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1 Introduction

In this article, which is a direct extension of the companion paper [1], we discuss how to

embed into string theory a generic Gukov-Witten (GW) surface defect [2, 3] of the N = 4

supersymmetric U(N) Yang-Mills theory. We do this by analyzing the massless fields on the

world-volume of fractional D3-branes in Type II B string theory on an orbifold background,

following the proposal of Kanno-Tachikawa (KT) [4]. Here, we shall only provide a brief

introduction and refer the reader to the introductory sections of the companion paper [1]

for a more detailed account and for a discussion of the relation of our approach to others

already present in the literature as well as for the relevant references.

We consider Type II B string theory on the following orbifold space-time

C(1) ×
C(2) × C(3)

ZM
× C(4) × C(5) (1.1)

with constant vacuum expectation values turned on for particular twisted scalar fields in

the Neveu-Schwarz/Neveu-Schwarz (NS/NS) and Ramond/Ramond (R/R) sectors. In this

background we engineer a 4d gauge theory by introducing stacks of fractional D3-branes

that extend along the first two complex planes C(1) and C(2). In this combined orbifold/D-

brane set-up, which we refer to as the KT configuration [4], we compute the profile in

configuration space of the massless open strings by means of open/closed world-sheet cor-

relators, and show that these exactly reproduce the singular profiles that characterize the

GW surface defect in the N = 4 gauge theory [2]. In this way we are therefore able to

provide an explicit identification of the continuous parameters of the GW solution with the

vacuum expectation values of the twisted scalars.

In [1] we already worked out this identification for the simple surface defects that

correspond to the Z2 orbifold. In this paper, we extend our analysis to the ZM orbifolds

for M > 2 which can describe the most general defect corresponding to the breaking of the

U(N) gauge group to the Levi subgroup U(n0)× . . .×U(nM−1) with
∑

I nI = N .

While the basic conceptual issues in realizing such a surface defect using fractional

D3-branes remain the same for all M , the main difference with respect to [1] lies in the

treatment of the closed string background. For M = 2 the massless fields of the NS/NS

and R/R twisted sectors correspond to degenerate ground states and their vertex operators

are realized using spin fields [5]. This is no longer the case for M > 2 and, in fact, the

massless fields of the NS/NS sector arise from excited states created by the oscillators of the

fermionic string coordinates. Furthermore, pairs of twisted sectors are related by complex

conjugation and this turns out to play an important role in the identification of the closed

string background with the real parameters in the GW profiles.

In the ZM orbifold, there are (M − 1) twisted sectors. One could treat all of them at

once using the bosonization formalism [5, 6], but in order to keep track of all the relative

phases it would be necessary to introduce the so-called cocycle factors. Since dealing

with these cocycle factors is quite involved, and since the relative phases are crucial to

obtain the correct identification of the continuous parameters of the GW surface defects,

we adopt an explicit fermionic approach and use the bosonization formalism only where
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no phase ambiguities arise. The advantage of this method is that the relative phases

among the contributions from different sectors are easily tracked and fixed by the fermionic

statistics. Moreover, in this fermionic approach we can describe the fractional D3-branes

using boundary states (for a review see for example [7, 8]). Even though the KT brane

configuration has not been explicitly considered so far from the boundary state point of

view, we can exploit many of the results that already exist in the literature [9–12] and

generalize them to the present case, in which the fractional D3-branes partially extend

along the orbifold. The price we have to pay for using this fermionic approach is that

we have to distinguish between the twisted sectors and treat separately those whose twist

parameter is smaller or bigger than 1
2 .

The open string sector, instead, is similar to that of the M = 2 case. We recall that for

the KT configuration, the fractional D3-branes have the same field content as the regular

D3-branes, since in this case the orbifold does not project away any of the open string

excitations, unlike the case when the branes are entirely transverse to the orbifolded space.

Indeed, on the world-volume of the fractional D3-branes we find a gauge vector and three

complex massless scalars plus their fermionic partners. However, the corresponding vertex

operators are linear combinations that behave covariantly under the action of the orbifold.

When M > 2, these combinations are slightly more involved than for M = 2 and are

written in terms of generalized plane-waves.

Once the vertex operators for the massless open and closed string states are derived,

the discussion proceeds along the same lines as in the M = 2 case, but with the important

technical differences and peculiarities that we have just mentioned.

This paper is structured as follows. In section 2 we provide a detailed description of

the twisted closed string spectrum of Type II B strings on the orbifold (1.1). We then

proceed in section 3 to introduce the fractional D3-branes of the ZM orbifold and study

two different aspects. Firstly, from the closed string point of view we write the boundary

states and use them to derive the reflection rules that relate the left- and right-moving

modes of the twisted closed strings in all sectors. Secondly, we derive the ZM -invariant

vertex operators describing the massless open string excitations that live on the D3-brane

world-volume. This turns out to be non-trivial given that the D3-brane extends partially

along the orbifolded space. In section 4 we calculate mixed correlators among the open

and closed string excitations and use them to derive in section 5 the singular profiles of the

gauge fields near the location of the surface defect. The field profiles we obtain precisely

match those of the GW defect once the background values of the twisted closed string field

are identified with the continuous parameters of the surface defect.

Our analysis provides an explicit realization of the monodromy defects of the N = 4

super Yang-Mills theory using perturbative string theory methods. As we discuss in the

concluding section 6 we believe that this stringy realization may prove to be useful in further

investigations of surface defects and their properties, and it may even offer an alternative

approach to the study of extended objects in ordinary field theory through their embedding

into string theory.
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2 Twisted closed strings in the ZM orbifold

We consider Type II B string theory on the orbifold (1.1). The i-th complex plane C(i) is

parametrized by

zi =
x2i−1 + ix2i√

2
and z̄i =

x2i−1 − ix2i√
2

(2.1)

where xµ are the ten real coordinates of space-time. The orbifold group ZM is generated

by an element g such that gM = 1, with the following action on z2 and z3:

g : (z2 , z3) −→ (ω z2 , ω
−1z3) (2.2)

where

ω = e
2πi
M . (2.3)

The action of g on z̄2 and z̄3 follows from complex conjugation. This breaks the SO(4) '
SU(2)+ × SU(2)− isometry group of C(2) × C(3) to SU(2)+.

To describe the closed strings propagating on this orbifold, we use the complex nota-

tion and denote the bosonic string coordinates by
{
Zi(z), Zi(z)

}
for the left-movers and{

Z̃i(z̄), Z̃i(z̄)
}

for the right-movers, with z and z̄ parametrizing the closed string world-

sheet. Similarly, we denote the fermionic string coordinates by
{

Ψi(z),Ψi(z)
}

for the

left-movers and
{

Ψ̃i(z̄), Ψ̃i(z̄)
}

for the right-movers.

2.1 Twisted sectors

In the ZM orbifold theory, there are (M − 1) twisted sectors labeled by the index â =

1, . . . ,M−1. If M is odd, we can divide the twisted sectors in two sets, each one containing
M−1

2 elements. The sectors of the first set are labeled by â = a = 1, · · · , M−1
2 and are

characterized by a twist parameter

νa =
a

M
<

1

2
. (2.4)

The sectors of the second set have, instead, a twist parameter

1− νa =
M − a
M

>
1

2
(2.5)

and are labeled by â = (M − a). If M is even, in addition there is an extra sector with

twist parameter 1
2 , which has to be treated separately. For most of the discussion we will

assume that M is odd and briefly comment on the special case with twist 1
2 , occurring

when M is even, only at the very end, since this case has already been discussed in detail

in the companion paper [1].

In the sectors with label a and twist parameter as in (2.4), the left-movers of the

bosonic and fermionic string coordinates satisfy the following monodromy properties on

the world-sheet:

Z2(e2πi z) = e2πiνa Z2(z) , Z3(e2πi z) = e−2πiνa Z3(z) , (2.6a)

Ψ2(e2πi z) = ± e2πiνa Ψ2(z) , Ψ3(e2πi z) = ± e−2πiνa Ψ3(z) , (2.6b)
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where the +(−) sign refers to the NS (R) sector. The analogous relations for Zi and Ψi

can be obtained by complex conjugation. On the other hand, the right-movers satisfy the

monodromy properties:

Z̃2(e2πi z̄) = e−2πiνa Z̃2(z̄) , Z̃3(e2πi z̄) = e2πiνa Z̃3(z̄) , (2.7a)

Ψ̃2(e2πi z̄) = ± e−2πiνa Ψ̃2(z̄) , Ψ̃3(e2πi z̄) = ± e2πiνa Ψ̃3(z̄) . (2.7b)

Again, the relations for Z̃i and Ψ̃i are obtained by complex conjugation.

For the sectors with label (M −a) and twist parameter as in (2.5), similar monodromy

relations hold for the world-sheet fields but with νa everywhere replaced by (1 − νa).

2.2 Twisted NS sectors

We now turn to a discussion of the spectrum of massless string states in the various twisted

sectors, focusing mainly on the fermionic fields in the complex directions 2 and 3. In the

fermionic formalism, when the NS boundary conditions are imposed, we have to treat

separately the sectors with twist parameter smaller than 1
2 and those with twist parameter

bigger than 1
2 .

2.2.1 Sectors with twist parameter νa <
1
2

In this case the monodromy properties (2.6b) and their complex conjugate lead to the

following mode expansions for the left-moving fermionic fields (see for example [13] and

references therein):

Ψ2(z) =
∞∑

r=1/2

(
Ψ2
r−νa z

−r+νa− 1
2 + Ψ2

−r−νa z
r+νa− 1

2

)
,

Ψ2(z) =
∞∑

r=1/2

(
Ψ2
r+νa z

−r−νa− 1
2 + Ψ2

−r+νa z
r−νa− 1

2

)
,

(2.8)

and

Ψ3(z) =

∞∑
r=1/2

(
Ψ3
r+νa z

−r−νa− 1
2 + Ψ3

−r+νa z
r−νa− 1

2

)
,

Ψ3(z) =
∞∑

r=1/2

(
Ψ3
r−νa z

−r+νa− 1
2 + Ψ3

−r−νa z
r+νa− 1

2

)
.

(2.9)

The oscillators Ψ2
−r−νa , Ψ2

−r+νa , Ψ3
−r+νa and Ψ3

−r−νa are creation modes acting on the

twisted vacuum of the a-th sector which we denote by |Ωa〉. Such a state is defined by

|Ωa〉 = lim
z→0

σa(z) sa(z) |0〉 (2.10)

where |0〉 is the Fock vacuum and σa(z) and sa(z) are, respectively, the bosonic and

fermionic twist fields [14]. More precisely, these twist fields take the form

σa(z) = σ2
νa(z)σ3

1−νa(z) and sa(z) = s2
νa(z) s3

−νa(z) , (2.11)

– 4 –
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where the superscripts refer to the complex directions where the twist takes place, and the

subscripts indicate the twist parameters. The bosonic twist field σa(z) is a conformal field

of weight νa(1 − νa) while the fermionic twist field sa(w) is a conformal field of weight

ν2
a . Therefore, the total conformal weight of the operator associated to the twisted ground

state is νa. This means that |Ωa〉 is massive with a mass m given by

m2 = νa −
1

2
< 0 . (2.12)

This tachyonic state is removed by the GSO projection.

The first set of physical states one finds in the GSO projected spectrum are those

obtained by acting with one fermionic creation mode with index r = 1
2 on the twisted

vacuum. In particular, the oscillators Ψ3
− 1

2
+νa

and Ψ2
− 1

2
+νa

increase the energy by ( 1
2 − νa)

and thus, when acting on the twisted vacuum, they create two massless states.1 The vertex

operators corresponding to these massless excitations, in the (−1)-superghost picture and

at zero momentum,2 are:

V1
a(z) = σa(z) :Ψ3(w) sa(z) : e−φ(z) ,

V2
a(z) = σa(z) :Ψ 2(w) sa(z) : e−φ(z) .

(2.13)

Here φ(z) is the bosonic field appearing in the bosonization formulas of the superghosts [5]

and, as usual, the symbol : : denotes the normal ordering. The vertex operators (2.13) are

conformal fields of weight 1 and we collectively denote them as Vαa (z) with α = 1, 2. As

explained in appendix A.1, they form a doublet transforming as a spinor of SU(2)+.

In the right-moving part, the monodromy properties (2.7b) lead to the following mode

expansions for the fermionic fields

Ψ̃2(z̄) =

∞∑
r=1/2

(
Ψ̃2

r+νa z̄
−r−νa− 1

2 + Ψ̃2−r+νa z̄
r−νa− 1

2

)
,

Ψ̃2(z̄) =
∞∑

r=1/2

(
Ψ̃2

r−νa z̄
−r+νa− 1

2 + Ψ̃2−r−νa z̄
r+νa− 1

2

)
,

(2.14)

and

Ψ̃3(z̄) =
∞∑

r=1/2

(
Ψ̃3

r−νa z̄
−r+νa− 1

2 + Ψ̃3−r−νa z̄
r+νa− 1

2

)
,

Ψ̃3(z̄) =
∞∑

r=1/2

(
Ψ̃3

r+νa z̄
−r−νa− 1

2 + Ψ̃3−r+νa z̄
r−νa− 1

2

)
.

(2.15)

1The oscillators Ψ2
− 1

2
−νa

and Ψ3
− 1

2
−νa

, instead, carry an energy ( 1
2

+νa) and, upon acting on the twisted

vacuum, they create massive states with m2 = 2νa.
2The reason to write the vertex operators at zero momentum is because, as in [1], ultimately we will be

interested in describing a constant twisted closed string background to account for the continuous parameters

of the GW surface defects.

– 5 –



J
H
E
P
0
8
(
2
0
2
0
)
0
5
8

The oscillators Ψ̃2−r+νa , Ψ̃2−r−νa , Ψ̃3−r−νa and Ψ̃3−r+νa are creation modes acting on the

twisted vacuum of the right sector which we denote by |Ω̃a〉. This is defined by

|Ω̃a〉 = lim
z̄→0

σ̃a(z̄) s̃a(z̄) |0̃〉 (2.16)

where |0̃〉 is the Fock vacuum of this sector and

σ̃a(z̄) = σ̃ 2
1−νa(z̄) σ̃ 3

νa(z̄) and s̃a(z̄) = s̃ 2
−νa(z̄) s̃ 3

νa(z̄) . (2.17)

The bosonic twist field σ̃a(z̄) is a conformal field of weight (1 − νa)νa while the fermionic

twist field s̃a(z̄) is a conformal field of weight ν2
a , so that the total conformal weight of the

operator associated to |Ω̃a〉 is νa. The right-moving ground state is then tachyonic with a

mass given by (2.12) and it is removed by the GSO projection.

The first set of physical states in the GSO projected spectrum are those created by a

fermionic creation mode with index r = 1
2 . In particular those generated by the oscillators

Ψ̃2
− 1

2
+νa

and Ψ̃3
− 1

2
+νa

are massless since the energy carried by these modes exactly cancels

that of the vacuum. Therefore, the vertex operators at zero momentum associated to these

right-moving massless excitations in the (−1)-superghost picture are:

Ṽ1
a(z̄) = −σ̃a(z̄) : Ψ̃2(z̄) s̃a(z̄) : e−φ̃(z̄) ,

Ṽ2
a(z̄) = σ̃a(z̄) : Ψ̃3(z̄) s̃a(z̄) : e−φ̃(z̄) .

(2.18)

These are conformal fields of weight 1 and we collectively denote them as Ṽβa (z̄) with

β = 1, 2. We point out that the − sign in the first line above is introduced because in this

way the two operators form a doublet transforming in the spinor representation of SU(2)+,

as explained in appendix A.1.

2.2.2 Sectors with twist parameter (1 − νa) > 1
2

Apart from a few subtleties, the conclusions obtained in the previous subsection for the

twisted sectors with νa <
1
2 , are valid also in the twisted sectors with (1−νa) > 1

2 provided

one exchanges the role of the complex directions 2 and 3, and uses the sector label (M−a).

Thus, we can rather brief in our presentation.

In the left-moving part, the fermionic creation modes are the oscillators Ψ2
−r+νa ,

Ψ2
−r−νa , Ψ3

−r−νa and Ψ3
−r+νa where r is a positive half-integer. They act on the twisted

vacuum |ΩM−a〉 which is defined by

|ΩM−a〉 = lim
z→0

σM−a(z) sM−a(z) |0〉 (2.19)

with

σM−a(z) = σ2
1−νa(z)σ3

νa(z) , and sM−a(z) = s2
−νa(z) s3

νa(z) . (2.20)

The ground state |ΩM−a〉 is tachyonic with a mass given by (2.12) and is removed by the

GSO projection. At the first excited level, instead, we find two massless states created by

– 6 –
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the oscillators Ψ2
− 1

2
+νa

and Ψ3
− 1

2
+νa

, which correspond to the following vertex operators at

zero momentum:

V1
M−a(z) = −σM−a(z) :Ψ2(z) sM−a(z) : e−φ(z) ,

V2
M−a(z) = σM−a(z) :Ψ3(z) sM−a(z) : e−φ(z) .

(2.21)

These are conformal fields of weight 1 which we collectively denote as VαM−a(z) with α =

1, 2. Again the − sign in the first line is inserted so that these two operators transform as

a doublet in the spinor representation of SU(2)+ (see appendix A.1).

Finally, in the right-moving part the oscillators Ψ̃2−r−νa , Ψ̃2−r+νa , Ψ̃3−r+νa and Ψ̃3−r−νa
where r is a positive half-integer, are creation modes. They act on the twisted vacuum

defined by

|Ω̃M−a〉 = lim
z̄→0

σ̃M−a(z̄) s̃M−a(z̄) |0〉 (2.22)

where

σ̃M−a(z̄) = σ̃ 2
νa(z̄) σ̃ 3

1−νa(z̄) , and s̃M−a(z̄) = s̃ 2
νa(z̄) s̃ 3

−νa(z̄) . (2.23)

As before this vacuum state is tachyonic and removed by the GSO projection. On the

other hand, the states created by Ψ̃2
− 1

2
+νa

and Ψ̃3
− 1

2
+νa

are massless and selected by the

GSO projection. They correspond to the following vertex operators at zero momentum:

Ṽ1
M−a(z̄) = σ̃M−a(z̄) : Ψ̃3(z̄) s̃M−a(z̄) : e−φ̃(z̄) ,

Ṽ2
M−a(z̄) = σ̃M−a(z̄) : Ψ̃2(z̄) s̃M−a(z̄) : e−φ̃(z̄) ,

(2.24)

which are conformal fields of weight 1. We collectively denote these vertex operators as

ṼβM−a(z̄) with β = 1, 2, since they transform as a doublet of SU(2)+ (see appendix A.1).

We summarize our results on the massless vertex operators of the twisted NS sectors

in table 1 below.

2.2.3 Two-point functions in the twisted NS sectors

Given the explicit form of the vertex operators that we have derived, it is rather straight-

forward to compute their two-point functions. As a first step, we observe that there are no

non-vanishing correlators between left (or right) operators of the same twisted sector, due

to the presence of the bosonic twist fields; in fact for any complex direction j one has [14]

〈
σjνa(z1)σjνb(z2)

〉
=

δνb,1−νa
(z1 − z2)νa(1−νa)

, (2.25)

and similarly in the right sector. This implies that only the correlator 〈σa(w1)σM−a(w2)〉
is non vanishing. Therefore, only the two-point functions between vertex operators in

sectors a and (M − a) are non-zero. Another important point to consider is that these

vertex operators inherit the fermionic statistics from the fermionic fields that are present

in their definitions.

– 7 –
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Vertex operator State

V1
a(z) = σa(z) :Ψ3(z) sa(z) : e−φ(z) Ψ3

− 1
2 +νa

|Ωa〉(−1)

V2
a(z) = σa(z) :Ψ2(z) sa(z) : e−φ(z) Ψ

2

− 1
2 +νa |Ωa〉(−1)

Ṽ1
a(z̄) = −σ̃a(z̄) : Ψ̃2(z̄) s̃a(z̄) : e−φ̃(z̄) −Ψ̃2

− 1
2 +νa |Ω̃a〉(−1)

Ṽ2
a(z̄) = σ̃a(z̄) : Ψ̃3(z̄) s̃a(z̄) : e−φ̃(z̄) Ψ̃3

− 1
2 +νa |Ω̃a〉(−1)

V1
M−a(z) = −σM−a(z) :Ψ2(z) sM−a(z) : e−φ(z) −Ψ2

− 1
2 +νa

|ΩM−a〉(−1)

V2
M−a(z) = σM−a(z) :Ψ 3(z) sM−a(z) : e−φ(z) Ψ3

− 1
2 +νa

|ΩM−a〉(−1)

Ṽ1
M−a(z̄) = σ̃M−a(z̄) : Ψ̃3(z̄) s̃M−a(z̄) : e−φ̃(z̄) Ψ̃3

− 1
2 +νa |Ω̃M−a〉(−1)

Ṽ2
M−a(z̄) = σ̃M−a(z̄) : Ψ̃2(z̄) s̃M−a(z̄) : e−φ̃(z̄) Ψ̃2

− 1
2 +νa |Ω̃M−a〉(−1)

Table 1. The vertex operators and the corresponding states in the left- and right-moving parts of

the various twisted NS sectors. Here the label a takes values in the range
[
1, M−1

2

]
, and in the last

column the subscript (−1) on the kets identifies the superghost picture.

Let us then compute the two-point function between V1
a and V2

M−a. Using (2.25) and

the basic conformal field theory correlators〈
:Ψ3(z1) sa(z1) : :Ψ3(z2) sM−a(z2) :

〉
=

1

(z1 − z2)1−2νa(1−νa)
,

〈
e−φ(z1) e−φ(z2)

〉
=

1

z1 − z2
,

(2.26)

we obtain 〈
V1
a(z1)V2

M−a(z2)
〉

=
1

(z1 − z2)2
. (2.27)

In a similar way, using〈
:Ψ2(z1) sa(z1) : :Ψ2(z2) sM−a(z2) :

〉
=

1

(z1 − z2)1−2νa(1−νa)
, (2.28)

and taking into account the explicit negative sign in V1
M−a, we get〈

V2
a(z1)V1

M−a(z2)
〉

=
−1

(z1 − z2)2
. (2.29)

Furthermore, the two-point functions between V1
a and V1

M−a and between V2
a and V2

M−a
vanish since their fermionic charges do not match. Thus, altogether, we have〈

Vαa (z1)VβM−a(z2)
〉

=
(ε−1)αβ

(z1 − z2)2
(2.30)

where we have defined

ε =

(
0 −1

1 0

)
. (2.31)
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By taking into account the fermionic statistics of the vertex operators and the anti-

symmetry of ε, we also find 〈
VαM−a(z1)Vβa (z2)

〉
=

(ε−1)αβ

(z1 − z2)2
. (2.32)

Notice that (2.30) and (2.32) may be unified in a single formula by promoting the index

a to the complete index â. This shows that despite the differences in the structure of

the states and vertex operators in the fermionic formalism, all twisted sectors are actually

treated on equal footing.

Similarly, in the right-moving sector, we obtain〈
ṼαM−a(z̄1) Ṽβa (z̄2)

〉
=
〈
Ṽαa (z̄1) ṼβM−a(z̄2)

〉
=

(ε−1)αβ

(z̄1 − z̄2)2
. (2.33)

From these two-point functions it is possible to infer the conjugate vertex operators as

follows: (
VM−a(z)

)†
α

= Vβa (z) εβα ,
(
Va(z)

)†
α

= VβM−a(z) εβα ,(
Ṽa(z)

)†
α

= Ṽ β
M−a(z) εβα ,

(
ṼM−a(z)

)†
α

= Ṽ β
a (z) εβα .

(2.34)

2.3 The massless NS/NS vertex operators

The massless closed string excitations in the twisted NS/NS sectors are obtained by com-

bining the left- and right-moving massless states that we have obtained in the previous

subsection. In the sectors with twist parameter νa <
1
2 , they are then described by the

following vertex operators at zero momentum

b
(a)
αβ V

α
a (z) Ṽβa (z̄) (2.35)

where b
(a)
αβ are four constant complex fields.

Similarly, in the sectors with twist parameter (1 − νa) > 1
2 , the massless closed string

excitations are described by the vertex operators at zero momentum

b
(M−a)
αβ VαM−a(z) ṼβM−a(z̄) (2.36)

where again b
(M−a)
αβ are four constant complex fields.

The constants b(a) and b(M−a) can be considered as a background in which the string

theory on the orbifold is defined. Given the structure of the vertex operators there are

non-trivial relations among them. In particular, using (2.34) one finds that(
b
(a)
αβ V

α
a (z) Ṽβa (z̄)

)†
= b

(M−a)
αβ VαM−a(z) ṼβM−a(z̄) (2.37)

where

b
(M−a)
11 = −b(a) ?

22 , b
(M−a)
12 = b

(a) ?
21 , b

(M−a)
21 = b

(a) ?
12 , b

(M−a)
22 = −b(a) ?

11 , (2.38)

or, equivalently in matrix notation,

b(M−a) = ε b(a) ? ε . (2.39)
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These relations, which also appear in [9], show that if one turns on background values for

the closed string fields in the twisted sector a, one also turns on background values for the

fields in the twisted sector (M − a) and viceversa, in such a way that the total background

configuration is real.

2.4 Twisted R sectors

The ZM orbifold (1.1) breaks the isometry of the ten-dimensional space as follows:

SO(10) −→ SO(6)× SO(2)× SO(2) , (2.40)

where SO(6) acts on the first, fourth and fifth complex directions, which are not affected by

the orbifold action. Correspondingly, the untwisted vacuum of the R sector which carries

the 32-dimensional spinor representation of SO(10) decomposes into eight massless spinors

of SO(6). Four of these are chiral and four anti-chiral. We denote the four chiral vacuum

states by ∣∣∣∣A,±1

2
,±1

2

〉
(2.41)

where A ∈ 4 labels the four different components of the chiral spinor representation of

SO(6) and the four pairs of ±1
2 denote the spinor weights along the second and third

complex directions where the orbifold acts. Similarly, the four anti-chiral vacuum states

are denoted by ∣∣∣∣Ȧ,±1

2
,±1

2

〉
(2.42)

where Ȧ ∈ 4̄ spans the four-dimensional anti-chiral spinor representation of SO(6).

In the twisted R sectors, not all such chiral and anti-chiral states remain massless.

Indeed, the fermionic twist fields change the spinor weights in the orbifolded directions, so

that conformal dimensions and the GSO parities of the corresponding vertex operators are

modified. In the following we present a brief description of the spectrum in the various

twisted R sectors, focusing on the massless excitations.

2.4.1 Sectors with twist parameter νa <
1
2

In these sectors the left-moving bosonic and fermionic twist fields σa and sa are given

in (2.11). When we act with sa on the states (2.41) and (2.42), the charges in the directions

2 and 3 become

ε2 = ±1

2
+ νa and ε3 = ±1

2
− νa (2.43)

depending on their initial values. Because of this, not all choices of signs lead to massless

configurations. In fact, the mass vanishes only if

ε2
2 = ε2

3 =

(
1

2
− νa

)2

. (2.44)

Combining this with (2.43), we see that the only solution is

ε2 = −ε3 = −1

2
+ νa , (2.45)
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so that, instead of sa(z), we can consider the effective fermionic twist

ra(z) = s2
νa− 1

2

(z) s3
−νa+ 1

2

(z) (2.46)

which is a conformal field of weight
(

1
4 − νa(1− νa)

)
.

In the R sector, there are two fundamental superghost pictures that one considers:

the (−1
2)- and the (−3

2)-pictures [5]. Enforcing the GSO projection, in the (−1
2)-picture

one selects the chiral spinor of SO(6), while in the (−3
2)-picture one selects the anti-chiral

one. In this way, in fact, the sum of the spinor weights minus the superghost-charge is

always an even integer. Thus we are led to introduce the following two vertex operators at

zero momentum

VAa (z) = σa(z) ra(z)SA(z)e−
1
2
φ(z) , (2.47a)

VȦa (z) = σa(z) ra(z)SȦ(z)e−
3
2
φ(z) , (2.47b)

where SA and SȦ are, respectively, the chiral and anti-chiral spin-fields of SO(6) [5, 6].

Both vertex operators are conformal fields of weight 1 and define the following massless

twisted vacuum states:
|Aa〉(− 1

2
) = lim

z→0
VAa (z) |0〉 ,

|Ȧa〉(− 3
2

) = lim
z→0
VȦa (z) |0〉 .

(2.48)

As far as the right-moving part is concerned, the bosonic and fermionic twist fields

are given in (2.17). Therefore, we can repeat the previous analysis by simply replacing

everywhere νa with (1−νa). In this way we find the following two physical vertex operators

of weight 1:

ṼAa (z̄) = σ̃a(z̄) r̃a(z̄) S̃A(z̄) e−
1
2
φ̃(z̄) , (2.49a)

ṼȦa (z̄) = σ̃a(z̄) r̃a(z̄) S̃Ȧ(z̄) e−
3
2
φ̃(z̄) , (2.49b)

where the effective fermionic twist is given by

r̃a(z̄) = s̃2
−νa+ 1

2

(z̄) s̃3
νa− 1

2

(z̄) . (2.50)

The massless states corresponding to these vertex operators are

|Ãa〉(− 1
2

) = lim
z̄→0
ṼAa (z̄) |0〉 ,

| ˜̇Aa〉(− 3
2

) = lim
z̄→0
ṼȦa (z̄) |0〉 .

(2.51)

2.4.2 Sectors with twist parameter (1 − νa) > 1
2

These sectors can be described in the same manner as before by simply exchanging the

roles of the complex directions 2 and 3, and using (M − a) as twist label. Thus, we merely
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Vertex operator State

VAa (z) = σa(z) ra(z)SA(z)e−
1
2φ(z) |Aa〉(− 1

2 )

VȦa (z) = σa(z) ra(z)SȦ(z)e−
3
2φ(z) |Ȧa〉(− 3

2 )

ṼAa (z̄) = σ̃a(z̄) r̃a(z̄) S̃A(z̄) e−
1
2 φ̃(z̄) |Ãa〉(− 1

2 )

ṼȦa (z̄) = σ̃a(z̄) r̃a(z̄) S̃Ȧ(z̄) e−
3
2 φ̃(z̄) | ˜̇Aa〉(− 3

2 )

VAM−a(z) = σM−a(z) rM−a(z)SA(z) e−
1
2φ(z) |AM−a〉(− 1

2 )

VȦM−a(z) = σM−a(z) rM−a(z)SȦ(z) e−
3
2φ(z) |ȦM−a〉(− 3

2 )

ṼAM−a(z̄) = σ̃M−a(z̄) r̃M−a(z̄) S̃A(z̄) e−
1
2 φ̃(z̄) |ÃM−a〉(− 1

2 )

ṼȦM−a(z̄) = σ̃M−a(z̄) r̃M−a(z̄) S̃Ȧ(z̄) e−
3
2 φ̃(z̄) | ˜̇AM−a〉(− 3

2 )

Table 2. The vertex operators and the corresponding states in the left- and right-moving parts of

the twisted R sectors.

present the physical GSO projected massless vertex operators at zero momentum. In the

left-moving part they are

VAM−a(z) = σM−a(z) rM−a(z)SA(z) e−
1
2
φ(z) , (2.52a)

VȦM−a(z) = σM−a(z) rM−a(z)SȦ(z) e−
3
2
φ(z) , (2.52b)

with

rM−a(z) = s2
−νa+ 1

2

(z) s3
νa− 1

2

(z) . (2.53)

In the right-moving part, instead, they are

ṼAM−a(z̄) = σ̃M−a(z̄) r̃M−a(z̄) S̃A(z̄) e−
1
2
φ̃(z̄) , (2.54a)

ṼȦM−a(z̄) = σ̃M−a(z̄) r̃M−a(z̄) S̃Ȧ(z̄) e−
3
2
φ̃(z̄) . (2.54b)

where

r̃M−a(z̄) = s̃2
νa− 1

2

(z̄) s̃3
−νa+ 1

2

(z̄) . (2.55)

When acting on the Fock vacuum these vertex operators create the twisted ground

states which have the same expressions as in (2.48) and (2.51) with the obvious changes

in notation.

We summarize our findings in table 2 below.

2.4.3 Two-point functions in the twisted R sectors

As we have seen in the twisted NS sectors, the only non-vanishing two-point functions

necessarily involve the left-moving (or right-moving) vertex operators in complementary

sectors a and (M − a), because of the two-point functions (2.25). Of course, the same is
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true in the twisted R sectors. Furthermore, in order to soak up the background charge in

the superghost sector, only the overlaps between states in the (−1
2)- and (−3

2)-pictures, or

viceversa, are non-zero. Taking this into account and using standard results from conformal

field theory, we find

〈
VAa (z1)VḂM−a(z2)

〉
=
〈
VAM−a(z1)VḂa (z2)

〉
=

(C−1)AḂ

(z1 − z2)2
,

〈
VȦa (z1)VBM−a(z2)

〉
=
〈
VȦM−a(z1)VBa (z2)

〉
=

(C−1)ȦB

(z1 − z2)2
,

(2.56)

where C is the charge conjugation matrix of SO(6) (see appendix A.2). Of course, analogous

correlators hold for the right-moving vertex operators.

From the first line of (2.56), we read the following conjugation rules(
VM−a(z)

)†
Ḃ

= VAa (z)CAḂ ,(
Va(z)

)†
Ḃ

= VAM−a(z)CAḂ ,
(2.57)

while from the second line we obtain the same relations with dotted and undotted indices

exchanged. The same formulas apply also for the right-moving vertices.

2.5 The massless R/R vertex operators

The massless closed string excitations in the twisted R/R sectors are obtained by combining

left and right movers. We shall work with the asymmetric superghost pictures (−1
2 ,−

3
2) or

(−3
2 ,−

1
2), so that the corresponding closed string fields are R/R potentials. In the twisted

sector labeled by a we choose the (−1
2 ,−

3
2)-picture and write the following massless vertex

operators at zero momentum:3

C(a)

AḂ
VAa (z) ṼḂa (z̄) (2.58)

where C(a)

AḂ
are sixteen constant complex fields. These constants can be considered as a

background in which the orbifold closed string theory is defined.

In the twisted sector labeled by (M − a) we choose, instead, the other asymmetric

superghost picture, namely the (−3
2 ,−

1
2)-picture, and consider the following massless ver-

tex operators

C(M−a)

ȦB
VȦM−a(z) ṼBM−a(z̄) (2.59)

where C(M−a)

AḂ
are other sixteen constant complex fields contributing to the background in

which the closed string propagates.

Notice that in writing the vertex operators (2.58) and (2.59) for the twisted R/R

potentials, we have correlated the choice of picture numbers with the twisted sector. Of

3In [15] it is shown that the complete BRST invariant vertex operators in the asymmetric superghost

pictures are an infinite sum of terms characterized by the number of superghost zero modes. For our

purposes, however, only the first (and simplest) terms in these sums is relevant since all the others decouple

and thus can be discarded.
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course we could have made different choices, but they would lead to the same results. In

fact, it is well-known that in a BRST invariant framework like ours, the way in which the

superghost pictures are distributed is completely arbitrary, provided one satisfies the global

constraints due to the presence of a background charge, and that the physical results do not

depend on this choice. However, our picture assignment is particularly convenient because

it immediately implies that the R/R potentials in the a-th twisted sector are naturally

related to those in the sector (M −a) by complex conjugation, exactly as it happens in the

twisted NS/NS sectors. Indeed, we have(
C(a)

AḂ
VAa (z) ṼḂa (z̄)

)†
= C(M−a)

ȦB
VȦM−a(z) ṼBM−a(z̄) , (2.60)

where, in matrix notation,

C(M−a) = C C(a) ?C , (2.61)

which is the strict analogue of (2.39) holding in the NS/NS sectors. We therefore see that

by turning on a R/R background potential value in the twisted sector a, one also turns on

a background R/R potential in the twisted sector (M − a) and viceversa, in such a way

that the total configuration is real.

3 Fractional D3-branes in the ZM orbifold

We now turn to discuss the open strings in the ZM orbifold with the aim of analyzing

surface defects in 4d gauge theories engineered on stacks of (fractional) D3-branes. As

is well-known, a D-brane introduces a boundary on the string world-sheet where non-

trivial relations between the left and the right movers of the closed strings take place.

We will investigate these relations using the boundary state formalism (for a review, see

for example [7, 8]) and then will analyze the massless open string spectrum on the brane

world-volume. Since our ultimate goal is to recover a string theory description of the

surface defects in a 4d gauge theory, we place the (fractional) D3-branes in such a way that

they are partially extended along the orbifold as originally proposed in [4]. More precisely,

we take the D3-brane world-volume to be C(1)×C(2) in such a way that the orbifold action

breaks the 4d Poincaré symmetry leaving unbroken the one in the first complex direction

along which the surface defect is extended.

3.1 Boundary states and reflection rules

In the ZM orbifold there are M different types of fractional D-branes, labeled by an index

I = 0, 1, . . . ,M−1, corresponding to the M irreducible representations of ZM . A fractional

D3-brane of type I can be described by a boundary state which contains an untwisted

component |U〉, which is the same for all types of branes, and a twisted component |T ; I〉,
which depends on the type of brane considered:

|D3; I〉 = N |U〉+N ′ |T ; I〉 (3.1)

where N and N ′ are appropriate normalization factors related to the brane tensions (whose

explicit expression is not relevant for our purposes). This schematic structure holds of
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course both in the NS/NS and in the R/R sectors, which we now discuss in turn, focusing

on the fermionic twisted components.

3.1.1 NS/NS sector

The twisted component of the boundary state for a fractional D3-brane of type I is a sum of

(M−1) terms which refer to the (M−1) twisted sectors of the closed strings on the orbifold

and whose coefficients have to be chosen in a specific way in order to have a consistent

description of the D-brane. By this we mean that the cylinder amplitude between two such

boundary states, once translated into the open string channel, must correctly reproduce

the ZM -invariant one-loop annulus amplitude. In [10] a thorough analysis of this issue

was carried out in general, using the Cardy condition for the construction of consistent

boundary states in rational conformal field theories [16]. Borrowing these results and

adapting them to our case, we can write the twisted component of the boundary state for

a D3-brane of type I in the NS/NS sector and its conjugate as follows:

|T ; I|〉NS =

M−1∑
â=1

sin
(πâ
M

)
ωI â | â 〉〉NS ,

NS〈T ; I| =
M−1∑
â=1

sin
(πâ
M

)
ω−I â NS〈〈 â | .

(3.2)

Here, the sum runs over all twisted sectors, ω is the M -th root of unity as in (2.3) and | â 〉〉NS

is the GSO projected Ishibashi state for the twisted sector â. These Ishibashi states enforce

the appropriate gluing conditions between the left-moving and right-moving modes. For

our purposes it is not necessary to write the complete expression of these Ishibashi states,

but it is enough to write the terms which may have a non-zero overlap with the massless

states of the closed string twisted sectors discussed in section 2.

Let us suppose again that M is odd. If â = a ∈ [1, M−1
2 ], we have

|a〉〉NS =
(

i Ψ 2
− 1

2
+νa

Ψ̃2
− 1

2
+νa
− i Ψ3

− 1
2

+νa
Ψ̃3
− 1

2
+νa

)
|Ωa〉(−1) |Ω̃a〉(−1) + · · · (3.3)

where the ellipses stand for terms involving a higher number of oscillators or massive

fermionic modes. The relative minus sign in the brackets of (3.3) is due to the fact that

the complex direction 3 is transverse to the D3-brane while the complex direction 2 is

longitudinal. If â = (M − a), instead, we have

|M−a〉〉NS =
(

i Ψ2
− 1

2
+νa

Ψ̃2
− 1

2
+νa
−i Ψ 3

− 1
2

+νa
Ψ̃3
− 1

2
+νa

)
|ΩM−a〉(−1) |Ω̃M−a〉(−1)+· · · . (3.4)

The corresponding Ishibashi bra states are

NS〈〈a| = (−1)〈Ω̃a| (−1)〈Ωa|
(
− i Ψ̃2

1
2
−νa Ψ2

1
2
−νa + i Ψ̃3

1
2
−νa Ψ3

1
2
−νa

)
+ · · ·

NS〈〈M − a| = (−1)〈Ω̃M−a| (−1)〈ΩM−a|
(
− i Ψ̃2

1
2
−νa Ψ2

1
2
−νa + i Ψ̃3

1
2
−νa Ψ3

1
2
−νa

)
+ · · ·

(3.5)

where the conjugate vacuum states are normalized in such a way that

(−1)〈Ωa|Ωa〉(−1) = 1 and (−1)〈ΩM−a|ΩM−a〉(−1) = 1 , (3.6)
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and similarly for the right-moving sectors.

In the presence of fractional D3-branes, the left and right moving parts of a twisted

closed string have non-trivial correlation functions since the closed string world-sheet has

a boundary. In the boundary state formalism, this boundary is the unit circle on which

the Ishibashi states enforce an identification between the left and the right movers of the

closed strings. In particular for the massless vertex operators of the twisted NS sector with

label a and twist parameter νa described in section 2.2.1, given any two points w and w̄

inside the unit disk D corresponding to a D3-brane of type I, we have

〈
Vαa (w) Ṽβa (w̄)

〉
I
≡ NS

〈
T ; I| Vαa (w) Ṽβa (w̄)|0〉|0̃

〉
=

Mαβ
I,a

(1− ww̄)2
, (3.7)

where the last step is a consequence of the conformal invariance which fixes the form of the

two-point function of conformal fields of weight 1 on D. The constant in the numerator can

be obtained from the overlap between the twisted boundary state and the states created

by the vertex operators Vαa and Ṽβa . For example, fixing α = 1 and β = 2 and referring to

the explicit expressions in table 1, we have

M12
I,a = lim

w→0
lim
w̄→0

NS〈T ; I| V1
a(w) Ṽ2

a(w̄)|0〉|0̃〉

= NS〈T ; I|Ψ3
− 1

2
+νa

Ψ̃3
− 1

2
+νa
|Ωa〉(−1) |Ω̃a〉(−1)

= sin(πνa)ω
−Ia

NS〈〈a|Ψ3
− 1

2
+νa

Ψ̃3
− 1

2
+νa
|Ωa〉(−1) |Ω̃a〉(−1)

= i sin(πνa)ω
−Ia . (3.8)

Proceeding in a similar way, we find that M21
I,a is identical to (3.8), while M11

I,a = M22
I,a = 0,

since in these cases the fermionic oscillators are unbalanced. We can thus summarize this

result by rewriting (3.7) as

〈
Vαa (w) Ṽβa (w̄)

〉
I

=
i sin(πνa)ω

−Ia (τ1)αβ

(1− ww̄)2
(3.9)

where τ1 is the first Pauli matrix.

We now map this disk two-point function onto the complex plane by using the Cayley

transformation

w =
z − i

z + i
, (3.10)

obtaining

〈
Vαa (z) Ṽβa (z̄)

〉
I

=
〈
Vαa (w) Ṽβa (w̄)

〉
I

dw

dz

dw̄

dz̄
=
−i sin(πνa)ω

−Ia (τ1)αβ

(z − z̄)2
. (3.11)

Thus, using the doubling trick, we are led to introduce the following reflection rule for right

moving vertex operators:

Ṽβa (z̄) −→ (RI,a)
β
γ V

γ
M−a(z̄) , (3.12)
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so that 〈
Vαa (z) Ṽβa (z̄)

〉
I
−→ (RI,a)

β
γ

〈
Vαa (z)VγM−a(z̄)

〉
= (RI,a)

β
γ

(ε−1)αγ

(z − z̄)2
(3.13)

where, in the last step, we used (2.30). Comparing with (3.11) we find that the reflection

matrix RI,a is given by

RI,a = i sin(πνa)ω
−Ia τ3 (3.14)

where τ3 is the third Pauli matrix. Repeating the same calculations in the twisted sector

labeled by (M − a), we get

RI,M−a = i sin(πνa)ω
Ia τ3 . (3.15)

Notice that even though the oscillator structure of the boundary states in the sectors a

and (M − a) is different, in the end the reflection matrices (3.14) and (3.15) have the same

form and can be simultaneously written as

RI,â = i sin
(πâ
M

)
ω−I â τ3 (3.16)

with â = 1, . . . ,M − 1.

3.1.2 R/R sector

The above analysis can be easily extended to the R/R sector where, in analogy with (3.2),

the twisted components of the boundary state are given by

|T ; I|〉R =

M−1∑
â=1

sin

(
πâ

M

)
ωI â | â 〉〉R ,

R〈T ; I| =
M−1∑
â=1

sin

(
πâ

M

)
ω−I â R〈〈 â | .

(3.17)

In writing the expressions for the GSO-projected Ishibashi states | â 〉〉R and their conju-

gates, we adopt the same picture assignments discussed in section 2.4: the (−1
2 ,−

3
2)-picture

for the twisted sectors labeled by â = a ∈ [1, M−1
2 ], and the (−3

2 ,−
1
2)-picture for the sectors

with â = (M − a). Apart from this, the structure of these states is similar to that of the

twisted boundary states for D3-branes in the Z2 orbifold obtained in [12] from the factor-

ization of the one-loop open string partition function, and already used in our companion

paper [1]. In particular, for â = a we have

|a〉〉R =
(
CΓ1Γ2)AḂ |Aa〉(− 1

2
)|
˜̇Ba〉(− 3

2
) + . . . (3.18)

where the ellipses stand for contributions from massive fermionic modes, the vacuum states

have been defined in (2.48) and (2.51), and Γ1 and Γ2 are the SO(6) Dirac matrices along

the first two real longitudinal directions of the D3-branes. Likewise, when â = (M − a) we

have

|M − a〉〉R =
(
CΓ1Γ2)ȦB |ȦM−a〉(− 3

2
)|B̃M−a〉(− 1

2
) + . . . . (3.19)
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The corresponding Ishibashi conjugate states are

R〈〈a| = (− 3
2

)〈
˜̇Aa| (− 1

2
)〈Ba|

(
Γ2Γ1C

−1
)ȦB

+ . . .

R〈〈M − a| = (− 1
2

)〈ÃM−a| (− 3
2

)〈ḂM−a|
(
Γ2Γ1C

−1
)AḂ

+ . . .
(3.20)

where the bra vacuum states are defined such that

(− 1
2

)〈Ba|Aa〉(− 1
2

) = δAB and (− 3
2

)〈
˜̇BM−a| ˜̇AM−a〉(− 3

2
) = δȦ

Ḃ
(3.21)

with analogous relations for the right-moving vacua.4

We can now repeat the same steps followed in the NS sector to prove that the boundary

state enforces an identification between left-moving and right-moving vertex operators in

the twisted R sector a according to

ṼḂa (z̄) −→ (RI,a)
Ḃ
Ċ
V ĊM−a(z̄) , (3.22)

where the reflection matrix is the anti-chiral/anti-chiral block of

RI,a = sin(πνa)ω
−Ia Γ1Γ2 . (3.23)

Similarly, in the twisted R sector labeled by (M−a) the reflection matrix is the chiral/chiral

block of

RI,M−a = sin(πνa)ω
Ia Γ1Γ2 . (3.24)

We can combine the last two formulas into

RI,â = sin

(
πâ

M

)
ω−Iâ Γ1Γ2 (3.25)

with the understanding that one has to take the lower-right and upper-left blocks for â = a

and â = (M − a), respectively, as a consequence of the picture assignments.

3.2 Massless open string spectrum

We now analyze the spectrum of massless open strings that live on a configuration made

of stacks of nI fractional D3-branes of type I for I = 0, . . . ,M − 1, that engineer a theory

with gauge group U(n0)× . . .×U(nM−1). We will restrict ourselves to listing the fields in

the adjoint representation of U(nI) as these will be the only fields that are sourced by the

background values given to the twisted closed string scalars. We tailor our notations and

conventions to be as close as possible to those in [1].

In the familiar case of D3-branes in flat space, in the (0)-superghost picture the bosonic

massless open string states are represented by vertex operators of the form5(
i ∂Zi + κ ·Ψ Ψi

)
eiκ·Z . (3.26)

4We remark that in (3.21) the superghost charges of the bra and ket states exactly soak up the background

charge anomaly. For example the superghost charge of (− 1
2
)〈Ba| is − 3

2
, and that of |Aa〉(− 1

2
) is − 1

2
.

5Here and in the following we always assume the operators to be normal ordered, unless this causes

ambiguities.
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where

κi =
k2i−1 + i k2i√

2
and κi =

k2i−1 + i k2i√
2

, (3.27)

with kµ being the real momentum along the direction xµ of the D3-brane world-volume. In

addition we denote the complex direction 1 by the symbol ‖ and the complex direction 2

by the symbol ⊥, since these directions are, respectively, longitudinal and perpendicular to

the surface defect realized by the D3-brane configuration on the orbifold. We also introduce

the following convenient notation

κ‖ ·Z‖ = κ1 Z
1 + κ1 Z

1 , κ⊥ ·Z⊥ = κ2 Z
2 + κ2 Z

2 ,

κ‖ ·Ψ‖ = κ1 Ψ1 + κ1 Ψ1 , κ⊥ ·Ψ⊥ = κ2 Ψ2 + κ2 Ψ2 ,
(3.28)

so that

κ · Z = κ‖ ·Z‖ + κ⊥ ·Z⊥ (3.29)

and similarly for κ ·Ψ. Clearly, the parallel terms κ‖·Z‖ and κ‖·Ψ‖ are invariant under the

orbifold group ZM , but the perpendicular terms are not, since

g :

 κ⊥ ·Z⊥ −→ g[κ⊥ ·Z⊥] = ω−1κ2 Z
2 + ω κ2 Z

2 ,

κ⊥ ·Ψ⊥ −→ g[κ⊥ ·Ψ⊥] = ω−1κ2 Ψ2 + ω κ2 Ψ2 .
(3.30)

This in particular implies that in order to write the open string vertex operators for the

fractional D3-branes one cannot use the plane waves eiκ⊥·Z⊥ but instead decomposes these

into functions that transform in the irreducible representations of ZM . These functions,

which we denote by EI with I = 0, . . . ,M − 1, are simply obtained by summing the plane

waves eiκ⊥·Z⊥ over the orbits of the group with coefficients chosen such that the combination

transforms covariantly under the group action. So we are led to define:

EI =
1

M

M−1∑
J=0

ω−IJ gJ
[
eiκ⊥·Z⊥

]
=

1

M

M−1∑
J=0

ω−IJ ei (ω−Jκ2 Z2+ωJκ2 Z2) . (3.31)

One can easily check that

g
[
EI
]

=
1

M

M−1∑
J=0

ω−IJ ei (ω−J−1κ2 Z2+ωJ+1κ2 Z2) = ωI EI , (3.32)

which shows that EI transforms in the I-th irreducible representation of ZM . For M = 2

and ω = −1, the functions EI are simply

E0 = cos(κ⊥ ·Z⊥) and E1 = i sin(κ⊥ ·Z⊥) , (3.33)

which are exactly the two combinations used in the case of the Z2 orbifold in [1].

In a similar way, we have to break up the operators multiplying the plane wave in (3.26)

into various pieces with definite charge I under the orbifold action and form invariant

combinations with EM−I . In the orbifold theory, only such combinations represent vertex

operators describing physical fields on the world-volume of the fractional D3-brane.
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Applying these considerations, we see that the gauge field A1 along the parallel direc-

tions is described by the following vertex operator in the (0)-superghost picture:

VA1 =
[(

i ∂Z1 + κ‖ ·Ψ‖Ψ1
)
E0 + κ2 Ψ2 Ψ1 E1 + κ2 Ψ2 Ψ1 EM−1

]
eiκ‖·Z‖ . (3.34)

Each term in square brackets is invariant under ZM . For instance, the terms ∂Z1 and

κ‖·Ψ‖Ψ1, which are ZM invariant, are multiplied with the invariant function E0. Similarly

the term κ2 Ψ2 Ψ1, which gets a factor ω−1 under the orbifold action, is multiplied by E1 to

make a ZM -invariant combination. Likewise, it is easy to see that the third term in (3.34)

is also ZM invariant. The vertex operator for the complex conjugate field component A1

is obtained by simply replacing ∂Z1 and Ψ1 with ∂Z1 and Ψ1.

In a similar way we can write the vertex operators for the gauge field A2 in the

directions transverse to the surface defect, which is

VA2 =
[(

i ∂Z2 + κ‖ ·Ψ‖Ψ2
)
EM−1 + κ2 Ψ2 Ψ2 E0

]
eiκ‖·Z‖ . (3.35)

The vertex operator for A2 can be obtained from the above expression by replacing ∂Z2

and Ψ2 with ∂Z2 and Ψ2, and EM−1 with E1.

Finally, let us consider the scalar fields. On the fractional D3-brane world-volume there

are three complex scalars that together with the gauge vector provide the bosonic content

of the N = 4 vector multiplet. When the orbifold acts partially along the world-volume

as in our case, all three complex scalars remain in the spectrum. Denoting them by Φ

and Φr with r = 4, 5, they and their complex conjugates are described by the following

ZM -invariant vertices:

VΦ =
[(

i ∂Z3 + κ‖ ·Ψ‖Ψ3
)
E1 + κ2 Ψ2 Ψ3 E2 + κ2 Ψ2 Ψ3 E0

]
eiκ‖·Z‖ ,

VΦ =
[(

i ∂Z3 + κ‖ ·Ψ‖Ψ3
)
EM−1 + κ2 Ψ2 Ψ3 E0 + κ2 Ψ2 Ψ3 EM−2

]
eiκ‖·Z‖ ,

(3.36)

and

VΦr =
[(

i ∂Zr + κ‖ ·Ψ‖Ψr
)
E0 + κ2 Ψ2 Ψr E1 + κ2 Ψ2 Ψr EM−1

]
eiκ‖·Z‖ , (3.37)

with VΦr
obtained by simply replacing Ψr with Ψr.

All these vertex operators have conformal dimension 1 provided the corresponding

fields are massless, i.e. if κ · κ = 1
2k

2 = 0.

4 Open/closed correlators

In this section we study the mixed amplitudes between the twisted closed string fields

discussed in section 2 and the massless open string fields introduced in the previous section

by calculating open/closed disk correlators (see [17] for a review of scattering of strings off

D-branes). An example of such a mixed amplitude is shown in figure 1, in which the closed

string field is the NS/NS scalar b
(â)
αβ in the twisted sector â.

The open/closed string amplitudes we consider correspond to disk diagrams with a closed

string vertex inserted in the interior and an open string vertex inserted on the boundary.
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〈
Vopen

〉
b
(â)
αβ ;I

≡
Vopen

V
b
(â)
αβ

D3I

~k⊥

Figure 1. An example of a mixed open/closed string amplitude on a D3-brane of type I. The

closed string vertex operator in the bulk represents the insertion of the twisted NS/NS scalar b
(â)
αβ ;

the open string field on the boundary is a generic massless excitation on the D3-brane which can

couple to b
(â)
αβ . The result is a function of the open string momentum ~k⊥ along the two orbifolded

directions of the D3-brane world-volume which are transverse to the surface defect.

These diagrams are generically non-vanishing due to the D3-brane boundary conditions

that enforce an identification between the left and right movers of the closed strings.

We now explain how to compute these mixed amplitudes starting from the NS/NS

twisted fields.

4.1 Correlators with NS/NS twisted fields

Let us consider the scalar b
(â)
αβ in the NS/NS twisted sector â. Its coupling with a massless

open string excitation on a D3-brane of type I described by the vertex operator Vopen is

given by the following expression:〈
Vopen

〉
b
(â)
αβ ;I

= b
(â)
αβ

∫
dz dz̄ dx

dVproj

〈
Vαâ (z)Ṽβâ (z̄)Vopen(x)

〉
I
, (4.1)

where

dVproj =
dz dz̄ dx

(z − z̄)(z̄ − x)(x− z)
(4.2)

is the projective invariant volume element and the integrals are performed on the string

world-sheet. In particular the closed string insertion points z and z̄, are in the upper and

lower half complex plane, respectively, while the open string insertion point x is on the

real axis.

Since we are interested in the couplings with constant background fields b
(â)
αβ , the left

and right vertex operators in (4.1) are at zero momentum. The open string vertex, instead,

has a non-vanishing momentum. Since the fractional brane is located at the orbifold fixed

point z2 = 0, translation invariance is broken in the complex direction 2. Therefore, the

components κ2 and κ2 of the open string momentum are arbitrary, while the components

κ1 and κ1 are set to zero by momentum conservation in the parallel directions and the final

amplitude will be proportional to δ(2)(κ‖).

Using the reflection rule (3.16), the integrand of (4.1) can be rewritten as〈
Vαâ (z)Ṽβâ (z̄)Vopen(x)

〉
I

= i sin

(
πâ

M

)
ω−I â (τ3)βγ

〈
Vαâ (z)VγM−â(z̄)Vopen(x)

〉
. (4.3)

Thus, the calculation is reduced to the evaluation of a three-point function of vertex opera-

tors of conformal weight 1. The functional dependence on the word-sheet variables is fixed
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by conformal invariance and exactly cancels that of the projective invariant volume (4.2)

so that in the end the result will be a constant that depends on the detailed structure of

the vertex operators.

There are, however, some features that can be described in generality, and are inde-

pendent of the specific components of b
(â)
αβ and of the particular open string vertices that

are considered. When we write the three-point functions in (4.3) as products of correla-

tors for each of the independent conformal fields, we easily recognize that the superghost

contribution is always given by

〈
e−φ(z) e−φ(z̄)

〉
=

1

z − z̄
. (4.4)

It is perhaps less obvious but it turns out that also the contribution arising from the bosonic

string coordinates is the same for all amplitudes. Indeed, the only non-vanishing correlator

involving the bosonic coordinates along the parallel direction is〈
eiκ‖·Z‖(x)

〉
= δ(2)(κ‖) , (4.5)

which enforces the anticipated momentum conservation for κ‖, while the terms containing

∂Z1 or ∂Z1 always vanish inside the correlators and thus they can be ignored. As far as

the perpendicular direction is concerned, we have to take into account the presence of the

bosonic twist fields and the fact that the plane waves appear in the combinations EI defined

in (3.31). Thus, one typically has to evaluate a correlator of the form

〈
σâ(z)σM−â(z̄) EI(x)

〉
=

1

M

M−1∑
J=0

ω−IJ
〈
σâ(z)σM−â(z̄) ei

(
ω−Jκ2 Z2(x)+ωJκ2 Z2(x)

)〉
. (4.6)

For any value of J , the correlator in the sum is equal simply to 〈σâ(z)σM−â(z̄)〉, so that

〈
σâ(z)σM−â(z̄) EI(x)

〉
=

1

M

(
M−1∑
J=0

ω−IJ

)〈
σâ(z)σM−â(z̄)

〉
= δI,0

〈
σâ(z)σM−â(z̄)

〉
. (4.7)

This means that in the open string vertex operators we can just focus on the terms propor-

tional to E0 and disregard the other terms, as they will not contribute. Furthermore, we

can also neglect the terms involving ∂Z2 or ∂Z2, since they always give a vanishing contri-

bution inside the correlators. With this in mind, we can proceed to the explicit evaluation

of the mixed amplitudes with the twisted NS/NS scalars.

4.1.1 Explicit computations

We start by considering the correlator (4.3) with â = a ∈ [1, M−1
2 ] and α = 1 and β = 2,

corresponding to the twisted field b
(a)
12 . Applying the above considerations, one realizes

that this scalar does not couple to any open string field except A2 and A2. Indeed, the

terms of the vertex operators of A1, Φ, Φr and their conjugates which contain E0 always

contain other structures with unbalanced bosonic or fermionic fields, which therefore vanish
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inside the correlator. Let us then consider the coupling with A2. In this case, inserting the

explicit expressions of the vertex operators in (4.3), we have〈
V1
a(z)Ṽ2

a(z̄)VA2(x)
〉
I

= −i sinπνa ω
−Ia 〈V1

a(z)V2
M−a(z̄)VA2(x)

〉
(4.8)

with〈
V1
a(z)V2

M−a(z̄)VA2(x)
〉

= κ2

〈
e−φ(z) e−φ(z̄)

〉 〈
eiκ‖·Z‖(x)

〉 〈
σa(z)σM−a(z̄)

〉
×
〈

:Ψ3(z)sa(z) : :Ψ3(z̄)sM−a(z̄) : :Ψ2(x)Ψ2(x) :
〉
.

(4.9)

The fermionic correlator in the second line above can be evaluated by factorizing it in the

two independent directions 2 and 3 and using the bosonization method [6]. In this way

we have〈
:Ψ3(z)sa(z) : :Ψ3(z̄)sM−a(z̄) : :Ψ2(x)Ψ2(x) :

〉
=
〈
s2
νa(z) s2

−νa(z̄) :Ψ2(x)Ψ2(x) :
〉

×
〈

:Ψ3(z)s3
−νa(z) : :Ψ3(z̄)s3

νa(z̄) :
〉

(4.10)

where6 〈
s2
νa(z) s2

−νa(z̄) :Ψ2(x)Ψ2(x) :
〉

=
〈

ei νa φ2(z) e−i νa φ2(z̄) (−i ∂φ2(x))
〉

=
−νa

(z − z̄)ν2a−1(z − x)(z̄ − x)
,

(4.11)

and〈
:Ψ3(z)s3

−νa(z) : :Ψ3(z̄)s3
νa(z̄) :

〉
=
〈
ei (1−νa)φ3(z) e−i (1−νa)φ3(z̄)

〉
=

1

(z − z̄)(1−νa)2
.

(4.12)

Combining everything together in (4.9), we obtain〈
V1
a(z)V2

M−a(z̄)VA2(x)
〉

=
κ2 νa

(z − z̄)(z̄ − x)(x− z)
δ(2)(κ‖) . (4.13)

Finally, inserting this into (4.8) and (4.1), we find that the coupling of b
(a)
12 with A2 is〈

VA2

〉
b
(a)
12 ;I

= −i b
(a)
12 κ2 νa sinπνa ω

−Ia δ(2)(κ‖) . (4.14)

The same calculation shows that b
(a)
12 also couples to A2 and the result is simply obtained

by replacing κ2 with −κ2 in the above expression.

We can similarly repeat the analysis for the other components b
(a)
αβ . For example, taking

b
(a)
21 we find that its only non-vanishing coupling is〈

VA2

〉
b
(a)
21 ;I

= i b
(a)
21 κ2 (1− νa) sinπνa ω

−Ia δ(2)(κ‖) , (4.15)

with a similar result for A2 in which κ2 is replaced with −κ2. The diagonal components

b
(a)
11 and b

(a)
22 , instead, only couple to the complex scalars Φ and Φ according to〈

VΦ

〉
b
(a)
22 ;I

= −i b
(a)
22 κ2 sinπνa ω

−Ia δ(2)(κ‖) ,

and
〈
VΦ

〉
b
(a)
11 ;I

= i b
(a)
11 κ2 sinπνa ω

−Ia δ(2)(κ‖) .
(4.16)

6Here φ2 and φ3 denote the fields that bosonize the fermionic systems in the complex directions 2 and 3.
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It is equally straightforward to compute the open/closed string correlators in the

twisted sectors with â = (M − a). In this case, we find again that the off-diagonal com-

ponents b
(M−a)
12 and b

(M−a)
21 only interact with A2 and A2, and that the couplings with

A2 are 〈
VA2

〉
b
(M−a)
12 ;I

= −i b
(M−a)
12 κ2 (1− νa) sinπνa ω

Ia δ(2)(κ‖) ,

and
〈
VA2

〉
b
(M−a)
21 ;I

= i b
(M−a)
21 κ2 νa sinπνa ω

Ia δ(2)(κ‖) ,
(4.17)

while those with A2 follow by replacing κ2 with −κ2 in the above expressions. The diagonal

components b
(M−a)
11 and b

(M−a)
21 interact instead with Φ and Φ with the following couplings:〈
VΦ

〉
b
(M−a)
22 ;I

= −i b
(M−a)
22 κ2 sinπνa ω

Ia δ(2)(κ‖) ,

and
〈
VΦ

〉
b
(M−a)
11 ;I

= i b
(M−a)
11 κ2 sinπνa ω

Ia δ(2)(κ‖) .
(4.18)

As a consistency check of our results, we observe that the formulas (4.17) and (4.18) can

be obtained from (4.14), (4.15) and (4.16) by simply replacing everywhere a with (M − a).

Thus, despite the fact that the fermionic approach we have used introduces differences in

the explicit expressions for the twisted sector vertex operators, in the end, all sectors are

treated on an equal footing.

4.1.2 Results

We are finally in a position to write down the complete expression for the open string fields

emitted by a fractional D3-brane of type I in the presence of background values for the

scalars of the NS/NS twisted sectors. This is given by summing over all components of b
(â)
αβ

and over all twisted sectors:〈
Vopen

〉
I

=

M−1∑
â=1

2∑
α,β=1

〈
Vopen

〉
b
(â)
αβ ;I

. (4.19)

As we have seen, the components of the gauge field along the parallel direction 1 and the

complex scalars Φr do not couple to any NS/NS twisted field, while we have a non-vanishing

source for A2, Φ and their complex conjugates. For A2 the above formula gives

〈
VA2

〉
I

= −iκ2

M−1
2∑

a=1

sinπνa

[
νa ω

−Ia b
(a)
12 − (1− νa)ω−Ia b(a)

21

− νa ωIa b(M−a)
21 + (1− νa)ωIa b(M−a)

12

]
δ(2)(κ‖) .

(4.20)

Taking into account the relations (2.38), it is easy to realize that the quantity in square

brackets is purely imaginary. A similar result holds for A2 with κ2 replaced by −κ2.

For the complex scalars Φ and Φ we have instead

〈
VΦ

〉
I

= −iκ2

M−1
2∑

a=1

sinπνa

[
ω−Ia b

(a)
22 + ωIa b

(M−a)
22

]
δ(2)(κ‖) ,

〈
VΦ

〉
I

= iκ2

M−1
2∑

a=1

sinπνa

[
ω−Ia b

(a)
11 + ωIa b

(M−a)
11

]
δ(2)(κ‖) .

(4.21)
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4.2 Correlators with R/R twisted fields

We now turn to the calculation of the interactions between the massless open string fields

and the twisted R/R potentials. For definiteness we only consider non-vanishing back-

ground values for the scalars C(a) and C(M−a), since they are the only ones that turn out

to be relevant for the description of the continuous parameters of surface defects. Thus,

the closed string vertex operators we consider are

C(a)CAḂ V
A
a (z) ṼḂa (z̄) and C(M−a)CȦB V

Ȧ
M−a(z) ṼBM−a(z̄) . (4.22)

By inspecting the fermionic structure of these vertex operators and comparing it with that

of the open string vertices, one realizes that only the longitudinal component of the gauge

field A1 and its conjugate A1 can have a non-vanishing coupling.

Let us start by considering the interaction between A1 and C(a). This is given by〈
VA1

〉
C(a),I = C(a)CAḂ

∫
dz dz̄ dx

dVproj

〈
VAa (z) ṼḂa (z̄)VA1(x)

〉
I
, (4.23)

where the projective invariant volume element is defined in (4.2). Using the reflection

rules (3.23) for the R/R fields, the integrand of (4.23) becomes〈
VAa (z) ṼḂa (z̄)VA1(x)

〉
I

= sin(πνa)ω
−Ia (Γ1Γ2)Ḃ

Ċ

〈
VAa (z)V ĊM−a(z̄)VA1(x)

〉
. (4.24)

Using the explicit form of the vertex operators given in (2.47a), (2.52b) and (3.34), and tak-

ing into account the points discussed at the beginning of this section, the above correlator

can be written as follows:〈
VAa (z)VĊM−a(z̄)VA1(x)

〉
= κ1

〈
e−

1
2
φ(z) e−

3
2
φ(z̄)
〉 〈

eiκ‖·Z‖
〉 〈
σa(z)σM−a(z̄)

〉
×
〈
ra(z) rM−a(z̄)

〉 〈
SA(z)SĊ(z̄) :Ψ1Ψ1 : (x)

〉
.

(4.25)

Each factor in this expression can be easily computed using standard conformal field theory

methods. The new ingredients with respect to the calculations in the NS/NS sectors are

the following two-point functions:〈
e−

1
2
φ(z) e−

3
2
φ(z̄)
〉

=
1

(z − z̄)
3
4

,

〈
ra(z) rM−a(z̄)

〉
=

1

(z − z̄)
1
2
−2νa(1−νa)

,

and
〈
SA(z)SĊ(z̄) :Ψ1Ψ1 : (x)

〉
=

i

2

(Γ1Γ2C
−1)AĊ

(z − z̄)−
1
4 (z − x)(z̄ − x)

.

(4.26)

Putting everything together, we have

〈
VAa (z)V ĊM−a(z̄)VA1(x)

〉
= − i

2

(Γ1Γ2C
−1)AĊ

(z − z̄)(z̄ − x)(x− z)
δ(2)(κ‖) . (4.27)

Inserting this into (4.24) and (4.23), and performing the Γ-matrix algebra, we finally obtain〈
VA1

〉
C(a),I = −2iκ1 sinπνa ω

−Ia C(a) δ(2)(κ‖) . (4.28)
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In a very similar way we find〈
VA1

〉
C(M−a),I = −2iκ1 sinπνa ω

Ia C(M−a) δ(2)(κ‖) . (4.29)

Thus, the full amplitude becomes

〈
VA1

〉
I

= −2iκ1

M−1
2∑

a=1

[
sinπνa

(
ω−Ia C(a) + ωIa C(M−a)

)]
δ(2)(κ‖) . (4.30)

Taking into account that C(M−a) = C(a) ?, as it follows from (2.61), we see that the expres-

sion inside the square brackets is real.

5 Continuous parameters of surface defects

We are now ready to identify the twisted closed string background that leads to a mon-

odromy surface defect in the gauge theory on the world-volume of the fractional D3-branes.

It is convenient to decompose the twisted fields of the NS/NS sectors into irreducible rep-

resentations of the unbroken SU(2)+ symmetry group of the orbifolded space (see the

discussion in section 2). In each twisted sector â, this can be done by writing

b
(â)
αβ = i b(â)

s εαβ + b
(â)
+ (ετ+)αβ + b

(â)
− (ετ−)αβ + b

(â)
3 (ετ3)αβ (5.1)

where ε is defined in (2.31) and τ± = (τ1 ± iτ2)/2. In the M = 2 case studied in [1] it was

found that only the singlet component b
(â)
s (which we denoted b in that reference) acted

as a source for the gauge field. This can also be seen from (4.20) by setting ν1 = 1
2 and

ω = −1 for the only twisted sector that is present when M = 2. For the general M > 2

case, however, we see that the gauge field couples to both the scalars b
(â)
s and b

(â)
3 . Since we

wish to have a uniform description of surface defects for all values of M , in what follows,

we will set b
(â)
3 = 0 and only turn on the background value for b

(â)
s . Furthermore, we also

turn on the doublet components b
(â)
± which source the scalar fields Φ and Φ. This means

that, in terms of the initial fields b
(â)
αβ , our background reads

b
(â)
12 = −b(â)

21 = −i b(â)
s ,

b
(â)
22 = b

(â)
+ , b

(â)
11 = −b(â)

− ,

(5.2)

with (b
(â)
s

)∗
= b

(M−â)
s and (b

(â)
+

)∗
= b

(M−â)
− for all twisted sectors, as follows from the

relations (2.38).

Inserting these background values in (4.20) and (4.21), we have〈
VA2

〉
I

= −κ2 bI δ
(2)(κ‖) , (5.3)

and 〈
VΦ

〉
I

= −iκ2 b
+
I δ

(2)(κ‖) ,
〈
VΦ

〉
I

= −iκ2 b
−
I δ

(2)(κ‖) , (5.4)
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where we have defined the combinations

bI =

M−1
2∑

a=1

sinπνa

[
ω−Ia b(a)

s + ωIa b(M−a)
s

]
=

M−1∑
â=1

sin

(
πâ

M

)
ω−Iâ b(â)

s , (5.5)

and

b±I =

M−1
2∑

a=1

sinπνa

[
ω−Ia b

(a)
± + ωIa b

(M−a)
±

]
=

M−1∑
â=1

sin

(
πâ

M

)
ω−Iâ b

(â)
± . (5.6)

Notice that bI is real, while (b+I )∗ = b−I . It is interesting to note that a similar change of

basis for profiles of closed string fields between the fractional branes (labelled by irreducible

representations) and the twisted sectors (labelled by conjugacy classes) has been observed

previously for fractional branes at orbifolds in [11].

As explained in detail in [1], these amplitudes are interpreted as a source for the

corresponding open string field (see also figure 1), whose profile in configuration space is

obtained by taking the Fourier transform, after attaching the massless propagator along

the D3-brane world-volume:
1

k2
=

1

2
(
|κ‖|2 + |κ⊥|2

) . (5.7)

For example, for the gauge field A2 we have

A2;I = FT
[〈VA2

〉
I

k2

]
. (5.8)

In appendix B we show how to organize the calculation of this Fourier transform in terms of

the generalized plane-waves EI that transform covariantly with charge I under the orbifold

group. Applying these methods to the present case, we see that since the source (5.3) is

proportional to κ2, which has charge (−1), only the term proportional to E1 remains so

that (5.8) becomes

A2;I =

∫
d2κ‖d

2κ⊥

(2π)2

〈
VA2

〉
I

2(κ2
‖ + κ2

⊥)
eiκ‖·z‖ E1

= −bI
1

M

M−1∑
J=0

ω−J
∫

d2κ⊥
(2π)2

κ2

2|κ⊥|2
ei (ω−Jκ2 z̄2+ωJ κ2 z2) = − i bI

4πz̄2
,

(5.9)

where the last equality is a consequence of the fact that all M terms in the sum are actually

all equal to each other and equal to i/(4πz̄2).

Combining this result with the one for the complex conjugate component A2, we find

that the gauge field on the I-th fractional D3-brane has the following profile:

AI = A · dx = A2;I dz̄2 +A2;I dz2 = − i bI
4π

(
dz̄2

z̄2
− dz2

z2

)
= − bI

2π
dθ , (5.10)

where θ is the polar angle in the C(2)-plane transverse to the surface defect.
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The only other open string field that has a non-vanishing profile in the twisted NS/NS

background we have chosen is the complex scalar Φ. The analogous calculation takes the

following form:

ΦI = FT
[〈VΦ

〉
I

k2

]
=

∫
d2κ‖d

2κ⊥

(2π)2

〈
VΦ

〉
I

2(κ2
‖ + κ2

⊥)
eiκ‖·z‖ EM−1

= −i b+I
1

M

M−1∑
J=0

ωJ
∫

d2κ⊥
(2π)2

κ2

2|κ⊥|2
ei (ωJκ2 z̄2+ωJ κ2 z2) =

b+I
4πz2

.

(5.11)

If we now consider a general configuration with nI fractional D3-branes of type I for all

values of I, as in the KT proposal [4], we obtain the following profiles:

A = −dθ
2π


b0 1n0 0 · · · 0

0 b1 1n1 · · · 0
...

...
. . .

...

0 0 · · · bM−1 1nM−1

 , (5.12)

and

Φ =
1

4π z2


b+0 1n0 0 · · · 0

0 b+1 1n1 · · · 0
...

...
. . .

...

0 0 · · · b+M−1

 . (5.13)

These are precisely the profiles of a GW surface defect in the N = 4 theory corresponding

to the breaking of U(N) group to the Levi subgroup U(n0) × . . . × U(nM−1), provided

the continuous parameters (αI , βI , γI) that conventionally parametrize the singular profiles

near the defect are related to the background values of the NS/NS twisted scalars as follows:

αI = − bI
2π

, βI =
Re(b+I )

2π
, γI =

Im(b+I )

2π
. (5.14)

If the original gauge group is SU(N), the corresponding field profiles are obtained by

removing the overall trace from each of the above expressions.

We now turn to discussing the coupling of the open string fields with the twisted scalars

in the R/R sector. As we have seen in section 4.2, we only need to consider the coupling

with the longitudinal component A1 of the gauge field. This is given in (4.30), which we

rewrite as 〈
VA1

〉
I

= −2iκ1cI δ
(2)(κ‖) (5.15)

where

cI =

M−1
2∑

a=1

sinπνa

[
ω−Ia C(a) + ωIa C(M−a)

]
=

M−1∑
â=1

sin

(
πâ

M

)
ω−Iâ C(â) . (5.16)

This real quantity is the R/R counterpart of bI defined in (5.5) for the NS/NS sectors.
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At face value, the coupling (5.15) is vanishing because of the δ-function. However, as

was explained in the Z2 in [1], if we multiply this amplitude and its complex conjugate

with the corresponding gauge field polarizations, the resulting sum can be interpreted as

an interaction term between the R/R scalars and the longitudinal components of the gauge

field strength. Indeed,

A1,I

〈
VA1

〉
I

+A1,I

〈
VA1

〉
I

= −2 i cI
(
κ1A1 − κ1A1

)
δ2(κ‖) = 2 i cI F̃I δ

2(κ‖) , (5.17)

where F̃I is the gauge field strength on the Ith fractional brane (along the defect), in

momentum space. Performing the Fourier transform, this expression becomes an effective

interaction term localized on the surface defect:

i cI
2π

∫
d2z‖ FI , (5.18)

where FI is the gauge field strength in configuration space, on the Ith fractional brane. If

this has a non-trivial first Chern class, then this effective interaction can be understood

as the 2d topological θ-term that can be included in the path integral definition of the

theory with surface defect. When a generic configuration with nI D3-branes of type I is

considered, the following phase factor is therefore introduced in the path integral

exp

(
i

M−1∑
I=0

cI
2π

∫
d2z‖TrU(nI)FI

)
, (5.19)

leading to the following identification of the η-parameters of the surface defect:

ηI =
cI
2π

. (5.20)

This completes the identification of all the parameters of the generic GW monodromy

defect with the background values of the twisted scalars in the ZM orbifold. We note that

these formulas generalize those in [1] and exactly reduce to them when M = 2. We also

remark that if we write the parameters bI , b
±
I and cI as sums over all twisted sectors, their

relation with the parameters of the surface defects holds also for even M . In this case, in

fact, beside the twisted sectors we have described at length in this paper, there is also a

sector with twist 1
2 whose contribution is exactly the same as in the M = 2 case. For this

reason, therefore, we see that the restriction we made at the beginning to restrict to odd

values of M does not lead to any loss of generality.

We end this section by observing that the identifications (5.14) and (5.20), namely

{αI , βI , γI , ηI} =

{
− bI

2π
,

Re(b+I )

2π
,
Im(b+I )

2π
,
cI
2π

}
, (5.21)

are consistent with the behavior of the GW parameters under S-duality, as given in [2].

In fact, even though our world-sheet analysis has been at the orbifold fixed point, it is

possible to blow-up the ZM -singularity into an ALE space and provide an interpretation to

the twisted scalars of the orbifold theory as massless moduli in the low-energy supergravity

(see for instance [9, 18]). In such a geometric approach, the combinations bI and cI , which
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are made of the singlets b
(â)
s and C(â) from each twisted sector as shown in (5.5) and (5.16),

arise by integrating, respectively, the NS/NS 2-form B(2) and the R/R 2-form C(2) of Type

II B supergravity around the exceptional cycles ωI of the blown-up ALE space. Therefore,

from (5.21) we read

αI = − 1

2π

∫
ωI

B(2) , ηI =
1

2π

∫
ωI

C(2) . (5.22)

Using the S-duality action on the 2-forms, with simple manipulations [1] one can show that

this identification implies that αI and ηI indeed transform in the expected way.

Similarly, the b±I parameters can be identified with the (string frame) metric moduli

corresponding to the complex structure of the blown-up exceptional cycle ωI . As such they

inherit the S-duality transformation properties from the (string frame) metric, which are

precisely the ones expected for the parameters βI and γI of the GW defects.

We finally remark that when M > 2 also the scalars b
(â)
3 can couple to the gauge fields,

differently from what happens in the M = 2 case [1]. To have a uniform description for

all M we have therefore chosen to set b
(â)
3 = 0 in each twisted sector. As we have just

seen, this choice has allowed us to identify a perturbative closed string realization of the

generic GW defects that is fully consistent with S-duality. However, our approach offers the

possibility of considering more general backgrounds with also b
(â)
3 turned on, and it would

be interesting to further investigate their meaning and implications for the world-volume

theory on the D3-branes and their defects.

6 Discussion

The present work extends the analysis of [1], where the main ideas of our approach to a

string theoretic realization of the GW surface defects were already anticipated. Here we

have concentrated on the technical ingredients necessary to implement those ideas in the

case of a generic half-BPS surface defect. Therefore we think it is useful to recapitulate at

this point our motivations and the main features of our construction, and highlight some

new perspectives and potential future developments.

The study of defects in quantum field theories is an important subject from many

different points of view. For example, a proper understanding of conformal defects is a

crucial step towards a complete classification of higher dimensional conformal field theories.

In this context, much progress has been made in elucidating the kinematic constraints

that the residual symmetry of conformal defects imposes on the observables of the theory,

leading to their parametrization by some set of conformal data [19–23]. The kinematics

is even more constrained for superconformal defects where stringent relations between the

two-point functions of the displacement operator and the stress tensor one-point function

for surface defects exist [24].

The general symmetry structure helps to tackle the dynamics of defects also in (super)

Yang-Mills theories. The line defects corresponding to Wilson or ’t Hooft lines represent

a widely studied set of observables. Surface defects, whose definition is more delicate,
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are also extremely interesting, especially with regard to the duality properties of the the-

ory. Groundbreaking work on conformal surface defects in gauge theories was carried out

in [2, 3], where half-BPS monodromy defects in N = 4 super Yang-Mills theories were char-

acterized and their S-duality properties clarified. Many developments followed, giving such

defects an holographic realization in type IIB supergravity [25, 26], extending the study to

generic N = 2 theories [27] and taking advantage of 6d and M-theory embeddings [28] and

of localization techniques [4, 29–32].

What we have done in this work is to directly realize the GW monodromy defects

within perturbative Type II B string theory using fractional D3-branes on orbifolds. This

realization was already suggested in [4] where it was shown that the instanton contributions

to the effective theory of surface defects are organized in terms of chain-saw quivers and

described as D-instanton corrections to a system of fractional D3-branes with two world-

volume directions extended along the orbifold background (see also [31, 33]). Here we have

taken this picture seriously and showed that such a D3-brane configuration with a partially

longitudinal orbifold action is a GW defect. It was already clear from the KT construction

that the discrete data of a GW defect are represented by the order M of the orbifold group

and by the numbers nI of D3-branes assigned to the I-th irreducible representation of ZM .

What was missing, however, was the identification of the non-trivial profiles of the gauge

fields around the defect and their continuous monodromy parameters. Here we have filled

this gap showing for a generic defect how these continuous data are encoded within the

D-brane configuration.

As we already pointed out in [1], our description in terms of closed string background

fields has some similarities with the holographic realization of surface defects as bubbling

geometries of Type II B supergravity that asymptote to AdS5×S5 [25, 26]; indeed, in that

realization, like in ours, the continuous parameters of the defects are mapped to integrals

of the NS/NS and R/R 2-forms over suitable cycles. Our construction, however, is based

on an exactly solvable string background — D3-branes on an orbifold — in which explicit

world-sheet computations are possible. Moreover, we are on the gauge theory side of the

holographic correspondence: the branes have not dissolved into geometry and the open

string degrees of freedom are explicitly present. It would be a worthwhile exercise to relate

our D-branes on orbifolds to the bubbling geometries of [25, 26].

For simplicity we have considered surface defects in N = 4 U(N) theories, but our

analysis can be extended to cases with lower supersymmetry and/or with other gauge

groups. For example, by introducing a mass deformation in two of the directions transverse

to the D3-branes [31] we can realize the so-called N = 2∗ theory, or by implementing

another orbifold acting purely in directions transverse to the D3-branes we can obtain

a N = 2 theory. Furthermore, by introducing orientifold planes we can get models and

defects with orthogonal or symplectic gauge groups. Exploring in this fashion these set-ups

represents a logical line of development.

Let us remark once more that the orbifold that realizes the GW defects has a different

behavior with respect to the orbifolds that are usually considered. In fact, as discussed in

section 3.2, this orbifold not only acts on the oscillators and the Chan-Paton indices of the

open string states, but also on the components of their momentum transverse to the defect.
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This action on the momentum can therefore compensate the corresponding action on the

oscillators and the Chan-Paton factors, so that no state is projected out; rather, a specific

momentum dependence is imposed. Therefore, on the world-volume of the fractional D3-

branes we find the same field content of the N = 4 super Yang-Mills theory. The exception

to this pattern is represented by the open strings with no momentum transverse to the

defect. Out of these states, the orbifold selects a subset of states and halves the amount of

supersymmetry. Such states, which we did not investigate in the present work, represent

the defect sector of the defect CFT. The bulk operators are instead represented by closed

and open string vertices with non-zero momenta in the directions transverse to the defect.

Mapping correlators of bulk and defect operators to ordinary string world-sheet diagrams

could prove to be a useful tool in the investigation of the defect dynamics. This is another

direction worth investigating.

The perturbative string theory realization of a non-trivial sector of the gauge theory

that we have described bears many analogies with the explicit derivation of the gauge

instanton profiles from D3/D-instanton systems [34–36] via the emission of open strings

from disk diagrams with mixed boundary conditions [37]. The role of the instanton moduli

is played in the construction of the surface defect by the insertion of the twisted closed string

at zero momentum. The direct realization of instantons as a solvable D-brane background,

besides its intrinsic interest, turned out to be very useful in evaluating instanton effects in

deformed theories [38–40] as well as in engineering “exotic” instantons of purely stringy

origin [41–43], possibly giving rise to effects otherwise prohibited in the effective field

theory. Similarly, in the case of surface defects, it is possible that having a microscopic

stringy realization might suggest some novel effects in the defect gauge theory. We hope

to explore these and related issues in the future.
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A Conventions

In this appendix we list our conventions for spinors both in the 4d space along the ZM
orbifold, and in the 6d space transverse to it.

A.1 Spinors in 4d

We consider a 4d space parametrized by the two complex coordinates z2 and z3, related to

the four real coordinates xm (with m = 3, 4, 5, 6) as in (2.1). Introducing the Pauli matrices

σm =
(
τ1, τ2, τ3,−i12

)
, (A.1)
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we can form the combination

Xαβ̇ =
1√
2
xm (σm)αβ̇ =

(
z̄3 z̄2

z2 −z3

)
. (A.2)

The SO(4) ' SU(2)+ × SU(2)− isometry group acts on X as follows

X −→ U+X U †− (A.3)

where U± ∈ SU(2)±. Therefore, the two columns of X are two doublets transforming as

spinors of SU(2)+:

yα =

(
z̄3

z2

)
and wα =

(
z̄2

−z3

)
. (A.4)

Raising the indices, we have

yα = yβ (ε−1)βα =

(
−z2

z̄3

)
and wα = wβ (ε−1)βα =

(
z3

z̄2

)
(A.5)

where ε = −i τ2 as in (2.31). Of course the same combinations can be made with the

fermionic coordinates leading to the doublets(
−Ψ2

Ψ3

)
and

(
Ψ3

Ψ2

)
. (A.6)

These are precisely the structures that have been used in section 2 to write the massless

vertex operators of the twisted NS/NS sectors.

A.2 Spinors in 6d

We consider a 6d Euclidean space spanned by the coordinates xM with M ∈
{1, 2, 7, 8, 9, 10}, in order to respect the configuration of the orbifold (1.1). The 6d Eu-

clidean Clifford algebra is given by

{ΓM ,ΓN} = 2δMN , (A.7)

and an explicit realization of the Γ matrices is given by:

Γ1 =


0 0 −i 12 0

0 0 0 −i 12

i 12 0 0 0

0 i 12 0 0

 , Γ2 =


0 0 τ3 0

0 0 0 −τ3

τ3 0 0 0

0 −τ3 0 0

 ,

Γ7 =


0 0 −τ2 0

0 0 0 τ2

−τ2 0 0 0

0 τ2 0 0

 , Γ8 =


0 0 τ1 0

0 0 0 −τ1

τ1 0 0 0

0 −τ1 0 0

 ,

Γ9 =


0 0 0 −i 12

0 0 i 12 0

0 −i 12 0 0

i 12 0 0 0

 , Γ10 =


0 0 0 12

0 0 12 0

0 12 0 0

12 0 0 0

 .

(A.8)
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It follows that the 6d chirality matrix Γ̂ is

Γ̂ = i Γ1Γ2Γ7Γ8Γ9Γ10 =


12 0 0 0

0 12 0 0

0 0 −12 0

0 0 0 −12

 , (A.9)

which shows that, in this basis, a Dirac spinor is written as(
SA

SȦ

)
(A.10)

where A and Ȧ label, respectively, the chiral and anti-chiral components. The charge

conjugation matrix C, in this basis, is given by

C =


0 0 0 ε

0 0 ε 0

0 −ε 0 0

−ε 0 0 0

 (A.11)

where ε = −i τ2 as in (2.31). The charge conjugation matrix is such that

C ΓM C−1 = −(ΓM )t . (A.12)

B ZM in momentum space

Here we briefly comment on how to define the ZM orbifold action in momentum space. Let

us take the complex plane C(2) with coordinates z2 and z̄2 on which ZM acts as in (2.2),

and define the momenta κ2 and κ2 as in (3.27). For simplicity, however, we can drop the

index 2 since in this appendix this does not cause any ambiguity.

First of all, we observe that the orbifold action on the coordinates can be equivalently

read as an inverse action on the momenta. Consider for example the scalar product

κ z + κ z , (B.1)

which, under the action of ZM on the coordinates, is mapped to

ω−1κ z + ω κ z . (B.2)

Clearly, this result can also be interpreted as due to the following action of ZM on the

momentum variables:

ĝ : (κ , κ) −→ (ω−1 κ , ω κ) (B.3)

with the coordinates held fixed.

Then, let us consider a function in momentum space, f(κ, κ), and define its images

under the orbifold group according to

ΠI(κ, κ) =
1

M

M−1∑
J=0

ω−IJ f
(
ω−Jκ, ωJ κ

)
(B.4)
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where I = 0, . . . ,M − 1, modulo M . Using (B.3), it is immediate to check that

ĝ
[
ΠI

]
= ωI ΠI , (B.5)

namely that ΠI transforms in the I-th representation of ZM . Inverting (B.4), we get

f(κ, κ) =

M−1∑
I=0

ΠI(κ, κ) . (B.6)

Applying these definitions to the plane wave ei (κ z+κ z), we get

EI =
1

M

∞∑
J=0

ω−IJ ei (ω−Jκ z+ωJκ z) , (B.7)

with

ĝ
[
EI
]

= ωI EI . (B.8)

These functions EI have exactly the same form and properties of the functions introduced

in section 3.2 when we described the ZM -invariant open string states. In terms of them,

the plane wave can be written as

ei (κ z+κ z) =

M−1∑
I=0

EI . (B.9)

Let us now consider the Fourier transform of f . Using (B.6) and (B.9), we have

FT [f ](z) =

∫
d2κ

2π
f(κ, κ) ei (κ z+κ z) =

∫
d2κ

2π

M−1∑
I,J=0

ΠI(κ, κ) EJ . (B.10)

Since the integration measure is ZM -invariant, only the invariant products ΠI EM−I survive,

and thus

FT [f ](z) =

∫
d2κ

2π

M−1∑
I=0

ΠI(κ, κ) EM−I =
1

M

∫
d2κ

2π

M−1∑
I=0

ĝI
[
f(κ, κ) ei (κ z+κ z)

]
. (B.11)

This shows that the Fourier transform leads to a well-defined function in the orbifolded

theory. In particular, the Fourier transform of a function in the I-th irreducible reprentation

of ZM in momentum space is a function in configuration space that transforms in the

representation (M − I), and viceversa.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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