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Abstract: Skin melanoma is one of the most aggressive and difficult-to-treat human malignancies, 

characterized by poor survival rates, thus requiring urgent novel therapeutic approaches. Although 

metabolic reprogramming has represented so far, a cancer hallmark, accumulating data indicate a 

high plasticity of cancer cells in modulating cellular metabolism to adapt to a heterogeneous and 

continuously changing microenvironment, suggesting a novel therapeutic approach for dietary 

manipulation in cancer therapy. To this aim, we exposed melanoma cells to combined nutrient-

restriction/sorafenib. Results indicate that cell death was efficiently induced, with apoptosis 

representing the prominent feature. In contrast, autophagy was blocked in the final stage by this 

treatment, similarly to chloroquine, which also enhanced melanoma cell sensitization to combined 

treatment. Energy stress was evidenced by associated treatment with mitochondrial dysfunction 

and glycolysis impairment, suggesting metabolic stress determining melanoma cell death. A 

reduction of tumor growth after cycles of intermittent fasting together with sorafenib treatment was 

also observed in vivo, reinforcing that the nutrient shortage can potentiate anti-melanoma therapy. 

Our findings showed that the restriction of nutrients by intermittent fasting potentiates the effects 

of sorafenib due to the modulation of cellular metabolism, suggesting that it is possible to harness 

the energy of cancer cells for the treatment of melanoma. 
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1. Introduction 

Metabolic reprogramming is a hallmark of tumor cells in which the glycolytic process is boosted 

compared to mitochondrial metabolism to produce energy (‘Warburg effect’) [1,2]. This is also 

particularly important for cancer cell lines due to their microenvironment represented by rich 

medium usually supplemented with high glucose. However, this concept is changing in recent years, 

due to accumulating data showing high plasticity of cancer cells in modulating cellular metabolism 

to adapt to a heterogeneous and continuously changing microenvironment, at least in solid tumors 

[3–6]. Therefore, the real contribution of mitochondria to cancer cell survival is still unclear and under 

deep investigation. Beyond its crucial role in tumor development and growth, glucose addiction is 

also implicated in tumor chemoresistance, inhibiting cancer therapy efficacy and thus negatively 

impacting on patient survival rates [7]. For metastatic melanoma for example, BRAF activating 

mutations (~60% of oncogenic mutations) [8,9], in addition to contributing to uncontrolled 

proliferation, invasion, autophagy deregulation, and resistance to therapy [8,10], are also associated 

with melanoma metabolic changes as increase of glucose capture and high rate of glycolysis [11] 

contribute to poor therapeutic outcome. Although specific BRAF inhibitors have been developed in 

the last decade, their therapeutic failure as single agents or associated with other anticancer drugs, 

boosted the research toward new and alternative therapeutic approaches. Of note, new 

immunotherapy regimens, based on PD1 and/or CTLA4 antibodies, are under clinical trial 

experimentation with promising results, although showing mild/severe side effects, such as 

autoimmune-related diseases, that could limit their broad clinical application [12,13]. Therefore, new 

therapeutic strategies are still urgently needed to treat metastatic melanoma patients. Recent studies 

demonstrated that dietary manipulations such as caloric restriction and intermittent fasting can 

inhibit tumor growth improving the anticancer therapy in several human cancers [14–17]. Although 

definitive data are still missing, the positive effect of nutrient restriction on chemotherapeutic 

regimens seems to be related to the metabolic stress imposed on cancer cells. We have recently shown 

that melanoma cells are sensitive to this therapeutic design based on nutrient shortage coupled with 

cisplatin treatment, in in vitro studies [18,19]. Here we extend this concept by using an intermittent 

fasting regimen coupled with sorafenib treatment. Sorafenib is a multi-kinase inhibitor (included 

BRAF) and Food and Drug Administration (FDA) approved anticancer drug used to treat renal cell 

carcinoma and advanced hepatocellular carcinoma [20,21]. Thus, here we reinforce the use of new 

therapeutic strategies based on regimens of intermittent fasting coupled with anticancer drugs as an 

emerging attractive therapeutic approach to apply to resistant and aggressive tumors, such as human 

skin melanoma. 

2. Materials and Methods 

2.1. Cell Lines and Treatments 

Cell identity was confirmed by short tandem repeat analysis (STR) and the DSMZ Online STR 

Analysis [22], and mycoplasma testing was routinely performed each month by using the 

Venor®GeM Classic (Minerva-BiolAbs, Berlin, Germany). Human melanoma BRAFWT (CHL-1, C8161) 

and oncogenic BRAFV600E (A375, A2058, SK Mel 05, and SK Mel 28) were cultured in DMEM high 

glucose supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin/streptomycin solution 

(Gibco) (complete medium), at 37 °C under 5% CO2 [23]. Cells were treated with Earle’s balanced salt 

solution (EBSS; Sigma-Aldrich, St. Louis, MO, USA), multi-tyrosine kinase inhibitor sorafenib (SOR; 

Santa Cruz Biotechnology, Dallas, TX, USA) 10 μM; caspase pan-inhibitor Z-VAD-FMK (Santa Cruz 

Biotechnology, Dallas, TX, USA) 50 μM; necroptosis inhibitor necrostatin-1 (NEC; Sigma-Aldrich, St. 

Louis, MO, USA) 50 μM; glycolysis inhibitor 2-deoxi-glucose (2-DG; Sigma-Aldrich, St. Louis, MO, 

USA) 10 mM; lysosomal acidification inhibitor chloroquine (CQ; Sigma-Aldrich, St. Louis, MO, USA) 
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25 μM; proteasome inhibitor Mg132 (Sigma-Aldrich, St. Louis, MO, USA) 5 μM, mitochondrial 

depolarization agent carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; Sigma-

Aldrich, St. Louis, MO, USA) 50 μM, and hydrogen peroxide (H2O2; Sigma-Aldrich, St. Louis, MO, 

USA) 50 mM. 

2.2. Cell Death Evaluation 

Cell death was evaluated as previously described [24]. Briefly, 1 × 105 cells were plated onto 24-

well microplates and treated as indicated. Then, cells were fixed with cold ethanol (50% in Phosphate 

buffer saline (PBS)), pelleted and resuspended in RNAse (50 μg/mL in PBS), incubated at 37 °C for 15 

min followed by propidium iodide (PI—25 μg/mL in PBS) staining. The percentage of sub-G1 cells 

was evaluated by flow cytometry. Using a FACS Calibur cytometer (Becton-Dickinson, Mountain 

View, CA, USA) 10,000 events were acquired in FL2 channel, and the sub-G1 percentage was 

analyzed using FlowJo™ Software. 

2.3. Western Blotting Analysis 

Protein extraction was performed by using NP-40 lysis buffer (50 mM Tris-HCl pH 7.4, 1% NP-

40, 150 mM NaCl, 5 mM EDTA), supplemented with protease inhibitor cocktail (Sigma-Aldrich) plus 

phosphatase inhibitors (10 mM sodium fluoride, 1 mM sodium orthovanadate, and 1 mM sodium 

molybdate; Sigma-Aldrich, St. Louis, MO, USA). Lysates were incubated at 4 °C for 30 min, then 

centrifuged at 4 °C for 10 min at 12,000× g. Protein concentration was determined using a Bradford 

assay (Bio-Rad, Hercules, CA, USA), in which 20 μg of total proteins was resolved by using SDS-

PAGE gels (Life Technologies) and electroblotted onto PVDF or nitrocellulose membranes (Millipore, 

Burlington, MA, USA). Blots were incubated with primary antibodies resuspended in 5% non-fat dry 

milk (Sigma-Aldrich, St. Louis, MO, USA) in PBS plus 0.1% Tween-20 overnight at 4 °C. Primary 

antibodies were: anti-PARP (1:1000, Cell Signaling, Danvers, MA, USA); anti-Mcl-1 (1:1000, Cell 

Signaling, Danvers, MA, USA), anti-LC3B (1:1000, Cell Signaling, Danvers, MA, USA), anti-ATG5 

(1:1000, Cell Signaling, Danvers, MA, USA); anti-AMPK (1:1000, Cell Signaling, Danvers, MA, USA); 

anti-p-AMPK (Thr172) (1:1000, Cell Signaling, Danvers, MA, USA); anti-p70S6K1 (1:1000, Cell 

Signaling, Danvers, MA, USA), anti-p-p70S6K1 (Thr 389; 1:1000, Cell Signaling, Danvers, MA, USA), 

anti-GAPDH (1:5000, Sigma-Aldrich, St. Louis, MO, USA), and anti-Tubulin (1:5000, Sigma-Aldrich, 

St. Louis, MO, USA). Detection was achieved using a horseradish peroxidase-conjugate secondary 

antibody (Jackson Immunoresearch, Ely, UK; 1:10,000 in 5% non-fat dry milk in PBS plus 0.1% Tween-

20), visualized with ECL (GE Healthcare, Chicago, IL, USA) and images were recorded by using a 

ChemiDoc imaging platform (Uvitec, Cambdrige, UK) and analyzed by Uvitec Alliance software. 

2.4. Lentiviral Generation and Transduction 

Co-transfection of lentiviral vectors (shRNA-pLKO ATG5, or scrambled sequence, 10 μg; Sigma-

Aldrich), vesicular stomatitis virus G protein expression plasmid (5 μg) and psPAX2 plasmid 

(carrying gag, pol, and rev genes) was performed using 293T packaging cell line, by a calcium 

phosphate protocol [23]. Supernatants with lentiviral particles were harvested 48 h later and 

supplemented with 4 μg/mL of polybrene. These supernatants were used to transduce target cells 

[24]. 

2.5. Retrovirus Generation and Transduction 

Co-transfection of retroviral vectors (15 μg; GFP-mCherry-LC3) and vesicular stomatitis virus G 

protein expression plasmid (5 μg) was performed by using 293 gp/bsr cell line and calcium phosphate 

protocol [23]. Supernatant with retroviral particles was harvested 48 h later and supplemented with 

4 μg/mL of polybrene. The supernatants were used to transduce target cells. 
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2.6. Confocal Microscopy for Autophagy Evaluation 

GFP-mCherry-LC3 transduced cells as previous described were plated on 13 mm glass coverslip 

at 1 × 105 density and after adhesion were starved by using EBSS (STV) or treated with CQ 25 μM, 

SOR 10 μM and SOR + STV for 6 h. Cells were fixed with 4% paraformaldehyde in PBS and detected 

in Zeiss LSM 780 Confocal Microscopy (Carl Zeiss, Oberkochen, Germany). Images were analyzed 

by ImageJ software. 

2.7. ΔΨm Assessment 

Briefly, 1 × 105 cells were treated for 2 h, as indicated and cells harvested, pelleted, resuspended 

in TMRE (50 nM in PBS), and incubated at 37 °C for 15 min in the dark. Using a FACS Calibur 

cytometer (Becton-Dickinson, Franklin Lakes, NJ, USA) 10,000 events were acquired. Data analysis 

was performed using FlowJo software. Alternatively, 3.5 × 105 cells were platted on 40 mm glass 

coverslip and 24 h later were stained with TMRE (50 mM in complete medium) followed by real-time 

confocal microscopy. Cells were maintained under TMRE (50 nM) in complete medium or EBSS 

(STV) and were imaged every 5 s. After the establishment of a basal line, cells were stimulated with 

SOR 10 μM and followed for 30 min. Images were detected in Zeiss LSM 780 Confocal Microscopy 

and analyzed by the software ZEN lite (Carl Zeiss, Oberkochen, Germany). 

2.8. Real-Time PCR Analysis 

Total RNA was extracted by using TRIzol™ reagent (Invitrogen, Carlsbad, CA, USA) as 

recommended by the supplier. cDNA synthesis was performed using a reverse transcription kit 

(Promega, Madison, WI, USA) according to the manufacturer’s recommendations. Quantitative PCR 

reactions were performed by using a Rotor-Gene 6000 (Corbett Research Ltd., Saffron Walden, UK) 

thermocycler. Maxima SYBR Green/ROX qPCR Master Mix (2X) (Thermo Fisher Scientific, Waltham 

MA, USA) was used to produce fluorescently labeled PCR products. Primer sets for PGC1α 

amplicons (forward: 5′-GAGCGCCGTGTGATTTAT-3′ and reverse: 5′-

CATCATCCCGCAGATTTACT-3′) were designed using Primer-Express 1.0 software (Roche, Basel, 

Swiss). L34 (forward: 5′-GTCCCGAACCCCTGGTAATAGA-3′ and reverse 5′-

GGCCCTGCTGACATGTTTCTT-3′) mRNA level was used as an internal control and results were 

expressed as previously described [25]. 

2.9. In Vivo Experiments and Tissue Processing 

The animal model experiments were carried out in accordance with the guidelines for animal 

experimentation determined by the Medical School of University of São Paulo (FMUSP) and 

conducted in accordance with the Institutional Animal Ethics Committee (IAEC). Six- to eight-week-

old male athymic NOD/SCID mice were housed in a 12 h light/12 h dark schedule at 24 ± 2 °C 

temperature, 50% ± 10% relative humidity under pathogen-free conditions. Mice were 

subcutaneously injected with SK Mel 28 cells (2.5 × 106 cells/mouse) in order to initiate tumor growth. 

On the 25th day after inoculation, mice were randomly divided into four groups (n = 6), namely CTR 

(controls), IF (intermitted fasting), SOR (sorafenib), and SOR + IF. CTR and SOR animals had free 

access to food and water, while IF and SOR + IF animals had 24 h cycles of no food intake (fasting) 

and free access to water intercalated with 24 h cycles of free access to food and water. All animals 

were subjected to oral gavage with vehicle (DMSO 6%-PBS) (CTR and IF) or Sorafenib (40 mg/kg-

DMSO 6%-PBS) (SOR and SOR + IF) for five consecutive days every week. Tumor size was measured 

on alternate days, and tumor volume was calculated by the formula long diameter (mm) × short 

diameter2 (mm2) × 0.5236. All animals were weighed every day. On the 39th day after tumor cell 

inoculation, the animals were euthanized, the tumors collected, and snap-frozen in liquid nitrogen 

for western blotting analysis. For tissue extraction, NP-40 lysis buffer (50 mM Tris-HCl pH 7.4, 1% 

NP-40, 150 mM NaCl, 5 mM EDTA) was added, supplemented with a protease inhibitor cocktail 

(Sigma-Aldrich, St. Louis, MO, USA) plus phosphatase inhibitors (10 mM sodium fluoride, 1 mM 

sodium orthovanadate, and 1 mM sodium molybdate) (Sigma-Aldrich, St. Louis, MO, USA) and 
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homogenized in Ultra-Turrax® for 3 min on ice. Tissue extracts were then centrifuged at 12,000× g at 

4 °C and supernatants collected for determination of protein concentration by Bradford assay (Bio-

Rad, Hercules, CA, USA). The western blotting analysis proceeded as described above. 

2.10. Statistics 

All values are represented as the mean ± SD. Significance was evaluated by ANOVA one-way 

followed by Bonferroni test for multiple comparisons among control and treatments. ANOVA two-

way followed by Bonferroni post-test was used for group analysis. Differences were considered 

significant with p < 0.05. For in vitro studies, at least three independent experiments were conducted 

to warrant that the results were representative. For animal study, considering a significance level * of 

5%, a variation coefficient between 15% and 20%, and the effect of 20% it was necessary to have 6 

animals/group for statistic evaluation in one in vivo experiment [26,27]. 

3. Results 

3.1. Fasting Consistently Enhances Sorafenib-Induced Cell Death in Human Melanoma Cells 

It is widely manifest that short-term starvation (nutrient restriction) sensitizes or resensitizes 

many cancers to chemotherapeutic treatments [15,28], providing a potential powerful therapeutic 

strategy to overcome resistance of different tumor types, such as human skin melanoma [18]. Indeed, 

due to the urgent need of an effective and durable therapeutic regimen to treat patients affected by 

skin melanoma and to increase the overall patient survival rate, we decided to explore this 

opportunity. To this aim, a panel of human melanoma cell lines (BRAFWT and BRAFV600E) were 

submitted to EBSS (starvation, STV) or treated with sorafenib under normal (SOR, 10 μM) and 

starvation conditions (SOR + STV) for 24 h. The subsequent cell death induction was evaluated in all 

cell lines by measuring the percentage of sub-G1 populations of propidium iodide (PI)-stained cells, 

by flow cytometry. Data depicted in Figure 1A clearly show that most cell lines were resistant to STV 

or SOR treatments individually while all of them were significantly sensitive to combined (SOR + 

STV) exposure. Then, we decided to use CHL-1 and SK Mel 28 cell lines (a BRAFWT and oncogenic 

BRAFV600E, respectively) as models in the next experiments. These cells were then treated with SOR 

or cultured in EBSS (STV) alone or in combination (SOR + STV) and cell viability was evaluated at 6, 

12, or 24 h post treatment. Results confirmed the decrease of cell viability in both cell lines exposed 

to SOR in combination with STV (Figure 1B) in a time-dependent manner, further sustaining the 

efficacy of combined nutrient restriction and chemotherapeutic treatment as potential therapeutic 

regimen design, compared to individual treatments. 
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Figure 1. Combined exposure to sorafenib and starvation induces cell death in human melanoma 

cells. (A) Cell death evaluation (percentage of sub-G1 population) of PI-stained BRAFWT (CHL-1 and 

C8161) and oncogenic BRAFV600E (A375, A2058, SK Mel 05, and SK Mel 28) melanoma cell lines 

untreated (CTR) or exposed to EBSS (STV), sorafenib (SOR 10 mM) and SOR + STV for 24 h. 

(Histograms represent mean ± SD, n = 3) * p < 0.0001 compared to control cells; # p < 0.0001 compared 

to sorafenib-treated cells. One-way ANOVA, Bonferroni post-test. (B) Cell viability was analyzed in 

CHL-1 and SK Mel 28 cells at 6, 12, and 24 h of STV, SOR, and SOR + STV post treatment. (Histograms 

represent mean ± SD) * p < 0.0001 compared to control cells. # p < 0.0001 compared to 6h; • p < 0.0001 

compared to 6 and 12 h. Two-way ANOVA, Bonferroni post-test. 

3.2. Apoptosis Is Involved in Combined Sorafenib/Nutrient Restriction-Induced Cell Death 

To elucidate the molecular mechanism(s) responsible for melanoma cell death 

induction/execution under combined SOR/STV treatment, we evaluated the presence/expression of 

key apoptotic markers such as PARP cleavage and Mcl-1 degradation, in both cell lines treated 2, 4, 

or 6 h with SOR or STV alone or in combination by western blotting analysis. 

Our results highlighted an early activation of caspases, key mediators of the apoptotic program 

and responsible for PARP cleavage, in both cell lines but restricted to the combined SOR + STV 

regimen (Figure 2A, upper panels). The expected lower sensitivity of SK Mel 28 cells compared to 

CHL-1 is also evident, due to the presence of oncogenic BRAFV600E conferring less sensitivity to 

apoptotic stimuli [8,29–31], evidenced by a less pronounced PARP cleavage efficiency at both 4 and 

6 h post treatment compared to CHL-1. The involvement of the apoptotic pathway is also highlighted 

by the dramatic Mcl-1 downregulation in both cell lines exposed to SOR + STV (Figure 2A, 

middle/bottom panels), compared to control or each individual treatment (SOR or STV), both known 

to affect Mcl-1 expression [32–35]. Finally, to further support the involvement of apoptosis, we 

exposed both cell lines to STV in combination with SOR (SOR + STV), in the presence or absence of 

the pan-caspase inhibitor Z-VAD-FMK (ZVAD) or necrosis inhibitor necrostatin-1 (NEC), and cell 

viability was evaluated after 24 h. As shown in Figure 2B, the presence of ZVAD, but not necrostatin-

1, was able to protect both cell lines from SOR + STV-induced cell death, although a minor effect was 

observed in SK Mel 28, suggesting the involvement of a caspase-independent pathway activated by 

sorafenib in this cell line, as previously suggested by Lachaier [36]. Collectively these data indicate 
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that apoptosis is involved in the cell death pathway stimulated by combined sorafenib/nutrient 

shortage in melanoma cells. 

 

Figure 2. Cell death elicited by SOR + STV on melanoma cells has apoptotic features. (A) 

Representative immunoblots of PARP cleavage and Mcl-1 degradation (apoptotic markers) analyzed 

by western blotting in CHL-1 and SK Mel 28 cells untreated or treated as indicated. GAPDH or tubulin 

were used as loading controls. (Histograms represent mean ± SD) * p < 0.0001 compared to untreated 

cells; # p < 0.0001 compared to Mg132 absence. One-way ANOVA, Bonferroni post-test. (B) Cell 

viability was also evaluated in both cell lines after 12 or 24 h of STV, SOR, SOR + STV, Z-VAD-FMK, 

or necrostatin-1 (NEC), as indicated. (Histograms represent mean ± SD) * p < 0.0001 compared to 

control cells. # p < 0.0001 compared to SOR + STV. One-way ANOVA, Bonferroni post-test. 

3.3. Combined Nutrient Shortage and Sorafenib Induces Metabolic Stress Resulting in Cell Death 

Cell transformation and tumor development determine a well-known metabolic 

reprogramming with cancer cells preferring glycolysis to mitochondrial catabolism to produce ATP 

(Warburg effect) [1,2]. Therefore, we asked whether combined sorafenib and nutrient shortage-

induced cell death was the result of metabolic stress. To this aim, we evaluated the mitochondrial 

activity in cells exposed to EBSS or sorafenib alone or in combination, by measuring alterations in the 

mitochondrial transmembrane potential (MTP) by flow cytometry. Although SOR is known to target 

mitochondrial proteins (OXPHOS) [37,38], data in Figure 3A, show the MTP was not (CHL-1) or 

slightly (SK Mel 28) altered in both cell lines in presence of SOR or EBSS alone, while a consistent and 

early depolarization was observed in both cell lines concomitantly exposed for 2 h to SOR + EBSS. 

These data possibly indicate that the 2 h treatment with SOR we used in these experiments was not 

sufficient, per se, to consistently disrupt mitochondrial functions—that possibly cope the mild stress 

condition through the fission/fusion mechanism [39]—while concomitant treatment was efficient in 
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inducing a consistent mitochondrial stress. These data were confirmed by a time course analysis (0, 

5, and 30 min) of MTP (TMRE-staining) in cells exposed to EBSS (STV), SOR, SOR + STV, in which 

images were acquired by confocal microscope and analyzed by ImageJ software. Data indicate a clear 

mitochondrial depolarization in both cell lines concomitantly exposed to STV and SOR but not in 

individual exposure (Figure 3B). However, the analysis of ROS (reactive oxygen species) production 

in the same experimental conditions revealed an increase in ROS generation in SK Mel 28 cells but 

not in CHL-1, possibly indicating a more efficient antioxidant system of the latter cell line compared 

to the former but, more importantly, that ROS production is not the main cell death mediator in SOR 

+ STV exposed cells (Supplementary Figure S1). Then, we analyzed the signaling pathways typically 

activated under metabolic stress conditions. To this aim, cells exposed for 4 or 6 h to STV, SOR, or 

STV + SOR were lysed and total protein extracts were subjected to western blotting analysis. Data 

reported in Figure 4A (upper panels) show the previously described AMPK activation (P-AMPK) 

under EBSS (STV) [5] or SOR [40] exposure, that was even more evident in cells concomitantly 

exposed to both treatments, to face the dramatic increased of AMP/ATP ratio resulting from latter 

experimental condition (SOR + STV). The energy stress condition under STV + SOR is confirmed by 

concomitantly observed mTOR inhibition, evidenced by disappearance of its target P-p70S6K1 

(Figure 4A, bottom panels), typical of persistent AMPK activation [41]. Cell’s response to metabolic 

stress was also evidenced by analyzing the expression of PGC1α, the key transcription factor strongly 

activated by conditions causing energy limitation [42]. Indeed, measuring the mRNA levels of this 

TF (transcriptional factor) revealed its upregulation in both cell lines under STV or SOR treatment (at 

both 4 and 6 h) as expected, due to cell’s energy limitation and demand under both treatments, 

condition that was confirmed under both SOR and STV exposure (Figure 4B). These results were 

further confirmed by measuring the cell viability of cells (CHL-1 and SK Mel 28) exposed to SOR or 

STV alone or in combination (SOR + STV) in the presence or absence of the glycolytic inhibitor 2-DG 

(2-deoxy-D-glucose). Data reported in Supplementary Figure S2 show indeed an enhanced cytotoxic 

effect of combined SOR and STV in both cell lines cultivated in the presence of 2-DG, due to efficient 

inhibition of glycolysis, compared to limited inhibition due to low glucose content of EBSS (STV). 
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Figure 3. Combined exposure to sorafenib and starvation compromises mitochondrial function. (A) 

Mitochondrial membrane potential (MMP, ΔΨ) was evaluated by flow cytometric analysis of TMRE-

stained CHL-1 or SK Mel 28 cells after STV, SOR, or SOR + STV exposure (2 h). FCCP was used as 

positive control. (B) Representative florescence images of three time points (t = 0′, t = 5′, and t = 30′) 

and time lapse analysis were performed by real-time confocal microscopy to evaluate ΔΨ in CHL-1 

or SK Mel 28 TMRE-stained cells treated as indicated. Histograms represent the quantitative analysis 

of TMRE fluorescence variation after 30′ in both cell lines treated as indicated. (Images are 

representative of three independent experiments; histograms represent mean ± SD; n = 3) * p < 0.005 

compared to control cells. # p < 0.0001 compared to sorafenib. 
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Figure 4. Combined exposure to sorafenib and starvation stimulates biogenesis in human melanoma 

cells. (A) The activity of the AMPK and mTOR signaling pathways were evaluated by measuring the 

phosphorylation status of AMPK (p-AMPK on Thr172) or the mTOR target p70S6K1 (p-p70S6K1 on 

Thr389) in CHL-1 and SK Mel 28 cells treated or untreated (4 or 6 h) as indicated, by western blotting 

analysis. Total AMPK, p70S6K1, and GAPDH were used as internal/loading controls (n = 3). (B) The 

expression of PGC1α was evaluated by qRT-PCR in the same experimental condition described in A. 

(Histograms represent mean ± SD; n = 3) * p < 0.005 compared to control cells. 

3.4. Autophagy Blockade Is Involved in the Signaling Pathway Stimulated by Combined Sorafenib and 

Nutrient Shortage 

Nutrient shortage and cellular stresses are typical inducers of autophagy, an intracellular 

catabolic process responsible for the removal of damaged or unwanted cellular structures/organelles 

and the production of energy to sustain cell survival [9,43]. However, although promptly induced 

under stress conditions, this process remains active for a limited time, due to a negative feedback 

loop responsible for early stabilization and subsequent degradation of key autophagic components 

[44,45]. On the other hand, although highly debated, prolonged or deregulated autophagy might be 

responsible for or participate in cell death execution [46]. To evaluate the potential contribution of 

autophagy to the signaling pathway stimulated by combined sorafenib and nutrient shortage 

regimen in melanoma cells, both CHL-1 and SK Mel 28 were exposed to SOR or STV alone or in 

combination, in the presence or absence of the downstream autophagic inhibitor chloroquine (CQ). 

The protein levels of p62 and LC3-II were then evaluated by western blotting analysis, 6 h post 

treatment to detect the autophagic flux (Figure 5A and Supplementary Figure S3). These data show 

no significant decrease of p62 protein levels in any condition, suggesting that ubiquitinated 

proteins/organelles are not targeted by autophagy in these conditions, but a very slight increase of 

LC3-II in the SOR + STV condition was observed even without chloroquine, indicating a possible 

block in late-stage autophagy. Similar results were obtained by confocal analysis of autophagosome 

formation in both cell lines transduced with a vector encoding for a recombinant GFP-mCherry-LC3 

protein and exposed to similar experimental condition reported above (Supplementary Figure S4). 

Cell viability was also evaluated in cells exposed to SOR or STV individually or concomitantly (6 h), 

in the presence or absence of CQ, to block downstream autophagosome degradation. Results indicate 

a slight enhanced toxicity of SOR + STV treatment in the presence of CQ, compared to the same 

treatment in the absence of CQ, possibly indicating a pro-survival activity of a very early autophagy 

induction (Figure 5B) that was augmented in longer treatments such as 12 h (Supplementary Figure 

S5). Next, we inhibited autophagy induction through atg5 silencing, transducing both cell lines with 

lentiviral particles carrying a specific Atg5 shRNA and using a scramble shRNA as a control. The 

downregulation of Atg5 was evaluated by western blotting analysis (Figure 5C), cells were exposed 

to STV or SOR alone or in combination and cell viability was evaluated at 6 h post treatment. Results 

indicate no significant differences between cells able or not able to induce autophagy on exposure to 

SOR + STV in terms of cell viability, in both cell lines (Figure 5D). Collectively, these data indicate 

that autophagy may be poorly involved in melanoma cells response to combined sorafenib and 

nutrient shortage treatment and with only a potential major impact on late-stage autophagy blockage. 
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Figure 5. Late-stage autophagy blockage is involved in SOR + STV-induced cell death of melanoma 

cells. (A) Autophagy was evaluated by western blotting analysis, by measuring LC3 conversion and 

p62 degradation in CHL-1 and SK Mel 28 cells exposed 6 h to EBSS (STV), SOR [10 mM] or SOR + 

STV, in presence or absence of the autophagic inhibitor chloroquine (CQ 25 mM). Tubulin was used 

as loading control (Images are representative of three independent experiments). (B) Cell viability of 

CHL-1 and SK Mel 28 was also performed in the same experimental conditions reported in A. 

(Histograms represents mean ± SD; n = 3) * p < 0.005 compared to control cells. # p < 0.0001 absence 

vs. presence of CQ. (C) ATG5 expression was abrogated in both CHL-1 and SK Mel 28 by transducing 

cells with lentiviral particles carrying a specific shRNA sequence for Atg5 (shAtg5) or a scrambled 

sequence (scramble). Atg5 protein levels were evaluated by western blotting analysis (left panel) and 

a densitometric analysis (Atg5 normalized by GAPDH) was also performed (right panel). GAPDH 

was used as loading control. (Images are representative of three independent experiments; histograms 

represent mean ± SD, n = 3) * p < 0.0001 compared to not transduced cells (Φ); # p < 0.0001 compared 

to scramble cells. (D) Cell viability was evaluated by flow cytometry in both control cells and shAtg5 

cells under STV, SOR, or combined treatment (SOR + STV), at 6 h post treatment. (Histograms 

represent mean ± SD; n = 3) * p < 0.0001 compared to untreated cells (CTR). 

3.5. Combined Sorafenib and Intermittent Fasting Regimen Reduces In Vivo Tumor Growth in an 

Autophagic-Independent Manner 

To verify the efficacy of combined sorafenib and nutrient shortage regimen on melanoma tumor 

growth in vivo, 2.5 × 106 SK Mel 28 cells were injected subcutaneously into the right flank of 

NOD/SCID mice. 
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Figure 6. In vivo effect of intermittent fasting cycles combined to sorafenib on melanoma 

growth and autophagy. (A) SK Mel 28 cells were subcutaneously inoculated on NOD/SCID mice (2.5 

× 106 cells/mouse) and tumor size was measured every two days and tumor volume was calculated 

(see material and methods; n = 6; *p<0.005 compared to control animals). (B) Tumor size distribution 

at day 39 of data shown in A and reported (right panel) and LC3 conversion and p62 degradation 

(autophagic markers) were analyzed by western blotting in tumor samples from two animals of each 

experimental group (red marked on graph). Tubulin was used as loading control. Densitometric 

analysis of LC3II/tubulin in each select tumor (lower left graph) and the median of each group (lower 

right graph). Groups: CTR (ad libitum diet + PBS/6%DMSO oral gavage); IF (24h fasted/24h ad 

libitum diet + PBS/6%DMSO oral gavage); SOR (ad libitum diet + SOR (40 mg/Kg in PBS/6%DMSO) 

oral gavage); SOR+STV SOR (24h fasted/24h ad libitum diet + SOR (40 mg/Kg in PBS/6%DMSO) oral 

gavage). ns (not significant). One-way ANOVA, Bonferroni post-test. 

 

The following development of subcutaneous tumors was monitored in the subsequent 25 days 

post injection. Then, mice were randomly divided into 4 groups (6 animals each) and submitted to 

cycles of intermittent fasting alone (IF, DMSO) and in combination to sorafenib (SOR, 40 mg/kg) 

treatment (IF + SOR) or with free access to food and water (CTR, DMSO) and treatment with sorafenib 

(SOR), and tumor volume was recorded every two days, together with mouse weight 

(Supplementary Figure S6A), for an additional 14 days. Data reported in Figure 6A show a consistent 

and significant inhibition of tumor growth in mice subjected to combined sorafenib and intermittent 

fasting, compared to control, corroborating in vitro data. Next, mice were euthanized, and final tumor 

volume, together with tumor volume/body weight ratio (Supplementary Figure S6D), was certified 

confirming that intermittent fasting enhanced reduced median tumor growth (Figure 6B, right panel). 

The induction of autophagy was then evaluated in two tumor samples of each group by measuring 

the conversion of LC3 and degradation of p62, by western blotting analysis. Data reported in Figure 
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6B (right graphic) show the selection based on median tumor volume in each group of the two tumors 

(red dots) subjected to western blotting analysis. Figure 6B (left panel) demonstrates a slight 

accumulation of LC3-II after intermittent fasting or sorafenib alone but not after combined treatment 

(IF + SOR), and densitometric analysis (lower graphs) although not statistically significant, 

corroborating in vitro data indicated a possible autophagy blockage in fasting-mediated enhanced 

sorafenib toxicity in melanoma cells (Figure 5 and Supplementary Figure S6). 

4. Discussion 

Although glucose addiction has been assumed as a cancer hallmark, with tumor cells using 

glycolysis to provide energy, it is now generally accepted that cancer cell development and growth 

relies on a dynamic and finely regulated balance between glycolysis and mitochondrial oxidative 

phosphorylation to supply energy [47,48]. Intermittent fasting has been shown to modulate energy 

metabolism [49] and enhance tumor susceptibility to anticancer drugs, possibly boosting cellular 

oxidative phosphorylation to supply energy to sustain cancer cell survival [14,16,18,50]. Therefore, 

combining nutrient shortage with anticancer drugs targeting mitochondria might magnify metabolic 

stress conditions resulting in enhanced cell death. To explore this possibility, we used the multi-

kinase inhibitor sorafenib (BAY 43-9006; Nexavar) in combination with starvation, to kill human skin 

melanoma cells. Although it is a known multi-kinase inhibitor, sorafenib also targets elements of the 

mitochondrial respiratory machinery thus interfering with mitochondrial metabolic functions [37,38]. 

It has been previously reported that sorafenib induces a caspase-dependent and -independent cell 

death process in several cancer cells, such as myeloma, chronic lymphocytic leukemia, prostate 

cancer, pleural mesothelioma, and melanoma [51–55]. Moreover, it is also able to stimulate a newly 

discovered form of cell death, namely ferroptosis, in solid tumors [36,56]. We found no significative 

lethal effects in cells exposed to sorafenib alone, paralleled by no significant changes in MMP and 

ROS generation, indicating a not surprising melanoma resistance to drug-induced cell death. 

Therefore, although sorafenib targets mitochondria, it is possible to speculate that the mitochondrial 

quality control based on active fusion/fission processes might efficiently counteract sorafenib toxicity 

[39,57], at least at the time point and concentration we used (10 μM), pushing the tumor metabolism 

towards glycolysis. While, combined sorafenib and starvation significantly resulted in cell death 

induction associated with caspase activation, enhanced Mcl-1 degradation, and mitochondrial 

dysfunction. However, we also found that apoptosis is not the unique pathway contributing to 

combined sorafenib and nutrient shortage induced cell death since caspase inhibition blocked cell 

death only in part. Therefore, due to the ability of sorafenib to also stimulate the ferroptotic cell death 

[36,56] in some tumors together with the inefficacy of necrostatin-1—thus excluding the involvement 

of necroptosis—it is possible to speculate that ferroptosis might also be induced by sorafenib and 

enhanced by combined nutrient shortage, cooperating with apoptosis to kill melanoma cells. 

On the other hand, nutrient shortage is a typical autophagic stimulus, which has at least two 

functions depending on time of induction and length. In fact, autophagy is promptly induced under 

nutrient deprivation to sustain cell survival by digesting damaged and/or expendable cellular 

structures to get energy. However, although this pro-survival pathway is irremediably blocked by 

caspase-mediated degradation of key autophagic proteins during apoptosis execution, in cells 

committed to die [45,58], it has also been reported that autophagy can contribute to or determine cell 

death [59]. Therefore, we investigated the potential involvement of autophagy in the signaling 

pathway stimulated by combined sorafenib and starvation. Alone, both treatments stimulated 

autophagy, more proficient in BRAFWT melanoma cell line, possibly due to autophagy induction 

resistance in BRAFV600E melanoma in line with high basal autophagy [8]. On the other hand, when 

both treatments were combined, we observed a blockage in late-stage autophagy that contributed to 

cell death. Several evidences in literature suggest that autophagy blockage is beneficial to cancer 

treatment together with cytotoxic drugs on different tumor models [60–62]. The co-treatment of 

chloroquine and sorafenib potentiated cell death in glioblastoma and hepatocarcinoma cells due to 

autophagy inhibition [61,63]. However, in our system, the treatment with the pharmacological 

inhibitor of autophagy chloroquine, was not able to achieve similar levels of cell death as SOR + STV, 
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thus indicating other mechanisms are also responsible for starvation- and sorafenib-induced 

melanoma cell death. 

Thus, we focused on potential involvement of metabolic stress as another cell death driver, 

which equilibrium could be regulated by the presence of sorafenib and nutrient shortage. In our 

hypothesis, while nutrient shortage could shift or move the metabolic equilibrium toward oxidative 

phosphorylation, the presence of sorafenib, targeting mitochondria, should move this equilibrium 

toward glycolysis. Therefore, under both individual stress conditions, the dynamic metabolic 

equilibrium can be pushed into one or the other direction, to the extent of the need, in order to ensure 

the correct energy level to support cell survival. However, under nutrient deprivation and sorafenib 

co-treatment, the concomitant inhibition of glycolysis and oxidative phosphorylation results in a 

persistent metabolic stress and energy deprivation, inducing cell death. This stress condition is even 

more exacerbated in presence of 2DG, already employed in the clinical management of cancer [64–

66], which completely blocks the glycolytic pathway and also reverts the metabolic phenotype 

toward OXPHOS [67], further highlighting the role of glycolysis/OXPHOS balance in cancer cell 

energy supply, thus identifying the process as a potential and attractive therapeutic target. 

These conclusions are also sustained by in vivo data showing reduced subcutaneous melanoma 

growth under intermittent fasting combined with sorafenib treatment, indicating this therapeutic 

strategy is potentially effective in clinical management of this malignancy. 

5. Conclusions 

In conclusion, the present study demonstrated that the restriction of nutrients by intermittent 

fasting potentiates the effects of sorafenib due to the modulation of cellular metabolism, suggesting 

that it is possible to harness the energy of cancer cells for the treatment of melanoma. 
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S1: ROS production; Figure S2: Glycolysis blockade enhances sorafenib cell toxicity; Figure S3: Autophagy 

blockade enhances sorafenib cell toxicity; Figure S4: Autophagic flux evaluation; Figure S5: Cell death induction; 

Figure S6: Autophagy--independent cell death stimulated by combine sorafenib and caloric restriction, in vivo. 

Author Contributions: Conception and design: F.A., G.J.S.P., S.S.S., R.C., M.P., and M.C.; development of 

methodology: F.A., R.F.S., and M.V.B.; acquisition of data (provided animals, acquired and managed patients, 

provided facilities, etc.): F.A., R.F.S., M.V.B., R.C., M.G.., and C.B.; analysis and interpretation of data (e.g., 

statistical analysis, biostatistics, computational analysis): F.A., R.F.S., G.J.S.P., M.V.B., R.C., G.M.F., M.P., and 

M.C.; writing, review, and/or revision of the manuscript: F.A., G.J.S.P., S.S.S., R.C., G.M.F., M.P., M.C., and C.B.; 

administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): F.A., 

G.J.S.P., R.F.S., M.V.B., and M.C.; study supervision: F.A., G.J.S.P., S.S.S., R.C., G.M.F., M.P., and M.C. All authors 

have read and agreed to the published version of the manuscript. 

Funding: This research was funded by: Italian Association for Cancer Research - AIRC (MFAG 11749 to MC; 

IG2015 n. 17404 to GMF and IG2014 n. 15244 to MP); the Italian Ministry of University and Research (FIRB 

Accordi di Programma 2011, PRIN 2015 20152CB22L), the Italian Ministry of Health (Ricerca Corrente and 

Ricerca Finalizzata to GMF AND MP); the Russian Government Program for the Recruitment of the leading 

scientists into the Russian Institutions of Higher Education 14. W03.31.0029 to N.B. and M.P.; Fundação de 

Amparo à Pesquisa do Estado de São Paulo (FAPESP—2012/08273-3; 2013/20073-2; 2017/10863-7); Conselho 

Nacional de Desenvolvimento Científico e Tecnológico (CNPq—163612/2013-7; PVE 401236/2014-5; PVE 

401141/2014-4) and Doctoral Fellowship (F.A.) was supported by Coordenação de Aperfeiçoamento de Pessoal 

de Nível Superior—Brasil (CAPES). Confocal microscope Zeiss LSM 780, facility from the Instituto Nacional de 

Farmacologia e Biologia Molecular (INFAR) was supported by Financiadora de Estudos e Projetos (FINEP) and 

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). 

Conflicts of Interest: The authors declare no conflict of interest. 

  



Cells 2020, 9, 640 15 of 18 

 

References 

1. Xu, X.D.; Shao, S.X.; Jiang, H.P.; Cao, Y.W.; Wang, Y.H.; Yang, X.C.; Wang, Y.L.; Wang, X.S.; Niu, H.T. 

Warburg Effect or Reverse Warburg Effect? A Review of Cancer Metabolism. Oncol. Res. Treat. 2015, 38, 

117–122. 

2. Ratnikov, B.I.; Scott, D.A.; Osterman, A.L.; Smith, J.W.; Ronai, Z.A. Metabolic rewiring in melanoma. 

Oncogene 2017, 36, 147–157. 

3. Weinberg, F.; Hamanaka, R.; Wheaton, W.W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, 

G.M.; Budinger, G.R.S.; Chandel, N.S. Mitochondrial metabolism and ROS generation are essential for 

Kras-Mediated tumorigenicity. Proc. Natl. Acad. Sci. USA 2010, 107, 8788–8793. 

4. Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer 

metabolism. Nat. Rev. Cancer 2011, 11, 325–337. 

5. Chaube, B.; Malvi, P.; Singh, S.V.; Mohammad, N.; Viollet, B.; Bhat, M.K. AMPK maintains energy 

homeostasis and survival in cancer cells via regulating p38/PGC-1α-Mediated mitochondrial biogenesis. 

Cell Death Discov. 2015, 1, 15063. 

6. Ward, P.S.; Thompson, C.B. Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not 

Anticipate. Cancer Cell 2012, 21, 297–308. 

7. Bhattacharya, B.; Mohd Omar, M.F.; Soong, R. The Warburg effect and drug resistance. Br. J. Pharmacol. 

2016, 173, 970–979. 

8. Corazzari, M.; Rapino, F.; Ciccosanti, F.; Giglio, P.; Antonioli, M.; Conti, B.; Fimia, G.M.; Lovat, P.E.; 

Piacentini, M. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy 

and apoptotic resistance of cutaneous melanoma. Cell Death Differ. 2015, 22, 946–958. 

9. Corazzari, M.; Fimia, G.M.; Lovat, P.; Piacentini, M. Why is autophagy important for melanoma? Molecular 

mechanisms and therapeutic implications. Semin. Cancer Biol. 2013, 23, 337–343. 

10. Guadarrama-Orozco, J.A.; Ortega-Gómez, A.; Ruiz-García, E.B.; Astudillo-de la Vega, H.; Meneses-García, 

A.; Lopez-Camarillo, C. Braf V600E mutation in melanoma: Translational current scenario. Clin. Transl. 

Oncol. 2016, 18, 863–871. 

11. Abildgaard, C.; Guldberg, P. Molecular drivers of cellular metabolic reprogramming in melanoma. Trends 

Mol. Med. 2015, 21, 164–171. 

12. Hao, C.; Tian, J.; Liu, H.; Li, F.; Niu, H.; Zhu, B. Efficacy and safety of anti-PD-1 and anti-PD-1 combined 

with anti-CTLA-4 immunotherapy to advanced melanoma. Medicine (Baltimore) 2017, 96, e7325. 

13. Chae, Y.K.; Arya, A.; Iams, W.; Cruz, M.R.; Chandra, S.; Choi, J.; Giles, F. Current landscape and future of 

dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials 

with melanoma and non-Small cell lung cancer (NSCLC). J. Immunother. Cancer 2018, 6, 39. 

14. Longo, V.D.; Mattson, M.P. Fasting: Molecular Mechanisms and Clinical Applications. Cell Metab. 2014, 19, 

181–192. 

15. Lee, C.; Raffaghello, L.; Brandhorst, S.; Safdie, F.M.; Bianchi, G.; Martin-Montalvo, A.; Pistoia, V.; Wei, M.; 

Hwang, S.; Merlino, A.; et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell 

types to chemotherapy. Sci. Transl. Med. 2012, 4, 124ra27. 

16. Lévesque, S.; Pol, J.G.; Ferrere, G.; Galluzzi, L.; Zitvogel, L.; Kroemer, G. Trial watch: Dietary interventions 

for cancer therapy. Oncoimmunology 2019, 8, 1591878. 

17. Simone, B.A.; Champ, C.E.; Rosenberg, A.L.; Berger, A.C.; Monti, D.A.; Dicker, A.P.; Simone, N.L. 

Selectively starving cancer cells through dietary manipulation: Methods and clinical implications. Future 

Oncol. 2013, 9, 959–976. 

18. Antunes, F.; Corazzari, M.; Pereira, G.; Fimia, G.M.; Piacentini, M.; Smaili, S. Fasting boosts sensitivity of 

human skin melanoma to cisplatin-induced cell death. Biochem. Biophys. Res. Commun. 2017, 485, 16–22. 

19. Antunes, F.; Pereira, G.J.; Jasiulionis, M.G.; Bincoletto, C.; Smaili, S.S. Nutritional shortage augments 

cisplatin-Effects on murine melanoma cells. Chem. Biol. Interact. 2018, 281, 89–97. 

20. Escudier, B.; Porta, C.; Schmidinger, M.; Algaba, F.; Patard, J.J.; Khoo, V.; Eisen, T.; Horwich, A. ESMO 

Guidelines Working Group Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, 

treatment and follow-Up. Ann. Oncol. 2014, 25, iii49–iii56. 

21. Raoul, J.-L.; Kudo, M.; Finn, R.S.; Edeline, J.; Reig, M.; Galle, P.R. Systemic therapy for intermediate and 

advanced hepatocellular carcinoma: Sorafenib and beyond. Cancer Treat. Rev. 2018, 68, 16–24. 



Cells 2020, 9, 640 16 of 18 

 

22. Dirks, W.G.; MacLeod, R.A.F.; Nakamura, Y.; Kohara, A.; Reid, Y.; Milch, H.; Drexler, H.G.; Mizusawa, H. 

Cell line cross-Contamination initiative: An interactive reference database of STR profiles covering 

common cancer cell lines. Int. J. Cancer 2010, 126, 303–304. 

23. Giglio, P.; Gagliardi, M.; Tumino, N.; Antunes, F.; Smaili, S.; Cotella, D.; Santoro, C.; Bernardini, R.; Mattei, 

M.; Piacentini, M.; et al. PKR and GCN2 stress kinases promote an ER stress-Independent eIF2α 

phosphorylation responsible for calreticulin exposure in melanoma cells. Oncoimmunology 2018, 7, 

e1466765. 

24. Pagliarini, V.; Giglio, P.; Bernardoni, P.; Zio, D.D.; Fimia, G.M.; Piacentini, M.; Corazzari, M. 

Downregulation of E2F1 during ER stress is required to induce apoptosis. J. Cell Sci. 2015, 128, 1166–1179. 

25. Oliverio, S.; Corazzari, M.; Sestito, C.; Piredda, L.; Ippolito, G.; Piacentini, M. The spermidine analogue 

GC7 (N1-Guanyl-1,7-Diamineoheptane) induces autophagy through a mechanism not involving the 

hypusination of eIF5A. Amino Acids 2014, 46, 2767–2776. 

26. Damy, S.B.; Camargo, R.S.; Chammas, R.; de Figueiredo, L.F.P. Fundamental aspects on animal research as 

applied to experimental surgery. Rev. Assoc. Med. Bras. 1992, 56, 103–111. 

27. Eckelman, W.C.; Kilbourn, M.R.; Joyal, J.L.; Labiris, R.; Valliant, J.F. Justifying the number of animals for 

each experiment. Nucl. Med. Biol. 2007, 34, 229–232. 

28. Di Biase, S.; Longo, V.D. Fasting-Induced differential stress sensitization in cancer treatment. Mol. Cell. 

Oncol. 2016, 3, e1117701. 

29. Gagliardi M.; Cotella D.; Santoro C.; Corà D.; Barlev N.A.; Piacentini M., Corazzari M. Aldo-keto reductases 

protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death Dis. 2019, 10, 902 

30. Giglio, P.; Fimia, G.M.; Lovat, P.E.; Piacentini, M.; Corazzari, M. Fateful music from a talented orchestra 

with a wicked conductor: Connection between oncogenic BRAF, ER stress, and autophagy in human 

melanoma. Mol. Cell. Oncol. 2015, 2, e995016. 

31. Armstrong, J.L.; Corazzari, M.; Martin, S.; Pagliarini, V.; Falasca, L.; Hill, D.S.; Ellis, N.; Sabah, S.A.; 

Redfern, C.P.F.; Fimia, G.M.; et al. Oncogenic B-RAF signaling in melanoma impairs the therapeutic 

advantage of autophagy inhibition. Clin. Cancer Res. 2011, 17, 2216–2226. 

32. Elgendy, M.; Minucci, S. A novel autophagy-Independent, oncosuppressive function of BECN1: 

Degradation of MCL1. Autophagy 2015, 11, 581–582. 

33. Austin, M.; Cook, S.J. Increased Expression of Mcl-1 Is Required for Protection against Serum Starvation in 

Phosphatase and Tensin Homologue on Chromosome 10 Null Mouse Embryonic Fibroblasts, but 

Repression of Bim Is Favored in Human Glioblastomas. J. Biol. Chem. 2005, 280, 33280–33288. 

34. Weng, C.; Li, Y.; Xu, D.; Shi, Y.; Tang, H. Specific Cleavage of Mcl-1 by Caspase-3 in Tumor Necrosis Factor-

Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis in Jurkat Leukemia T Cells. J. Biol. Chem. 

2005, 280, 10491–10500. 

35. Gojo, I.; Zhang, B.; Fenton, R.G. The cyclin-Dependent kinase inhibitor flavopiridol induces apoptosis in 

multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin. Cancer Res. 

2002, 8, 3527–3538. 

36. Lachaier, E.; Louandre, C.; Godin, C.; Saidak, Z.; Baert, M.; Diouf, M.; Chauffert, B.; Galmiche, A. Sorafenib 

induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res. 2014, 

34, 6417–6422. 

37. Bull, V.H.; Rajalingam, K.; Thiede, B. Sorafenib-Induced Mitochondrial Complex I Inactivation and Cell 

Death in Human Neuroblastoma Cells. J. Proteome Res. 2012, 11, 1609–1620. 

38. Zhang, C.; Liu, Z.; Bunker, E.; Ramirez, A.; Lee, S.; Peng, Y.; Tan, A.-C.; Eckhardt, S.G.; Chapnick, D.A.; 

Liu, X. Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate 

the PINK1-Parkin pathway and modulate cellular drug response. J. Biol. Chem. 2017, 292, 15105–15120. 

39. Youle, R.J.; van der Bliek, A.M. Mitochondrial Fission, Fusion, and Stress. Science 2012, 337, 1062–1065. 

40. Ross, F.A.; Hawley, S.A.; Auciello, F.R.; Gowans, G.J.; Atrih, A.; Lamont, D.J.; Hardie, D.G. Mechanisms of 

Paradoxical Activation of AMPK by the Kinase Inhibitors SU6656 and Sorafenib. Cell Chem. Biol. 2017, 24, 

813.e4–824.e4. 

41. Fumarola, C.; Caffarra, C.; La Monica, S.; Galetti, M.; Alfieri, R.R.; Cavazzoni, A.; Galvani, E.; Generali, D.; 

Petronini, P.G.; Bonelli, M.A. Effects of sorafenib on energy metabolism in breast cancer cells: Role of 

AMPK-mTORC1 signaling. Breast Cancer Res. Treat. 2013, 141, 67–78. 



Cells 2020, 9, 640 17 of 18 

 

42. Tan, Z.; Luo, X.; Xiao, L.; Tang, M.; Bode, A.M.; Dong, Z.; Cao, Y. The Role of PGC1 in Cancer Metabolism 

and its Therapeutic Implications. Mol. Cancer Ther. 2016, 15, 774–782. 

43. Antonioli, M.; Di Rienzo, M.; Piacentini, M.; Fimia, G.M. Emerging Mechanisms in Initiating and 

Terminating Autophagy. Trends Biochem. Sci. 2017, 42, 28–41. 

44. Antonioli, M.; Albiero, F.; Nazio, F.; Vescovo, T.; Perdomo, A.B.; Corazzari, M.; Marsella, C.; Piselli, P.; 

Gretzmeier, C.; Dengjel, J.; et al. AMBRA1 Interplay with Cullin E3 Ubiquitin Ligases Regulates Autophagy 

Dynamics. Dev. Cell 2014, 31, 734–746. 

45. Corazzari, M.; Fimia, G.M.; Piacentini, M. Dismantling the autophagic arsenal when it is time to die: 

Concerted AMBRA1 degradation by caspases and calpains. Autophagy 2012, 8, 1255–1257. 

46. Lalaoui, N.; Lindqvist, L.M.; Sandow, J.J.; Ekert, P.G. The molecular relationships between apoptosis, 

autophagy and necroptosis. Semin. Cell Dev. Biol. 2015, 39, 63–69. 

47. Dang, C.V. Links between metabolism and cancer. Genes Dev. 2012, 26, 877–890. 

48. Bonuccelli, G.; Tsirigos, A.; Whitaker-Menezes, D.; Pavlides, S.; Pestell, R.G.; Chiavarina, B.; Frank, P.G.; 

Flomenberg, N.; Howell, A.; Martinez-Outschoorn, U.E.; et al. Ketones and lactate & quot; fuel& quot; 

tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial 

metabolism. Cell Cycle 2010, 9, 3506–3514. 

49. Bianchi, G.; Martella, R.; Ravera, S.; Marini, C.; Capitanio, S.; Orengo, A.; Emionite, L.; Lavarello, C.; Amaro, 

A.; Petretto, A.; et al. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-

Synthesis to promote apoptosis in colon cancer models. Oncotarget 2015, 6, 11806–11819. 

50. Safdie, F.; Brandhorst, S.; Wei, M.; Wang, W.; Lee, C.; Hwang, S.; Conti, P.S.; Chen, T.C.; Longo, V.D. Fasting 

enhances the response of glioma to chemo- and radiotherapy. PLoS ONE 2012, 7, e44603. 

51. Ramírez-Labrada, A.; López-Royuela, N.; Jarauta, V.; Galán-Malo, P.; Azaceta, G.; Palomera, L.; Pardo, J.; 

Anel, A.; Marzo, I.; Naval, J. Two death pathways induced by sorafenib in myeloma cells: Puma-Mediated 

apoptosis and necroptosis. Clin. Transl. Oncol. 2015, 17, 121–132. 

52. Fecteau, J.-F.; Bharati, I.; O′Hayre, M.; Handel, T.M.; Kipps, T.J.; Messmer, D. Sorafenib-Induced apoptosis 

of chronic lymphocytic leukemia cells is associated with downregulation of RAF and myeloid cell leukemia 

sequence 1 (Mcl-1). Mol. Med. 2012, 18, 1. 

53. Kharaziha, P.; Chioureas, D.; Baltatzis, G.; Fonseca, P.; Rodriguez, P.; Gogvadze, V.; Lennartsson, L.; 

Björklund, A.-C.; Zhivotovsky, B.; Grandér, D.; et al. Sorafenib-Induced defective autophagy promotes cell 

death by necroptosis. Oncotarget 2015, 6, 37066–37082. 

54. Katz, S.I.; Zhou, L.; Chao, G.; Smith, C.D.; Ferrara, T.; Wang, W.; Dicker, D.T.; El-Deiry, W.S. Sorafenib 

inhibits ERK1/2 and MCL-1(L) phosphorylation levels resulting in caspase-Independent cell death in 

malignant pleural mesothelioma. Cancer Biol. Ther. 2009, 8, 2406–2416. 

55. Panka, D.J.; Wang, W.; Atkins, M.B.; Mier, J.W. The Raf Inhibitor BAY 43-9006 (Sorafenib) Induces Caspase-

Independent Apoptosis in Melanoma Cells. Cancer Res. 2006, 66, 1611–1619. 

56. Louandre, C.; Marcq, I.; Bouhlal, H.; Lachaier, E.; Godin, C.; Saidak, Z.; François, C.; Chatelain, D.; 

Debuysscher, V.; Barbare, J.-C.; et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by 

sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 2015, 356, 971–977. 

57. Suliman, H.B.; Piantadosi, C.A. Mitochondrial Quality Control as a Therapeutic Target. Pharmacol. Rev. 

2015, 68, 20–48. 

58. Pagliarini, V.; Wirawan, E.; Romagnoli, A.; Ciccosanti, F.; Lisi, G.; Lippens, S.; Cecconi, F.; Fimia, G.M.; 

Vandenabeele, P.; Corazzari, M.; et al. Proteolysis of Ambra1 during apoptosis has a role in the inhibition 

of the autophagic pro-Survival response. Cell Death Differ. 2012, 19, 1495–1504. 

59. Mariño, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-Consumption: The interplay of autophagy 

and apoptosis. Nat. Rev. Mol. Cell Biol. 2014, 15, 81–94. 

60. Chen, Y.; Li, X.; Guo, L.; Wu, X.; He, C.; Zhang, S.; Xiao, Y.; Yang, Y.; Hao, D. Combining radiation with 

autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol. 

Med. Rep. 2015, 12, 1645–1652. 

61. Liu, X.; Sun, K.; Wang, H.; Dai, Y. Inhibition of Autophagy by Chloroquine Enhances the Antitumor 

Efficacy of Sorafenib in Glioblastoma. Cell. Mol. Neurobiol. 2016, 36, 1197–1208. 

62. Peng, Y.-F.; Shi, Y.-H.; Ding, Z.-B.; Ke, A.-W.; Gu, C.-Y.; Hui, B.; Zhou, J.; Qiu, S.-J.; Dai, Z.; Fan, J. 

Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance 

and colonization of HCC cells. Autophagy 2013, 9, 2056–2068. 



Cells 2020, 9, 640 18 of 18 

 

63. Shimizu, S.; Takehara, T.; Hikita, H.; Kodama, T.; Tsunematsu, H.; Miyagi, T.; Hosui, A.; Ishida, H.; 

Tatsumi, T.; Kanto, T.; et al. Inhibition of autophagy potentiates the antitumor effect of the multikinase 

inhibitor sorafenib in hepatocellular carcinoma. Int. J. Cancer 2012, 131, 548–557. 

64. Fan, L.; Liu, C.; Gao, A.; Zhou, Y.; Li, J. Berberine combined with 2-Deoxy-D-Glucose synergistically 

enhances cancer cell proliferation inhibition via energy depletion and unfolded protein response 

disruption. Biochim. Biophys. Acta 2013, 1830, 5175–5183. 

65. Dwarakanath, B.S.; Singh, D.; Banerji, A.K.; Sarin, R.; Venkataramana, N.K.; Jalali, R.; Vishwanath, P.N.; 

Mohanti, B.K.; Tripathi, R.P.; Kalia, V.K.; et al. Clinical studies for improving radiotherapy with 2-Deoxy-

D-Glucose: Present status and future prospects. J. Cancer Res. Ther. 2009, 5 (Suppl 1), S21–S26. 

66. Farooque, A.; Afrin, F.; Adhikari, J.S.; Dwarakanath, B.S. Protection of normal cells and tissues during 

radio- and chemosensitization of tumors by 2-Deoxy-D-Glucose. J. Cancer Res. Ther. 2009, 5 (Suppl 1), S32–

S35. 

67. Sottnik, J.L.; Lori, J.C.; Rose, B.J.; Thamm, D.H. Glycolysis inhibition by 2-Deoxy-D-Glucose reverts the 

metastatic phenotype in vitro and in vivo. Clin. Exp. Metastasis 2011, 28, 865–875. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 



Supplementary S1. ROS production.

Cells were untreated or exposed to STV, SOR and SOR+STV (2h) and ROS production was

evaluated by flow cytometric analysis of CM-H2-DCFDA-stained cell. Hydrogen peroxide

(H2O2; 50 mM) was used as positive control (Histograms represent mean±SD; n = 3)

*p<0.0001 compared to control cells. # p<0.0001 compared to sorafenib.



CHL-1 SK Mel 28

Supplementary S2. Glycolysis blockade enhances sorafenib cell toxicity.

Cell viability was evaluated in CHL-1 and SK Mel 28 cells under STV, SOR or SOR+STV

exposure (6h), presence or absence of 2-deoxi-glucose (2-DG, 10mM), by flow cytometry.

(Histograms represent mean±SD; n = 3) *p<0.0001 high glucose compared to 2-DG.



Supplementary S3. Autophagy blockade enhances sorafenib cell toxicity.

(A) Densitometric analysis of LC3-II/LC3-I of western blot reported in figure 5A (* p<0,05). (B)

Autophagy was evaluated by western blotting analysis, by measuring LC3 conversion and

p62 degradation in CHL-1 and SK Mel 28 cells exposed to EBSS (STV), SOR [10 M] or

SOR+STV, in presence or absence of the autophagic inhibitor Bafilomycin (BAF [5nM]).

Tubulin was used as loading control (Images are representative of three independent

experiments).

A
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Supplementary S4. Autophagic flux evaluation.

Representative images of autophagic flux evaluation in CHL-1 (A) and SK Mel 28 (B) cells

transduced with GFP-mCherry-LC3 vector and analyzed by confocal microscopy after 6h

exposure to EBSS (STV), the autophagic inhibitor chloroquine (25 M CQ), SOR (10 M) or

SOR+STV.



12h 12h

Supplementary S5. Cell death induction.

Cells were exposed 12h to EBSS (STV), Sorafenib (SOR) alone or in combination, in

presence or absence of Chloroquine (CQ), and apoptotic cell death was evaluated by flow

cytometric analysis of Annexin V/PI stained cells. (Histograms represent mean±SD; n = 3)



Supplementary S6. Autophagy independent cell death stimulated by combine sorafenib and

caloric restriction, in vivo.

(A) Mice were weighted every day to assess the effects of fasting and sorafenib treatment on body weight.

(B) Representative immunoblots of LC3 conversion and p62 degradation analyzed by western blotting in

tumors samples. Animals marked in red presented signals of tumor necrosis. Tubulin was used as loading

control. Groups: CTR (ad libitum diet + PBS/6%DMSO oral gavage); IF (24h fasted/24h ad libitum diet +

PBS/6%DMSO oral gavage); SOR (ad libitum diet + SOR (40 mg/Kg in PBS/6%DMSO) oral gavage);

SOR+STV SOR (24h fasted/24h ad libitum diet + SOR (40 mg/Kg in PBS/6%DMSO) oral gavage). (D)

The ratio of tumor volume/body weight of mice, relative to the last day (39) of experiment, was calculated

and reported (ns = not significant).
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