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Abstract

Consider a random curve valued in a general semi-metric space whose small-ball probability fac-
torizes isolating the spatial and the volumetric term. Assume that the latter is specified and interpret
its parameters as complexity indexes. An index estimate is constructed by comparing nonparametric
versus parametric estimates of the volumetric factor, and various asymptotics (including weak con-
vergence and asymptotic normality) are stated by means of U-statistics tools. As a by-product, new
asymptotic results are stated for surrogate density estimation.
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1 Introduction

Given a sample of discretized trajectories of a random function, an interesting issue, as well from theo-
retical as from practical point of view, is to consider the complexity nature of the underlying probability
measure. In the literature various approaches have been proposed: they are usually based on measuring
some (fractal) dimensions of the process, such as correlation dimension or Hausdorff one: see e.g. [2],
[8], [15], and recently, [4], [5] and [6]. All these techniques are in some way related to the concept of
small ball probability which can be described as follows. Given a random element X valued in a suitable
semimetric space F and denoting by B (χ, h) the ball centered at χ ∈ F with radius h, the small ball
probability of X is P (X ∈ B (χ, h)) when h tends to zero. Under suitable conditions (see, for instance,
[3], [19]), it is possible to assume that

P (X ∈ B (χ, h)) ∼ ψ (χ)φ (h) as h→ 0. (1)

The real valued function ψ (χ) plays the role of a surrogate density of the functional random element
X, while the volumetric term φ (h) is independent of χ and has to be interpreted as a measure of the
complexity for the process X (see [5]). To ensure identifiability of the decomposition, a normalization
restriction is necessary, such as for instance

E [ψ(X)] = 1. (2)
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To fix the ideas, note that for some special family of processes it is possible to specify the complexity
function in a parametric form by means of some complexity index θ ∈ Rp (p being some positive integer).
For example, if the process has some fractal structure (as defined by [11, Definition 13.1]) then φθ(h) =
cθh

θ, for some constant term cθ and θ > 0. Another notable example comes from Gaussian processes (see
[19]), for which φθ(h) = C1h

α exp
{
−C2/h

β
}

with θ = (α, β) ∈ [0,∞) × (0,∞) and positive constants
C1, C2. In both examples discussed just above, the estimation of θ will provide insights about the
complexity of the underlying process. To appreciate why it is interesting to estimate θ, one can think to
those frameworks where modeling the functional data is useful for a predictive perspective (for instance
in finance, see [4, 5]) or to those situations in which the rate of convergence of nonparametric estimator
depends on the small ball probability (see asymptotyc rates of convergence in [11]).
This work is not related to some special family of process. More precisely, some estimation procedure is
developed under the general assumption that the volumetric component is specified by some parametric
relation being of the form

φ ∈ {φθ, θ ∈ Θ ⊂ Rp}. (3)

In this framework, one denotes by θ0 the true value of θ. The methodology developed for estimating the
parameter θ0, consists in using a pilot nonparametric smoother of φ (denoted by φn) and then to build an
estimate θn by looking for the value of θ ∈ Θ which is minimizing some measure of dissimilarity between
φθ and φθ0 .
The paper is organized as follows. First, Section 2 is devoted to the presentation of the methodology. In
this section, by following ideas illustrated in [5], we define precisely an estimator θn for θ by minimizing
the cosine measure of dissimilarity between the target φθ0 and the empirical nonparametric volumetric
term estimate φn proposed in [6]. Then we state a wide scope of asymptotic properties for θn. Precisely,
a weak convergence result for θn is derived in Section 3. Note that, as a by-product of this result, new
uniform convergence for the nonparametric volumetric estimate φn are proved, completing the literature
in this field (see [6]). Moreover, by exploiting the fact that φn is a second order U-statistic (see e.g. [18]),
the asymptotic normality of θn is obtained in Section 4. Finally, a simulation study completes the analysis
providing some finite sample empirical evidences on the estimator performances; see Section 5.

2 Estimating the complexity index

Let F be a space endowed with a suitable semi-metric and X be an F-valued random element whose
probability measure admits the factorization (1)-(2) with a volumetric term parametrized by the com-
plexity index θ0 ∈ Rp according to (3). Consider X1, . . . , Xn i.i.d. as X and the empirical estimator of φ
defined by

φn (h) =
1(
n
2

) ∑
1≤i<j≤n

I{Xi∈B(Xj ,h)} h ∈ H (4)

with H = [hm, hM ], 0 < hm < hM (hM closes to zero) and φn(hm) > 0. As far as we know, the
literature on this estimate is limited to the pointwise weak consistency and asymptotic normal distribution
properties stated [6]. This estimate will be used as a pilot tool for estimating the complexity parameter
θ0. Therefore its study is not the main purpose of this work, but it is worth being noted that some new
asymptotics for φn will be obtained later on in this paper (see Proposition 1).
Starting with the pioneer paper by [7] in the usual one-dimensional linear regression framework, there
is a long tradition in Nonparametric Statistics for using nonparametric smoother as pilot tool for fitting
some parametric model. Ideas in [7] have been extensively applied for a wide scope of finite-dimensional
problems but, as far as we know, they have been developed in infinite dimensional setting only for
the standard functional linear regression purpose (see [9]). To adapt these ideas to surrogate density
estimation as it is the aim of our work, one needs to define some suitable measure of dissimilarity. This
is done by introducing the following cosine-dissimilarity measure:

∆(φn, φθ) = 1− 〈g(φθ), g(φn)〉2

‖g(φθ)‖2‖g(φn)‖2
, (5)
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where 〈·, ·〉 and ‖ · ‖ denote the usual inner product and the associated norm respectively in L2
H, and g

is a suitable continuous real-valued function defined on R. The fact that φθ and φn are both bounded
away from zero on H guarantee that φθ, φn, g(φθ) and g(φn) are in L2

H and yield the wellposedness of
(5). In practice, possible working choice of g are, as an instance, the identity function in the fractal case,
and the logarithm for many Gaussian processes (see [5]).
Hence, an estimator θn of θ0 is the minimizer of ∆:

θn = arg min
θ∈Θ

∆(φn, φθ), (6)

where Θ is a suitable compact subset of Rp that is supposed to contain θ0. In the next two sections we
will state asymptotic properties for this estimate.
It is worth to be mentioned that the cosine-dissimilarity is not the only possible choice as dissimilarity
measure, but changing it could require different approaches and technicalities in the proofs.

3 Weak consistency

The next Theorem 1 establishes, under mild conditions the convergence in probability of θn to θ0.

Theorem 1 Assume that the model defined by (1)-(3) holds. Assume that g is Hölder continuous (i.e.
∃C < ∞,∃β > 0, such that ∀y1, y2 ∈ R, ‖g(y1) − g(y2)‖ ≤ C‖y1 − y2‖β) and that, for each θ ∈ Θ (a
compact subset of Rp), the function φθ is continuous and increasing on H. Then θn −→ θ0 in probability,
as n diverges.

The proof of Theorem 1 requires the following intermediary result which extends, as by-product, the
existing literature on surrogate density estimation by providing a weak uniform convergence result for
the empirical estimator (4) of the complexity function.

Proposition 1 Assume that the model defined by (1)-(3) holds. If φθ is continuous and increasing on
H, then φn converges in probability to φθ0 uniformly on H as n→ +∞.

Note that the results in Theorem 1 and Proposition 1 are presented for the simple case of the empirical
estimate defined in (4), but it is worth being mentioned that they still hold whenever one uses any
nonparametric pointwise consistent estimator for φθ which is increasing on H. This could concern, for
instance, kernel-type estimators or kNN-type estimators as introduced in [5] and [10] (see also [20] for a
general survey on nonparametric functional data analysis).

Proof of Theorem 1 Define δ (θ) = ∆ (φθ0 , φθ) and δn (θ) = ∆ (φn, φθ) which are continuous over Θ
due to the continuity of φθ. Consider

|δ (θ)− δn (θ)| =
∣∣∣〈g̃ (φθ) , g̃ (φθ0)〉2 − 〈g̃ (φθ) , g̃ (φn)〉2

∣∣∣
where g̃ (φ) is the normalized version of g (φ). Noticing that

〈g̃ (φθ) , g̃ (φθ0)〉2 − 〈g̃ (φθ) , g̃ (φn)〉2 = (〈g̃ (φθ) , g̃ (φθ0)〉+ 〈g̃ (φθ) , g̃ (φn)〉)
(〈g̃ (φθ) , g̃ (φθ0)〉 − 〈g̃ (φθ) , g̃ (φn)〉) ,

by Chauchy-Schwarz inequality it follows∣∣∣〈g̃ (φθ) , g̃ (φθ0)〉2 − 〈g̃ (φθ) , g̃ (φn)〉2
∣∣∣ ≤ (‖g̃ (φθ)‖ ‖g̃ (φθ0)‖+ ‖g̃ (φθ)‖ ‖g̃ (φn)‖) ·

· |〈g̃ (φθ) , g̃ (φθ0)〉 − 〈g̃ (φθ) , g̃ (φn)〉|
= 2 〈g̃ (φθ) , g̃ (φθ0)− g̃ (φn)〉 ≤ 2 ‖g̃ (φθ0)− g̃ (φn)‖

= 2
‖ g (φθ0) ‖g (φn)‖ − g (φn) ‖g (φθ0)‖‖

‖g (φn)‖ ‖g (φθ0)‖
= 2 ‖g̃ (φθ0)− g̃ (φn)‖
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The Hölder-continuity of the function g allows to write

‖g̃ (φθ0)− g̃ (φn)‖ ≤ C ‖φθ0 − φn‖
β

and hence
sup
θ∈Θ
|δ (θ)− δn (θ)| ≤ C ‖φθ0 − φn‖

β
.

Because
‖φθ0 − φn‖

2β ≤ sup
h∈H

(φn (h)− φθ0 (h))
2β |H|β (7)

where |H| is the length of H, and φn converges in probability to φθ0 uniformly on H when n → ∞ (see
Proposition 1), then

sup
θ∈Θ
|δ (θ)− δn (θ)| −→ 0 in probability as n→ +∞.

Now, as δ is a continuous function defined over the compact set Θ, it is uniformly continuous on Θ.
Moreover, thanks to the uniqueness of the minimum θ0, it can be proved that δ satisfies the following
property: for any ε > 0, there exists ζ > 0 such that, for any θ, ‖θ0 − θ‖p ≥ ε implies |δ (θ0)− δ (θ)| ≥ ζ
(‖·‖p denotes the euclidean norm in Rp). To show this, suppose that such assertion is false, then there
would exist an ε > 0 and a sequence {tn} such that, as n goes to infinity,

δ (tn) −→ δ (θ0) and ‖θ0 − tn‖p ≥ ε.

The latter and the fact that Θ is compact imply that tn converges to θ ∈ Θ \ {θ0} with δ (θ) = δ (θ0).
This is against the uniqueness of the minimum of δ in Θ.
Then to prove that θn → θ0 in probability, it suffices to prove that δ (θn) → δ (θ0) in probability as
n→ +∞. Since

|δ (θn)− δ (θ0)| ≤ |δ (θn)− δn (θn)|+ |δn (θn)− δ (θ0)|

where
|δ (θn)− δn (θn)| ≤ sup

θ∈Θ
|δ (θ)− δn (θ)|

and

|δn (θn)− δ (θ0)| ≤
∣∣∣∣sup
θ∈Θ

δn (θ)− sup
θ∈Θ

δ (θ)

∣∣∣∣ ≤ sup
θ∈Θ
|δn (θ)− δ (θ)| ,

it holds
|δ (θn)− δ (θ0)| ≤ 2 sup

θ∈Θ
|δ (θ)− δn (θ)| −→ 0 in probability as n→ +∞

that concludes the proof.

Proof of Proposition 1 Because φθ0 is increasing and continuous on H, for any ε > 0, it is possible
to consider hm = t0 < t1 < . . . < tN = hM so that

φθ0 (tj)− φθ0 (tj−1) < ε j = 1, . . . , N. (8)

Thus

P
(

sup
h∈H
|φn (h)− φθ0 (h)| > ε

)
= P

(
max

j=1,...,N
sup

tj−1<h≤tj
|φn (h)− φθ0 (h)| > ε

)

≤ P
(

max
j=1,...,N

|φn (tj)− φθ0 (tj−1)| > ε

)
= P

(
max

j=1,...,N
|φn (tj)− φθ0 (tj) + φθ0 (tj)− φθ0 (tj−1)| > ε

)
≤ P

(
max

j=1,...,N
|φn (tj)− φθ0 (tj)| > ε

)
+ P

(
max

j=1,...,N
|φθ0 (tj)− φθ0 (tj−1)| > ε

)
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In latter, the second addend is null thanks to (8), whereas, for the first one it holds

P
(

max
j=1,...,N

|φn (tj)− φθ0 (tj)| > ε

)
≤ max
j=1,...,N

P (|φn (tj)− φθ0 (tj)| > ε) .

Thanks to the pointwise consistency of φn to φθ0 , the postulated result follows immediately.

4 Asymptotic normality

In this section, a central limit theorem for θn is proved. One of the key arguments exploited in the
proof is that φn is a U-statistics. In what follows, δ (θ) = ∆ (φθ0 , φθ) and δn (θ) = ∆ (φn, φθ) as already
introduced at the beginning of the proof of Theorem 1.

Theorem 2 Under the same hypothesis of Theorem 1 and assuming that g is C2 (0,+∞) (i.e. twice
derivable with continuous derivatives over (0,+∞)) with non-null first derivative, δ is C2 (Θ) and strictly
convex over Θ, then as n→ +∞

√
n
‖g (φθ0)‖4

2
∇2δ (θ0) (θn − θ0) ∼ N (0,Γ)

where ∇2δ is the Hessian matrix of δ, and Γ is given in (11).

Proof of Theorem 2. In the treated framework, one has δ (θ) = 1− 〈g̃ (φθ0) , g̃ (φθ)〉2 with θ ∈ Θ and
g̃ (φ) being the normalized version of g (φ).
Moreover denoting by tr the r-th element of θ, the gradient and the Hessian matrix of δ (θ) with respect
to θ write:

∇δ (θ) = −2 〈g̃ (φθ0) , g̃ (φθ)〉
[〈
g̃ (φθ0) ,

∂

∂tr
g̃ (φθ)

〉]
r=1,...,p

∇2δ (θ) = −2


〈
g̃ (φθ0) ,

∂

∂ts
g̃ (φθ)

〉〈
g̃ (φθ0) ,

∂

∂tr
g̃ (φθ)

〉
+

+ 〈g̃ (φθ0) , g̃ (φθ)〉
〈
g̃ (φθ0) ,

∂2

∂tr∂ts
g̃ (φθ)

〉

r,s=1,...,p

and

∇δ (θ0) = 0, ∇2δ (θ0) = −2

[〈
g̃ (φθ0) ,

∂2

∂tr∂ts
g̃ (φθ0)

〉]
r,s=1,...,p

. (9)

Consider δn (θ) = 1 − 〈g̃ (φn) , g̃ (φθ)〉2 and the Taylor expansion of ∇δn (θ) about θ0 with Lagrange
remainder:

∇δn (θ) = ∇δn (θ0) +∇2δn (θ?) (θ − θ0)

where the elements t?r of θ? ∈ Θ stay between tr and t0,r (the r-th element of θ0). Evaluate it at its
minimum θn, so that ∇δn (θn) = 0, and since ∇2δ (θ) is invertible, direct calculations lead to

θn − θ0 = −
(
∇2δn (θ?)

)−1∇δn (θ0) (10)

where

∇δn (θ0) = −2 〈g̃ (φn) , g̃ (φθ0)〉
[〈
g̃ (φn) ,

∂

∂tr
g̃ (φθ0)

〉]
r=1,...,p

and

∇2δn (θ?) = −2


〈
g̃ (φn) ,

∂

∂ts
g̃ (φθ?)

〉〈
g̃ (φn) ,

∂

∂tr
g̃ (φθ?)

〉
+

+ 〈g̃ (φn) , g̃ (φθ?)〉
〈
g̃ (φn) ,

∂2

∂tr∂ts
g̃ (φθ?)

〉

r,s=1,...,p

.
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Thanks to Proposition 1 and Equation (9), one gets that 〈g̃ (φn) , g̃ (φθ0)〉 and

[〈
g̃ (φn) ,

∂

∂tr
g̃ (φθ0)

〉]
r=1,...,p

converge to one and the null vector respectively, in probability as n → +∞. Moreover, by Theorem 1,

the definition of θ? and thanks to Proposition 1,

〈
g̃ (φn) ,

∂

∂tr
g̃ (φθ?)

〉
goes to zero in probability as n

diverges, for any r, while ∇2δn (θ?) tends to ∇2δ (θ0). Summarizing,

θn − θ0 −→ 2∇2δ (θ0)
−1

[〈
g̃ (φn) ,

∂

∂tr
g̃ (φθ0)

〉]
r=1,...,p

in probability as n→ +∞. Hence, to derive the asymptotic distribution of θn− θ0, thanks to the Slutsky
Theorem, it is sufficient to study the law of the random vector:[〈

g̃ (φn) ,
∂

∂tr
g̃ (φθ0)

〉]
r=1,...,p

that equals [
〈g (φn) , η0,r〉

‖g (φn)‖ ‖g (φθ0)‖3

]
r=1,...,p

where

η0,r = g′ (φθ0)

(
∂φθ0
∂tr

)
‖g (φθ0)‖2 − g (φθ0)

∫
g (φθ0) g′ (φθ0)

(
∂φθ0
∂tr

)
r = 1, . . . , p.

As a consequence of Proposition 1, as n diverges, ‖g (φn)‖ tends to the constant ‖g (φθ0)‖ in probability.
Hence, evoking again the Slutsky Theorem it remains to study the asymptotic distribution of the random
vector whose entries are

〈g (φn) , η0,r〉 =
√
n 〈g (φn)− g (φθ0) , η0,r〉 r = 1, . . . , p,

because 〈g (φθ0) , η0,r〉 = 0 for any r = 1, . . . , p.
For any h ∈ H, the Taylor expansion of g at φθ0 (h) provides

√
n (g (φn (h))− g (φθ0 (h))) =

√
n (φn (h)− φθ0 (h)) g′ (φθ0 (h)) + o

(√
n (φn (h)− φθ0 (h))

)
.

The fact that φn (h) is a U-Statistic guarantees that the finite dimensional distributions of
√
n (φn (h)− φθ0 (h))

converge to those of a centered Gaussian process with covariance function (see [13] and [22])

ς (h, h′) =
∑
i,j

∑
k,m

P ({‖Xi −Xj‖ ≤ h} ∩ {‖Xk −Xm‖ ≤ h′})− 4φθ0 (h)φθ0 (h′) .

As a consequence √
n (φn (h)− φθ0 (h)) g′ (φθ0 (h))

converges to a centered Gaussian process with covariance function

σ (h, h′) = g′ (φθ0 (h)) ς (h, h′) g′ (φθ0 (h′))

and
√
n (φn (h)− φθ0 (h)) is bounded in probability, so that:

o
(√
n (φn (h)− φθ0 (h))

)
= o (1) h ∈ H.

Hence [
√
n 〈g (φn) , η0,r〉]r=1,...,p is asymptotically distributed as a centered Gaussian random vector with

variance
Γ = [〈η0,s,Σ [η0,r]〉]r,s=1,...,p (11)

where Σ is the covariance operator associated to the covariance function σ.
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5 Simulation

In this section the results of a brief simulation study are reported in order to provide some empirical evi-
dences on the theoretical results derived in the previous sections. In practice, the empirical distributions
of the estimator are obtained starting from 1000 Monte Carlo samples of independent random curves
X1, . . . , Xn generated according to a random process X and discretized over a mesh of 100 equispaced
points, with n = 50, 100, 200, 500.
We used both the noised bi–dimensional process

X (t) =
√

2 (A sin (πt) +B cos (πt)) + σE (t) t ∈ [0, 1]

(where, A and B are independent N (0, 1), E(t) is a standard Gaussian white noise and σ = 0.02) and a
Brownian Bridge on [0, 1]. We recall that, when h tends to zero, φ (h) is proportional to hθ in the first
case whereas, in the second case, log(φ(h)) is proportional to h−θ, with θ = 2 in both cases.
To make calculations, the interval H has been discretized in a grid of approximately

√
2n equispaced

points between hm = 1/ (10n) and hM = 3/n, so that the range of H became closer to zero as the sample
size increases.
For each used process and sample size, some synthetic indicators (mean, standard deviation and median)
of the generated distributions were calulated and the Shapiro-Wilk test of normality was performed. The
results are collected in Table 1. Reading them, it emerges that in the finite dimensional case no evident
bias are present whereas in the infite dimensional one there is a bias which decreases with n and that
could be linked with the choice of H. The variability of the estimator decreases, as is to be expected,
with n. The p-value associated to the normality test increases with n providing an evidence in favour of
the normality of the distribution of the estimators, at least for moderately large sample sizes.
More numerical studies can be found in [5].

Process n Mean St.Dev. Median p–value
Finite dimensional 50 2.003 0.248 1.995 0.0013

(with θ = 2) 100 1.999 0.178 1.993 0.3515
200 1.998 0.126 1.995 0.4573
500 2.004 0.081 2.004 0.3566

Brownian Brigde 50 2.205 0.318 2.193 0.0000
(with θ = 2) 100 2.184 0.224 2.179 0.0009

200 2.137 0.159 2.135 0.1579
500 2.101 0.103 2.101 0.1662

Table 1: Some statistics on the distributions of the estimated complexity index under different experi-
mental conditions.

6 Concludings

This paper provides theoretical insights for estimating the complexity of some functional random element
that enrich the methodological framework described and implemented in [4, 5] opening the route for
deeper descriptive analysis of Functional Data. In this sense, the paper aims to contribute to the broader
scientific debate on Functional Statistics. To have an idea on the wide scope of methodologies introduced
along the recent years in such discipline, one can consult the monographes [11], [14], [17], [21] or the
special issues [1], [12] and [16].
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