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Abstract

This paper proposes and analyzes a discrete-time deterministic SIR model with
information dependent immunization behaviour, where vaccination coverage at
birth during any period of time is a general phenomenological function of the
risk of infection that is perceived at the beginning of the period. Results on
existence of equilibria, their local stability, and system persistence are proved.
Then, by considering the noteworthy subcase of a piecewise linear “prevalence-
dependent” coverage function, the local stability of the endemic state is proved
and conditions for its global asymptotic stability are given. Some insight on
both Neimarck-Sacher and period-doubling bifurcations are provided. Overall
we show that prevalence-dependent coverage is an essentially stabilising force.
However period-doubling bifurcations are possible though under stressed pa-
rameter constellations.Key words: discrete deterministic SIR models, global
stability, oscillations, persistence, rational opposition to vaccination.
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1 Introduction

In the mathematical models traditionally used in the epidemiology of transmissi-
ble infections (see e.g. the classical Anderson and May 1991 book [2]) individual
being virtually play no role: they are just passive actors of the disease’s scene.
However, there is nowadays an endlessly increasing list of examples unequivo-
cally documenting that this passive role of humans can be considered at best an
approximation, perhaps usable for modeling infections in traditional communi-
ties, but not anymore valid in modern - highly interconnected and information
seeking — societies [4], [5], [10].
The most well- known examples in this list range from the worldwide diffusion of
panic following the SARS outbreak in the Far-East in 2003, yielding a dramatic
fall in travels and tourism in those areas, to the schizophrenic reactions to the
2009 H1N1 pandemic alert, to the many episodes of opposition to vaccines, one
of the single innovations that mostly contributed to increase in life-expectancy,
well-being, and living standards of human societies [5].
Consequently, a main news in the landscape of recent research in the epidemiol-
ogy of transmissible infections has been represented by the full acknowledgement
of this increasingly important role played, in modern societies, by individual hu-
man behavior, for the transmission dynamics and control of infectious diseases.
This has brought the need to look for new models and explanations by im-
porting into mathematical epidemiology the typical approaches from behavioral
sciences. This cross-fertilization aims to set out the feedbacks between epidemi-
ological inputs, the related information flows, the agents’ elaboration of this
information, and the ensuing responses to the epidemiological signals [4], [5],
[16].
In this fast growing literature on “behavioral epidemiology” [16] a prominent
area of investigation has focused on the modeling of immunization choices in
relation to vaccine preventable infections of childhood, such as measles, mumps,
rubella and pertussis, in regimes of voluntary immunization [5]. Much of this
literature has been stimulated by two major episodes of vaccine opposition, i.e.
the opposition to the whole-cell pertussis vaccine, and the MMR-autism scare
following the evidence in Wakefield et al paper [24], published in 1998 on the
Lancet and later retracted by the journal by suggesting the possibility of a causal
link between MMR immunization and autistic spectrum disorders.
A range of alternative mathematical modeling approaches have been proposed to
represent the complex interplay between choices related to childhood immuniza-
tion and the ensuing transmission and control of infections. These approaches
are reviewed in [5], to which the reader can refer for a broader overview. A wide
sample of these approaches is reported in [16]. Among these modeling strategies
a simple one allowing substantial mathematical deepening is the one developed
by d’Onofrio et al [7], [8] that proposed a generalized family of information-
dependent, deterministic, SIR (Susceptible-Infective-Removed) continuous-time
models, where the vaccination coverage at birth is taken to be a general phe-
nomenological function of the perceived risk related to the disease, taken in its
turn as a function of the information available on the infection.
In this research line no papers have however been devoted, to the best of our
knowledge, to the investigation of the dynamic properties of discrete-time epi-
demiological models incorporating vaccinating behavior.
It is the aim of this paper therefore to fill this gap by proposing and analyzing a

1
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discrete-time deterministic SIR model with information dependent vaccination
coverage at birth. The model reformulates in a discrete setting the unlagged
version of the continuous-time model proposed in [7], and assumes that the
vaccination coverage at birth at any time is a general function of the risk of
infection that is perceived at the beginning of the period.
Our results provide a fairly general characterization of the system dynamics and
also a systematic comparison with the results provided in the benchmark paper
by Allen [7]. As for the general case we are able to provide conditions for the
existence of equilibria, their local stability, and in particular system persistence.
The latter is a fairly important property from the epidemiological viewpoint
related to the substantive epidemiological question of whether the infection will
“persists” or not in the population over the long-term irrespective of whether
solutions converge (e.g. globally) to a steady state or oscillate wildly around it.
Then, we move to consider the noteworthy subcase of a piecewise linear “pre-
valence-dependent” coverage function, where the actual infective prevalence is
the determinant of the perceived risk of infection used by families to decide
whether to vaccinate or not their children. For this case we have been able to
provide conditions for the global asymptotic stability of the endemic state, and
the onset of bifurcations.
The paper is organized as follows. In Section 2 we critically review previous
results about the dynamics of discrete SIR models. In Section 3 we present
our model, and report some main features in Section 4. Section 5 focuses on
the local stability of the endemic state and on system persistence. Section 6
considers the subcase of a “prevalence-dependent” coverage function, for which
the local stability of the endemic state is proved and conditions for its global
asymptotic stability are given. Numerical illustrations are postponed to Section
7. Concluding remarks follow.

2 Discrete SIRmodels with constant population

Though the first discrete models for the transmission dynamics of infection date
back to long ago (e.g. [11]) the first work systematically focusing on the dynamic
properties of deterministic discrete SIR (and SI, SIS) models is (to the best of
our knowledge) the paper by Allen in 1994 [1]. Denoting by S (t), I (t) and R (t)
respectively the susceptible, infected and removed fractions at time t ≥ 0 and
setting the time step ∆t equal to 1, the discrete epidemic SIR model introduced
in [1] is:

S (t+ 1) = S (t)− βS (t) I (t)
I (t+ 1) = I (t) (1− ν) + βS (t) I (t)
R (t+ 1) = R (t) + νI (t)

(1)

where β > 0 and ν > 0 represent the transmission and the removal rate re-
spectively, and the initial conditions S (0) > 0, I (0) > 0 and R (0) ≥ 0 satisfy
S (0)+ I (0)+R (0) = 1. Solutions of the model are positive for all t if and only
if max {β, ν} ≤ 1. The latter condition means that, in order to have nontriv-
ial epidemiological behavior, the (unit) time step must be smaller of both the
two model relevant time scales, i.e., according to the geometric distribution, the
average time spacing between two consecutive infective contacts (1/β) and the
average duration of the infectious period (1/ν).
The reproduction number at time t is R(t) = β/νS(t). If R(0) ≤ 1 there is no

2
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epidemics and the infection goes extinct; if R(0) > 1 there is an epidemics but
periodic behavior is impossible. In particular for S (0) = 1, i.e. a wholly sus-
ceptible population, we have the basic reproduction number (BRN) R0 = β/ν.
Considering also births and deaths at the same rate µ > 0 in order to ensure
a constant population size in model (1), Allen introduced the SIR model with
vital dynamics:

S (t+ 1) = (1− µ)S (t) + µ− βS (t) I (t)
I (t+ 1) = (1− ν − µ) I (t) + βS (t) I (t)
R (t+ 1) = (1− µ)R (t) + νI (t)

(2)

where the third equation can be discarded for the analysis. Solutions are non-
negative for all initial conditions if and only if

i) µ+ ν ≤ 1; ii) β ≤ (1 +
√
µ)2 . (3)

In this case the basic reproduction number is R0 = β/ (µ+ ν). If R0 ≤ 1 there
is only the infection free equilibrium, (1, 0) which is globally asymptotically
stable; for R0 > 1 the author showed there is the unique endemic equilibrium
state EE defined by:

SE =
µ+ ν

β
=

1

R0
; IE =

µ

µ+ ν

(R0 − 1

R0

)
(4)

that is locally asymptotically stable and no cycles of period two exist. For µ and
β “sufficiently small” numerical simulations showed the global stability of the
endemic equilibrium but no analytical results were proven. When conditions
(3) are not fulfilled complex dynamics are possible: the author showed that for
µ = 0.95, ν = 0.05, S0 = 0.99, I0 = 0.01 for β = 3.5 the fraction of infectives
follows a 2-periodic orbit and more periodic behaviors for larger values of β. In
[3], where model (2) is extended to the case of a more general nonlinear force
of infection λ (t), the local stability of the endemic equilibrium (for R0 > 1) of
model (2) was obtained under the assumption β < 1− µ (compare with (3ii)).
We now briefly detail the (local) stability behavior of (SE, IE) for 1 − µ ≤
β <

(
1 +

√
µ
)2
. By applying the Jury criterion to the Jacobian matrix at the

endemic equilibrium (4)

JE =

(
1− µR0 −µ− ν
µ (R0 − 1) 1

)

we conclude that Neimark-Sacker bifurcations are excluded (as detJE < 1) and
the local stability at the endemic state (SE, IE) follows under the assumption

1 < R0 <
4− µ (µ+ ν)

µ (2− (µ+ ν))
. (5)

As R0 = β/ (µ+ ν), the right condition in (5) is verified for all µ and ν such
that the r.h.s. is greater than the ii) positivity condition in (3), that is if and
only if

(µ+ ν)
4− µ (µ+ ν)

µ (2− (µ+ ν))
> (1 +

√
µ)
2

(6)

3
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equivalent to

µν2 +
(
µ2 − 2µ3/2 − µ− 4

)
ν − µ

(
2µ3/2 − µ− 4µ1/2 + 2

)
< 0.

Since the associated discriminant

∆ =
(
µ2 − 2µ3/2 − µ− 4

)2
+ 4µ

(
2µ3/2 − µ− 4µ1/2 + 2

)

is positive, and

ν2 :=
4− µ2 + 2µ3/2 + µ+

√
∆

2µ
> 1− µ

the local stability of (SE, IE) is ensured for all pairs (µ, ν) such that

ν1 :=
4− µ2 + 2µ3/2 + µ−

√
∆

2µ
< ν < 1− µ. (7)

Remark 1 A sufficient (though not necessary) condition for the local stability
of the endemic state EE is that IE < SE. In fact:

IE < SE ⇔ µ

µ+ ν

(R0 − 1

R0

)
<

1

R0
⇔ R0 <

2µ+ ν

µ
.

The conclusion follows by comparing this last inequality with (5):

4− µ (µ+ ν)

µ (2− (µ+ ν))
− 2µ+ ν

µ
=

(µ+ ν)2 + 4− 4µ− 2ν

µ (2− (µ+ ν))
> 0.

Previous results on the local stability imply the existence of a “small” region,
characterized by 0 < ν ≤ ν1, of the set {(µ, ν) : µ > 0, ν > 0, µ+ ν ≤ 1} in
correspondence of the local stability of the EE does not hold and therefore more
complicated behaviors are possible. For instance, if µ = 0.81 and ν = 0.05 (with
IE = 0.67858) one finds

βBIF = µ+ ν +
2 (2− µ) (µ+ ν)

µ (2− (µ+ ν))
= 3.07659 ≤ (1 +

√
µ)2 = 3.61.

Figure 1 illustrates the ensuing cascade of bifurcations. We must however em-
phasize the lack of epidemiological significance of the considered parameter con-
stellation, where infection duration is 16-fold longer than humans lifespan, pos-
sibly causing the model to approach the SI form.

Figure 1. Role of the transmission parameter β in triggering period-doublig
bifurcation in Allen’s model [1] under Allen parameter constellation (µ = 0.81,
ν = 0.05).

We conclude by observing that the literature on discrete SIR models presents
several other different approaches. Some global results on the stability of the
endemic equilibrium were obtained recently in [15] (see also [12]) for a SIR model
with non constant population. Further results appeared in the literature have
dealt with discrete SIR models obtained via different discretization methods of
the continuous ones and analyzed with various approaches [9], [13], [14], [18],
[19], [20], [21] and [22].

4
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3 A discrete SIRmodel with information-dependent

vaccination

Motivated by the recent research work on behavioral epidemiology models ([7],
[16]), we consider the following family of discrete SIR models for a non-fatal
disease in a constant homogeneously mixing population, with state-dependent
vaccination coverage at birth:

S (t+ 1) = (1− µ)S (t) + µ (1− p(M))− βS (t) I (t)
I (t+ 1) = (1− (µ+ ν)) I (t) + βS (t) I (t)
R (t+ 1) = (1− µ)R (t) + νI (t) + µp(M)

(8)

S,I are as before, whereas the removed fraction R now includes not only those
who are permanently immune due to recovery from infection but also those who
are immune through vaccination.
Model (8) represents a discrete version of the one introduced in [7] in the un-
lagged case. It can be derived directly, by relating flows of demographic and
epidemiological events over the time interval (t, t +∆t) to the numbers in the
various states at time t and finally setting ∆t = 1. This choice does not cause a
loss of generality given that ∆t would everywhere be embedded into the system
parameters.
All the parameters are assumed positive: µ ∈ (0, 1) denotes the birth and death
rates (assumed identical to keep the total population size constant), ν ∈ (0, 1)
the rate of recovery from infection, β ∈ (0,+∞) the constant transmission rate.
The vaccination coverage function p describes, assuming a 100% effective vac-
cine, the actual vaccination coverage at birth as a function of the state of the
information variable M , which in turn summarizes the available information
about the perceived risk of infection that is used by families to decide on whether
to vaccinate or not their children. M is assumed to be a differentiable func-
tion g of S and I, with ∂g/∂I > 0 and with g (S, 0) = 0 for all S. Thus,
M (t) = g (S (t) , I (t)) is bounded when S and I are, taking its values in the
interval I = [0,M sup), where Msup = supS,I g (S, I).
Analogously to [7], we define p as:

p(M) = p0 + p1(M) M ∈ I (9)

where:

i) p0 is a constant in (0, 1);

ii) 0 ≤ p1 (M) ≤ 1− p0 for all M ∈ I;

iii) p1(0) = 0;

iv) p1 is continuous and differentiable, except at a finite number of points,
with p′1 > 0.

This formulation amounts to assuming that the vaccination coverage is the
sum of a constant component, related to families which vaccinate their children
independently of the information about the state of the infection, and of an
information dependent one, which is increasing in M . This implies that when
the perceived risk related to infection increases some families previously not

5
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vaccinating will react by increasing the probability of immunizing their children,
thereby increasing the overall vaccine uptake of the population.
Discarding the variable R because its dynamics follow trivially from that one of
S, I, system (8) reduces to:

S (t+ 1) = (1− µ)S (t) + µ (1− p0 − p1(g (S (t) , I (t))))− βS (t) I (t)
I (t+ 1) = (1− (µ+ ν)) I (t) + βS (t) I (t)

(10)

on the compact set Ω = {(S, I) : S ≥ 0, I ≥ 0, S + I ≤ 1}. We shall assume
S (0) > 0 and I (0) > 0.

Remark 2 Model (10) is intermediate with respect two limit cases.
The first one is for 1 − p0 − p1(g (S (t) , I (t)) ≡ 0 corresponding to full cover-
age: all newborns are vaccinated and it is reasonable that in the long run both
susceptibles and infected fractions tend to zero. This is can be easily proved by
observing that in this case the sequence {S (t)} is positive (for β ≤ 1 − µ) and
strictly decreasing and a positive limit is incompatible with the first equation in
(10). As S (t)→ 0+ when t→ +∞, assuming µ+ ν < 1, with a similar reason-
ing we get I (t)→ 0+.
The second limit case is for 1− p0− p1(g (S (t) , I (t)) ≡ 1, corresponding to the
case of no vaccination, namely model (2).

4 Some general properties

In this section we state some general properties of model (10), i.e. properties
that are valid for any possible form of the functions p1 or g. First we supply a
necessary and sufficient condition for the invariance of the state space. This con-
ditions ensures that trajectories originating from epidemiologically meaningful
initial conditions remain meaningful at any subsequent times. Then we investi-
gate the existence of equilibria. Here we show that the steady state structure
is the one typical of simple epidemiological models: the model always has the
disease free equilibrium (DFE), and moreover, when an appropriate threshold
condition is met, an endemic equilibrium (EE) also appears. The relation be-
tween the threshold parameter and the global asymptotic stability of the DFE
is also stated.
By setting p1(M

sup) = sup
S,I∈Ω

p1 (g (S, I)), we denote with

(1− p)inf := 1− p0 − p1(M
sup) (11)

the minimum fraction of newborn individuals that are not vaccinated. By i)

and ii) it follows 0 ≤ (1− p)inf ≤ 1.
Our first proposition, following the same approach of [1], provides conditions
for the invariance of the state space Ω .

Proposition 3 For every initial conditions S (0) ≥ 0 and I (0) ≥ 0 all the
solutions of (10) are in Ω for all t ≥ 0 if and only if the following conditions
hold:

i) µ+ ν ≤ 1;

ii) β ≤ 1− µ+ 2µ (1− p)inf + 2

√(
1− µ

(
1− (1− p)inf

))
µ (1− p)inf := β∗

(12)

6
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Proof. By the second equation in (10) it is evident that for each S (t) ≥ 0 and
I (t) ≥ 0 we have I (t+ 1) ≥ 0 if and only if (12i) holds. Now, set ε = S (0),

then I (0) ≤ 1− ε. Since (1− p)inf ≥ 0, we obtain:

S (1) ≥ ε (1− µ− β (1− ε)) + µ (1− p)inf = f (ε) . (13)

We show now that, under (12ii), the convex quadratic function f has global
minimum f (ε∗) ≥ 0 for every ε ∈ [0, 1], then S (1) ≥ 0. In fact, the unique
global minimum point of f on [0, 1] is

ε∗ = max

{
0,

µ+ β − 1

2β

}
.

Notice that ε∗ ≤ 1/2. If µ+β−1 ≤ 0 then ε∗ = 0 and f (ε∗) = µ (1− p)inf ≥ 0.
If µ+ β − 1 > 0, the corresponding minimum value

f (ε∗) =
4βµ (1− p)inf − (β + µ− 1)2

4β

is non negative if and only if

β2 − 2
(
1− µ+ 2µ (1− p)inf

)
β + (1− µ)2 ≤ 0 (14)

equivalent to ii) in (12). Summing up, if β ∈ (0, β∗], then f (ε∗) ≥ 0 and from
(13) it follows S (1) ≥ 0 for each S (0) ∈ [0, 1]. Therefore, nonnegativity follows
by induction. The necessity part immediately follows by observing that, as
stated in the previous section, p1 is strictly increasing and g is increasing with
respect to I, so p1 (g (S, I)) ≤ p1 (g (S, 1− S)) ≤ p1(M

sup).
To conclude, observe that, if S (t) + I (t) ≤ 1, then:

S (t+ 1) + I (t+ 1) = (S (t) + I (t)) (1− µ) + µ (1− p0 − p1(M (t)))− νI (t) ≤
≤ (1− µ) + µ (1− p0 − p1(M (t))) ≤ 1

and the statement follows by an induction argument.

Remark 4 The upper bound for β in (12ii)) is an increasing function of (1− p)inf ,

belonging to the interval
[
1− µ,

(
1 +

√
µ
)2]

, then β ∈ (0, 4). Notice furthermore

that if p1(M (t)) ≡ 0 (that is the case of information-independent vaccination)
then

β ≤ 1 + µ− 2µp0 + 2
√
(1− µp0) (1− p0)µ.

In words, considering vaccination (be this information-related or not) has the
effect of reducing the range of the values of the contact rate that ensure the
model to be epidemiologically meaningful.

The next result shows that the size of the unvaccinated population is asymp-
totically bounded above by 1− p0.

Proposition 5 The following subset of Ω

Ω̃ = {(S, I) : S ≥ 0, I ≥ 0, S + I ≤ 1− p0} (15)

is an asymptotically attractive set.

7
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Proof. Defining σ(t) = S(t) + I(t), we obtain:

σ (t+ 1) = (1− µ)σ(t) + µ (1− p0)− µp1(M (t))− I (t) ν ≤ (16)

≤ (1− µ)σ(t) + µ (1− p0)

This implies σ (t) ≤ (1− µ)t (σ (0)− (1− p0))+1−p0 and then asymptotically:

S + I ≤ 1− p0 (17)

Remark 6 Referring to the previous proof, if σ (0) ≤ 1 − p0 then by (16) it

follows σ (t) ≤ 1− p0 for all t ≥ 1. In this case Ω̃ is invariant.

Our next results deal with the existence of steady states. It is trivial to show
that model (10) always has the disease free equilibrium DFE = (1− p0, 0). A
local stability analysis shows that the DFE is unstable if (1− p0)R0 > 1 where
R0 = β/ (µ+ ν). Note that the quantity (1 − p0)R0 represents the number of
secondary infections that would be caused by a single infective individual in a
homogeneously mixing population where a fraction p0 is immune by vaccination
and every one else is susceptible. We call this quantity the “residual reproduc-
tion number” under immunization with constant coverage p0. The next results
gives a global property of the DFE.

Proposition 7 If (1− p0)R0 ≤ 1 the DFE of model (10) is globally asymptoti-
cally stable.

Proof. If (1−p0)R0 ≤ 1, a direct inspection of the second equation in (10) shows
that DFE is the unique equilibrium of the system. Furthermore, by exploiting
(17), for t sufficiently large:

I (t+ 1) ≤ I (t) (1− (µ+ ν)) + βI (t) (1− p0 − I (t)) ≤
≤ I (t) + I (t) (β (1− p0)− (µ+ ν)) .

Thus if (1 − p0)R0 ≤ 1 then I (t+ 1) ≤ I (t), that is {I (t)} is a non negative
definitively decreasing sequence, converging to the unique fixed point 0. Conse-
quently S (t) converges to 1−p0, i.e. the DFE is globally asymptotically stable.

Remark 8 The previous theorem shows that, as stated above, the model has
the equilibrium structure of simple epidemiological models: a DFE which always
exists, and an endemic equilibrium which appears only when an appropriate
threshold condition is met. The threshold parameter (the residual reproduction
number) includes only the behavior-independent component of vaccination p0. In
other words the presence of a behavioral component does not affect the existence
of equilibria, as also noted in [7].

Remark 9 Obviously, for most infectious diseases it is unlikely that the condi-
tion (1− p0)R0 ≤ 1 is fulfilled on the large scale (it might clearly be at small-
medium scales where adhesion to vaccination is large). Indeed, it is equivalent
to require that the fraction p0 of parents who steadily (i.e. regardless of rumors)

8
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vaccinate their children is in excess of the critical vaccination threshold ([2])
pc > 1− 1/R0.
As far as p0 is concerned, we expect that in the real world circumstances, par-
ticularly under voluntary vaccination, p0 might be an increasing function of the
long-term perceived risk from the disease. Therefore, other things (e.g. risk of
serious disease given infection, risk of vaccine side effects) being equal we expect
that p0 might be an increasing function of R0. It might be interesting to validate
this hypthesis against experimental data.

When (1 − p0)R0 > 1 it is possible to show that there is a unique endemic
equilibrium, as stated in the next proposition.

Proposition 10 If (1− p0)R0 > 1 model (10) admits a unique endemic equi-
librium EE = (Se, Ie).

Proof. The unique non zero solution of I (t+ 1) = I (t) is:

Se =
µ+ ν

β
=

1

R0
. (18)

We set p̂1(I) = p1(g(R
−1
0 , I)), and prove that there exists a unique solution Ie

of the equation S (t+ 1) = S (t) on the interval (0, 1− Se):

1− p0 −
1

R0
− µ+ ν

µ
I = p̂1(I). (19)

Indeed, by assumptions on p1 and g, the function f2(I) = p̂1(I) is strictly
increasing, whereas

f1(I) = 1− p0 −
1

R0
− µ+ ν

µ
I

is strictly decreasing. Condition (1− p0)R0 > 1 is equivalent to state that

f1(0) = 1− p0 −
1

R0
> 0 = f2(0).

Hence, by continuity, f1 and f2 intersect at a single point Ie of (0, 1− Se)
because

f1 (1− Se) = −p0 −
ν

µ

(
1− 1

R0

)
< 0 < f2 (1− Se) .

As pointed out in the continuous-time framework in [7], the following estimate
holds

I∞E < Ie < IoE (20)

where IoE := ((1− p0)R0 − 1) µβ and I∞E :=
(
R0p

inf − 1
)
µ
β . Note that I

∞

E and
IoE are equal to the infectious fraction obtainable in a SIR model with constant
vaccination rate at birth equal to p0 + p1(M sup) and p0 respectively.

5 Stability analysis of the endemic equilibrium

In this section we study some properties of the endemic equilibrium EE =
(Se, Ie), assuming p1 and g are differentiable: we obtain conditions for the local
asymptotic stability and persistence.

9
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5.1 Local asymptotic stability

The following general result holds:

Proposition 11 Let

A := µ+ βIe + µp′1 (g (Se, Ie))
∂g

∂S
(Se, Ie) . (21)

If (1− p0)R0 > 1 and

1

µβIe

(
2A− β2IeSe − 4

)
< p′1 (g (Se, Ie))

∂g

∂I
(Se, Ie) <

1

µβIe

(
A− β2IeSe

)

(22)
then provided (12) holds the unique endemic state EE of system (10) is locally
asymptotically stable (LAS).

Proof. Since (1− p0)R0 > 1, by Proposition 10, there exists a unique endemic
equilibrium EE = (Se, Ie) for system (10). The Jacobian matrix Je = J(Se, Ie)
at EE is:

Je =




1−A −βSe − µp′1 (g (Se, Ie))
∂g
∂I (Se, Ie)

βIe 1


 . (23)

We apply the Jury stability criterion, that is we prove that

1− trJe + detJe > 0

detJe < 1 (24)

1 + trJe + detJe > 0.

Since

trJe = 2−A (25)

detJe = 1−A+ βIe

(
βSe + µp′1 (g (Se, Ie))

∂g

∂I
(Se, Ie)

)

by p′1 > 0 and ∂g/∂I > 0 the first condition in (24) is always satisfied, signaling
that can not exists an eigenvalue equal to 1. Furthermore, the right inequality
in (22) implies

detJe < 1−A+ βIe

(
βSe +

1

βIe

(
A− β2IeSe

))
= 1

whereas the left side in (22) gives

1 + detJe + trJe = 2 (2−A) + βIe

(
βSe + µp′1 (g (Se, Ie))

∂g

∂I
(Se, Ie)

)
>

> 2 (2−A) + βIe

(
βSe +

1

βIe

(
2A− β2IeSe − 4

))
=

= 0.
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Some remarks on the previous proposition are appropriate.
Since, by assumption, p′1 > 0 and ∂g/∂I > 0, condition (22) makes sense if and
only if β2IeSe < A < 4 i.e. if and only if

−1− βIe
µ

(1− βSe) < p′1 (g (Se, Ie))
∂g

∂S
(Se, Ie) < −1−

βIe
µ

(
1− 4

βIe

)
(26)

where

−1− βIe
µ

(1− βSe) < 0; −1− βIe
µ

(
1− 4

βIe

)
> 0. (27)

The first inequality in (27) is a direct consequence of condition 12i). The second
one is equivalent to condition βIe + µ < 4. This last follows from the upper
estimation in (20) Ie < IoE that rewrites as

βIe + µ < β · µ

µ+ ν
(1− p0)

and Remark 4 where it is shown that β < 4. In words (26) means that a
necessary condition for the local stability of EE is that the “sensitivity” of the
information-dependent component of coverage to changes in the proportions of
susceptibles at the equilibrium is bounded. With respect to the LAS condition
of EE in [7] the left relation in (26) is more restrictive.
By (27), it follows that, depending on the sign of ∂g/∂S, one of the two condi-
tions in (26) is satisfied. In particular, if ∂g/∂S = 0 both inequalities in (26)
are fulfilled and condition (22) reduces to:

(2− µ) (βIe − 2)

µβIe
− ν

µ
< p′1 (g (Se, Ie))

∂g

∂I
(Se, Ie) <

1

βIe
+
1− µ− ν

µ
. (28)

The role played by the coverage function p1 and by the “information” function g
in the local stability condition (22) is twofold: on one side they act explicitly via
their derivatives, on the other hand they act implicitly via the value of Ie as it
is evident from (19). The same reasoning applies to conditions for bifurcations.
These facts will be illustrated in the example of Section 6.

Remark 12 With respect to (10), if we set F (S, I) = S (t+ 1)− S (t), that is

F (S, I) = µ(1− p0 − p1(g (S, I))− µS − βSI

under the assumption (1− p0)R0 > 1, we have F (Se, Ie) = 0. As

∂F

∂S
(S, I) = −µp′1 (g (S, I))

∂g

∂S
(S, I)− µ− βI = −A

∂F

∂I
(S, I) = −µp′1 (g (S, I))

∂g

∂I
(S, I)− βS

from the hypotheses p′1 > 0 and ∂g/∂I > 0 it follows ∂F/∂I < 0. Hence, by
the implicit function theorem, it follows the existence and the uniqueness of a
continuously differentiable function h : (Se − δ, Se + δ) → R, δ > 0, such that
h (Se) = Ie and

h′ (Se) = −
A

µp′1 (g (S, I))
∂g

∂I
(Se, Ie) + βSe

. (29)
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Comparing (29) with the right term in (22), we conclude the previous stability
condition is equivalent to say that h′ (Se) < −βIe, in particular Ie is decreasing
with respect to Se.

In this general framework we limit to give a sufficient condition to exclude two-
periodic cycles.

Theorem 13 Assuming (12), if

p′1 (g (S (t) , I (t)))
∂g

∂S
(S (t) , I (t)) <

2− µ− β

µ
(30)

for every t ≥ 0, system (10) does not admit any nontrivial cycle of period 2.

Proof. To prove the theorem we use a result of McCluskey and Muldowney
(Corollary 1(a) in [17]), by showing that matrix

I2 + J(S, I) =

(
2− µ− βI − µp′

1
(g (S, I))

∂g

∂S
(S, I) −βS − µp′

1
(g (S, I))

∂g

∂I
(S, I)

βI 2− (µ+ ν) + βS

)

is definite positive on Ω, where I2 is the identity matrix of order 2 and J(S, I)
is the Jacobian of system (10). The main diagonal elements are positive by
conditions (30) and i) in (12); the positivity of the determinant of I2 + J(S, I),
follows then by the positivity of p′1 (g (S, I))

∂g
∂I (S, I).

5.2 Persistence

An important characterization of the long term endemic behavior is the study of
the possibility that the endemic equilibrium EE may be globally asymptotically
stable (GAS). Unfortunately we have not been able to demonstrate the GAS of
the endemic state in the general case, though we will prove it for a special but
important subcase in the next section.
We have, however, been able to prove a persistence result ([23]). More pre-
cisely our next result shows that if the residual BRN (1− p0)R0 is “sufficiently”
greater than one then system (10) is persistent in the sense that it is possible to
show the existence of a positive lower bound such that the asymptotic infective
fraction lies always above it.

Proposition 14 If (1− p0)R0 > 1, then:

1. there exists ξ ∈ (0, 1− p0) such that

lim inf
t→+∞

S (t) + I (t) ≥ ξ;

2. if (1− p0) γR0 > 1, where

γ :=
µ (1− p)inf

(µ+ ν) (1− p0)
∈ (0, 1)

it holds:
lim inf
t→+∞

I (t) ≥ ξ − Se > 0.
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Proof. By setting σ (t) = S (t) + I (t) and summing the two equation in (10)
gives

σ (t+ 1) ≥ (1− µ− ν)σ(t) + µ (1− p0 − p1(g (S (t) , I (t))) ≥
≥ (1− µ− ν)σ(t) + µ (1− p)inf

where the constant (1− p)inf is defined in (11). The equation

y (t+ 1) = (1− µ− ν) y(t) + µ (1− p)inf

admits the unique equilibrium y∗ = µ (1− p)inf / (µ+ ν) in (0, 1− p0) that is
GAS. Therefore, by setting ξ = y∗, the first statement follows.
Since (1− p0) γR0 > 1 there exists Se and

ξ − Se =
µ+ v

β

(
(1− p0)R0

µ (1− p)inf

(µ+ ν) (1− p0)
− 1

)
> 0

therefore the linear system {
S + I = ξ
βS = µ+ ν

admits the unique positive solution (Se, ξ − Se). We have

I (t+ 1)− I (t) = (βS (t)− (µ+ ν)) I (t) ≥
≥ (β (S (t) + I (t)− (ξ − Se)) + β (ξ − Se − I (t))) I (t)

hence ξ−Se ≥ I (t) would imply I (t+ 1) ≥ I (t) asymptotically, a contradiction.
We conclude that

lim inf
t→+∞

I (t) ≥ ξ − Se > 0.

Remark 15 The persistency property is a fundamental one on the epidemiolog-
ical standpoint. Indeed, a major substantive epidemiological question is whether
the infection will “persists” or not in the population over the long-term. This
question bypasses the issue of stability i.e. whether solutions asymptotically get
closer and closer to the endemic state or they oscillate about it (also with quite
large amplitude) around it. In this perspective the proved persistency property
represents a fairly general characterization of the dynamics of the system.

6 A noteworthy case: piece-wise linear preva-

lence dependence.

We now look in more detail at the functional specification g (S, I) = kI, k > 0
that corresponds to the so called “pure prevalence-dependent” case, which is the
most commonly investigated in the literature ([7]). In this case the public (e.g.
parents of children eligible for vaccination) only react to changes in the current
prevalence of infection, taken as a measure of the perceived risk of infection.
Assuming further p1 (x) = min {cx, 1− p0}, c > 0, we obtain

p1 (g (S, I)) = p̂1 (I) = min{ckI, 1− p0} , I ∈ [0, 1) (31)
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and

(1− p)inf =

{
1− (p0 + ck) 0 < p0 + ck < 1

0 p0 + ck ≥ 1
. (32)

System (10) writes as

S (t+ 1) = (1− µ)S (t) + µ (1− p0 −min {ckI (t) , 1− p0})− βS (t) I (t)
I (t+ 1) = (1− (µ+ ν)) I (t) + βS (t) I (t)

(33)
Notice that if 0 < p0 + ck < 1 then p1 (g (S, I)) = ckI, whereas when p0 +
ck ≥ 1 we know by Remark 2 that cannot eventually be ckI (t) > 1 − p0. In
particular, when (1− p0)R0 < 1 the sequence {I (t)} is strictly decreasing and
then there exists t0 > 0 such that for every t ≥ t0 we have ckI (t) < 1 − p0.
For (1− p0)R0 > 1 the scenario can be more complicated, as illustrated in the
sequel.
The invariance conditions (12) become:

i) µ+ ν ≤ 1; ii) β ≤ β∗ =

{
f (µ, p0, ck) 0 < p0 + ck < 1
1− µ p0 + ck ≥ 1

(34)

where we have set for convenience

f (µ, p0, ck) = 1+µ+2
(√

(1− µp0 − µck) (1− p0 − ck)µ− µ (p0 + ck)
)
. (35)

As f is a positive, bounded and strictly decreasing function of both p0 and ck,
its maximum value (≤ 4) occurs for p0 = ck = 0, corresponding to the case of
no vaccination (see the general discussion in Remark 4).
Under the assumption (1− p0)R0 > 1, the infective fraction at endemic state
can be computed explicitly from equation (19):

I(ckI)e = ((1− p0)R0 − 1)

(
β

µ
+ ckR0

)−1
=

IoE
1 + ck µ

µ+ν

. (36)

As expected, I
(ckI)
e is a decreasing function of ck which tunes the reactivity of

vaccination coverage to the perceived risk of infection. The following theorem
shows the conditions under which the endemic state is LAS, by suggesting that
prevalence-dependent vaccinating behaviour is an essentially stabilizing force.

Theorem 16 The endemic equilibrium EE is LAS for every value of the para-
meters satisfying (34) if:

i) p0 + ck ≥ 1, ∀µ, ν, β;
ii) 0 < p0 + ck < 1, ∀β and ∀µ and ν such that (7) is satisfied.

Proof. We start by observing that p1 ◦ g is differentiable at (Se, Ie). Since
∂g/∂S = 0 and p′1 (g (Se, Ie))

∂g
∂I (Se, Ie) = ck, the local stability condition (28)

becomes:
(2− µ) (βIe − 2)

µβIe
− ν

µ
< ck <

1

βIe
+
1− µ− ν

µ
. (37)

We set, without loss of generality, k = 1. The right condition in (37) can be
rewritten as

c− 1− µ− ν

µ
<

1

βIe
(38)
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then, it is always satisfied for (0 <) c ≤ (1− µ− ν) /µ, in particular for

1− µ− ν

µ
≥ 1 ⇔ 1− 2µ− ν ≥ 0. (39)

If c > (1− µ− ν) /µ, with 1− 2µ− ν < 0, by (36), with simple manipulations,
we obtain the following equivalent version of (38):

β <

(
1 + µ+ ν +

1

µc+ µ+ ν − 1

)
1

1− p0
:= g (µ, ν, p0, c) . (40)

We first observe that (40) is satisfied for ck ≥ 1 − p0, because in this case
β ≤ 1− µ. Hence, we just proceed for 0 < ck < 1− p0.
Notice now that g is a strictly increasing and convex function of p0, with
g → +∞ for p0 → 1−. This latter implies, as β ≤ 4, that (40) holds true when
p0 belongs to a suitable left neighborhood of 1. We conclude our proof about
(38), by showing that g (µ, ν, p0, c) > f (µ, p0, c) under the remaining admissible
values of the parameters, where f was defined in (35). To this aim, since, as
previously observed, f (µ, p0, c) is decreasing with respect to p0, by the continu-
ity of f and g, we have to show that g (µ, ν, 0, c) > f (µ, 0, c) for all admissible
values of µ, ν and c. This inequality is surely satisfied if f (µ, 0, c) ≤ 1 + µ+ ν,

equivalent to c ≥ 4µ−ν2

4µ(1+µ+ν) (always true for 4µ− ν2 ≤ 0).

Summing up, we have to solve the following system:




µ > 0, ν > 0

max

{
1− ν

2
, ν

2

4

}
< µ ≤ 1− ν

1− µ− ν

µ
< c <

4µ− ν2

4µ (1 + µ+ ν)

ν +
1

µc+ µ+ ν − 1
> 2

√
(1− µc) (1− c)µ− 2µc

Set

h1 (c) := ν +
1

µc+ µ+ ν − 1
; h2 (c) := 2

√
(1− µc) (1− c)µ− 2µc

and observe that h1 and h2 are both strictly decreasing functions of c:

h′1 (c) = − µ

(µc+ µ+ ν − 1)
2 < 0

h′2 (c) = −2µ
(

1 + µ− 2µc

2
√
(1− µc) (1− c)µ

+ 1

)
< 0.

Then, we conclude our proof by showing that (intended as limits)

h1

(
4µ− ν2

4µ (1 + µ+ ν)

)
> h2

(
1− µ− ν

µ

)
.

With simple computations we obtain:

h1

(
4µ− ν2

4µ (1 + µ+ ν)

)
= ν +

4 (1 + µ+ ν)

4µ− ν2 + 4
(
(µ+ ν)2 − 1

) ;

h2

(
1− µ− ν

µ

)
= 2

(√
(µ+ ν) (2µ+ ν − 1)− (1− µ− ν)

)
.
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As

∂

∂µ
h1

(
4µ− ν2

4µ (1 + µ+ ν)

)
= −4

(
4µ2 + 8µν + 8µ+ 5ν2 + 12ν + 8

)

(4µ2 + 8µν + 4µ+ 3ν2 − 4)2
< 0

the minimum value of h1

(
4µ− ν2

4µ (1 + µ+ ν)

)
is attained for ν = 1− µ:

h1

(
4µ− ν2

4µ (1 + µ+ ν)

)
= 1− µ+

8

4µ− (1− µ)2
> 2.

Furthermore, as

∂

∂µ
h2

(
1− µ− ν

µ

)
= 1 +

4µ+ 3ν − 1

2
√
(µ+ ν) (2µ+ ν − 1)

> 0

the function h2

(
1− µ− ν

µ

)
attains its maximum value for ν = 1− µ:

h2

(
1− µ− ν

µ

)
= 2

√
µ < 2.

Consider now the left condition in (37). We first observe that

βIe − 2 ≤ 0 ⇔ β ≤ (2 + µ) (µ+ ν) + 2µc

µ (1− p0)
.

Therefore, if c > 1− p0 the r.h.s. is greater than 2 but β ≤ 1 − µ and the left
condition in (37) is satisfied. Assume c < 1 − p0. The left condition in (37) is
equivalent to

β <

(
(µ+ ν) +

2 (2− µ) (µ+ ν + µc)

(2− µ− ν − µc)µ

)
1

1− p0
(41)

without any particular restriction on the parameters. As the r.h.s. of (41)
increases with p0 we have to compare this term with the previously considered
function f for p0 = 0. If we set:

h3 (c) = ν +
2 (2− µ) (µ+ ν + µc)

(2− µ− ν − µc)µ

h4 (c) = 1 + 2
(√

(1− µc) (1− c)µ− µc
)

we can note that

h′3 (c) =
4 (2− µ)

(µ+ ν + cµ− 2)2
> 0

then h3 is strictly increasing, while h4 (a translation of h2) is strictly decreasing.
Therefore, in order h3 (c) > h4 (c) for all admissible values of µ, ν and c it must
be h3 (0) > h4 (0). But this condition coincides with (6) and this concludes the
proof.
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Remark 17 Comparing the previous result with the corresponding one about
Allen’s model in Section 2, and taking into account Remark 4, we conclude
that prevalence-dependent vaccinating behavior is a stabilizing force for discrete
time SIR models. This can be further detailed by introducing some sufficient
conditions for the local stability of EE. As an example, observe that if Ie ≤ Se,
then

βIe = (µ+ ν)
Ie
Se

< 2

and the left condition in (37) is satisfied too, so EE is LAS. Finally, we note
that, thanks to Theorem 13, there are no two-periodic cycles when β < 2− µ.

We now prove a result which provides a simple and epidemiologically inter-
pretable condition for the global stability of the endemic state, by following a
recent approach presented in [15].

Theorem 18 If p1 is given by (31) and

1 +
ν + µck

µ
< (1− p0)R0 < 1 +min

{
1

µ+ ν
,

µ

ν + µck

}
(42)

ck < min

{
1− p0, 1−

ν

µ

}
(43)

the EE of (33) is GAS.

Proof. System (33) thanks to (43) simplifies in

σ (t+ 1) = (1− µ)σ (t) + µ (1− p0)− (ν + µck) I (t)
I (t+ 1) = I (t) (1− (µ+ ν)) + βI (t) (σ (t)− I (t))

(44)

where we have set σ (t) = S (t) + I (t). Therefore for all t > 0:

(1− µ− ν − µck)σ (t)+µ (1− p0) ≤ σ (t+ 1) ≤ (1− µ)σ (t)+µ (1− p0) . (45)

It is a simple task to verify that the affine equations

X (t+ 1) = (1− µ)X (t) + µ (1− p0) (46)

Y (t+ 1) = (1− µ− ν − µck)Y (t) + µ (1− p0) (47)

have respectively the globally stable equilibria

αu1 = 1− p0; αl1 =
µ (1− p0)

µ (1 + ck) + ν
. (48)

Therefore, by (45) for any ε > 0 there exists T1 > 0 such that

σ
l
1 = αl1 − ε ≤ σ (t) ≤ αu1 + ε = σu1 (49)

for t > T1. Substituting (49) in the second equation of (44), we obtain

I (t)
(
1− (µ+ ν) + βσl1

)
−βI (t)2 ≤ I (t+ 1) ≤ I (t) (1− (µ+ ν) + βσu1)−βI (t)2 .

(50)
The following equation corresponding to the second equality in (50):

X (t+ 1) = X (t) (1− (µ+ ν) + βσu1 )− βX (t)
2

(51)
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by the change of variable X (t) = (1− (µ+ ν) + βσu1)x (t) /β is equivalent to
the logistic one

x (t+ 1) = rxx (t) (1− x (t)) (52)

where rx = 1− (µ+ ν)+βσu1 . It is well known that if rx ∈ (1, 3) then equation
(52) has the unique positive equilibrium (1− 1

rx
) globally asymptotically stable

on (0, 1). As

rx = 1− (µ+ ν) + β (1− p0 + ε) = 1 + (µ+ ν) ((1− p0)R0 − 1) + βε

and (1− p0)R0 > 1 we get rx > 1. On the other hand, by (34), µ+ ν < 1 and
0 < p̃0 < 1, the upper bound in (42) gives rx ≤ 2 + βε.
Operating in the same way with the equation corresponding to the first equality
in (50)

Y (t+ 1) = Y (t)
(
1− (µ+ ν) + βσl1

)
− βY (t)2 (53)

we get
y (t+ 1) = ryy (t) (1− y (t)) , ry = 1− (µ+ ν) + βσl1. (54)

Since

ry = 1 +
µ+ ν

µ (1 + ck) + ν

(
(1− p0)R0 − 1 + ck +

ν

µ

)
− βε

by the lower bound in (42) and the arbitrariness of ε, it follows ry > 1. Fur-
thermore, by the upper bound in (42) we find:

ry ≤ 1− µ− ν +
µ (1 + µ+ ν)

µ (1 + ck) + ν
− βε < 3.

Then, we conclude that equations (51) and (53) admit respectively the positive
equilibria XE = σ

u
1 − 1

R0
and YE = σ

l
1 − 1

R0
that are globally asymptotically

stable. This implies the existence of T1I ≥ T1σ such that

σ
l
1 −

1

R0
− ε = Il1 ≤ I (t) ≤ Iu1 = σu1 −

1

R0
+ ε (55)

for t ≥ T1I . Substituting (55) into system (44), we get

σ (t+ 1) ≤ (1− µ)σ (t) + µ (1− p0)− (ν + µck) Il1 (56)

σ (t+ 1) ≥ (1− µ)σ (t) + µ (1− p0)− (ν + µck) Iu1 .

Operating as before, there exists a positive integer T2σ > T1I such that

µ (1− p0)− (ν + µck) Iu1
µ

−ε = σl2 ≤ σ (t) ≤ σu2 =
µ (1− p0)− (ν + µck) Il1

µ
+ε

(57)
for all t ≥ T2σ. Notice that:

σu1 − σu2 =
ν + µck

R0 (µ (1 + ck) + ν)

(
(1− p0)R0 −

µ (1 + ck) + ν

µ

)
+

ν + µck

µ
ε > 0

and by (42)

σl2 − σl1 =
(ν + µck)

2

R0

µ(1+ck)+ν
ν+ckµ − (1− p0)R0

µ (µ (1 + ck) + ν)
− ν + µck

µ
ε > 0.
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Substituting (58) into the second equation of (44), we find:

I (t+ 1) ≤ I (t) (1− (µ+ ν) + βσu2)− βI (t)2 (58)

I (t+ 1) ≥ I (t)
(
1− (µ+ ν) + βσl2

)
− βI (t)2 .

Operating as before, there exists T2I ≥ T2σ such that Il2 ≤ I (t) ≤ Iu2 where

Iu2 = σu2 −
1

R0
+ ε; Il2 = σ

l
2 −

1

R0
− ε.

Substituting the expressions of σl2 and σ
u
2 , we get

Iu2 = −ν + µck

µ
Il1 +

(1− p0)R0 − 1

R0
+ 2ε

Il2 = −ν + µck

µ
Iu1 +

(1− p0)R0 − 1

R0
− 2ε.

These last equations hold when t > T2I and Il2 ≤ I (t) ≤ Iu2 . By induction,
there exist sequences {Tkσ}, {TkI}, {σuk},

{
σ
l
k

}
,
{
Ilk
}
and {Iuk } such that

Ilk ≤ I (t) ≤ Iuk for all t > TkI and

Iuk+1 = −ν + µck

µ
Ilk +

(1− p0)R0 − 1

R0
+ 2ε

Ilk+1 = −ν + µck

µ
Iuk +

(1− p0)R0 − 1

R0
− 2ε.

The last system has the positive equilibrium

IuE =
((1− p0)R0 − 1)µ

R0 (µ+ ν + µck)
+

2µ

µ− ν − µck
ε

IlE =
((1− p0)R0 − 1)µ

R0 (µ+ ν + µck)
− 2µ

µ− ν − µck
ε

If λ1 and λ2 denote the eigenvalues of the coefficient matrix
(

0 −ν+µck
µ

−ν+µck
µ 0

)

we have |λ1| = |λ2| = 1
µ (ν + ckµ) < 1 by assumption. Therefore, the equilib-

rium
(
IlE, I

u
E

)
is GAS. Notice that

lim
ε→0+

IlE (ε) = lim
ε→0+

IuE (ε) =
((1− p0)R0 − 1)µ

R0 (µ+ ν + µck)
.

Since Ilk ≤ I (t) ≤ Iuk we obtain

lim
t→+∞

I (t) =
((1− p0)R0 − 1)µ

R0 (µ+ ν + µck)
.

Similarly, the sequences {σuk} and
{
σ
l
k

}
satisfy the affine system

σ
l
k+1 = −ν + µck

µ
σ
u
k +

µ (1− p0)− (ν + µck)
(
− 1
R0

+ ε
)

µ
− ε

σ
u
k+1 = −ν + µck

µ
σ
l
k +

µ (1− p0)− (ν + µck)
(
− 1
R0

+ ε
)

µ
+ ε
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Operating as before, it is easy to verify that

lim
ε→0+

lim
k→+∞

σ
u
k = lim

ε→0+
lim

k→+∞
σ
l
k =

µ (1− p0)R0 + (ν + µck)

R0 (ν + µck + µ)
= lim
t→+∞

σ (t)

and then:

lim
t→+∞

S (t) =
µ (1− p0)R0 + (ν + µck)

R0 (ν + µck + µ)
− ((1− p0)R0 − 1)µ

R0 (µ+ ν + µck)
=

1

R0

that is the endemic equilibrium is GAS.

Remark 19 When they are non-empty, the conditions (42)-(43) essentially
state that, provided the residual reproduction number is appropriately bounded,
the endemic state will be GAS if the responsiveness of the prevalence dependent
component of vaccine uptake to changes in prevalence is sufficiently moderate.
In simple words the endemic state will be GAS if, provided the infection is suffi-
ciently controlled by the baseline vaccination coverage p0, individual reactions to
changing perceived risk of infection are not too violent. This appears to be epi-
demiologically meaningful. Unfortunately we have not been able to prove that the
result holds for any value of the residual BRN ensuring the infection persistence.

7 Illustrations and simulation results

In this section we illustrate by numerical examples some of the previous results
on the piecewise linear prevalence-dependent case and supply some further con-
siderations.
We start by observing that the convergence to EE in model (33) can assume
very different patterns in dependence on the size of ck (see Figure 2). It is to
be noted that, for sufficiently large values of the behavioral response parame-
ter ck, there might be an initial, transient, phase where the “roof” of 100%
vaccine uptake can be achieved. However this phase will eventually end and
the system will unavoidably enter its long term stable regime, with (oscillatory)
convergence to the endemic state.

Figure 2. Time pattern of convergence to the endemic equilibrium of the
susceptible and infected fractions in system (33) when ck + p0 > 1.

For what concerns bifurcations, by Theorem 16 we know that in the admissible
region of parameters flip bifurcations are possible (see Figure 3). To check for
the possibility of a flip bifurcation we have to solve (for k = 1) the equation
1 + detJe+trJe = 0, that is:

4− 2 (µ+ βIe) + βIe (µ+ ν + µc) = 0

from which we obtain the flip bifurcation value (note that the denominator is
always positive)

βFLIP =
(µ+ ν)

(
4− µ2 − νµ

)
+ cµ (4− µ (µ+ ν + 2))

(1− p0)µ ((2− µ− ν)− cµ)
.
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A straightforward computation shows that βFLIP is strictly increasing with
respect to both c and p0. As an illustration, by setting (as for the Allen model)
µ = 0.81, ν = 0.05, and p0 = 0.02 = c, with β∗ = 3.48 we found βFLIP = 3.215.
The bifurcation diagram of Figure 3 illustrates this case. It should be noted that,
consistent with Theorem 16, it suffices to take c = 0.06, the others parameters
fixed, in order that βFLIP not longer belongs to the positivity region.

Figure 3. Bifurcation diagram for system (33) when µ = 0.81, ν = 0.05,
p0 = 0.02 = c, βFLIP = 3.215 and β∗ = 3.48.

Differently from the Allen model, Neimark-Sacker bifurcations can appear, though
only outside of the positivity set. Therefore any result in this last case depends
on the initial conditions, thus losing generality, and could correspond to no
epidemiologically meaningful parameter constellations (see Figure 4). For the
sake of the mathematical completeness, we nonetheless report the condition for
Neimark-Sacker bifurcations. These are clear and therefore highlight the under-
lying mechanisms; moreover, our simulations suggest that they can live at least
in appropriate time windows.
In order to have a Neimark-Sacker bifurcation of the endemic state EE, it must
be in the notation of Section 5.1 (always for k = 1):

µ+ βIe = βIe (βSe + µc) (59)

with
βIe (µ+ ν + µc) < 4. (60)

It is immediate to verify that (59) and (60) respectively imply detJe = 1 and

(trJe)
2 < 4 (that is 0 < µ + βIe < 4). By the proof of Theorem 16, we know

that (59) is equivalent to (for µ+ ν + µc− 1 > 1)

β =

(
1 + µ+ ν +

1

µc+ µ+ ν − 1

)
1

1− p0
(61)

that is not compatible with the admissible value of the parameters stated in
(34).
Moreover, since

λ =
1

2

(
2− (µ+ βIe) + i

√
(µ+ βIe) (4− (µ+ βIe))

)

and

λ2 =
1

4

(
2A2 − 8A+ 4 + 2i (2−A)

√
A (4−A)

)

λ3 =
1

2

(
(2−A)

(
(2−A)2 − 3

)
+ i
(
(2−A)2 − 1

)√
A (4−A)

)

λ4 =
1

2

(
2 + (2−A)

4 − 4 (2−A)
2 − i (2−A)

(
2− (2−A)

2
)√

A (4−A)
)

one easily verify that λi �= 1 for i = 1, 2, 3, 4.
Furthermore, since

|λ (β)| =
√
1− µ

µc+ (1− p0)β

µ+ ν + µc
+ µ ((1− p0)β − (µ+ ν))
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we obtain:

d

dβ
|λ (β)| = µ (1− p0) (µ+ ν + µc− 1)

2 (µ+ ν + cµ) |λ (β)| > 0.

If we fix µ, ν and p0 starting from (61) we can express the bifurcation value
βbif of the constant as a function of c. For example, if we choose the parameter
constellation:

µ = 0.01; ν = 0.02; p0 = 0.75

we have βbif (c) = 4.12 +
4

0.01c− 0.97
. In the instability region the behavior

nearby the bifurcating value βbif is represented by stable oscillations. Figure 4
reports the shape of one closed invariant curve arising for a value of c very close
to the bifurcation threshold.

Figure 4. A stable closed invariant curve emerging from the Neimark-Sacker
bifurcation of the endemic state in model (33) for a value of the bifurcation pa-
rameter β very close to the bifurcation threshold. Top-left panel: time trend of
the susceptible fraction; top-right: time trend of the infective fraction; bottom-
left: phase-plane behaviour in the (S, I) plane. Notice that β does not respect
its upper bound and yet the dynamics takes place in the feasible region.

8 Discussion

Behavioral epidemiology of transmissible infections is a fast developing new dis-
cipline aiming to include human behavior in models of infection spread. This
paper has made an attempt to fill a gap in the behavioral epidemiology literature
by investigating the dynamic properties of a deterministic discrete time model
for a SIR infection with vaccine coverage specified by a phenomenological func-
tion of the currently perceived risk of infection. Besides some general characteri-
zations on existence of equilibria, their local stability and system persistence, we
have focused on the noteworthy subcase where the perception of infection risk
by families of children eligible for vaccination is prevalence-dependent. In this
case we have been able to supply a fairly general mathematical characterization
of system properties, including conditions for the global stability of the endemic
state. In particular the conditions for the global stability of the endemic state
are neat and state that the GAS will hold provided the infection is sufficiently
well controlled by the behavior-independent component of vaccination coverage,
if individual reactions to changing perceived risk of infection are not too violent.
This is a clear and epidemiologically meaningful result.
Future work will consider: (a) more general functional forms for the prevalence-
dependent component of the vaccination function; (b) we will consider, following
the lines of [7], [8] and [6], that both there may exist a delay in the information
(due to the fact that the process of notification of cases sometime can be quite
slow, and also the fact that laboratory analyses are not instantaneous) as well as
another phenomenon of epidemiological relevance, i.e. that the agents may take
into account their memory of the past epidemics; (c) alternative specifications
of the underlying discrete-time mechanism linking current and past values of
state variables, e.g. in the sense of [13], [14], [18].
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9 Appendix

Proposition 20 If (31) holds, then the solutions of (10) are in Ω for all t > 0
in the following cases:

1. if β + µ ≤ 1 for all ck > 0;

2. if β + µ > 1 for

0 < ck < 1− p0 −
(1− β − µ)2

4βµ
. (62)

Proof. If β + µ ≤ 1 then condition ii) in (12) is fullfilled as pinf ≥ 0.
If β + µ > 1 then positivity is compatible only with the case 0 < ck < 1 − p0
and pinf = 1− p0 − ck. So, condition ii) in (12) becomes:

β ≤ 1− µ+ 2µ (1− p0 − ck) + 2
√
(1− µp0 − ckµ) (1− p0 − ck)µ
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equivalent to

2µ (ck − (1− p0))− 1 + β + µ ≤ 2
√
(1− µp0 − ckµ)µ (1− p0 − ck). (63)

Hence, if (the l.h.t. is non positive, i.e.)

0 < ck ≤ 1− p0 +
1− µ− β

2µ
(64)

then (63) is fulfilled. Otherwise, inequality (63) is equivalent to

{
1− p0 +

1−µ−β
2µ < ck < 1− p0

0 < ck ≤ 1− p0 − (1−β−µ)2

4βµ

(65)

and conclusion 2. follows by 1−µ−β
2µ < − (1−β−µ)2

4βµ when 1− µ− β < 0.
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Role of the transmission parameter β in triggering period-doublig bifurcation in Allen's model [1] under Allen 
parameter constellation (µ=0.81, ν=0.05).  
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Time pattern of convergence to the endemic equilibrium of the susceptible and infected fractions in system 
(27) when ck+p₀>1.  
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Bifurcation diagram for system (32) when µ=0.81, ν=0.05, p₀=0.02=c, β^{FLIP}=3.215 and β^{∗}=3.48.  
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A stable closed invariant curve emerging from the Neimark-Sacker bifurcation of the endemic state in model 
(32) for a value of the bifurcation parameter β very close to the bifurcation threshold. Top-left panel: time 
trend of the susceptible fraction; top-right: time trend of the infective fraction; bottom-left: phase-plane 
behaviour in the (S,I) plane. Notice that β does not respect its upper bound and yet the dynamics takes 

place in the feasible region.  
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