Regarding the mechanical evaluation (fig. X-9 b and c), the “full model” storage modulus curve resembles the one 

obtained with the empty scaffold. This result suggest that OM improved the osteoblast secretion of ECM components 

and ECM mineralization and, taken together with the effect observed with the indirect co-cultures, confirms that in a 

pro-osteogenic microenvironment, OM induces the hMSC towards the osteogenic fate.  

Even though the present models do not represent the full complexity of the mucoperiosteum model due to 

the missing of blood vessels or immune system model, they still represent a huge enhancement in the oro-facial model 

development. Indeed, to our knowledge, this is the first innervated mucoperiosteal model in which oral keratinocytes 

are able to stratify on the repopulated collagen matrix in direct contact with a repopulated bone substitute. 
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Chapter 4 

Innervated Mucoperiosteal model development 

XIII. Introduction 

13.1. Periodontium innervation 

The innervation is a crucial factor during embryogenesis and tissue regeneration. Indeed, both sensory and 

motor neurons are indispensables for correct organ functions. Recently, the theory that innervation is not only essential 

for organs functions but also for organs and tissue development acquired more consideration. For instance, the Möbius 

syndrome is a congenital syndrome characterized by hypoplastic abducens of facial nerves that have been related to a 

defective formation of the orofacial portions (i.e., teeth or palate) (Kandel et al.,2000). Also, the potential of neurons to 

interact with stem cell niches and their capability to mediates the environmental soluble factors to regulate stem cells 

fate remain an unexplored but still fascinating process (Jimenez-Rojo et al., 2012; Pagella et al., 2014).   

  Like all the other organs, orofacial structures are innervated by specific neuronal subtypes that are responsible for 

organs motility and sensitivity. The mechanisms which regulate the axonal growth and innervation are similar between 

each organ; indeed, the innervation starts with the secretion of specific soluble proteins, which binds the nerve branches 

and allows or inhibits the migration and elongation of axons through long distances (Kandel et al.,2000). During the 

axon elongation, several tropic guidance molecules are secreted or exposed on the cell membrane by different tissue 

types to drive the correct branches toward the correct tissue target.   

The most known axon guidance proteins are the membrane-associated inhibitory proteins Semaphorins and 

ephrins, the laminin-related secreted Netrins (with the capability to binds both pro-innervation and anti-innervation 

receptors) and the Neurotrophins (NTs), the most studied trophic molecules with the capability to chemoattract 

neurons and support the axonal outgrowth. Nowadays, four mammalian NTs are well studied, and they are the nerve 

growth factor (NGF), the brain-derived neurotrophic factor (BDNF), the neurotrophin-3 (NT-3), and the neurotrophin-4 

(NT-4). All NTs act trough the bindings of specific receptors: p75 neurotrophin receptor (p75NTR), TrkA, TrkB, and TrkC. 

Each NT binds to these receptors with different affinities (Reichardt et al., 2006; Egea et al., 2007; Raper et al., 2010; Lai 

Wing Sun et al., 2011). 

Axons secrete the neurotransmitters once they reach their target tissue or organs to regulate the production 

of guidance molecules. Neurotransmitters can act both as inhibitory or activator factors accordingly to the receptors 

they bind, and different classes of them are secreted accordingly to the neuron types. The most important neurons type 

for the periodontium are the: i) motor neurons that innervate the muscles via neuromuscular junctions controlling the 

buccal movements and secrete acetylcholine and the ii) sensory neurons with the capability to convert external stimuli 
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into electric stimuli that are processed by the central nervous system and secrete various neuropeptides such as 

substance P, neurokinines, and CGRP onto the innervated organs (Kandel et al., 2000). 

Interestingly, Blais et al. (2014) demonstrated in an innervated 3D skin model that Substance P improves skin 

reepithelialisation. This finding suggests that substance P can also act onto other epithelial tissues such as gingiva and 

cornea that are well innervated by sensory neurons. Moreover, it is well-known that both gingiva and bone structures 

are full of the neurokinin-1 receptors (NK1-Rs) that bind with high specificity the Substance P, the NK1-Rs receptor is 

present on osteoclast, osteoblast, and keratinocytes of the junctional epithelial surface. 

In general, the periodontal membrane innervation depends on dental and interalveolar nerves, branches of 

the alveolar nerves. The nerve ending in the periodontal membrane is divided into non-medullated nerve fibres (small 

fibrils which innervate stromal cells, cementoblasts, and cementum) and the unmyelinated naked fibrils. 

Part of the fibres from the periodontal membrane innervates the gingival tissue through lamina propria. Most 

of them innervate the attached gingiva. 

13.2. Innervated epithelial model 

Nowadays, there are not available innervated oral mucosa models even if some authors have developed 

innervated 3D epithelial models mainly focused on ophthalmology. In 2017 Wang et al. present a complex corneal model 

composed by epithelium, stroma, and nerve based on a repopulated thin silk protein film (which composes the epithelial 

and stromal part) supported by a porous silk sponge that supports the neuronal growth. In this model, dorsal root 

ganglia were used and drove towards the other compartments using a collagen-based hydrogel loaded with NGF. Due 

to the use of NGF, this model is not suitable to evaluate corneal keratinocytes capability to drive DRGs outgrowth. 

In 2012, Lebonvallet et al. produced the first innervated skin model by using a decellularized dermal substitute 

repopulated with rat-DRGs, but the authors did not observe any differences in keratinocytes behaviour. On the opposite, 

in 2013, Roggenkamp et al. produced a similar model, and they observed that the inhibition of calcitonin gene-related 

peptide (CGRP), but not substance P (SP) signaling, decrease the epidermal growth. As previously described, in a 3D 

wounded skin model, Blais et al. proved the role of the substance P in the re-epithelialization process. These last two 

works suggest that the different neuropeptides are involved and regulated by different processes; GPCR is produced 

during the epithelial stratification while substance P activation occurs after damage. 

Finally, Kuchler-Bopp et al. (2016) described an innervated tooth by a mixture, composed of epithelial and 

mesenchymal cells and trigeminal ganglia dispersed in a semi-solid media, implanted under mice skin. 

 

13.3. Aims 

The following part of this Ph.D. thesis was aimed to the advancement of the previously described epithelial 3D 

models. In particular, this study focused on the effect of 3D mucosal models onto axonal outgrowth and on the 

optimization of an innervated bone-mucosa model.  
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XIV. Materials and methods 

14.1. Mucosa model effect on the nervous system 

14.1.1. Axonal outgrowth evaluation 

In order to evaluate if the osteomucosa model can be innervated, ND7/23 were incubated with all OM_CM 

collected, and the axonal outgrowth assessed. Briefly,  96 well-plate were coated with poly-D-Lysin and laminin in sterile 

condition. Afterward, ND7/23 cells were detached and diluted to 104 cell/ml in DMEM high glucose complemented with 

0.5% FBS and 25 µM FDU (5-fluoro-2’-deoxy-uridine) and seeded in pre-coated well in 100 µl. After 6 hours of adhesion, 

cells were incubated with pre-warmed conditioned media for 24 hours. Finally, after the incubation time, ND7/23 cells 

were fixed, stained with DAPI, ad photographed using the In Cell Analyzer 2000. 

14.1.2.  DRG Isolation 

 Embryonic lumbar (L1-L6) dorsal root ganglia (DRGs) were gained from 16 to 18 days-old (E16-18) C57BL/6 

embryos. After decapitation, embryos were conserved in ice-cold Hank’s balanced salt solution (HBSS, Invitrogen) for 

the DRGs collection. Under a stereomicroscope, the spines were detached from the whole body and opened using a 

scissor to expose the DRGs. The meninges were removed while the isolated DRG roots were cut. Finally, DRGs were 

seeded into the lower wells of a 15-well μ-Slide Angiogenesis plate from Ibidi (Cat. No. 81506) embedded in the fibrin 

solution. The fibrin gel was obtained by mixing a 12 mg/ml plasminogen-free fibrinogen with an equal volume of solution 

concentrated 4 NIH U/mL thrombin activated by 5 mM of CaCl2 and 20μg/mL of aprotinin. The fibrin gel polymerized 

for 30 min at 37˚C in a 5% CO2 humidified incubator, before the addition of culture media. DRGs were cultured with 

neurobasal medium supplemented with 2% v/v B-27 Serum-Free Supplement 1 (B-27, Invitrogen), FDU (Sigma-Aldrich), 

25 mM glucose (Glu, Sigma-Aldrich), 1 mM pyruvate (Sigma-Aldrich), 50 ng/ml 7S Nerve Growth Factor (NGF, 

Calbiochem), 2 mM glutamine (Q, BioWitacker) and 1% penicillin/streptomycin (P/S) and left adhere for 24 hr before 

treatments. 

14.1.3. Quantification of axonal growth  

Axonal outgrowth was quantified after 72 hr of treatment with different conditioned media derived from oral 

mucosa (OM), human mesenchymal stem cells (hMSCs), hMSCs under osteogenic condition for 14 days (OB14) and 

hMSCs under the osteogenic condition for 28 days (OB28). FAD media, with or without osteoblast differentiation factors, 

were used as control. After the treatments, DRGs were fixed for 10 minutes in a 4% PFA solution implemented with 4% 

sucrose, blocked and permeabilised with a 1% BSA solution implemented with 0,2% Triton incubated over-night with 

the mouse anti-β-Tubulin III (1:2000) at 4°. The day after, the signal was developed by using an AlexaFluo488-conjugated 

goat anti-mouse antibody (1:400) and nuclear stain DAPI for 1 hr at room temperature. Finally, images were acquired 

using IN Cell Analyzer 2000 equipped with IN Cell Investigator software (GE Healthcare, United Kingdom). To quantify 

the differences between the treatment, the radial outgrowth, defined as the area comprised between the ganglion edge 

and the outgrowth front, was automatically calculated, and the outgrowth area quantified according to Bessa et al. 

(2013), using a validated MatLAB algorithm. 
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14.2. Mucoperiosteum model 

The mucoperiosteum model was prepared following the scheme below (fig. XIV-1). Briefly, hMSCs were 

trypsinized, count by trypan blue stain, and resuspend 2x106 cell/ml in 1:1 fibrinogen (12 mg/ml) and complete medium. 

Next, 30 mU/ml thrombin were added immediately before seeding, and 105 cells were seeded for in each scaffold. 

Subsequently, the fibrin gel formation was fastened by mechanical stimulation, and hMSCs were let adhere in the 

incubator. After 2 hours of incubation, scaffolds were submersed with 1.5 ml of DMEM 10% FBS and let it grow for one 

week before preparing the connective tissue substitute. The connective substitute solution (1.65 ml Rat tail collagen 

type I 6.6 mg/ml, 105 µL 10x F12, 105 µL FBS, 10.5 µL PEN/Strep 100x, 2.5 µl NaOH 1 M) was prepared, filled with 3,3x105 

HGF/ml, pour in 48 well plate pre-coated 105 collagen embedded ND7/23 and let solidify for 2 days in incubator. Then, 

50 µl of fibrin glue (10 mg/ml fibrin mixed with 0,5 NIH U thrombin and activated with 2,4 mM CaCl2) were used to coat 

the upper surface of the repopulated BTC/nHA scaffold and the connective layer was moved with a sterile spoon-like 

spatula on the top of the fibrin glue and left untouched for 30 minutes. Later, 2,5x105 HOKs were seeded in 20 µl on 

each model, left adhere for 2 hours in the incubator and submerged in FAD medium for 4 days. Finally, the system was 

cultivated for 12 days with the bone part submerged and the mucosa counterpart at the air-liquid interface.   

 

 

Figure XIV-1 Schematic representation of the mucoperiosteum setting methods 

14.2.1. Masson Trichrome assay 

The histological analysis was carried out on, at least, three tissue sections obtained from formalin-fixed 

paraffin-embedded 3D epithelial tissue cultures. Briefly, slides were deparaffinized and re-hydrated with sequential 

passages in xylene and descending concentrations of ethanol (100, 95, 90, 70, and 50%). Once rinsed, slides were stained 

with the Bio-Optica kit 04-010802 and following the manufacturer instructions. Briefly, slides were incubated for 10 

minutes with the Weigert's iron hematoxylin, drained out and re-incubated with the Picric acid alcoholic solution; after 

that, slides were rapidly washed and incubated for other 4 minutes in the Mallory's Ponceau acid fuchsin, washed and 

reintubated in a Phosphomolybdic acid solution for other 10 minutes. Finally, slides were counterstain for 5 minutes in 

Masson aniline blue and mounted with a water-based mounting media (Bio-Optica). 
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14.2.2. Immunofluorescence analysis 

Immunofluorescent staining was carried out on, at least, three tissue sections obtained from formalin-fixed 

paraffin-embedded 3D epithelial tissue cultures. Briefly, slides were deparaffinized and re-hydrated with sequential 

passages in xylene and descending concentrations of ethanol (100, 95, 90, 70 and 70%); once rinsed, slides were 

unmasked in citrate buffer (1 M, pH 6) for 15 at 500 W in a microwave, saturated for 1 hour in PBG (0,5% BSA and 0,2% 

gelatine in PBS) and incubated overnight with the primary mouse antibodies against β-tubulin III (1:2000; Sigma-Aldrich), 

rabbit antibody against TBR1 (1:250; GeneTex) and sheep antibody against NGF (1:300; Thermofisher).  Signals were 

developed by using a corresponding AlexaFluo-conjugated secondary antibody. Finally, nuclei were counterstained with 

DAPI for 10 minutes at room temperature (RT) and mounted in an aqueous mounting medium. Image were acquired 

under an Inverted Fluorescence Microscope (Zaiss). 
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XV. Results 

15.1. Effect of oral mucosa on the neuronal compart  

15.1.1. ND7/23 

The pro-innervation potential of OM was evaluated with the immortalized cell line ND7/23. ND7/23 were 

incubated for 24 hours with CM from different OM models, NGF enriched medium and FAD were used as control. As 

shown in figure XV-1, most of OM models have a positive effect on axonal outgrowth; however, any statistically 

significant difference (p>0,05) was detected. Despite this positive trend, OM_hMSC CM showed a negative effect on 

axonal outgrowth. 

Interestingly, the CM derived by indirect co-cultures of OM with hMSC under osteoblastic differentiation 

condition showed a positive effect on axonal elongation. This effect is particularly relevant since it has been showed 

that the positive effect of hMSC on axonal outgrowth decrease during the osteoblastic differentiation until to become 

negative when hMSC are fully osteogenically differentiated. These results support that the crosstalk between the OM 

and hMSC mutually modified the behaviour of both components, inducing the production of more neuroprotective 

factors to the detriment of anti-innervation factors.
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Figure XV-1 The histograms represent the axonal outgrowth (AO) among different conditions. Bars represent the means of the percentage of axon-presenting cells on the total cell amount, error bars 

represent the standard deviation, and * represent the statistically significant result (p<0,05). In the histogram a is represented the effect of complete OM models on ND7/23 cells; NGF 100 ng/ml) and 

FAD media were used as control. In the histogram b is represented the effect of OM Co-cultivated with hMSC, with or without differentiation factors (DF) during keratinocytes differentiation; NGF 100 

ng/ml) and FAD media were used as controls. 
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15.1.2. Dorsal Root Ganglia 

The pro-innervation potential of OM was also evaluated with primary DRGs. DRGs 23 were incubated for 72 

hours with CM collected by OM models growth with or without CM derived by hMSCs, OB14, and OB28, FAD with or 

without differentiation factors (DF) were used as control. 

Surprisingly, results were opposed to ones obtained with the immortalized cell line ND7/23. In particular, as 

shown by immunofluorescence images (fig XV-2 a), in which the neuronal marker β-Tubulin III is stained in red, all 

conditions showed a well-formed, dense and homogeneously neurite network emerging from DRG. 

 However, when conditions are compared with controls, a decrease raging between 2-3-fold is observed. The 

higher difference is noted when OM and OM_hMSC are compared with their controls FAD. These results suggest a 

negative effect of OM on axonal outgrowth. Nevertheless, it must be minded that innervation is a complex process 

regulated by a plethora of positive and negative signals. Images suggest that OM produces not only factors that inhibit 

the axonal outgrowth but also molecules that induce the neurite network formation (fig XV-2 b).  

DRGs are not supposed to innervate the oral mucosa and this, unexpected results could support previous work 

(Joacher et al. 2018), which suggests the capability of the specific neuronal branches to recognise and migrate only 

toward the body area that they must innervate. 
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Figure XV-2 Axonal growth quantification of embryonic dorsal root ganglion (DRG) treated with OM conditioned media or control 

(FAD media). The fluorescence images were acquired after staining with the antibody against β-tubulin III (red) and nuclear DAPI 

stain (blue). Magnification 4x, bar scale 100 μm (a). Images were quantified using Bessa et al. (2013) algorithm developed for 

quantification of axonal outgrowth (b).  
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15.2. 3D composite model 

15.2.1. Scaffold suitability: 

15.2.1.1. Histological analysis 

Masson Trichrome stain was used (fig XV-3 a and c) to evaluate the mucoperiosteum model morphology. As 

shown by the histological sections, the connective tissue adapts to the scaffold surface following the porous structures 

of the scaffold itself. The keratinocytes layers are less in comparison with the base models and the basal cells appear 

flatter than their usual morphology. However, the spinosum layer is well-formed with and thick. The keratinization was 

not observed. 

Moreover, in the innervated model, it is possible to observe several cells migrating within the bone counterpart 

(fig XV-3 c and f). The migrating cells were characterized by immunofluorescence analysis and, at the interface between 

bone and oral mucosa, several TBR1/β-tubulin type III positive cells identified as ND7/23. However, any axonal 

prolongations were found despite the presence of secreted NGF within the model (fig XV-3 e)
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Figure XV-3 Histologies show the development of a mucoperiosteum model and an innervated mucoperiosteum model. 50 µm bar scale. a) Histological image of the mucosal counterpart of the 

mucoperiosteum stained with Masson Trichrome; Magnification 20x, bar scale 50 µm. b) Immunofluorescence (IF) stain of the mucosal counterpart of the mucoperiosteum stained with the 

fluorescent nuclear stain DAPI (blue), the neuronal transcription factor 1 (TBR1; red) and the neuronal microtubule element (β-tubulin III; green), Magnification 10x, bar scale 50 µm. c) Masson 

Trichrome staining ND7/23 at the hard-soft tissue interface, Magnification 20x, bar scale 50 µm. d) IF stain of ND7/23 at the hard-soft tissue interface with nuclear stain DAPI (blue), the neuronal 

transcription factor 1 (TBR1; red) and the neuronal microtubule element (β-tubulin III; green). e) IF of ND7/23 at the hard-soft tissue interface with the nuclear stain DAPI (blue), the neuronal 

guidance receptor (ROBO2; red), and neuronal growth factor (NGF; green). f) IF of ND7/23 migrated within the bone scaffold stained with the fluorescent nuclear stain DAPI (blue), the neuronal 

transcription factor 1 (TBR1; red) and the neuronal microtubule element (β-tubulin III; green), Magnification 40x, bar scale 50 µm. 
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XVI. Discussion 

Oral cavity is a complex anatomical structure composed of many tissues finely interacting with each other. 

Mimicking this complexity remains an important challenge in tissue engineering where true biomimetic 

mucoperiosteum model characterized by the alveolar bone covered by the stromal tissue lined by a squamous 

pluristratified epithelium, has not been engineered yet as well as organotypic mucosal model including innervation.  

To overcome these limitations, in the present work i) the behaviour of 2 different neuronal type, the 

immortalized ND7/23 and the primary dorsal root ganglia (DRGs) were evaluated; ii) a human 3D mucoperiosteum 

model innervated with the ND7/23. 

First of all, the indirect effect of our custom-made OMs on neuronal cell types was assessed.  

When applied onto the immortalized neuronal murine model, ND7/23, OM secretomes demonstrated a slight 

induction of axonal outgrowth. This effect was enhanced when OMs were grown in the presence of differentiated hMSC 

(15% axon elongation increasing) or OB28 secretome (20% axon elongation increasing). This phenomenon is particularly 

fascinating because, on the contrary, osteoblast conditioned media decreased axonal outgrowths. 

Nevertheless, when the assay was performed onto primary dorsal root ganglia, the results obtained were 

controversial since OMs secretomes reduced axons elongation. As shown in figure XV-2, OM_CM and OM_hMSC_CM 

decrease the AO of 3,5 times in comparison with the control (FAD media).  

Regarding these latter results, some considerations should be made.  OM is innervated by the trigeminal 

ganglia (TGs) and not by the DRGs and, despite both ganglia arise from the same embryological compartment, a different 

behaviour between TGs and DRGs has been observed. For instance, Joacher et al. (2018) compared the response of both 

TGs and DRGs to typical neuronal growth factors, in presence or absence of mechanical injury; they observed differences 

between the two subpopulations in terms of viability and comparing the mean number of processes per neuron. 

Probably, this means that after axon elongation, the two subpopulations retain different receptor types and topography, 

which could explain a different behaviour. Considering that, is it possible that OMs showed a negative effect on DRGs 

but still may be innervated by specific trigeminal ganglia.  

Subsequently, to conclude this analysis, the mucoperiosteum model (chapter 3) was improved with ND7/23 

cells and the expression of NGF by the model itself (fig XV-3 e) suggested that the model could be fully innervated. 

However, the innervation protocol must be furtherly development since, despite ND7/23 appeared able to migrate in 

the bone counterpart (fig XV-3 d and f) and to express neuronal marker (fig. XV-3 d), the axon elongation was not 

observed. 
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Finally, to evaluate bone matrix formation, the dynamic compression test was performed on the complete 

model. According to the literature, osteoblasts increase the degradation rate of the fibrin gel (Noori et al., 2017); indeed, 

the storage modulus of the repopulated scaffold was 3 times lower than the FG coated sponge. 
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XVIII. Conclusion and future perspective 

 In the present work, the regulatory role of the mesenchymal tissue onto epithelial was evaluated. Indeed, from 

the literature, it is well known that, accordingly to the position, keratinocytes follow different differentiative fates. Still, 

the microenvironment is not enough to induce the specific keratinized fate and the correct gene expression.   

 Moreover, accordingly to 3Rs law, to limits the use of animal models for implant validation, a better knowledge 

of the relationship between hard and soft tissue and a new model able to mimic this interaction was needed.  

 To assess the role of mesenchymal stem cells hMSCs in an undifferentiated condition and under osteogenic 

toward keratinocytes behaviour, we developed a home-made organotypic 3D oral mucosa (OM) cultures. The 3D model 

was treated with the conditioned media (CM) of hMSC, and hMSC derived osteoblast (OB) at for stage of differentiation 

(OB7, OB14, OB21, OB28) and the first results showed that during the differentiation hMSC produce and secrete factors 

that induce the keratinization and the expression of the marker of differentiation CK10; in particular in the middle stage 

of differentiation (OB14). This finding may impact the design of new implantable devices able to induce, alone, the 

epithelial growth and keratinization to improve implant graft avoiding epithelial graft linked to the morbidity of another 

zone.    

 This effect was also confirmed in the indirect co-cultivation of hMSC and OM in the presence or absence of 

the osteogenic condition. Indeed, the osteogenic stains showed that OM mediates and improve the effect of pro-

osteogenic factors, inducing the bone phenotype within 12 days of cocultivation (instead of 28) and that, this 

phenotype, upregulate the CK10 expression by OM.   

 To elucidate the mechanism that may drive this effect, we investigated 55 proteins that were found in the 

secretomes, and we found differences trough the hMSC differentiation in 40 of them. One of them was already showed 

to be important in skin re-epithelialization and, in general, in keratinocytes proliferation and migration. Indeed, this 

factor secretion increase during the differentiation in a statistically significant way (p<0,001). Remarkably, this increase 

is retained when the hMSC are differentiated within a 3D porous scaffold. However, further studies with a purified 

protein are needed to confirm the role of KGF in the observed phenotype.   

 In the present work, we also showed that OM might have a pro-innervation effect, at least during the last 

stages of keratinocytes stratification. However, the correct primary models, the Trigeminal ganglia (TGs), was not yet 

available. Another interesting perspective in this work would be the evaluation of OM effect onto different TG branches.  

This data offers the evidence that OM model may also be used as valuable tools to analyse the mechanism 

which drove specific ganglion branches toward the correct body site.   

 Finally, an innovative tool for biomaterial evaluation was produced. Indeed, a mucoperiosteum model, able to 

mimic the features of the bone-mucosa structures and with an integrative and functional cross-talk, confirmed by the 
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improvement of the mechanical properties of the bone growth in direct co-cultures with the OM in comparison with 

the bone model alone, is presented for the first time. This model, which already present unique features, have been 

studied to allow further development, such as vascularization or integration with the immune system since the porous 

structures is suitable to sustain vessel formation and the absence of elements, such the chitosan, known to modulate 

immune system behaviour, would allow a physiological behaviour of both innate (i.e., monocytes or macrophages) or 

adaptative (i.e., lymphocytes) immune cells. This latter characteristic makes this model suitable for co-cultures with 

both commensal and pathogenic bacteria allowing the studies onto the antibacterial properties of studied materials.   
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XIX. Abbreviation list 

ALP: alkaline phosphatase 

AR: Alizarine Red 

B-27: B27 Serum-Free Supplement 1 

BM: bone marrow  

BMPs: bone morphogenetic proteins  

BTC/nHA: bovine tendon collagen/nano-hydroxyapatite  

CK: cytokeratin 

CM: conditioned medium 

DED: De-epidermalized dermis  

DFs: osteogenic/differentiation factors   

DMA: Dynamical mechanical analysis 

DMEM: Dulbecco’s modified Eagle medium  

DPMSCs: dental pulp hMSC 

DRG: dorsal root ganglia 

E’: Storage modulus  

EC: European Commission  

ECM: extracellular matrix 

EDC: 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

EGF: epidermal growth factor  

EMILIN: fibulins and elastin microfibril Interface Located Protein 

F12: Ham’s F-12 medium   

FAD: DMEM/F12 

FBS: foetal bovine serum 

FCS: foetal calf serum 

FDU: 5-fluoro-2'-deoxy- uridine 

FG: fibrin gel 

FGF-7 or KGF: fibroblast growth factor-7 

FN: fibronectin  

GVHD): graft versus host disease  

HB-EGF: heparin-binding EGF-like growth factor  

HBSS: Hank’s balanced salt solution 

HDF: human dermal fibroblast 

HE: Haematoxylin and eosin stain 

HGF: human gingival fibroblast 

HLA (human leucocyte antigen) 

HOK: Human Oral Keratinocytes  
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IL-1: interleukin-1 

ITGβ1: integrin β1   

JE: junctional epithelium 

KGF: keratinocytes growth factor  

KHG: keratohyalin granules  

MAGPs: microfibril associated glycoproteins 

MMPs: metalloproteinase  

MSC-derived osteoblast (OB) 

MSCs: mesenchymal stem cells 

NGFR: Nerve growth factor receptor 

NHS: N-Hydroxysuccinimide 

OB7: hMSCs under osteogenic condition for 7 days 

OB14: hMSCs under osteogenic condition for 14 days 

OB21: hMSCs under osteogenic condition for 21 days 

OB28: hMSCs under osteogenic condition for 28 days 

OE: oral epithelium 

OM: oral mucosa 

O-MSCs: oral mesenchymal stem cells  

OSE: oral sulcular epithelium 

PDL1: programmed death ligand 1  

PEN/Strep: penicillin and streptomycin 

PF: pulp fibroblasts 

PIE: peri implant epithelium 

PISE: peri-implant sulcular epithelium 

PKC: protein-kinase C  

PPAR-γ: peroxisome proliferator-activated receptor-gamma  

RT: room temperature  

RTC: rat tail collagen 

SAMs: substrate adhesion molecules  

SEM: scanning electron microscopy  

TAF: tumour-associated fibroblast 

Tan delta: loss factor 

TE: tissue engineering  

TGF: Tansforming growth factors  

Th17: T regulatory cells  

VK: Von Kossa 
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