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Abstract 

 

Background: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central 

nervous system (CNS). It is a multifactorial disease, in fact both environmental and genetic factors 

contribute to the etiology of the disease. During my PhD program, I focused my research on genetic 

factors which could contribute to increase the MS susceptibility risk in the Italian population. In the 

last few years, international studies analyzing large datasets have identified 200 loci involved in the 

susceptibility of the disease in addition to the known HLA region but very few fine mapping analyses 

have been conducted to identify the primary causal variant or gene. This discovery was mainly due 

to the contribution of three international studies in 2011 (IMSGC, Nature, 2011), 2013 (IMSGC, 

Nature Genetics 2013), and 2017 (IMSGC, 2017) in which our laboratory has took part with 2633 

MS patients and 3164 healthy controls (HC). Thanks to this collaboration, we used data derived from 

the first two studies (IMSGC, Nature, 2011) (IMSGC, Nature Genetics 2013), to perform a genome-

wide association analysis, in order to identify genetic markers of susceptibility to MS specific for our 

population.  

Aims: The general aim of our studies was to identify and functionally characterize sequence 

variations associated to the risk to develop MS in the Italian continental population. To this end we 

performed two different parallel analyses: 

1) a fine mapping analysis of already known associated MS loci in order to find the primary 

associated variant or gene; 

2) a burden test analysis on rare and low frequency variants on already known MS associated 

loci and genes. 

Results: From these analysis, we identified the strongest non-HLA signal in the Italian population 

maps in the Tumor Necrosis Factor (ligand) superfamily member 14 (TNFSF14) gene encoding for 

LIGHT, a transmembrane glycoprotein expressed on various immune cells and involved in dendritic 

cells (DC) maturation. We demonstrated through a fine-mapping approach that an intronic variant, 

rs1077667, is the primarily associated one. Cis-eQTL data from different databases showed that 

carriers of MS risk allele have a lower TNFSF14 RNA expression in EBV-transformed 

lymphoblastoid cell lines (Geuvadis, Bioportal, Gtex) and in peripheral blood mononuclear cells 

(PBMCs) (Gtex). These data are consistent with the imbalance against the risk allele observed in 

heterozygous individuals (p<0.0001, RNAseq on 97 lymphoblastoid cells, Geuvadis). Consistently, 

in PBMC of 84 Italian MS and 80 healthy controls (HC), individuals with MS risk genotype produced 

lower levels of TNFSF14 transcript (p=1.1e-4) and MS patients were the minor producers (p=0.031). 

Analysis on peripheral blood of HC (N=37) with flow cytometry showed that in myeloid DC 
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(CD11c+) the homozygous individuals for the risk allele had a higher percentage of LIGHT positive 

cells (p-value=0.04). Subsequently, we focused our attention on TNFRSF14 gene which encodes for 

HVEM (LIGHT receptor) and we tried to define the primary associated variant in this region as 

previously done for TNFSF14 gene. We found a cluster of variants in high linkage disequilibrium 

(LD) with the most associated variant (rs3748817) in the international cohort but we were not able to 

distinguish among them, which is the primary associated variant because of the high LD in this region. 

So, we tried to purse various approaches in order to prioritize these variants and the most consistent 

data were observed for eQTL analysis. In fact, we found in different databases an eQTL effect for the 

associated variant rs3748817 and its proxy rs2258734 (r2=1), a variant that maps in the promoter of 

TNFRSF14 gene. In details the risk alleles of both these variants significantly correlated with a 

decrease expression of TNFRSF14 in different data sets, especially in brain-cerebellum and in EBV-

transformed lymphocytes from Gtex and Geuvadis data sets and in whole blood from Blood eQTL 

browser. No association was found for the expression of surface HVEM protein and the risk genotype 

of rs3748817 by flow cytometry analysis in whole blood in different cell types. Parallel to this 

analysis, we explored the interactome of TNFSF14 and TNFRSF14 pathway, at the purpose to 

conduct an analysis for rare variants. We selected 31 genes for NGS analysis resulting from those 

genes which showed an interaction with TNFSF14 or TNFRSF14 genes experimentally valuated or 

predicted from online tools and a SNP with an already reported association in the international 

MSchip project (IMSGC, 2017). We found a significant burden for three genes: EIF3E for rare 

regulative variants, RUVBL2 and CDC37 for rare missense variants. We thus conducted gene-gene 

interaction analysis for the two genes TNFSF14 and TNFRSF14, modelling multiple loci jointly, 

searching for non-additive effects beyond the single SNP effects. We adopted a “candidate-

interactions” strategy, leveraging information from freely available protein-protein interaction (PPI) 

and pathways resources. Potentially interacting SNPs were hence prioritized in order to narrow down 

the search space, extracting candidate interacting pairs from three sources: PPI resources (STRING, 

Reactome, GPS-PROT, PINA), 3 KEGG pathways, HLA class I and class II genes (22 genes) for a 

total of 561 interactions among TNFSF14 and TNFRSF14 and 370 genes. Epistatic interactions were 

tested in four cohorts but no significant interaction after Bonferroni correction (p<10-4) was found 

for pairs of SNPs in common among the 4 data sets. Only for 71 pairs of SNPs has been found a 

significant interaction after Bonferroni correction (p<10-4) but in only one data-set. These results 

belong to the interaction of TNFSF14 with 5 genes: C3, PLCG2, PTPN11 and 2 HLA genes. Finally, 

we calculated the weight genetic risk score (wGRS) on 13 genes belonging to TNFSF14 pathways in 

two different data sets and we found a significant wGRS for both, confirming that variants in this 

pathway have a role in MS susceptibility. The area under the ROC curve was however very small 
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(<0.6), indicating that these variants account only for a small fraction of total MS genetic 

susceptibility. 

For the second aim we tested the effect of rare (MAF < 1%) and at low frequency (MAF 1-5%) 

variants as burden test comparing the total numbers of alternative and reference alleles in patients and 

controls in loci already known to be associated to MS. During our Discovery phase, we sequenced 

by Next Generation Sequencing (NGS) approach, 100 genes in 600 MS patients and 408 healthy 

controls grouped in pools of 12 individuals. We performed Burden Test analysis using specific 

statistical algorithms obtaining a list of 17 genes showing a significant difference of the number of 

variants among MS patients and controls. In order to replicate these results, we sequenced the entire 

coding region of these genes by NGS in an independent sample consisting of 504 MS patients and 

504 healthy controls, analysed in pools of 12 individuals. In the Replication phase we found 3 genes 

(MYC, TUBD1 and EFCAB13) that showed a significant burden in at least one of the 6 filters for 

coding variants with at least one of the statistic programs. The meta-analysis between the two studies 

confirmed a significant burden with one of the statistical test for MYC and TUBD1 genes for filters 

involving coding variants, NPEPPS for the filter involving regulatory variants and for EFCAB13 for 

the “disruptive” filter (stop-gain, stop-loss, splicing variants). In particular EFCAB13 seemed to show 

the most promising result. It was the only gene resulted to have a statistically significant p-value with 

2 statistic test (C-ALPHA and WSS) both in discovery and replication study and in meta-analysis 

among the two data sets. Among the two studies, it is the gene most enriched in disruptive variants 

(totaling 8 between discovery and replication). Six of these variants were observed both in discovery 

and in replication subset, and among them, 4 variants (3 stop-gained and 1 splice acceptor) showed a 

concordant trend for minor allele count between patients and controls. 

Conclusions: 

In conclusion, thanks to our analysis, we identified an intronic variant (rs1077667) in the TNFSF14 

gene (encoding for LIGHT protein) as the primary associated one in the Italian population and we 

were able to define its functional role in the regulation of gene transcription and protein production.  

In TNFRSF14 gene region but we were not able to identify the primary associated variant due to high 

linkage disequilibrium (LD). Despite this, we observed a cis-eQTL effect for different variants in this 

region on TNFRSF14 gene expression. So, based on these evidences, we proposed for these variants 

a possible role in gene regulation (especially for a SNP in the gene promoter, in high LD with the 

associated variant in the international studies). Although we did not confirm this effect on protein 

production in a specific cell population, further analysis will be required to confirm our hypothesis 

and to try to better investigate the regulative role for the most interesting variants inside the region of 
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TNFRSF14 gene region. Gene-gene interaction analysis, burden test and weight genetic risk score on 

TNFSF14-TNFRSF14 pathway seemed to confirm our hypothesis that also genes which interact with 

TNFSF14, can also play a role in MS pathogenesis. Further analysis will be required to better 

investigate the causative variant in these genes and to study in deeper the role of this pathway in MS 

pathogenesis.  

Parallel to these analysis, we conducted a research of rare functional variants in MS associated loci 

in order to assess if the genes in these regions showed an imbalance of rare variant frequencies 

(burden) between MS patients and healthy controls. EFCAB13 was the gene that seemed to show the 

most promising result especially for disruptive variants (stop-gain, stop-loss and slicing). EFCAB13 

encodes for EF-hand calcium-binding domain-containing protein 13 which is a poorly characterized 

calcium binding adaptor protein.  Further analysis will be required in order to define its functional 

role and to better investigate its function in MS pathogenesis.  
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Riassunto 

 

Introduzione: La sclerosi multipla (MS) è una malattia infiammatoria cronica demielinizzante del 

sistema nervoso centrale. È una malattia multifattoriale, infatti sia fattori genetici che ambientali 

contribuiscono alla sua eziologia. Durante il mio programma di dottorato in scienze e biotecnologie 

mediche ho condotto una ricerca incentrata su possibili fattori genetici che potessero essere coinvolti 

nell’eziologia della malattia. Negli ultimi anni grazie a studi internazionali è stato possibile 

identificare 200 loci coinvolti nella suscettibilità alla malattia oltre alla nota regione del complesso 

maggiore di istocompatibilità (MHC). Nonostante questi progressi, pochi studi di mappatura fine 

(“fine-mapping”) sono stati condotti al fine di identificare il gene o la variante causale. Queste 

scoperte sono state rese possibili grazie al contributo di tre studi internazionali nei quali il nostro 

laboratorio ha preso parte con un totale di 2633 pazienti e 3164 controlli sani rispettivamente nel 2011 

(IMSGC, Nature, 2011), 2013 (IMSGC, Nature Genetics 2013), and 2017 (IMSGC, 2017). Grazie a 

questa collaborazione, abbiamo utilizzato i dati derivati dai primi due studi (IMSGC, Nature, 2011) 

(IMSGC, Nature Genetics 2013), per eseguire un'analisi di associazione su tutto il genoma al fine di 

identificare i marcatori genetici di suscettibilità alla MS specifici per la nostra popolazione. 

Scopo del lavoro: L'obiettivo generale del nostro studio è stato quello di identificare e caratterizzare 

funzionalmente le variazioni di sequenza (polimorfismi a singolo nucleotide, SNP) associate al 

rischio di sviluppare la sclerosi multipla (SM) nella popolazione continentale italiana. A tal fine 

abbiamo eseguito due diverse analisi parallele: 

1) un'analisi di mappatura fine di loci MS già noti, al fine di identificare la variante o il gene 

primariamente associati; 

2) un'analisi del carico (“burden”) delle varianti rare e a bassa frequenza su loci e geni già noti per la 

loro associazione con la MS. 

Risultati: Le nostre analisi ci hanno portato ad identificare il segnale di associazione più forte nella 

popolazione italiana nel gene “Tumor Necrosis Factor (ligand) superfamily member 14 (TNFSF14)” 

che codifica per LIGHT, una glicoproteina transmembrana espressa su varie cellule del sistema 

immunitario e coinvolta nel processo di maturazione delle cellule dendritiche (CD). Abbiamo 

dimostrato tramite un approccio "fine-mapping” che la variante primariamente associate nel gene è 

la variante intronica rs1077667. Dati di cis-eQTL derivanti da differenti database hanno mostrato 

come i portatori dell’allele di rischio (C) abbiano un’espressione minore del trascritto del gene 

TNFSF14 nelle linee cellulari linfoblastoidi trasformate con EBV (dati da Geuvadis, Bioportal, Gtex) 
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e nelle cellule mononucleate del sangue periferico (PBMCs) (dati da Gtex). Questi dati sono inoltre 

in linea con dati di letteratura derivanti dal sequenziamento dell’RNA con metodiche di 

sequenziamento di nuova generazione (NGS) che riportano negli individui eterozigoti un’espressione 

differenziale del gene a sfavore dell’allele di rischio (p<0.0001, dati di RNAseq su 97 linee cellulari 

linfoblastoidi da Geuvadis). In maniera coerente abbiamo dimostrato che nei PBMC di 84 pazienti 

SM italiani e 80 controlli sani, gli individui con il genotipo di rischio per MS producevano livelli 

minori del trascritto del gene TNFSF14 e che i pazienti erano in assoluto i minori produttori. Analisi 

di citofluorimetria condotte su sangue periferico di 37 controlli sani hanno evidenziato che nella 

popolazione delle cellule dendritiche mieloidi (CD11c+), gli individui omozigoti per l’allele di 

rischio presentavano una percentuale maggiore di cellule LIGHT positive.  

Successivamente a questi risultati, abbiamo focalizzato la nostra attenzione sul gene TNFRSF14 che 

codifica per HVEM (recettore di LIGHT) con l’intento di identificare la variante primariamente 

associata in questa regione come fatto in precedenza per TNFSF14. Le nostre analisi hanno 

identificato un cluster di varianti in alto linkage disequilibrium (LD) con la variante più associata 

(rs3748817) nella coorte internazionale ma non siamo stati in grado di discriminare quale tra queste 

sia la variante primariamente associata a causa dell’elevato LD di questa regione. Abbiamo tentato 

diversi approcci al fine di prioritizzare questo gruppo di varianti e i risultati più promettenti si sono 

rivelati essere quelli provenienti dalle analisi di cis-eQTL. Infatti, abbiamo identificato in differenti 

database un effetto cis-eQTL per la variante più associata rs3748817 e per il suo proxy rs2258734 

(r2=1), una variante che mappa nel promotore del gene TNFRSF14. In particolare, abbiamo 

riscontrato che gli alleli di rischio per entrambe le varianti correlavano significativamente con una 

ridotta espressione del gene TNFRSF14 in differenti data set, specialmente nel cervelletto e in linee 

cellulari linfoblastoidi trasformate con EBV (come riportato nei database Gtex e Geuvadis) e nel 

sangue periferico (da Blood eQTL browser). Successivamente abbiamo eseguito delle analisi in 

citofluorimetria per la proteina di superficie HVEM in differenti tipi cellulari presenti nel sangue 

periferico di controlli sani ma non è stata riscontrata un’associazione tra i livelli di espressione della 

proteina e il genotipo di rischio della variante associata rs3748817. Parallelamente a quanto riportato 

finora, ci siamo inoltre focalizzati sul pathway di TNFSF14 e TNFRSF14, al fine di condurre 

un’analisi per le varianti rare. Abbiamo selezionato a tal fine 31 geni che sono stati sequenziati con 

metodica NGS. La selezione di questi geni è stato il risultato di una ricerca condotta in letteratura e 

tramite tool bioinformatici di interazioni geniche validate sperimentalmente o predette e aventi una 

variante associata ad SM come riportato nella casistica internazionale derivante dal progetto MSchip 

(IMSGC, 2017). Abbiamo trovato un carico significativo (burden) per 3 geni: EIF3E per varianti rare 

regolatorie, RUVBL2 e CDC37 per varianti rare missenso.  



7 
 

Successivamente abbiamo condotto un’analisi di interazione genica per i due geni TNFSF14 e 

TNFRSF14 e i loro possibili interattori sfruttando le informazioni disponibili dalla letteratura 

derivanti da analisi di interazione proteina-proteina (PPI) e da analisi di pathway. Gli SNP in geni 

che potenzialmente potevano interagire sono stati quindi prioritizzati estrapolando coppie geniche 

derivanti da tre fonti: PPI (STRING, Reactome, GPS-PROT, PINA), 3 percorsi KEGG, geni MHC 

di classe I e classe II (22 geni) per un totale di 561 interazioni tra TNFSF14 e TNFRSF14 e 370 geni. 

Le interazioni epistatiche sono state testate in 4 coorti ma non è stata trovata alcuna interazione dopo 

correzione di Bonferroni (p<10-4) per coppie di SNP in comune tra i 4 data set. Soltanto per 71 coppie 

di SNP è stata trovata un’interazione significativa dopo correzione di Bonferroni ma solo in un data-

set. Questi risultati appartengono all’interazione del gene TNFSF14 con 5 geni: C3, PLCG2, PTPN11 

e 2 geni MHC. Infine, abbiamo calcolato uno score genetico di rischio (wGRS) su 13 geni 

appartenenti al pathway di TNFSF14 in due diversi data set e abbiamo trovato un wGRS significativo 

per entrambi, confermando come anche queste varianti in questo pathway abiano un ruolo nella 

suscettibilità alla MS. Tuttavia, l’aria sottesa alla curva ROC mostrava un valore piuttosto basso 

(<0.6), e ciò è indice del fatto che queste varianti contribuiscono solo ad una piccola frazione della 

suscettibilità genetica totale alla SM. 

Per il secondo obiettivo del nostro studio, abbiamo testato l’effetto delle varianti rare e a basa 

frequenza (frequenza allele minore, MAF < 1%) come “burden test” comparando il numero totale di 

alleli alternativi e di riferimento in pazienti e controlli in loci già noti per essere associati alla SM. 

Durante una prima fase preliminare abbiamo sequenziato tramite approccio NGS, 100 geni in 600 

pazienti e 408 controlli sani raggruppati in pool di 12 individui. Abbiamo eseguito un’analisi del 

carico totale delle varianti (“burden test”) usando specifici algoritmi statistici, ottenendo in tal modo 

una lisa di 17 geni che mostravano una differenza significativa nel numero delle varianti tra pazienti 

e controlli. Al fine di replicare questi risultati, abbiamo sequenziato l’intera regione codificante di 

questi geni in NGS in una casistica indipendente di 504 pazienti e 504 controlli sani, analizzati in 

pool di 12 individui. Nella fase di replica abbiamo trovato 3 geni (MYC, TUBD1 and EFCAB13) che 

mostravano un burden significativo in almeno uno dei sei filtri adottati per le varianti nella porzione 

codificante del gene, con almeno uno dei programmi statistici. La meta-analisi tra i due studi ha 

confermato un burden significativo con almeno uno dei test statistici per i geni MYC e TUBD1 per i 

filtri che selezionano le varianti codificanti, NPEPPS per il filtro che seleziona le varianti con 

funzione regolatoria e per EFCAB13 per il filtro che seleziona quelle varianti altamente dannose quali 

varianti che portano alla formazione di un codone di stop e varianti che alterano lo splicing. In 

particolare, EFCAB13 sembra mostrare il risultato più promettente. Tra i due studi è il gene più 

arricchito in queste varianti in totale 8 tra fase preliminare e di replica. Sei di queste varianti erano 
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condivise nei due data set e tra loro quattro (3 varianti di stop ed una di splicing) mostravano un trend 

concordante per la conta dell’allele minore tra pazienti e controlli.  

Conclusioni: In conclusione, grazie alla nostra analisi, abbiamo identificato una variante intronica 

(rs1077667) nel gene TNFSF14 (codificante per la proteina LIGHT) come primariamente associata 

nella popolazione italiana e siamo stati in grado di definire il suo ruolo funzionale nella regolazione 

della trascrizione genica e traduzione proteica. Nella regione del gene TNFRSF14 non siamo stati in 

grado di identificare la variante primariamente associata a causa dell’alto linkage disequilibrium della 

regione. Nonostante ciò abbiamo osservato un effetto cis-eQTL per differenti varianti in questa 

regione sull’espressione del gene. Così, basandoci su queste evidenze, proponiamo per queste varianti 

un possibile ruolo nella regolazione del gene TNFRSF14 (specialmente per uno SNP nella regione 

del promotore, in alto LD con la variante associata negli studi internazionali). Benché non 

confermiamo questo effetto sulla produzione proteica in una specifica popolazione cellulare, ulteriori 

analisi saranno eseguite per confermare la nostra ipotesi e provare a investigare nel dettaglio il ruolo 

regolatorio per le varianti più interessanti nella regione del gene TNFRSF14. Analisi di interazione 

genica, burden test e score di rischio genetico sul pathway di TNFSF14-TNFRSF14 sembrano 

confermare la nostra ipotesi che anche geni che interagiscono con TNFSF14 possono anche rivestire 

un ruolo nella patogenesi della sclerosi multipla. Ulteriori analisi saranno necessarie per identificare 

la variante causativa in questi geni e studiare nel dettaglio il ruolo di questo pathway nella patogenesi 

della malattia. 

Parallelamente a queste analisi, abbiamo condotto una ricerca di varianti rare funzionali in loci già 

associati ad SM al fine di determinare se questi geni in queste regioni possano mostrare un carico di 

varianti rare (burden) differenziale tra pazienti e controlli sani. EFCAB13 è risultato essere il gene 

più promettente, in particolare per le varianti altamente dannose che portano alla formazione di codoni 

di stop e/o di alterazione dello splicing. EFCAB13 codifica per la proteina 13 contenente un dominio 

helix-loop-helix e un dominio legante il calcio la cui funzione è stata poco studiata. 

Ulteriori analisi saranno necessarie al fine di identificare il ruolo funzionale della proteina sopra citata 

e in particolare il suo ruolo nella patogenesi della sclerosi multipla. 
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1. Introduction 

1.1 Multiple sclerosis  

 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous 

system (CNS), that leads to changes of nerve conduction due to damage resident cells, primarily 

oligodendrocytes and neurons (McFarlin and McFarland, 1982a, b). The progressive loss of myelin 

in different areas of the central nervous system slows the transmission of the nervous signals with the 

consequent reduction or loss of essential functions. These areas have different size and are called 

plaques, which can evolve from an initial inflammatory phase to a chronic phase in which they 

become like scars (“sclerosis”) and this leads to a significant physical and cognitive disability.  

The plaques are typical inflammatory lesions caused by the attack of the autoimmune system, by the 

activated autoreactive T lymphocytes (especially CD8+) towards the myelin sheath.  

T lymphocytes can drive the inflammatory event with production of proinflammatory cytokines 

(Interferon gamma (INFγ), Tumor necrosis factor alpha (TNFα) and Interleukin 2 (IL-2)) and recall 

of further mononuclear cells that cross the blood-brain barrier such as B lymphocytes, macrophages, 

which phagocytize myelin fragments, and polymorphonucleates, which release cytotoxic and 

cytolytic substances.  

The pathogenetic model of MS currently proposed, schematically represented in figure 1, sees the 

activation of pro-inflammatory T lymphocytes in the periphery. The activation is caused by the 

recognition of T cells receptor (TCR), antigens presented on the major histocompatibility complex of 

class II (Major histocompatibility complex, MHC-II), from the antigen presenting cells (Antigen 

Presentig Cell, APC). These T lymphocytes migrate, adhere and penetrate the blood-brain barrier 

through molecular adhesion mechanisms and with the intervention of proteases and cytokines. 

Within the central nervous system, the T lymphocytes are reactivated by MHC-II on the APC and 

begin to produce pro-inflammatory cytokines, which promote the inflammatory state in the CNS with 

consequent activation of effector molecules such as macrophages, B lymphocytes and other T 

lymphocytes. Macrophages and T lymphocytes attack the myelin sheath through cytotoxic mediators, 

especially TNF-α, radical species of oxygen (O2) and nitric oxide (NO). B lymphocytes differentiate 

into plasma cells that secrete demyelinating antibodies. The latter activate other macrophages and the 

cascade of the complement that cause myelin damage (McFarland and Martin, 2007).  
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Figure 1: Pathogenetic mechanism of MS 

 

The plaques, generated by this autoimmune process, are called multifocal both in the spatial sense, 

as they can appear in different areas of the central nervous system, that in a temporal sense because 

some plaques regress completely, but in general their number increases over time. These regions of 

inflammation can be detected by neuroimaging techniques, such as magnetic resonance imaging 

(MRI) (as shown in figure 2). The Revised McDonald Criteria, published in 2017 by the International 

Panel on the Diagnosis of Multiple Sclerosis, include specific guidelines for using MRI and 

cerebrospinal fluid analysis to speed the diagnostic process. The MRI can be used to look for a second 

area of damage in a person who has experienced only one attack (also called a relapse or an 

exacerbation) of MS-like symptoms — referred to as clinically-isolated syndrome (CIS). The MRI 

can also be used to confirm that damage has occurred at two different points in time. In some 

circumstances, the presence of oligoclonal bands in a person's cerebrospinal fluid analysis can be 

used instead of dissemination in time to confirm the MS diagnosis. 

 

 

Figure 2: MRI imagine of an individual with MS. The typical plaques are shown with the arrow (a) and inside the square 

(b-c). 
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The clinical events of the disease can vary depending on the affected areas (brain and spinal cord) 

and the symptoms can affect different functions of the organism, regulated by the central nervous 

system; such as movement and coordination with a general sense of fatigue, sensitivity, sight, balance, 

speech, sphincter functions and sometimes even cognitive functions.  

According to the World Health Organization (WHO) classification, the burden of the disease on the 

quality of life of the MS patient can be described in terms of; 

- "impairment" (set of neurological deficits); 

- "handicap" (limitations in social and work activities); 

- "disability" (limitations in daily life activities). 

 The degree of severity of the disease is evaluated through a score from 0 to 10 defined by the clinical 

scale Expanded Disability Status Scale (EDSS), proposed by the American neurologist Kurtzke in 

1983 (Kurtzke, 1983), and shown in figure 3. 

 

Figure 3: EDSS scale 

 

In 1996, the International Advisory Committee on Clinical Trials of MS originally identified four 

disease courses. The original four disease types were: Relapsing-Remitting MS, Primary-Progressive 

MS, Secondary-Progressive MS, Progressive-Relapsing MS. In 2013, the committee changed this 

classification, including the clinically isolated syndrome (CIS), and eliminating the progressive-

relapsing MS (PRMS) (Lublin et al., 2014). In addition, modifiers have been added to promote more 

effective conversations about disease activity and progression and shared decision-making about 

treatment options. The modifiers, such as "active" and "not active," incorporate information from 

MRIs, relapses and degree of disability. CIS is now recognized as the first clinical presentation of a 

disease that shows characteristics of inflammatory demyelination that could be MS but, has yet to 

fulfill criteria of dissemination in time. Sometimes, people who have a CIS will not go on to develop 
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MS. An MRI will better determine the likelihood that someone who has a CIS will develop MS. If 

lesions on a brain MRI are seen with a CIS, there is a higher chance the patient will develop MS. 

About the 85% of patients have a relapsing-remitting form (RRMS) which is characterized by clearly 

defined attacks of new or increasing neurologic symptoms. These attacks – also called relapses or 

exacerbations – are followed by periods of partial or complete recovery (remissions). During 

remissions, all symptoms may disappear, or some symptoms may continue and become permanent 

within the first two decades of the onset. However, about the half of RRMS cases develop a secondary 

progressive form (SPMS) in which disability gradually increases over time, with or without evidence 

of disease activity (relapses or changes on MRI). Indeed, the remaining 15% is affected by primary 

progressive multiple sclerosis (PPMS), associated to a fast progression since the beginning (Kingwell 

et al., 2015) (Figure 4).  

 

Figure 4: Types of Multiple Sclerosis 
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1.2 Epidemiology 

 

MS has a variable onset, between 15 and 50 years, even if it occurs mainly among young adults, 

between 30 and 40 years, and mainly in the female sex, in a ratio of 1 to 2, compared to men. MS is 

fairly uncommon in children and teenagers, with prevalence rates approximately in the range of 2.2-

5% for those under the age of 16, and MS prevalence rates of pre-pubescent children are as low as 

0.1-0.7% (Huppke et al., 2014). 

The WHO estimates that there are over 2.5 million affected people in the world. In the United States, 

the disease affects about 400,000 people and in Italy it is estimated that there are about 50,000 affected 

individuals. The incidence and prevalence of MS differ depending on the region of the world with 

most affected patients distant from the equator. The disease is very frequent among the Caucasian 

populations (especially those living in the north-west of Europe), in North America, in the south-east 

of Australia and in New Zealand, South-Africa and South America, while there is a low incidence in 

Asia and in the Caribbean regions. Figure 5 shows the distribution of different MS prevalence in 

countries around the world.  

 

 

Figure 5: Prevalence of Multiple Sclerosis in the world (per 100,000 individuals). 

 

In Europe, the incidence seems to follow a north-south gradient, with a higher prevalence in the 

countries of the north, especially in Scandinavia, and low in the countries of the south, except for 
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Sardinia which shows a prevalence twice higher than the rest of the Italian population, comparable to 

the prevalence of North European countries. The prevalence of MS in the Italian population shows 

different rates depending on the regions in particular, in the Central and the South of Italy there are 

53 cases per 100,000 inhabitants, while in the North there are 81 cases per 100,000 inhabitants (Totaro 

et al., 2000). The prevalence in Sardinia is higher than that observed in mainland, to about 150 cases 

per 100,000 inhabitants (Pugliatti et al., 2001).  

 

1.3 Therapy 

 

More than a dozen disease-modifying medications have been approved by the U.S. Food and Drug 

Administration (FDA) to treat relapsing forms of MS. These medications reduce the frequency and 

severity of relapses (also called attacks or exacerbations), reduce the accumulation of lesions in the 

brain and spinal cord as seen on magnetic resonance imaging (MRI) and may slow the accumulation 

of disability. Severe exacerbations are most commonly treated with high-dose corticosteroids to 

reduce the inflammation. Among the injectable drugs, three preparations of IFNβ were for first 

approved in 1993. Their exact mechanism remains unknown, but the overall effect of this cytokine is 

an anti-inflammatory, regulatory response. Glatiramer acetate, another injectable that is composed of 

four amino acids, also produces an anti-inflammatory effect. In clinical trials, these injectable drugs 

consistently reduced the annual relapse rate (aRR) in patients with RRMS and modestly reduced the 

time to an increase in disability assessed with the EDSS. Monoclonal antibodies are currently used to 

treat many autoimmune neurological disorders, including MS and neuromyelitis Optica spectrum 

disorders (NMOSDs). The first to be used in MS was natalizumab, a humanized monoclonal antibody 

that binds to α-4 integrin, a component of very late antigen 4 (VLA4), which is present on 

lymphocytes. Natalizumab prevents the interaction between VLA4 and its endothelial ligand vascular 

cell adhesion molecule, thereby preventing lymphocytes from crossing the blood–brain barrier. 

Fingolimod, an analogue of sphingosine 1-phosphate (S1P) that acts as an S1P antagonist, was the 

first oral drug to be approved for the treatment of RRMS. Fingolimod prevents T cells from leaving 

the secondary lymph organs because this move depends on the S1P receptor 1 (S1P1); this effect 

results in a decrease in the number of circulating lymphocytes. Teriflunomide, the second oral drug 

to be approved by the FDA, was approved in September 2012. Teriflunomide is an active metabolite 

of leflunomide that inhibits the proliferation of blasting B and T cells. Fumaric acids have been used 

for decades to treat psoriasis, and in March 2013, the third oral treatment to be approved for the 

treatment of RRMS was the second-generation fumaric acid, dimethyl fumarate. Preclinical studies 

demonstrated that dimethyl fumarate has immunomodulatory and antioxidant properties. The 
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immunomodulatory properties probably relate to the fact that the drug induces a shift in the cytokine 

profile of T helper (TH) cells from pro-inflammatory (T helper 1 (TH1) cells) to anti-inflammatory 

(T helper 2 (TH2) cells). In November 2014, alemtuzumab was launched into the market after its 

FDA approval. Alemtuzumab is a humanized monoclonal antibody against CD52, a receptor that is 

present on lymphocytes, monocytes and other immune and non-immune cells. Daclizumab is a 

humanized monoclonal antibody that is administered subcutaneously once per month. This drug was 

released in May 2016, although safety concerns led to its withdrawal in March 2018. Daclizumab 

modulates IL-2 signalling by binding to the IL-2 receptor subunit-α (also known as CD25). This 

binding seems to induce immune tolerance through the expansion of immunoregulatory CD56 bright 

natural killer cells and the reduction of early T cell activation. Evidence that B cells are involved in 

the activation of pro-inflammatory T cells, secretion of pro-inflammatory cytokines and the 

production of autoantibodies led to the development of another generation of monoclonal antibodies 

that are targeted to these cells. Such antibodies are the CD20-binding antibodies rituximab and 

ocrelizumab, which deplete mature B cell pools. Based on its immunosuppressant properties, the 

cancer drug mitoxantrone was also tested in patients with secondary progressive MS and primary 

progressive MS in a study published in 2002 and was shown to effectively decrease relapse counts 

and disability progression. The EMA and FDA have recently approved ocrelizumab, which will 

become the first drug that is licensed for the treatment of primary progressive MS and the oral drug 

cladribine as therapeutic option for RRMS patients (Tintore et al., 2018). Until now, these drugs do 

not represent a definite resolution in the treatment of MS. In fact, they play a role in modifying and 

slowing the course of the disease, reducing the number of attacks of the most common relapsing-

remitting form of the disease. MS is a highly disabling pathology that mainly affects young adults 

and for this reason, it represents a considerable effort in terms of spending on public health. Finding 

the genetic factors of susceptibility to the disease is crucial to reveal the mechanisms and pathways 

involved in the onset of CNS damage to understand also the fundamentals for the protection of itself. 

These results are necessary to highlight new therapeutic targets and develop new and effective 

therapies. 
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Figure 6: graphical representation of approved drugs for MS across 25 years (image from Treatment of multiple sclerosis 

— success from bench to bedside, Mar Tintore et al., Nat Rev Neurol, 2018). 

 

1.4 Animal models of MS 

 

Since MS is a complex disease, there is no a single animal model that can capture the entire spectrum 

of heterogeneity of human MS. Several researchers have recently raised the question whether these 

animal models could really represent a good model for MS since they do not perfectly reflect all the 

aspects of the human disease. Disease initiation is usually highly artificial in the animal models 

(induced by active immunization with an autoantigen). Also, the time-frame of the clinical symptoms 

onset is different between humans and mice. In humans, physiological processes underlying the 

disease are undetected for years before the onset of clinical manifestations, while symptoms in the 

animal models can be detected within weeks or even days after induction of the disease. Moreover, 

the treatment in these therapy studies started very early during the induced autoimmune disease, 

whereas any therapy for humans is administered in a late phase of the disease. However, over the last 

few years, animal models have been used to study the pathogenic mechanisms of MS. The most 

commonly studied animal models of MS are the experimental autoimmune/allergic encephalomyelitis 

(EAE); viral induced models, mainly Theiler's murine encephalomyelitis virus (TMEV) infection and 

consequential chronic demyelination and toxin-induced models of demyelination, such as the 

cuprizone and the lyso-phosphatidylcholine (lyso-lecithin) models (Procaccini et al., 2015). EAE 

model, which is the most commonly studied, is induced in susceptible mice through immunization 

with self-antigens derived from basic myelin protein with Freund's adjuvant and pertussis toxin to 

potentiate the humoral immune response. The relevant immunogen is derived from self-CNS proteins 

such as myelin basic protein (MBP), proteolipid protein (PLP) or myelin oligodendrocyte 



17 
 

glycoprotein (MOG). Immunization of SJL/J mice with the immunodominant epitope of PLP 

(PLP139–151) induces a relapsing–remitting (RR) disease course (Tuohy et al., 1989), while disease 

induced by the immunodominant MOG35–55 peptide in C57BL6/J mice is of chronic nature. Viral 

infections of the CNS can induce demyelination in mice and the best studied are the picornavirus, 

such as Theiler's murine encephalomyelitis virus (TMEV) and certain strains of the coronavirus, such 

mouse hepatitis virus (MHV). Unlike EAE, the disease is always chronic-progressive in susceptible 

mice and TMEV can induce inflammatory demyelinating disease only in mice (Owens, 2006) and 

not in other different species, such as rodents and primates. On the contrary of EAE model, in TMEV 

infection, axonal damage precedes demyelination (Tsunoda et al., 2003) and the distribution of 

damaged axons observed during the early phase corresponds to regions, where subsequent 

inflammatory demyelination occurs during the chronic phase. This evidence suggests that axonal 

degeneration triggers recruitment of T cells and macrophages into the CNS, leading to subsequent 

loss of myelin. While EAE is the most commonly used model to reflect the autoimmune origin of 

MS, toxic demyelination is more suitable to study the de-and re-myelination processes (Blakemore 

and Franklin, 2008). Two are the most common agents utilized to induce demyelination: cuprizone 

and lysolecithin. In conclusion despite all the limitations, animal model of EAE will continue to play 

a key role as a first-line model system in the development of novel therapeutic approaches for MS, 

especially for shedding light on specific mechanistic questions. 

 

1.5 Etiopathogenesis of the disease: environmental factors 

 

Although multiple sclerosis (MS) is recognized as a disorder involving the immune system, the 

interplay of environmental factors and individual genetic susceptibility seems to influence MS onset 

and clinical expression, as well as therapeutic responsiveness. Multiple human epidemiological and 

animal model studies have evaluated the effect of different environmental factors, such as viral 

infections, vitamin intake, sun exposure, or still dietary and life habits on MS prevalence. 

Previous Epstein-Barr virus infection, especially if this infection occurs in late childhood, and lack 

of vitamin D (VitD) currently appear to be the most robust environmental factors for the risk of MS, 

at least from an epidemiological standpoint. Ultraviolet radiation (UVR) activates VitD production 

but there are also some elements supporting the fact that insufficient UVR exposure during childhood 

may represent a VitD-independent risk factor of MS development, as well as negative effect on the 

clinical and radiological course of MS. Recently, there has been a growing interest in the gut-brain 

axis, a bidirectional neuro-hormonal communication system between the intestinal microbiota and 

the central nervous system (CNS). Indeed, components of the intestinal microbiota may be pro-

https://www.sciencedirect.com/topics/medicine-and-dentistry/multiple-sclerosis
https://www.sciencedirect.com/topics/medicine-and-dentistry/public-health-genomics
https://www.sciencedirect.com/topics/medicine-and-dentistry/epstein-barr-virus-infection
https://www.sciencedirect.com/topics/medicine-and-dentistry/vitamin-d
https://www.sciencedirect.com/topics/medicine-and-dentistry/ultraviolet-radiation
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inflammatory, promote the migration of immune cells into the CNS, and thus be a key parameter for 

the development of autoimmune disorders such as MS. Interestingly most environmental factors 

seem to play a role during childhood. Thus, if childhood is the most fragile period to develop MS 

later in life, preventive measures should be applied early in life. For example, adopting a diet enriched 

in VitD, playing outdoor and avoiding passive smoking would be extremely simple measures 

of primary prevention for public health strategies. However, these hypotheses need to be confirmed 

by prospective evaluations, which are obviously difficult to conduct. In addition, it remains to be 

determined whether and how VitD supplementation in adult life would be useful in alleviating the 

course of MS once this disease has already started. A better knowledge of the influence of various 

environmental stimuli on MS risk and course would certainly allow the development of add-on 

therapies or measures in parallel to the immunotherapies currently used in MS (Pantazou et al., 2015). 

 

1.6 Etiopathogenesis of the disease: genetic factors 

 

1.6.1 The role of common variants in the susceptibility to MS 

 

Multiple sclerosis is a multifactorial disease, in fact both environmental and genetic factors contribute 

to the etiology of the disease. It is known that the rate of recurrence in families is of 20%, the 

concordance in monozygotic twins is of 24-30%, while in dizygotic is only 3-5%, which is 

comparable to that of normal brothers (Hansen et al., 2005; Mumford et al., 1994). The genetic 

susceptibility is mainly due to human HLA II region (Human Leukocyte Antigen), and especially 

with HLA-DRB1*15.01 allele, with an increasing of the risk of three times (Lincoln et al., 2005). 

In the early 2000s, the introduction of chip-based technologies with the capacity to genotype 

simultaneously hundreds of thousands of SNPs allowed the development of a new analytical 

methodology known as genome-wide association studies or GWAS: a hypothesis-free method in 

which SNPs spaced across the entire genome are screened for association with a particular trait in 

case–control datasets composed of genetically unrelated individuals (Manolio, 2010). Compared to 

classic linkage studies that rely on extended families, the possibility to test unrelated individuals 

allows collecting much larger datasets, substantially increasing the statistical power of gene-

discovery studies. In the last few years, international studies analyzing large datasets at the genome-

wide level, have identified 200 loci involved in the susceptibility of the disease in addition to the 

HLA region. This discovery was mainly due to the contribution of three international studies in 2011 

(IMSGC, Nature, 2011), 2013 (IMSGC, Nature Genetics 2013), and 2017 (International et al., 2017). 

The first MS GWAS was reported in 2007 by the IMSGC employing 931 family trios (one affected 

https://www.sciencedirect.com/topics/medicine-and-dentistry/autoimmune-disease
https://www.sciencedirect.com/topics/medicine-and-dentistry/primary-prevention
https://www.sciencedirect.com/topics/medicine-and-dentistry/add-on-therapy
https://www.sciencedirect.com/topics/medicine-and-dentistry/add-on-therapy
https://www.sciencedirect.com/topics/medicine-and-dentistry/immunotherapy
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child and both parents). The screening confirmed with genome-wide significance the association of 

the previously identified locus containing the interleukin-7 receptor α (IL7Rα) gene and detected a 

novel non-HLA disease-risk locus, defined by the presence of the interleukin-2 receptor α (IL2Rα) 

gene. In the following years, between 2007 and 2011, seven additional GWA studies of comparable 

size and one meta-analysis were performed, adding 21 new loci to the roster of MS risk variants. 

However, theoretical power estimations showed that all the studies conducted at that time were 

substantially underpowered to capture risk variants with odd ratios less than 1.2, which were the 

values expected for most of the MS risk variants (Sawcer et al., 2010). For that reason, the IMSGC 

decided in 2011 to embark on the largest MS GWAS with the collaborative effort of the Welcome 

Trust Case Control Consortium 2 (WTCCC2). This new study employed nearly 10,000 MS cases and 

20,000 healthy controls of European ancestry (collected by 23 research groups working in 15 different 

countries) and analyzed approximately 450,000 SNPs. This study has confirmed 23 of the 26 known 

MS associated loci and has identified 29 novel susceptibility loci (p-value <5x10-8) and further 5 new 

regions with strong evidence for association (p-value <5x10-7) (IMSGC, Nature, 2011). Gene 

Ontology analyses have shown that in the 30% of association regions, the nearest gene to the lead 

SNP is an immune system gene (figure 7). These are genes involved in the lymphocyte function, 

especially in T-cell activation and proliferation. In details there are genes coding for cytokine pathway 

(CXCR5, IL2RA, IL7R, IL7, IL12RB1, IL22RA2, IL12A, IL12B, IRF8, TNFRSF1A, TNFRSF14, 

TNFSF14), co-stimulatory (CD37, CD40, CD58, CD80, CD86, CLECL1) and signal transduction 

(CBLB, GPR65, MALT1, RGS1, STAT3, TAGAP, TYK2). There are also molecules relates to 

previously reported environmental risk factors such as vitamin D (CYP27B1, CYP24A1), genes 

involved in therapies for multiple sclerosis including natalizumab (VCAM1) and daclizumab (IL2RA) 

and only two genes with a role in axonal neurodegeneration (GALC, KIF21B). Each of these genes 

contributes only minimally to the total risk of development of the disease (odds ratio, OR~1.2) and 

the most part of the heritability of MS (about 80%) remains unexplained. 
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Figure 7: Graphical representation of the T helper cell differentiation pathway (reproduced from IMSCG, Nature, 2011). 

 

Assuming that there are genetic susceptibility factors shared by autoimmune diseases, in 2013, 

IMSGC have undertaken the Immunochip project (Illumina iSelect custom beadchip platform), 

drawing a platform array containing 196,524 SNPs in  186 loci  emerged in genome-wide association 

studies previously conducted,  associated with at least one of 12 autoimmune diseases (autoimmune 

thyroid disease, ankylosing spondylitis, Crohn's disease, celiac disease, IgA deficiency, multiple 

sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, type 

I diabetes and ulcerative colitis), including 55 genes associated with MS (IMSGC, 2013). The analysis 

was performed on 14,498 MS patients and 24,091 HC belonging to 12 countries. The results were 

replicated in 14,802 patients and 26,703 controls. They have identified 48 new regions associated 

with MS and have confirmed 49 already known regions. Overall, in 2013 the results of the 

Immunochip project have doubled the number of genetic risk factors involved in the disease (leading 

to 103, in addition to the HLA region, figure 8) and they have confirmed the role of these in the 

immune response control. 
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Figure 8: Genetic atlas of multiple sclerosis. The circus plot summarizes all the known MS-associated risk loci. The outer 

most track indicates the numbered autosomal chromosomes, while the second track shows the closest gene to the top hit 

within each locus (previously identified associations are in grey). The third track indicates the physical position of the 

184 fine-mapped intervals (in green). The inner most track indicates −log(p) for each SNP (scaled from 0 to 12 which 

truncates the signal in several regions). Also, contour lines are given at the a priori discovery (−log(p) = 4) and genome-

wide significance (−log(p) = 7.3) thresholds. Orange indicates −log(p) ≥ 4 and <7.3, while red indicates −log(p) ≥ 7.3. 

(Reproduced from IMSCG, Nature Genetics, 2013). 

 

In this work also, they found 11 statistically independent effects in the MHC region: six HLA-DRB1 

and one HLA-DPB1 alleles in the centromeric class II region of the locus; one HLA-A and two HLA-

B alleles in the telomeric class I region; and one in the class III region between MHC class I 

polypeptide-related sequence B (MICB) and leukocyte-specific transcript 1 (LST1) (Beecham et al., 

2013). More recently, the analysis of independent high-density MHC region SNP data from multiple 

cohorts of European ancestry has provided, in addition to novel and previously identified HLA class 

II risk alleles (DRB1*15:01, DRB1*13:03, DRB1*03:01, DRB1*08:01, and DQB1*03:02) and 

independent HLA class I protective alleles (A*02:01, B*44:02, B*38:01, and B*55:01), evidence for 
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two interactions involving pairs of class II alleles: DQA1*01:01– DRB1*15:01 and DQB1*03:01–

DQB1*03:02 (Moutsianas et al., 2015).  

Finally, with the latest GWAS study in 2017 (IMSGC, 2017), the number of statistically independent 

associations with MS susceptibility has been increased to 233. Of these, 32 were within the major 

histocompatibility complex (MHC) region, one in chromosome X, and 200 in the autosomal non-

MHC genome suggestive effects, including 416 effects that had evidence of statistical replication but 

did not reach the level of genome-wide statistical significance. The genome-wide and suggestive 

effects jointly could explain about 48% of the estimated heritability. This study has confirmed the 

enrichment for MS susceptibility loci in many different immune cell types and tissues on the other 

hand, they did not find an enrichment in tissue-level CNS profiles. Analyzing data generated from 

human iPSC-derived neurons as well as from purified primary human astrocytes and microglia, they 

observed that enrichment for MS genes is seen in human microglia but not in astrocytes or neurons. 

This study has been the follow up of GWAS and Immunochip IMSGC project. It has been tested in 

39,000 individuals from 9 different populations and analyzing 331,536 SNPs. Seen the involvement 

of our genetics laboratory in this work during my PhD program, this work will be discussed more in 

detail in the next chapter of this thesis.  

Although these efforts in identifying these associated variants and loci and although several signals 

are near genes involved in immunologic processes, the effector mechanisms for most associations 

remain unknown. The translation of GWAS data into biological functions has been challenging. The 

principal reason for this shortcoming consists in the pervasive linkage disequilibrium (LD) along the 

human genome, which hinders the identification of true causative variants. LD refers to the tendency 

of genetic loci in physical proximity to segregate together during meiosis, leading DNA to be 

inherited in large blocks through generations. This peculiarity of genome architecture substantially 

impairs GWAS resolution since SNPs in the same LD block are inherited together as well. Thus, 

statistically significant GWAS risk variants are usually proxy for the real causative variants, which 

can be located up to several megabases away within the same LD block. In addition, the identification 

of the causative variants is further complicated by the fact that most of them are not translated but 

rather map to regulatory elements (promoters, enhancers, silencers, and other transcription factor–

binding sites) (Baranzini and Oksenberg, 2017). Until now, very few fine mapping analyses have 

been conducted to identify the primary causal variant or gene. The first putative causal variant 

identified in MS was the SNP rs6897932 located within the exon 6 of the IL7R gene, coding for the 

trans-membrane segment of the receptor. This SNP was shown to disrupt an exonic splicing silencer, 

affecting the relative amounts of soluble and membrane-bound isoforms of the protein (Gregory et 

al., 2007). Recent evidence has shown that the RNA helicase DEAD box polypeptide 39B (DDX39B) 
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is also a potent activator of IL7R exon 6, and the SNP rs2523506 located in the DDX39B 5’UTR 

increases MS risk by reducing DDX39B mRNA translation. A similar effect was described for the 

intronic SNP rs2104286 in the IL2RA gene as well. In fact, this risk variant was also found to alter 

the soluble/membrane-bound ratio of IL2RA protein by driving the expression of higher levels of its 

soluble form (Galarza-Muñoz et al., 2017). Another well-characterized example is the case of 

TNFRSF1A gene, encoding tumor necrosis factor receptor 1 (TNFR1) a member of the TNF receptor 

superfamily. It was identified as the causal variant in the gene, a SNP (rs1800693), already discovered 

through GWAS to be associated with multiple sclerosis, which directs the expression of a soluble 

form of TNFR1. This isoform can bind the TNF, so it mimics the effect of TNF-blocking drugs. It is 

known that TNF-blocking drugs can promote onset or exacerbation of MS, but they have proven 

highly efficacious in the treatment of autoimmune diseases for which there is no association with 

rs1800693 (Gregory et al., 2012). More recently, a study has reported that the nonsynonymous exonic 

SNP rs11808092 in the ecotropic viral integration site 5 (EVI5) gene induces changes in superficial 

hydrophobicity patterns of the coiled-coil domain of EVI5 protein, which, in turns, affects the EVI5 

interactome. In particular, they demonstrated that EVI5 protein bearing the risk allele selectively 

interacts with sphingosine 1-phosphate lyase (SGPL1), an enzyme important for the creation of the 

S1P gradient—which is relevant to adaptive immune response and the therapeutic management of 

MS (Didonna et al., 2015). For the Sardinian population, a GWAS analysis followed by a fine 

mapping approach led to the identification of a variant in TNFSF13B locus (BAFF-var), primarily 

associated with the regulation of BAFF transcription. This variant creates an alternative 

polyadenylation signal that generates a shorter 3′ UTR transcript lacking a miRNA binding site, which 

leads to increased levels of soluble BAFF, an higher number of B cells and immunoglobulins, reduced 

levels of monocytes, and an increased risk of autoimmunity (Steri et al., 2017). Fine-mapping analysis 

will be also matter of this thesis and, two chapters will be dedicated to describing this analysis on two 

MS associated locus in order to find the primary associated variant or gene. 

It is not inconceivable that the potential for the discovery of additive risk variance extractable from 

large genomic screens will be quickly exhausted. The remaining fraction of the risk commonly known 

as “missing heritability” is likely due to still unknown common variants characterized by much 

smaller effects, below the detection limits of the GWA studies conducted so far. Some authors have 

proposed that a substantial portion of the missing heritability lies in genetic interactions between 

known variants, the so-called phantom heritability (Zuk et al., 2012). Also, likewise gene by 

environment interactions, cis/trans-regulators of allelic expression, unidentified rare and penetrant 

semi-private variants, population and/or disease heterogeneity, neglecting the analysis of sex 

chromosomes, and hidden epigenetic effects may all contribute to the missing heritability.  
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1.6.2 The role of rare variants in the susceptibility to MS 

 

Despite the success of GWAS in finding common SNPs associated with disease, common variants 

explain only a small percentage of the familial aggregation of common complex diseases. So far, the 

identified MS loci explain only the half of the genetic component involved in the disease; therefore, 

we still do not have a complete view of the mechanisms at the basis of MS susceptibility. This means 

that probably many other low-frequency allelic variants and rare variants (MAF<5%), contribute 

significantly to the etiology of MS. Accordingly, the research is still involved to identify new MS 

susceptibility marker, including rare variants (O'Gorman et al., 2013). 

Further studied have been performed on families with at least two MS cases with two different aims: 

on one side, to try to discover new rare variants associated with MS susceptibility and on the other 

side, to understand if some susceptibility loci were transmitted among individuals within the family. 

only 0,2% of MS families have 4 or more MS patients (Dyment et al., 2008). So far, several Linkage 

studies on multiplex MS families have been performed. In particular, the study performed by The 

International Multiple Sclerosis Genetic Consortium, published in 2005, was able to demonstrate a 

significant linkage in the MHC region, and in addition to this known region it evidenced a suggestive 

linkage also for chromosome 17q23 and 5q33 although they did not reach statistical significance 

(IMSGC, 2005). Regarding the rare variants different studies have been performed to find new 

susceptibility loci. For example, De Jager et al. in a study of 2009 identified rare variants in TNFRS1A 

gene, CD6 gene, near IRF 8 gene (De Jager et al., 2009c), associations confirmed also by The 

International Multiple Sclerosis Genetics Consortium in the study of 2011 (IMSGC, 2011). Another 

study was able to identify a variant in TYK2 gene in which the aminoacidic substitution (1104A) made 

by the polymorphism seems to be involved in a protective role against MS (Ban et al., 2009). An 

interesting and peculiar case is the study conducted by Ramagopalan et al. that identified a role of 

rare missense variants in CYP27B1 in MS susceptibility (Ramagopalan et al., 2011) but when two 

independent attempts of replication of the data were performed, no statistical evidence were obtained 

(Barizzone et al., 2013). In addition, Wang Z. in a study of 2016 has identified a mutation in NR1H3 

gene in a MS family associated to the disease susceptibility. In particular, they have proposed that 

this mutation was responsible in the family of a Mendelian form of MS (Wang et al., 2016). However, 

the replication of the data conducted by The International Multiple Sclerosis Genetics Consortium on 

a large dataset failed to confirm this association (IMSGC, 2016). These examples highlight that the 

discovery of rare variants associated to MS susceptibility gives still controversial results. Regarding 

the discovery of rare variants associated with autoimmune diseases a study of 2013, conducted by 

Hunt et al, has highlighted that the most used method for identifying them (genotyping in a large 
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cohort the variants discovered in the initial small cohort) fails in its intent. In fact, from their data, 

they have found that rare coding variants have not an important role in the susceptibility of the 

common autoimmune diseases, but they have supposed that many common variants with a weak 

signal can be involved in the susceptibility (Hunt et al., 2013). More recently, a study published from 

IMSGC have tried to study in deep the role of low-frequency and rare variants in the susceptibility to 

MS. In details this study analyzed 32,367 MS cases and 36,012 controls though an array platform 

called Exome chip (Illumina technology), which contains almost 200,000 SNPs (rare synonymous 

and non-synonymous SNPs and common synonymous SNPs) mapping in coding regions enriched in 

rare variants (MAF<0.01) (IMSGC, 2018). This work has seen the involvement of 12 countries 

around the world, including 1,530 Italian MS patients and 1,581 controls. They found a significant 

association for 7 low-frequency variants in 6 genes outside the HLA region. Two of these variants 

were in genes identified by MS GWAS and showed linkage disequilibrium with the common-variant 

associations previously reported (Sawcer et al., 2011), while the remaining signals were novel and 

did not show linkage disequilibrium to common variant association signals in GWASs. The identified 

genes showed a clear immunological function, particularly in T cells development. This work 

concludes that nearly 5% of heritability is explained by coding low-frequency variants and that more 

low-frequency and rare-variant associations remain to be discovered and it will be necessary larger 

sample sizes to increase statistical power. 

A possible strategy to find an association for new rare variants is to study genes already known to 

carry established MS associated common variants. In fact, Rivas et al, in a study of 2015, studying 

rare variants associated with inflammatory bowel disease, suggested the possibility that the same 

genes carrying common disease variants can be affected also by more penetrant rare variants and that 

the deep sequencing techniques can be useful for understanding the possible role of rare variants in 

complex disorders (Rivas et al., 2011).  This has been the strategy followed by our lab that will be 

described in a chapter of this thesis. 

 

1.7 LIGHT/HVEM pathway. 

 

Tumor necrosis factor superfamily (TNFSF) molecules play an important role in the activation, 

proliferation, differentiation, and migration of immune cells into the central nervous system (CNS) 

and they also have a role in the pathogenesis of neuroinflammation and CNS autoimmunity. While 

expressions of TNFSF ligands are induced largely on professional antigen-presenting cells (APCs; 

dendritic cells, B cells, macrophages), their expression is also reported on T cells, NK cells, mast 

cells, eosinophils, basophils, endothelial cells, thymic epithelial cells, and smooth muscle cells. 
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Tumor necrosis factor ligand superfamily member 14 (TNFSF14), also known as LIGHT, is a type II 

transmembrane glycoprotein expressed by activated T lymphocytes, natural killer and immature 

dendritic cells. TNFSF14 gene is on chromosome 19p13.3, covers 5.1 KB and includes 4 exons: the 

first encodes the first 73  amino acids of the polypeptide which constitute the cytoplasmic tail, the 

transmembrane domain and the start of the extracellular region; the second and third exon coding for 

the beginning instead of the trimerization domain, while the fourth coding for the remaining 

trimerization domain (amino acids 101-240) and includes glycosylation site. This protein binds 2 

different receptors: HVEM (herpes virus entry mediator) on T lymphocytes and natural killer cells 

working as a costimulatory molecule inducing proliferation and secretion of IFN-γ, and LTβR 

(lymphotoxin β receptor) on stromal cells and monocytes, inducing the pro-inflammatory genes 

expression through activation of NF-kB. The result of the signaling is context specific depending 

upon the cell type displaying receptor because the binding of LIGHT with the two receptors can 

determine the cytoplasmatic engagement of TRAF. If it engages TRAF 2/5 the resulting signaling 

pathway induces the activation of NF-kB and so this results in cell survival and inflammation; but in 

different context LIGHT-  LTβR signaling can induce cell death because of the engagement of TRAF 

3 and the activation of caspases. LIGHT also engages decoy receptor-3 (DcR3), a soluble TNFSF 

receptor lacking transmembrane and signaling domains that probably acts to limit bioavailability of 

LIGHT. (Granger and Rickert, 2003).  There are three physical forms of LIGHT that vary in cellular 

location: full-length mRNA encodes a typical TNF family transmembrane glycoprotein of 240 aa, an 

alternative spliced isoform encodes  for a non-glycosylated molecule of 204 aa lacking the 

transmembrane domain that is retained in the cell cytosol and finally a third soluble form derives 

from LIGHT cleavage by metalloprotease activity (Granger et al., 2001). In literature it is known that 

TNFSF14 cooperates with CD154 (CD40 ligand) in dendritic cells (DC) maturation, with particular 

potentiation of allogeneic T cell proliferation and cytokine secretion of IL-12, IL-6, and TNFa (Morel 

et al., 2001); furthermore, licensed human natural killer cells aid dendritic cell maturation via 

TNFSF14 (Holmes et al., 2014). In a published work in 2013 on Journal of Immunology was 

demonstrated that LIGHT-deficient mice developed severe experimental autoimmune 

encephalomyelitis (EAE) that resulted in an atypically high mortality rate. In the same work they 

demonstrated that LIGHT expression was crucially involved in controlling activated 

macrophages/microglia during autoimmune CNS inflammation (Maña P et al, 2013). The receptor of 

LIGHT, HVEM, also known as TNFR superfamily 14 (TNFRSF14), plays important roles in the 

immune system such as T-cell costimulation, regulation of DC homeostasis, autoimmune-mediated 

inflammatory responses, as well as host defense against pathogens. Northern blotting reveals that it 

is widely expressed in nearly all internal organs with highest expression in lung, kidney, and liver. It 



27 
 

is also expressed in T cells, B cells, dendritic cells (DCs), NK cells, peripheral blood monocytes, 

neutrophils and all other types of cells within the lymphoid tissue (Cai and Freeman, 2009). In 

addition to LIGHT, the identified HVEM ligands include CD160, BTLA (B- and T-lymphocyte 

attenuator), and LTa (lymphotoxin-a) (as shown in figure 9). The binding of LIGHT or LTa to HVEM 

delivers a costimulatory signal, whereas the binding of BTLA or CD160 to HVEM delivers a 

coinhibitory signal. Thus, HVEM is a bidirectional switch regulating T-cell activation in a 

costimulatory or coinhibitory fashion whose outcome depends on the ligand engaged. The cysteine-

rich domain 1 (CRD1) of HVEM is essential for the binding of coinhibitory ligands CD160 and 

BTLA but not costimulatory ligand LIGHT. Deletion or blockade of HVEM CRD1 abolishes the 

binding of CD160 and BTLA, but not LIGHT, and converts HVEM to a dominant costimulatory 

molecule, possibly through the loss of negative signaling by CD160 ⁄ BTLA (Cai and Freeman, 2009). 

HVEM is a receptor that signals through TRAF2 leading to NFkB activation. It may signal also 

through STAT3 activation influencing the expression of genes involved in host defense in epithelial, 

Th17 and innate lymphoid cells (Shui et al., 2012). In particular, the NFkB and the STAT 3 signaling 

pathway may cooperate in differentiation of Th17 cells since STAT3 and, in the NFkB pathway, the 

c-Rel and RelA/ p65 transcription factors may promote RORt expression in T cells and thus enhance 

Th17 differentiation (Shui and Kronenberg, 2013). TNFSF14 competes with HSV gD for binding to 

TNFRSF14, whereas BTLA uses a different binding site. Moreover, TNFSF14 also binds the 

lymphotoxin ß receptor (LTßR), and Decoy Receptor 3 (Dc3) that binds also FasL. TNFRSF14 has 

been reported to influence several models of autoimmune diseases such as autoimmune diabetes, 

autoimmune encephalopathy, concanavalin A-mediated hepatitis, collagen-induced arthritis and 

several colitis models, with either pro- or anti-inflammatory roles depending on the context (Šedý et 

al., 2014). BTLA is an inhibitory coreceptor with similarities to CTLA-4 and PD-1 belonging to the 

CD28 family (Watanabe et al., 2003). It is expressed on a wide range of hematopoietic cells including 

CD4+T cells, CD8+ T cells, B cells, NKT cells, NK cells, macrophages, and dendritic cells. 

Moreover, it is highly expressed on follicular T helper cells (Tfh cells).  Ligation of BTLA induces 

its tyrosine phosphorylation and SHP-1/SHP-2 association and then, attenuates IL-2 production and 

proliferation of T cells. These findings suggest that BTLA functions as an inhibitory coreceptor 

through the interaction with TNFRSF14. BTLA-deficient mice exhibit enhanced specific antibody 

responses and sensitivity to experimental autoimmune encephalomyelitis (EAE), rapid rejection of 

partially MHC-mismatched cardiac allograft, acceleration of experimental colitis and development 

of an autoimmune hepatitis- (AIH-) like disease and lymphocytic infiltration in multiple organs. 

Moreover, BTLA plays a protective role in autoimmune diseases in MRL-lpr mice (Oya et al., 2011). 

The survival of memory and effector T cells has emerged as an important immune function of the 
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TNFRSF14 network. Btla-/- CD4+ or CD8+ T cells display increased proliferation when activated in 

vitro consistent with the inhibitory signaling of BTLA (Derré et al., 2010). Inclusion of BTLAFc as 

a surrogate ligand for TNFRSF14 to cultures of CD4+ and CD8+ T cells substantially enhances 

proliferation of Btla-/-T cells, but not the rate of division, suggesting that TNFRSF14 impacts cell 

survival. Rel A nuclear translocation correlates with the survival of Btla-/- T cells treated with BTLA-

Fc providing a mechanism linking BTLA-activated TNFRSF14 signaling to cell survival gene 

expression (Ware and Sedý, 2011). Altogether these data show as the TNFSF14 system is quite 

complex since it involves several receptor/ligand interactions which may have bidirectional signaling 

effects on several types of immune cells. 

 

 

 

Figure 9: Complex binding pattern of herpes virus entry mediator (HVEM) ligands. CD160, B- and T-lymphocyte 

attenuator (BTLA), LIGHT (lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus 

glycoprotein D for HVEM, a receptor expressed by T lymphocytes), and lymphotoxin a (LTa) all bind to HVEM. CD160 

also binds weakly to classical and non-classical MHC I molecules. In addition, LIGHT binds to LTbR and DcR3. LTa3 

and tumour necrosis factor a (TNFa) both bind to TNFR1 and TNFR2, while LTa3 binds to HVEM as well. Furthermore, 

LTa can couple with LTb and form a LTa1b2 heterotrimer, which binds to LTbR (dashed lines indicate weak binding; 

arrowheads indicate known signalling directions). (Reproduced from (Cai and Freeman, 2009) 
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Aim of the study and flowchart of the project 

The general aim of our studies was to identify and functionally characterize sequence variations 

associated to the risk to develop Multiple Sclerosis (MS) in the Italian continental population. To this 

end we performed two different parallel analyses: 

3) a fine mapping analysis of already known associated MS loci identified in Genome Wide 

Association studies in order to find the primary associated variant or gene; 

4) a burden test analysis on rare and low frequency variants on already known associated MS 

loci and genes. 

As shown in the flowchart of the project, we started to perform a Genome Wide Association Study 

in the Italian population, in order to identify genetic markers of susceptibility to MS specific for our 

population. The samples (1711 patients and 2234 controls) were genotyped at the genome wide level, 

thanks to the collaboration to two big International Studies: a Genome-Wide Association-Study 

(GWAS) and the International Immunochip project, both performed by International Multiple 

Sclerosis Genetics Consortium and published respectively on 2011 and 2013. From these results, we 

moved to the selection of MS risk loci for sequencing analysis by NGS approach. This analysis 

allowed us to perform a fine mapping on two loci resulting to be associated in our sample set: 

TNFSF14 and TNFRSF14, that will be described in the chapters 2 and 4 of this thesis, and a burden 

test analysis to study the cumulative effect of rare and low frequency variants on MS associated genes 

(in chapter 3).  

Flowchart of the project 
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2. Materials and methods 

2.1 Samples   

 

A total of 8101 individuals of continental Italian ancestry were recruited across Italian MS centres 

after approval by the ethics committee of the local hospitals and obtaining written informed consent 

for genetic analysis for research purposes from all the recruited individuals. MS patients were 

diagnosed according to McDonald criteria while controls do not have family history of autoimmune 

diseases and have similar geographic provenience of patients. A peripheral blood sample with EDTA 

was obtained by each participant to the study. We included in our study 3903 MS patients (2.0:1 

female/male ratio) and 4198 healthy controls (HC) (1:1.8 female/male) ratio, 31.67 (±10) mean age 

of disease onset, mean EDSS 3.16 (±2.25), 7% with primary progressive MS (PP).  

For 84 patients and 80 controls (for whom fresh biological material was available) we also obtained 

peripheral mononuclear blood cells (PBMCs). Nucleic acids were extracted from whole blood 

according to standard protocols (salting out or QIAamp®DNA Blood Mini kit and RNeasy Plus Mini 

Kit provided by QIAGEN). The PBMCs were isolated by density gradient centrifugation using 

Lympholyte-H (Cedarline, Burlington, NC, USA) and stored at -80°C with RNAlater (QIAGEN, 

GmbH, Hilden, Germany) for RNA preservation. 

 

2.2 Sequencing analysis  

 

We sequenced 1104 MS and 912 HC in two different experiments, pooled in groups of 12 individuals 

each. The libraries were prepared with the “SureSelectXT Target Enrichment System for Illumina 

Paired-End Multiplexed Sequencing Library” (Agilent Technologies). The DNA quantity has been 

properly balanced in each pool in order to equally represent each genome.  

In the first experiment consisting of 600 MS patients and 408 HC, paired-end multiplexed sequencing 

was performed on the Illumina GaIIx platform (Illumina, San Diego, CA), combining 6 pools tagged 

with different index sequences in each lane and producing 2×85 bp read lengths. One of the MS pools 

(12 patients) did not pass quality controls, so it was discarded from the following analysis. In the 

second experiment consisting of 504 MS patients and 504 HC, paired end multiplexed sequencing 

was performed on the Illumina NextSeq 500 (Illumina San Diego) platform, producing 2x150 bp read 

length.  

The two datasets (1092 MS and 912 HC post QC) were analyzed with the same bioinformatic 

pipeline. The raw-reads were first checked for quality using FastQC (Andrews, 2015). The QC-



31 
 

checked paired end (PE) reads of each pool were mapped to NCBI human reference genome (build 

GRCh37) using BWA (v0.7.5) (Li and Durbin, 2009) and the duplicate reads due to PCR 

amplification during library preparation were removed using samtools (Li et al., 2009). A variant 

caller specifically designed for pooled samples (Bansal, 2010)  was used to call the variants. Genomic 

and functional annotation of the variations was performed with ANNOVAR (Wang et al., 2010). 

Allelic frequencies (AF) in patients and controls were estimated using an ad-hoc custom pipeline, 

which was developed to guarantee accurate AF estimation with pooled NGS data (Anand et al., 2016) 

Specifically, a threshold was applied to single pool alternative AF in order to remove spurious reads. 

The thresholds (0.26 for the first experiment, 0.24 for the second one) were empirically determined 

as described in Anand et al. (Anand et al., 2016). In order to remove false positive variants, we chose 

those variants with sequencing call quality >100. 

The 600 MS patients in the first sequencing experiment had been previously individually genotyped 

either with the Illumina 660Q chip or with the Immunochip platform (Beecham et al., 2013; Sawcer 

et al., 2011) and AF comparison with these platforms were used to demonstrate a high correlation 

with AF in the pools (R^2=0.987). Similarly, we also observed a high correlation between pooled AF 

and frequencies reported in public databases (100 genomes_EUR R2=0.980, ExAC R2=0.970). 

 

2.3 Replication and fine-mapping in TNFSF14 

 

We genotyped 62 TNFSF14 variants on an independent, individually typed set of 1745 (867 MS and 

878 HC) samples using using a TaqMan® OpenArray™ Genotyping System (Applied Biosystems, 

Foster City, CA, USA). DNA samples were loaded at a concentration of 50 ng/mL and amplified 

according to the manufacturer’s instructions. The auto-calling method, implemented in the TaqMan 

Genotyper software version 1.3, was used to assign genotypes. Seven SNPs were removed from the 

analysis due to failure in the design of the probes, and 13 variants were removed after QC due to bad 

clustering. All remaining SNPs showed a call rate > 90%. Individuals showing a call rate < 80% were 

removed during QC, yielding a final dataset of 867 MS and 878 HC. Association effects sizes from 

this cohort were meta-analyzed with those of 2 other sample sets:  

a) 734 MS and 1250 HC (GWAS dataset 1) genotyped with Human610-Quad platform (Sawcer et 

al., 2011) and imputed with Mach software (Li et al., 2010) on the 1000 genomes dataset (Abecasis 

et al., 2012) Pre-imputation QC was performed as described elsewhere (Sawcer et al., 2011). After 

imputation we retained SNPs showing imputation quality index Rsq>0.3 and MAF>0.01. 

b) 1236 MS and 370 HC (GWAS dataset 2) genotyped with Illumina HumanOmniExpress-12 

BeadChip and HumanOmni-2.5 BeadChip (~ 550k markers in overlap) and imputed on 1000 
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Genomes phase 3 ALL reference panel (Abecasis et al., 2012) using SHAPEIT (Delaneau et al., 2011) 

for pre-phasing step and Minimac3 for genotype imputation (Fuchsberger et al., 2015). After 

imputation we retained SNPs showing Rsq>0.8 and MAF>0.01. 

 

2.4 Rare variants analysis in TNFSF14 

 

Rare variants (MAF < 0.01) observed in sequencing were not analyzed for association at single 

variant level due to lack of power, instead, we investigated the cumulative role of rare variants with 

predicted functional role in TNFSF14 performing a burden test analysis. Rare variants were annotated 

(ANNOVAR) (Wang et al., 2010) and filtered on the basis of in silico predicted function. We 

considered missense and synonymous variants. No splicing or nonsense variation was observed. The 

burden of rare variants was estimated comparing the total numbers of alternative and reference alleles 

in patients and controls. The statistical significance was assessed with a Fisher test using R software.  

 

2.5 Burden test analysis 

 

We have calculated the Burden Test in order to evaluate the cumulative effect of rare (Minor Allele 

Frequency: MAF < 1%), and of low frequency (MAF 1-5%) potential functional variants, derived 

from the sequencing analysis of the pools. We have found and used 3 different algorithms: 

- Weighted-Sum Statistic (WSS): It compares the number of mutations in a group of variants between 

samples of affected and unaffected unrelated individuals. So, it identifies an excess of alternative 

alleles in the affected individuals. It computes a genetic score in the region of interest, where variants 

are weighted by the rare allele frequency, assuming a relationship between allele frequency and effect 

size.  

- C-ALPHA: in a gene harbouring phenotypically relevant variation many variants will be 

phenotypically neutral. This test is more robust to deviation from assumption of homogeneity of 

effects of rare variants. It is not strictly a burden test, but a variance test. This test can thus detect a 

mixture of protective and deleterious variants. Under the null hypothesis of no association between 

the variants and the phenotype, C-alpha assumes that the distribution of counts (copies of an observed 

variant) should follow a binomial distribution. For each variant in the region of interest, it tests for 

unusual departure of the parameter p0 of the binomial distribution, thereby detecting variants in the 

tail of the distribution (Neale et al, 2011). 

- Fisher Hybrid: the performance of each of above tests depends upon the underlying assumption of 

the relationship between rare variants and the trait. Fisher’s hybrid test statistics is proposed to 
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combine evidence of association from the complementary burden (WSS) and variance (C-alpha) test. 

Statistical significance of the hybrid statistics is obtained using the same permutation-based method 

required for the two above tests (Derkach et al, 2013). 

In each test the significance value was calculated by applying the permutation of the case control 

status. As we were using pooled samples the pool and not the single individual was employed as a 

statistical unit: 10,000 permutations of disease status across pools were used to empirically estimate 

p-values for all three tests. 

 

2.6 Gene expression analysis  

 

The expression of the two splicing isoforms of TNFSF14 on two different cohorts of patients and 

controls (Cohort 1 consisting of frozen PBMC from 64 HC and 45 MS; Cohort 2 consisting of whole 

blood from 16 HC and 39 MS) was determined by quantitative Real Time PCR with SYBR Green 

method using the GoTaq 2-step RT-qPCR system (Promega). Its components allow the synthesis of 

cDNA using GoScript Reverse Transcription System and the subsequent quantification by GoTaq 

qPCR Master Mix. The qRT-PCR reaction was conducted in the instrument C1000 Thermal Cycler 

CFX96 Real Time System (Bio-Rad). Each sample was tested in triplicate for the two TNFSF14 

splicing isoforms and for β-actin (housekeeping gene). A calibrator RNA was generated from a pool 

of RNA obtained from pellets of PBMC of two healthy controls and added to all experiments. The 

analysis of gene expression data was performed with the CFX Manager™ Software Bio-Rad. From 

our initial experiments we observed that the ΔCT of calibrator RNA was much similar among the 

different experiments, for this reason we have calculated and compared only ΔCT. qRT-PCR primers: 

TNFSF14 full-length isoform forward:  GGTGGGTCTGGGTCTCTT; TNFSF14  full-length isoform 

reverse: AGACCTTCGCTCTTGTATCAGC; TNFSF14 ΔTM isoform forward: 

AGTGTGGCCCGGGACGGA; TNFSF14 ΔTM isoform reverse: GCTGGAGTTGGCCCCTGTGA; 

β-actin forward:  CGCCGCCAGCTCACCATG; β-actin reverse:  

CACGATGGAGGGGAAGACGG. 

 

2.7 eQtl data and allelic imbalance 

 

We looked at eQTL data as available data from 5 public resources: Geuvadis project (Lappalainen et 

al., 2013) which performed mRNA sequencing on 465 lymphoblastoid cell line samples from 5 

populations of the 1000 Genomes Project: the CEPH (CEU), Finns (FIN), British (GBR), Toscani 

(TSI) and Yoruba (YRI); the Brain eQTL Almanac (Braineac) (Ramasamy et al., 2014) which is a 
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web-based resource to access the UK Brain Expression Consortium (UKBEC) dataset; the Gtex portal 

(Melé et al., 2015) which collect  RNA sequencing data from 1641 samples across 43 tissues from 

175 individuals; the eQTL blood browser (Westra et al., 2013) and the SNPexp (a web tool for 

calculating and visualizing correlation between HapMap genotypes and gene expression levels in 

lymphoblastoid cell lines) (Holm et al., 2010). 

Finally, we performed allelic imbalance analysis usingWilcoxon paired-samples test on 97 

heterozygous EBV cell lines individuals from Geuvadis consortium and from Gtex (version 

phs000424.v6.p1) in EBV cell lines (33 samples), in PBMC cells (129 samples), in lung (23 samples),  

liver (37 samples), adipose visceral (56 samples) and esophagus muscularis (20 samples). Results 

from the various datasets were meta-analyzed with CMA software under a fixed effect model. 

 

2.8 Cell analysis 

 

We performed flow cytometry experiments (BD FACSCAlibur 2 Laser, Marshall Scientific) on 

eparin blood samples of healthy donors to detect the LIGHT/TNFSF14  transmembrane protein 

expression (Human Allophycocyanin Mab, Clone 115520, R&D System) and HVEM in different 

immune cell types: T cells CD8+, T cells CD4+, B cells (CD19+), myeloid dendritic cells (CD11c+), 

NK cells (CD56dim/CD16bright, CD56-/CD16bright, CD56dim/CD16-) and monocytes (CD14+). 

We compared the expression of LIGHT in monocyte-derived DC (MDDC) obtained by culturing 

monocytes for 5 days with GM-CSF+IL-4 or GM-CSF+IFNβ or IL-3 alone or IL-3+IFNβ or 

GMCSF+IL-15, which are different MDDC types described in the literature (Banchereau and 

Palucka, 2005). Finally, we stimulated them with lipopolysaccharide (LPS) for 2 days to obtain 

mature (activated) MDDC. The soluble LIGHT was detected in cell supernatant of dendritic cells by 

ELISA technique (Human LIGHT/TNFSF14 Quantikine ELISA Kit, R&D System). The production 

of different cytokines (IL-6, TNFα, IL-10, IL-23) in the supernatants of mature MDC obtained with 

GM-CSF+IL-15 was evaluated by ELISA technique (Human IL-6 -Kit Elisa- Ready-SET-Go, 

Prodotti Gianni; Human TNF-alpha DuoSet ELISA, R&D System; Human IL-10 and IL-6 DuoSet 

ELISA Kit, R&D System). 

 

2.9 Statistical analysis 

Genotype association analysis was conducted with PLINK software (Purcell) (Purcell et al., 2007). 

Conditional analysis was performed fitting a logistic regression model, incorporating sex as covariate 

and conditioning onone SNP at a time. Meta-analysis of odds ratios was conducted with PLINK 

software under a fixed-effect model. Power-analysis was conducted with Quanto software. For RNA 
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expression data we performed two linear regression analyses: 1) we tested the association between 

expression levels and genotypes assuming an additive model and using sex, cohort, and individual 

status (case or control) as covariates; 2) we tested the association between expression levels and case-

controlstatus using genotype, sex and cohort as covariates. Regarding the cell analysis, in each group, 

the normal distribution of values of LIGHT expression and cytokines production was verified by 

Kolmogorov-Smirnov test and differences in mean expression levels were tested by Student’s T-test 

or by Mann-Whitney test as appropriate, with MedCalc Software. 

 

2.10 Gene-gene interaction analysis  

 

Epistatic interactions were tested in four cohorts, with available genotyped subjects both from our 

laboratory and San Raffaele Hospital:   

1) OmniQuad cohort (OQ) (GWAS data set 1), with individuals genotyped on Illumina 

HumanOmni1-Quad BeadChip (~660k markers); 

2) OmniExpress cohort (OE) (GWAS data set 2), with individuals genotyped on Illumina 

HumanOmniExpress-12 BeadChip and HumanOmni-2.5 BeadChip (~ 550k markers in overlap);  

3) ImmunoChip cohort (IC), with individuals genotyped on Immunochip custom array (~190k 

markers); 

4) MSChip cohort (MSC), with individuals genotyped on Mschip custom array (~180k markers). 

After QC, the number of subjects included in analyses were: OQ (NMS=736, NHC=1262), OE 

(NMS=1269, NHC=360), IC (NMS=961, NHC=962), MSC (NMS=921, NHC=934). We tested pairwise 

interacting SNPs, extracting markers within region of each gene, with a flanking window of ±10kb, 

to account both for coding SNPs and for variants that can affect transcriptional regulation. Overall, 

we tested 561 interactions among TNFSF14 and TNFRSF14 and 370 genes. Pairwise SNP interaction 

analyses were conducted using the logistic regression model as implemented in PLINK (Purcell et 

al., 2007). Logistic regression models were fitted incorporating the two SNPs' additive marginal 

effects and a multiplicative interaction term, according to additive coding, on which Wald test was 

performed to detect departure from additivity on the log-odds scale. 
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3. Chapter 1: The Multiple Sclerosis Genomic Map: role of peripheral immune 

cells and resident microglia in susceptibility 

 

In this chapter we will present briefly the last work conducted by International Multiple Sclerosis 

Genetics Consortium (IMSGC) (under second revision on Science), in which our laboratory took part 

and that has allowed an important advance of the etiopathogenetic knowledges of MS, explaining 

about the 48 percentage of the hereditability of the disease.  Thanks to this study it has been possible 

to prioritize up to 551 potentially associated MS susceptibility genes, that implicate multiple innate 

and adaptive pathways distributed across the cellular components of the immune system. 

Furthermore, using expression profiles from purified human microglia, it was found an enrichment 

for MS genes in these brain-resident immune cells. This project is the follow-up of the GWAS 

(IMSGC, 2011) and Immunochip (IMSGC, 2013) IMSGC projects. At the beginning, for the 

discovery study they organized available and newly genotyped genome-wide data derived from 

14,802 subjects with MS and 26,703 controls in 15 data sets. As a result, they identified 1,961 non-

MHC autosomal regions that included 4,842 presumably statistically independent SNPs. These were 

named as “effects”, assuming that these SNPs tag a true causal genetic effect. Of these, 82 effects 

were genome-wide significant in the discovery analysis, and another 125 had a p-value < 1x10-5.  The 

following step was to design the MS Chip to directly replicate each of the prioritized effects and this 

analysis was performed on 20,360 MS subjects and 19,047 controls, organizing in 9 data sets 

(including our Italian sample set). They found 139 regions with at least one genome-wide effect, and, 

overall, 200 prioritized effects reached a level of genome-wide significance (GW) in these regions.  

The odds ratios (ORs) of these genome-wide effects ranged from 1.06 to 2.06. The analysis confirmed 

prior MHC susceptibility variants and extended the association map to uncover a total of 31 

statistically independent effects at the genome-wide level. Regarding of sex chromosome variants, 

has been identified a SNP as genome-wide significant, within an enhancer peak specific for T cells 

and downstream of the RNA U6 small nuclear 320 pseudogene (RNU6-320P), a component of the 

U6 small nuclear ribonucleoprotein (snRNP) that is part of the spliceosome and is responsible for the 

splicing of introns from pre-mRNA. No variant was found in the Y chromosome with a p-value lower 

than 0.05 in either the discovery or replication sets.  Although chromosome X associations cannot be 

the sole explanation for the preponderance of women among MS patients, the discovery of an MS 

locus on the X chromosome is a first step towards understanding the genetic contributions of this 

strong sex bias.  



37 
 

Significant enrichment for MS susceptibility loci was found in many different immune cell types and 

tissues, whereas there was an absence of enrichment in tissue-level central nervous system (CNS) 

profiles. An important finding is that the enrichment was observed not only in immune cells that have 

long been studied in MS, e.g. T cells, but also in B cells whose role has emerged more recently 

(Bourdette and Yadav, 2008). Furthermore, they demonstrated that many elements of innate 

immunity, such as natural killer (NK) cells and dendritic cells also displayed strong enrichment for 

MS susceptibility genes. Interestingly, at the tissue level, the role of the thymus is also highlighted, 

possibly suggesting the role of genetic variation in thymic selection of autoreactive T cells in MS. 

Furthermore, they extended the annotation analyses by analysing new data generated from human 

iPSC-derived neurons as well as from purified primary human astrocytes and microglia. This analysis 

showed an enrichment for MS genes in human microglia but not in astrocytes or neurons, suggesting 

that the resident immune cells of the brain may also play a role in MS susceptibility. Cis e-QTL 

analysis conducted in naive CD4+ T cells and monocytes from 415 healthy subjects as well as 

peripheral blood mononuclear cells (PBMCs) from 225 remitting relapsing MS subjects, showed that 

36 out of the 200 GW MS effects (18%) had at least one tagging SNP (r2>=0.5) that altered the 

expression of 46 genes (FDR<5%) in CD4+ naïve T cells and 36 MS effects (18%; 10 common with 

the CD4+ naïve T cells) influenced the expression of 48 genes in monocytes. Since MS is a disease 

of the CNS, they also investigated a large collection of dorsolateral prefrontal cortex RNA sequencing 

profiles from two longitudinal cohort studies of aging (n=455), which recruit cognitively non-

impaired individuals. This cortical sample provides a tissue-level profile derived from a complex 

mixture of neurons, astrocytes, and other parenchymal cells such as microglia and occasional 

peripheral immune cells. They found that 66 of the GW MS effects (33% of the 200 effects) were cis-

eQTLs for 104 genes. They hypothesized that the effect of a SNP with a cell type-specific cis-eQTL 

would be stronger if they adjusted for the proportion of the target cell type, so they adjusted each cis-

eQTL analysis for the proportion of neurons, astrocytes, microglia, and oligodendrocytes estimated 

to be present in the tissue. From this analysis was found that the SNP in SLC12A5 locus was 

significantly stronger when they accounted for the proportion of neurons and the CLECL1 locus 

emerged when they accounted for the proportion of microglia. SLC12A5 is a potassium/chloride 

transporter that is known to be expressed in neurons, and a rare variant in SLC12A5 causes a form of 

pediatric epilepsy (Puskarjov et al., 2014; Stodberg et al., 2015). On the other hand, CLECL1 

represents a simpler case of a known susceptibility effect that has previously been linked to altered 

CLECL1 RNA expression in monocytes (Raj et al., 2014; Wallace et al., 2012); its enrichment in 

microglial cells, which share many molecular pathways with other myeloid cells, is more 

straightforward to understand. In conclusion this work represents a milestone in the investigation of 
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MS and share a roadmap for future work: the establishment of a map with which to guide the 

development of the next generation of studies with high-dimensional molecular data to explore both 

the initial steps of immune dysregulation across both the adaptive and innate arms of the immune 

system and secondly the translation of this auto-immune process to the CNS where it triggers a 

neurodegenerative cascade. Beyond the characterization of the molecular events that trigger MS, this 

map will also inform the development of primary prevention strategies since we can leverage this 

information to identify the subset of individuals who are at greatest risk of developing MS. While 

insufficient by itself, an MS Genetic Risk Score has a role to play in guiding the management of the 

population of individuals “at risk” of MS (such as family members) when deployed in combination 

with other measures of risk and biomarkers that capture intermediate phenotypes along the trajectory 

from health to disease (De Jager et al., 2009b). 
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4. Chapter 2: Genomic and functional evaluation of the role of TNFSF14 gene in 

the susceptibility to multiple sclerosis 

 

4.1 Introduction  

 

Thanks to GWAS, 32 human leukocyte antigen (HLA) and 200 non-HLA genetic risk factors have 

been identified in MS susceptibility ((ANZgene), 2009); (Patsopoulos et al., 2011); (Sawcer et al., 

2011); (Beecham et al., 2013); (Moutsianas et al., 2015); (IMSGC, 2017). Although several signals 

are near genes involved in immunologic processes, the effector mechanisms for most associations 

remain unknown. Until now, very few fine-mapping analyses have been conducted on MS 

susceptibility loci in order to identify the primary causal variant or gene. The efforts necessary for 

these complex experiments are particularly relevant to identify the molecular mechanism underlying 

the association signal. As a recent example, for the Sardinian population, a GWAS analysis followed 

by a fine mapping approach led to the identification of a variant in TNFSF13B locus (BAFF-var), 

primarily associated with the regulation of BAFF transcription. This variant creates an alternative 

polyadenylation signal that generates a shorter 3′ UTR transcript lacking a miRNA binding site, which 

leads to increased levels of soluble BAFF, an higher number of B cells and immunoglobulins, reduced 

levels of monocytes, and an increased risk of autoimmunity (Steri et al., 2017). In another member 

of the TNF receptor superfamily (TNFRSF1A, encoding for tumor necrosis factor receptor 1 

(TNFR1)), a SNP influencing  the expression of a soluble form of TNFR1 that can block TNF was 

identified as the causal variant (Gregory et al., 2012).  

In the present study, taking advantage of a large cohort of individuals genotyped at genome-wide 

level, we performed a GWAS in the Italian population and identified the known MS locus in the 

TNFSF14 region as the most associated signal in the Italian cohort. Our aim was to perform a fine 

mapping of this locus and to functionally characterize the primarily associated variant. 

 

4.2 Results 

 

In the framework of a fine mapping study of MS loci in the Italian population, we selected the region 

showing the strongest association  among all the known non HLA MS loci (Sawcer et al., 2011) 

(Beecham et al., 2013) in a large Italian sample set (1711 patients and 2234 controls) representing a 

meta-analysis of two sample sets genotyped at genome-wide level using the Human610-Quad (750 

MS,1272 HC) or the Immunochip (961 MS, 962 HC) platforms. Indeed, the marker showing the 
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strongest association in this meta-analysis (p=1.73x10-8) among all the known non HLA MS loci 

was rs1077667 mapping in the intron 1 of TNFSF14 (figure 10). 

 

 

Figure 10: Manhattan plot representing the association results of meta-analysis of GWAS dataset 1 and Immunochip 

dataset on our Italian cohort. The signal corresponding to the intronic variant (rs1077667) in TNFSF14 gene is indicated 

with a circle. The two horizontal lines indicate the thresholds of statistical significance corresponding to genome wide 

significant association (p=5*e-8, upper line) and suggestive association (p=1*e-5, lower line), respectively. 

 

4.2.1 NGS sequencing of the TNFSF14 region in the Italian population 

 

The analyses were performed in cooperation with the laboratory of Human Genetics of Neurological 

Disorders at San Raffaele Hospital headed by professor Filippo Martinelli Boneschi and Federica 

Esposito and by Institute of biomedical technologies at CNR institute headed by professor Gianluca 

De Bellis. To identify all the variants in the TNFSF14 region present in the Italian population and in 

MS patients, we sequenced the whole genomic region encompassing the TNFSF14 gene (17,500 bp 

including exons, introns and 5,000 bp flanking regions) on a sample set of 588 MS patients and 408 

controls, pooled in groups of 12 individuals. As we previously published (Anand et al., 2016), we 

validated an approach which allows to provide an accurate estimate of the allele frequencies in the 

pool, and thus to perform a preliminary association analysis in the pool of the variants identified in 

the sequencing experiment. After QC, we identified 112 variants in the TNFSF14 locus. Among these, 

6 variants were in the coding region, 38 with a MAF>1%; only 11 variants (9 with MAF >1%) were 

already present in the genotyping platforms (Beecham et al., 2013; IMSGC, 2018; IMSGC 2017; 

Sawcer et al., 2011); 43 were not present in public databases, only 2 of them had a MAF>1% in our 

population. The comparison of the allele frequencies estimated in the pools of MS patients and 
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controls showed a statistically significant (p<0.05) association with MS for 15 variants (table S1, 

appendix), 13 of them present on databases. Only 2 of the variants showing statistically significant 

association were already present in the genotyping platforms used for the discovery phase. The 

TNFSF14 intronic variant (rs1077667) (figure 11 A) showed the strongest signal (p=1.47e-5). We 

also identified a synonymous variant (rs2291668) in linkage disequilibrium with rs1077667 

(r2=0.808), not present in the genotyping platforms. This SNP is located in exon 1, near the site 

involved in the alternative splicing which leads to the ΔTM transcript isoform encoding a TNFSF14 

protein lacking the transmembrane domain (short isoform, see expression analysis) (Granger et al., 

2001). 

 

4.2.2 Association study of the SNPs selected from the TNFSF14 sequencing in an independent 

cohort 

 

To perform a fine-mapping of the TNFSF14 locus on an independent sample set, we individually 

genotyped 867 MS and 878 HC individuals (after QC) for 62 variations (2 in/del and 60 SNVs), 

including: 1) all variants significantly associated (p < 0.05) in the above NGS cohort; 2) all coding 

variants; 3) LD pruned (r2 > 0.9) common variants (AF>1%); 4) LD pruned (r2 > 0.9) variants reported 

in the 1000 genome database and not covered in NGS experiment. After QC, we analyzed 42 variants 

and observed a significant (p < 0.05) MS association for 6 variants (figure 11 B), confirming 5 of the 

associations observed in the pools. The intronic rs1077667 variant showed the strongest association 

(p=3.2e-5). The remaining 5 variants showed different LD values (r2 range: 0.76-0.16) with the 

intronic rs1077667 variant and did not maintain a statistically significant association after 

conditioning for rs1077667 (table S2, appendix).  

To increase the statistical power of the fine mapping, we enlarged the above dataset with two 

additional sample sets including 734 MS and 1250 HC (GWAS dataset 1) and 1236 MS and 370 HC 

(GWAS dataset 2 provided by prof. Filippo Martinelli Boneschi and Federica Esposito group of San 

Raffaele Hospital), respectively, both imputed on the 1000 genomes dataset for a total of 2837 MS 

patients and 2498 HC. After meta-analysis of these three sample sets (22 SNPs in common) we 

observed a significant association for 14 SNPs (p<0.05), confirming the 6 associations observed in 

the previous analysis. The intronic rs1077667 was still the highest associated signal also in the meta-

analyzed dataset (p= 1.363e-010), followed by the exonic variant rs2291668 (p= 6.199e-07) (figure 

11 C). After conditioning for rs1077667, the association of this exonic variant was no longer 

statistically significant (p=0.1623), while 3 other SNPs, with different LD values with rs1077667, 

still showed a nominally statistically significant association, namely rs142044586 (p=0.04637, 
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r2=0.16), rs1862509 (p=0.03893, r2=0.76), rs344558 (p=0.0023, r2=0.028) (figure 11 D). After 

conditioning for each of these 4 variants, rs1077667 maintained the strongest statistical significance 

(p-value = 6.202e-05, 1.23e-06, 3.19e-06, 4.4e-09 respectively) (table S2, appendix). 

Altogether, these analyses indicate that rs1077667 showed the strongest association signal 

independently of any other tested common (AF>1%) variant in the TNFSF14 region including those 

with a nominal independent p value of association. Accordingly, we considered rs1077667 as the 

primarily associated variant with MS in the TNFSF14 region and designed functional assays on this 

variant. 

 

 

Figure 11: Regional association plots from resequencing data on TNFSF14 gene (A), from target genotyping platform 

analysis (B), from meta-analysis of target genotyping platform, GWAS data set 1 and GWAS data set 2 (C), and from 

meta-analysis conditioning for rs1077667 (D). The two bold signals are the intronic variant (blue dot, indicated with a 

circle) and exonic variant (red dot). In the A section, the grey dot with the highest association signal is a rare (MAF in 

MS patients <1%) intronic variant not reported in public databases showing no statistically significant association in target 

genotyping platform analysis (p value = 0.68, Supplementary table S2).  
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4.2.3 Rare variants in TNFSF14 gene 

 

To investigate the role of rare variants (MAF<0.01) in the TNFSF14 coding region, we sequenced 

the coding regions of the gene through two NGS experiments analyzing a total of 1092 MS patient 

and 912 controls pooled in groups of 12 individuals (as described in materials and methods).  

We found 10 variants in coding regions (8 with MAF<0.01) and 3 of these were non synonymous (2 

with MAF<0.01 in MS patients) (table S3, appendix). No splicing or nonsense variation was 

observed. To increase the statistical power, we tested the cumulative effect of rare variants performing 

two burden tests which consider only missense variants or synonymous and missense variants, 

respectively. We did not observe any statistically significant difference in the cumulative allele counts 

between MS patients and controls in both sequencing experiments (table S4 supplementary 

materials). 

 

4.2.4 eQTL data 

 

We investigated eQTL data as available in several public databases (Geuvadis consortium 

(Lappalainen et al., 2013), Blood eQTL browser (Westra et al., 2013), Bioportal (Holm et al., 2010), 

Gtex portal (Melé et al., 2015) and Brain eQTL Almanac (Ramasamy et al., 2014), as shown in table 

1. Carriers of MS risk allele (C) were consistently found to have a lower TNFSF14 expression in 

EBV-transformed lymphoblastoid cell lines, in peripheral whole blood cells, and in peripheral blood 

mononuclear cells (PBMCs). No significant eQTL association was found on brain cells apart from 

hippocampus (table 1). 

 

  
Geuvadis 

consortium 
Bioportal Gtex portal BRAINeac 

Blood 

eQTL 

browser 

Tissue  

(n samples) 

EBV-cells 

(465) 

EBV-cells 

(270) 

EBV-cells 

(140)  

PBMC  

(338) 

Hippocampus 

(81) 

 Brain cells 

(134) 

Whole 

blood 

(5,311) 

Effect 
Beta value       

 -0.3 

Beta value 

-0.08 

Beta value    

-0.33 

Beta value   

 -0.11 

Beta value          

-0.34 

Beta value 

< 0 
  Z-score       

-14.41 

p-value 1.22E-09 0.034 0.0081 0.0026 0.012 Not 

significant 
4.362E-47 

 

Table 1: Association between TNFSF14 expression levels and genotype of the primarily associated variant (rs1077667 

intronic variant) across different databases, in EBV-cells, in PBMC, in whole blood and in brain. The C allele (which is 
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the risk allele) is significantly associated with a decrease in LIGHT expression (beta <0), except for BRAINeac database. 

This association withstands Bonferroni correction for Geuvadis consortium and Blood eQTL browser.  

 

These data are consistent with the allelic imbalance analysis for the exonic variant rs2291668 (in high 

LD with rs1077667, r2 = 0.808), performed on RNAseq data from EBV cell lines of 97 heterozygous 

individuals (Geuvadis consortium). The allelic expression for rs2291668 is unbalanced to the 

detriment of the allele in phase with the rs1077667 allele with lower eQTL expression (C allele, 

percentage of individuals with C<T: 68%, Wilcoxon paired-samples test: p<0.0001). This same trend 

was observed in EBV cell lines (33 samples, C<T: 60.7%) and in PBMC cells (129 samples, C<T: 

53.2%) from Gtex consortium although these differences were not statistically significant. The meta-

analysis in EBV cell lines from the two above data sets (Geuvadis consortium and Gtex consortium) 

confirms this allelic imbalance effect (p=0.001). Conversely, a significant opposite trend was 

observed for other tissues from Gtex database (lung, 23 samples, C<T: 21.7%, p= 0.0264; liver, 37 

samples, C<T: 16.2 %, p<0.0001; adipose visceral tissue, 56 samples, C<T: 17.9%, p<0.0001; 

esophagus muscularis, 20 samples, C<T: 20%, p=0.0020).  

 

4.2.5 TNFSF14 expression analysis in MS patients and controls 

 

TNFSF14 transcript exists in two different isoforms: a full-length transcript (consisting of 1491 nt) 

and a small transcript (named as ΔTM isoform, of 1169 nt) (Granger et al., 2001). This alternative 

transcript is generated by joining the cryptic splice donor in exon 1, at nucleotide position 111, to the 

splice acceptor that defines the beginning of exon 2, at nucleotide position 218, resulting in the 

removal of 107 nucleotides (comprising the exonic SNP rs2291668) including the region encoding 

the transmembrane domain.  

To confirm eQTL results, derived from publicly available datasets, we evaluated the TNFSF14 

expression by SYBR green qPCR of full-length and ΔTM isoforms in two different cohorts: 1) 

PBMCs (frozen pellet) from 64 healthy controls and 45 patients, and 2) whole blood of 16 controls 

and 39 patients. In both sample sets, MS patients were treatment-naïve. The expression levels of the 

two isoforms were highly correlated (r = 0.89, p <0.0001), (figure 12) indicating that they are 

regulated by shared transcriptional mechanisms. 
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Figure 12: Scatter plot showing the correlation between the two isoforms derived from TNFSF14 alternative splicing. 

Values of ΔCT for ΔTM isoform (X-axis) and of the full-length isoform (Y-axis) have been plotted. Each dot corresponds 

to an individual. Coefficient of correlation: r = 0.89, p <0.0001. 

 

We performed two linear regression analyses (tables 2 and 3) in order to test the association of 

rs1077667 genotypes with TNFSF14 expression, accounting for possible confounders (cohort and 

disease status effect). We observed that the presence of the rs1077667 risk allele is associated with 

lower levels of TNFSF14 transcript for both isoforms (full-length: p= 0.0045, ΔTM: p=0.0021), 

paralleling what previously observed for in eQTL data. Moreover, when using the genotype as a 

covariate, patients always were the minor producers compared to healthy controls (full-length: 

p=0.011, ΔTM: p=0.0242).  

 

Table 2: Association between TNFSF14 expression levels and genotypes of the primarily TNFSF14 

associated variant. 

Variant Allele 
TNFSF14 

Isoform 

effect (beta 

value) 
P-value 

rs1077667 
T full-length -0.3872 0.0045 

T ΔTM -0.5347 0.0021 

 

A linear regression analysis correlating the number (0, 1 or 2) of the minor (protective) T allele and PCR real time ΔCT 

values, covariated for sex, cohort and disease status, was performed.  The higher the number of protective allele (0,1,2) 

the lower the PCR real time ΔCT values (beta minor than 1). This means that the higher the number of susceptibility 

(common) C alleles the lower the TNFSF14 expression levels.  
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Table 3: Association between TNFSF14 

expression levels and disease status.  

TNFSF14 

Isoform 

Conditional 

variant 

 effect (beta 

value) 
P-value 

full-length rs1077667 0.3906 0.011 

ΔTM rs1077667 0.4391 0.0242 

 

Linear regression analysis covariated for sex, cohort and genotypes of the associated variant rs1077667. ∆CT values are 

significantly higher in MS patients (thus expression levels are significantly lower) for both isoforms. 

 

Altogether, these results showed that TNFSF14 RNA expression levels in blood cells were lower in 

MS patients than in controls, and this is consistent with the lower expression levels observed in 

carriers of the risk allele of the primarily MS associated variant. 

 

4.2.6 LIGHT protein expression in blood cells according to the genotypes at the intronic 

variant 

 

To evaluate the association of rs1077667 C/T variant with LIGHT transmembrane protein expression, 

we performed flow cytometry analyses on peripheral blood of 20 healthy controls with different 

rs1077667 genotypes (10 CC, 8 CT, 2 TT), testing the percentage of LIGHT positive cells in CD4+ 

T cells, CD8+ T cells, myeloid dendritic cells (DC)  CD11c+, monocytes (CD14+), NK cells 

(CD56dim/CD16bright, CD56-/CD16bright, CD56dim/CD16-), and B cells (CD19+) (figure 13 A). 

These flow cytometry analyses were performed thanks to the cooperation with the Immunology 

laboratory headed by professor Umberto Dianziani at University of Eastern Piedmont, department of 

Health Sciences, in Novara. The mean percentage of LIGHT positive cells among the analyzed 

populations ranged between 17.4% (CD4+ T cells) and 0.3% (B cells, the only cell population with 

less than 1% of LIGHT positive cells). Among cell populations with a percentage of LIGHT positive 

cells higher than 1%, we observed a significant association with rs1077667 genotype in myeloid 

dendritic cells (CD11c+). Indeed, the mean percentage of LIGHT positive cells in homozygous 

individuals for the MS risk allele (CC) was significantly higher compared to individuals with other 

genotypes (CT+TT) (Student’s t-test, p= 0.02), (figure 13 A).  

The association was maintained (Student’s t-test, p=0.035) when we extended flow cytometry 

analysis in this cell population (CD11c+) to additional controls, leading to a total of 37 healthy 

individuals (18 CC, 15 CT, 4 TT) (figure 13 B).  
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Figure 13: Mean percentage (+/- Standard Error, SE)  of LIGHT positive cells detected by flow cytometry in CD4+ T 

cells, CD8+ T cells, myeloid dendritic cells CD11c+, monocytes (CD14+), NK cells (56dim/16bright, 56-/16bright, 

56dim/16-), and B cells (CD19+), in blood from 20 healthy controls stratified according to the rs1077667 genotype (CC 

vs CT+TT) (A). Percentage of LIGHT positive myeloid dendritic cells (CD11c+) of 37 individuals stratified according 

to the rs1077667 genotype (CC vs CT+TT). Each dot represents an individual, the lines in the graph represent the mean 

and standard deviation (B). 
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To choose the best in vitro model of dendritic cells to replicate the data observed ex-vivo from blood, 

we compared LIGHT expression in five different monocyte-derived dendritic cell (MDDC) 

populations, obtained by culturing monocytes from 5 healthy donors for 5 days with GM-CSF+IL-4, 

or GM-CSF+IFNβ, or IL-3 alone, or IL-3+IFNβ, or GM-CSF+IL-15 (figure 14). 

 

 

Figure 14: Mean percentage (+SE) of LIGHT positive immature (iMDDC) and mature (mMDDC, LPS-activated) 

monocyte-derived DC (MDDC) obtained by culturing monocytes with GM-CSF+IL-4, GM-CSF+IFNβ, IL-3, IL-3+IFN 

β, GM-CSF+IL-15 detected by flow cytometry, from 5 healthy donors. 

 

Then, surface expression of LIGHT was analyzed by flow cytometry in these MDDC cultured for 2 

days in the presence (activated/mature MDCC) or absence (resting/immature MDCC) of LPS. Results 

showed that LIGHT expression was relatively weak in all types of immature MDDC and tended to 

be upregulated in mature MDDC, particularly in MDDC obtained with GM-CSF+IL-15 (Student’s t-

test p= 0.04) or GM-CSF+IFNβ (Student’s t-test p=0.037) where the upregulation was statistically 

significant (figure 14). 

Then, we selected the MDDC population showing the highest percentage of LIGHT positive cells, 

which was that obtained by culture with GM-CSF+IL-15 (MDDCIL15), and we increased the sample 

set to a total of 22 healthy controls with different genotypes for the rs1077667 C/T variant (12 CC, 9 

CT, 1 TT). This analysis showed that individuals carrying the MS risk genotype (CC) had a higher 

percentage of LIGHT positive cells compared to the other individuals (CC+CT), with a statistically 

significant difference in mature MDDCIL15 cells (Mann-Whitney test, p=0.04) (figure 15).  
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Figure 15: Mean percentage (+SE) of LIGHT positive immature (iMDDC) and mature (mMDDC, LPS-activated), 

monocyte-derived DC (MDDC) obtained by culturing monocytes with GM-CSF+IL-15 from 22 healthy donors (12 CC, 

9 CT, 1 TT), (detected by flow cytometry) stratified according to the rs1077667 genotype. 

 

Since LIGHT can be produced in soluble form, we also analyzed LIGHT protein released in the 

culture supernatants of the immature and mature MDDCIL15 from the set of 22 healthy donors and 

compared it with the LIGHT surface expression. Results confirmed that LIGHT surface expression 

was significantly higher in mature than in immature MDDCIL15 (paired Student’s T-test p=0.0002) 

(figure 16 A). By contrast, soluble LIGHT levels displayed an opposite behavior since high levels 

were detected in the supernatants of immature MDDCIL15 and they were down-modulated in the 

mature counterpart (paired Student’s T-test p=0.007) (figure 16 B). This modulation of LIGHT 

surface and soluble expressions upon MDDCIL15 maturation was not influenced by the rs1077667 

intronic variant, since no significant differences have been observed according to the genotype of 

rs1077667 the intronic variant (data not shown). 
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Figure 16: Mean percentage (+SE) of LIGHT positive immature (iMDDC) and mature (mMDDC, LPS-activated), 

monocyte-derived DC (MDDC) (detected by flow cytometry) (A) and soluble LIGHT (detected by ELISA) (B) obtained 

by culturing monocytes with GM-CSF+IL-15 from 22 healthy donors. 

 

Finally, we evaluated the production of different cytokines (IL-6, TNFα, IL-10, IL-23) in the 

supernatants of mature MDC cells obtained with GM-CSF+IL-15 (N=22: 12 CC, 9 CT, 1 TT) but no 

significant differences have been observed according to the genotype of the intronic variant.  

 

4.3 Discussion 

 

The genetic association between TNFSF14 locus and MS was reported in IMSGC GWAS in 2011 

(Sawcer et al., 2011), and subsequently confirmed in international genomic studies (Beecham et al., 

2013; International et al., 2017). 

Through a massive sequencing and a fine mapping approach in the Italian population, we were able 

to identify the rs1077667 SNP located in intron 1 of the TNFSF14 gene, as the primarily MS 

associated variant at the TNFSF14 locus. The intronic SNP was identified as the primarily associated 

variant in this region after a fine mapping which has taken advantage of the resequencing of the region 

performed in a large cohort of Italian patients and controls. According to computationally integrated 

ChIP-seq data using a Hidden Markov Model (HMM) (36) by UCSC genome browser, the rs1077667 

SNP is located in a 2600 bp region showing an enrichment of the H3K4Me3 histone mark and 

identified as active promoter, suggesting a regulative role of the SNP in TNFSF14 RNA expression. 

This hypothesis is supported by cis-eQTL data from different databases, showing that carriers of MS 

risk allele have a lower TNFSF14 RNA expression in EBV-transformed lymphoblastoid cell lines 

(Geuvadis, Bioportal, Gtex), in PBMCs (Gtex) and whole blood (Blood eQTL browser). These data 

are consistent with the imbalance against the risk allele observed in heterozygous individuals in EBV-

transformed lymphoblastoid cell lines (Geuvadis). We confirmed these data by RT-PCR expression 
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analysis on PBMC of 84 Italian MS and 80 healthy controls, in which we tested the expression of 

both TNFSF14 isoforms (full length and ΔTM). We observed that both patients and controls with risk 

genotype (CC) produced lower levels of both TNFSF14 isoforms than the carriers of the other 

genotypes. This downmodulation was reported for the first time at the RNA level, and is consistent 

with the results previously reported at LIGHT protein level in the serum (Malmeström et al., 2013). 

Moreover, we observed that patients were minor producers compared to controls for both isoforms 

independently of the TNFSF14 genotype. A similar trend was observed on smaller sample sets 

without any analysis of TNFSF14 genotype (Jernås et al., 2013; Romme Christensen et al., 2013). 

In silico predictions on TRANSFAC (Matys et al., 2006) and MatInspector (Cartharius et al., 2005) 

suggest that rs1077667 variant can modify the binding of the Aryl Hydrocarbon Receptor (AhR) 

transcription factor. Particularly, the consensus of this transcription factor is predicted only in the 

presence for the MS risk allele. AhR was initially discovered and well characterized as a transcription 

factor responsible for the activation of genes encoding different enzymes involved in the metabolism 

of xenobiotics (Vogel et al., 2014). Further studies indicated that activation of AhR plays different 

roles also in other cellular functions, including the regulation of the immune system (Singh et al., 

2007), such as in the differentiation of T-lymphocytes, in particular regulatory T cells and T helper 

17 (Th 17) (Kimura et al., 2008). The involvement of AhR transcription factor in the differentiation 

of Th 17 lymphocytes is particularly intriguingly since the expansion of T helper lymphocytes (Th 

17) in peripheral blood is associated with the active phase of multiple sclerosis (MS) (Durelli et al., 

2009). 

Inflammation is one of the key pathogenic mechanisms in multiple sclerosis, at least in the early 

stages (Frischer et al., 2009). A downmodulation of gene expression in peripheral blood of MS 

patients was reported for genes involved in regulation of NF-kB pathway, such as NR4A2 which 

presents a key role in protecting neurons from inflammation induced neurotoxicity mediated by NF-

kB pathway signalling) (Navone et al., 2014). LIGHT involvement in NF-kB pathway activation is 

well known, and our findings about LIGHT expression levels on peripheral blood parallels what 

reported for NR4A2, so we can speculate that TNFSF14 can play a similar role. LIGHT, through the 

link with LTβR, in particular contexts is able to induce cell death due to the recruitment of TRAF 3 

and the activation of caspases (Granger and Rickert, 2003). Furthermore Shui et al., in 2011, 

highlighted a dual role of LIGHT receptor HVEM: the interaction between LIGHT and HVEM has a 

costimulatory effect, on T cell activation, while the interaction between HVEM and BTLA has an 

opposite function, leading to inhibition of the activation of T lymphocytes (Shui et al., 2011). 

Altogether, these data suggest that an imbalance in the modulation of LIGHT production may result 

in a predisposition to the development of inflammatory conditions and neuropathy. 
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The key role of LIGHT in determining MS pathogenesis is clear in MS murine model, experimental 

autoimmune encephalomyelitis (EAE). In fact, LIGHT-deficient mice developed severe EAE 

resulting in an atypically high mortality rate (Maña et al., 2013) . The same authors demonstrated that 

in EAE mice LIGHT expression was crucially involved in controlling activated 

macrophages/microglia during autoimmune CNS inflammation (Maña et al., 2013).  

LIGHT has also a known crucial role in the maturation of dendritic cells by cooperating with CD154 

(CD40 ligand) (Morel et al., 2001) and interacting with licensed natural killer cells (Holmes et al., 

2014). Interestingly, we showed that, LIGHT is expressed in peripheral blood myeloid dendritic cells 

(CD11c+) and the MS risk allele of rs1077667 is associated with an increased percentage of LIGHT 

positive cells. These ex-vivo results were confirmed using MDDC differentiated in vitro by culturing 

monocytes in different cytokine milieus. This analysis showed that immature MDDC express low 

levels of LIGHT which are up-modulated in mature MDDM, particularly in MDDCIL15. Moreover, 

an expanded analysis of MDDCIL15 showed that the MS risk allele is associated with increased 

percentages of LIGHT positive cells in mature MDDC. 

Our data do not confirm those from a previous work showing that immature MDDC differentiated 

with GM-CSF+IL-4 express high levels of LIGHT, which are downmodulated upon treatment with 

LPS (Tamada et al., 2000).  The inconsistency with our data might be ascribed to technical differences 

since, in that work, LIGHT was detected by indirect immunofluorescence using a polyclonal rabbit 

antibody raised against a small synthetic peptide derived from LIGHT conjugated to KLH. By 

contrast, we used an anti-LIGHT mAb detected by direct immunofluorescence, which would increase 

the analysis specificity (Tamada et al., 2000).  

The association detected in DC between the MS risk allele and increased percentages of surface 

LIGHT positive cells is in apparent contrast with our observation that this allele is associated with 

decreased LIGHT mRNA levels in peripheral blood cells (whole blood or PBMCs) and EBV-derived 

B cell lines. In peripheral blood cells, the LIGHT mRNA levels may be substantially influenced by 

changes in the distribution of the different white cell types, which basally express different amounts 

of LIGHT. For instance, T cells express high levels of LIGHT, whereas B cells and monocytes 

express low levels, so that unbalance between these cell types would profoundly influence the overall 

blood LIGHT expression. By contrast, changes of LIGHT expression in myeloid dendritic cells, 

which represent a small minority of white blood cells (1-3%), would have a minimal impact on the 

overall blood LIGHT expression. However, this explanation does not apply to EBV-derived B cell 

lines, in which the risk allele might influence LIGHT mRNA expression. At this light, it is intriguing 

that we detected a minimal percentage of peripheral blood B cells expressing LIGHT, but this 

percentage was significantly lower in subjects carrying the risk allele than in the other subjects (0.3± 
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0.3% vs 0.6±0.4%, p=0.033), which is in line with the EBV-derived B cell lines RNA data. Notably, 

our analyses of eQTL databases reinforced the hypothesis that the eQTL effect of rs1077667 on 

TNFSF14 is tissue-dependent, since in some tissues we detected an effect size displaying an opposite 

direction of effect than that displayed by PBMCs. However, no data specifically focused on dendritic 

cells were available in these eQTL databases. 

Since LIGHT can be produced in soluble form, we also analyzed LIGHT protein released in the 

culture supernatants of MDDCIL15 and found an inverse relationship between the soluble and surface 

form since immature MDDCIL15 expressed high levels of the former and low levels of the latter, which 

was specular as compared to mature DC. However, no significant association was found between 

production of soluble LIGHT and the risk allele. These data are referred to the production of soluble 

LIGHT in DC and, thus, are not comparable with the significant association reported by Malmeström 

(Malmeström et al., 2013) between rs107667 genotypes and serum levels of LIGHT that may reflect 

the activity of multiple cell and tissue types, with only a minor contribution of dendritic cells.  

The involvement of DCs in MS has been well established in humans and in mice. In particular, 

Serafini et al. (Serafini et al., 2006) detected both immature and mature DCs in the meninges and 

parenchymal lesions of patients with primary and secondary progressive MS. MDDC from the 

cerebral spinal fluid of patients with MS have been found to display a mature phenotype  since they 

express high levels of HLA-DR, CD80, CD86 and CD40, and produce high levels of the pro-

inflammatory cytokine IL-6. (Pashenkov et al., 2001) 

LIGHT has a crucial role in the maturation of DC by cooperating with CD154 (CD40 ligand) (Morel 

et al., 2001) and interacting with licensed natural killer cells (Holmes et al., 2014). Interestingly, a 

previous work showed that LIGHT expressed by DC supports IFNγ production by T cells (Tamada 

et al., 2000), which is relevant since IFNγ plays a key role in the cell mediated autoimmune response 

of MS. This fits with our data highlighting the role of LIGHT in MDDCIL15, which have been reported 

to be particularly efficient in supporting cytotoxic T lymphocytes (CTLs) playing a key role in cell-

mediated autoimmunity of MS (Banchereau and Palucka, 2005).  

In conclusion, our work suggests that an altered TNFSF14 expression in immune cells driven by an 

intronic variant may contribute to MS pathogenesis. Particularly, the MS associated variant seems to 

be associated with a low TNFSF14 RNA expression in a mixed population of PBMCs and with an 

increased percentage of LIGHT positive cells in DC, which may influence the cell-mediated 

autoimmunity in MS. 
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5. Chapter 3. Rare variants analysis 

 

5.1 Introduction: state of art of the project  

 

Despite these last discoveries, the mechanisms at the basis of MS susceptibility are not completely 

understood, and for this reason the research is still involved in the identification of new MS 

susceptibility genetic markers, including rare variants, which have not been so deeply studied so far. 

A recent paper (IMSGC, 2018) suggest that part of the missing heritability may be due to rare variants.  

The second aim of the project was to identify rare genetic variants involved in MS genetic 

susceptibility, in particular in those genes already known to be associated to the disease.  

The genes and genetic regions that were analysed for rare variants were selected thanks to our 

participation to the two international efforts: IMSGC Genome Wide Association Study and 

Immunochip project, as previously described. The regions associated in both the International and in 

the Italian population, were selected for Next Generation sequencing on the Italian sample set, 

performed on pools of individuals.  

One of the reasons for which rare variants have been poorly investigated in complex diseases is the 

need of very large sample sets to achieve sufficient power to perform association analysis on single 

variants. Consequently, we tested the effect of rare (MAF < 1%) and at low frequency (MAF 1-5%) 

variants as burden test comparing the total numbers of alternative and reference alleles in patients and 

controls. The rationale of this analysis, which tests the cumulative effect of rare variants in the 

susceptibility to the disease, arises from the fact that if a gene is involved in disease pathogenesis, it 

is possible that it may be affected by rare mutations, even different, in different patients. The analysis 

of the cumulative effect of these variants requires much smaller sample sizes than the ones needed in 

order to investigate the effect of the single rare variants. 

The analysis was performed in two phases: 

1) Discovery phase: we selected a list of 90 regions for a total of 1.9 Mb associated in both the 

International and in the Italian population: 17 regions containing 27 genes (including introns, exons, 

5’UTR and 3’UTR) and 73 genes (only coding and 5’UTR, 3’UTR). We sequenced 600 MS patients 

and 408 healthy controls grouped in pools of 12 individuals each. Patients were selected with the 

attribution of a “risk score” specifically designed on the sequenced regions, which allowed to 

associate to each patient a score proportional to its genetic risk and so to identify the patients with the 

highest number of risk alleles for polymorphism associated to the disease, present in the regions 

selected for the sequencing. The risk score had been calculated based on the model proposed from 

De Jager et al (De Jager et al., 2009a). Instead controls were individuated through a matching phase 
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with patients through statistical analysis that allowed to match to each single patient one genetically 

similar control, with the Principal Component Analysis (PCA, Principal Component Analysis). 

2) Replication phase: The genes that showed a significant burden were sequenced on a second 

independent sample set (504 MS and 504 healthy controls), pooled in groups of 12 individuals and 

following the same pipeline used for the discovery phase. The collection of MS patients was unbiased, 

not influenced by the genetic risk score. These analyses were performed thanks to the contribution of 

the laboratory of Human Genetics of Neurological Disorders at San Raffaele Hospital headed by 

professor Filippo Martinelli Boneschi and Federica Esposito and of Institute of biomedical 

technologies at CNR institute headed by professor Gianluca De Bellis.  

It was necessary to conduct appropriate quality controls for the methodology used (sequencing 

analysis in pools of individuals) in order to avoid incorrect allele frequencies and false positives. The 

600 MS patients in the first sequencing experiment have been previously individually genotyped 

either with the Illumina 660Q chip or with the Immunochip platform and AF comparison with these 

platforms demonstrated a high correlation with AF in the pools (R^2=0.987). Similarly, we observed 

an high correlation also between pooled AF and frequencies reported in public databases (1000 

genomes_EUR R2=0.980, ExAC R2=0.970) (Anand et al., 2016). This comparison highlighted that 

the NGS pooled method can estimate the allelic frequencies in patients and controls in an accurate 

way, suitable for the subsequent analysis.  

In order to remove false variants due to possible sequencing errors, we defined a threshold on the 

observed frequency of the alternative allele within the single pool (0.026 for the discovery, 0.024 for 

the replication), empirically determined as described in Anand et al.,  and we recalculated the AF 

applying this threshold (Anand et al., 2016). The number of alternative reads present in each pool 

was considered, for the calculation of the allelic frequency, only if the frequency of the alternative 

allele exceeded the established threshold in the same pool.  

With this analysis we achieved two main goals: 

1) we performed a burden test on rare and low frequency variants on the selected genes. 

2) for some genes that were fully sequenced also in non coding regions (such as TNFSF14 and 

TNFRSF14), frequency of common variants was used as first-pass fine mapping of the region (as 

described in chapters 2 and 4).  
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5.2 Discovery phase results  

 

Figure 17: Description of the filters used for the burden test analysis in the discovery phase. Filters 1,2, 3,4,5, and 6 were 

used for coding variants; filter7 for noncoding variants. Filters 8 and 9 contain all rare variants excluding those with a 

suggested functional role, and they were used as negative controls.  

 

We sequenced 84 pools (12 individuals per pool) on Illumina GaIIx sequencer producing 2×85 bp 

read lengths and we analysed our data by an ad-hoc bioinformatics pipeline (as described in materials 

and methods). One of the pools did not pass quality controls, thus it was re-sequenced without success 

and was discarded from further analysis. We generated 13.96 million reads per pool on average, the 

mean depth was 351.9x with more than 85% of the target regions covered by NGS reads in each pool. 

On average, 75% of the target regions were covered at least 50x and 69% were covered at least 100x. 

From the initial sequencing with NGS technology we obtained 27,218 variants (of these 54.93% were 

novel variants not found in public database and 98.38% of them are rare variants with AF<0.01). 

Variants were then filtered for quality controls, retaining 16,203 variants.  

We then performed 3 groups of functional based filters, for a total of 9 filters: coding variants filters 

(from 1 to 6), regulatory variants filter (7), negative control filters (8-9) (as reported in figure 17). We 

filtered the variants on the basis of  their  frequency (MAF<0.05, MAF<0.01), on  their  effect on the 
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protein sequence (missense, nonsense, splicing, synonymous), on the prediction of the effect of 

missense variations that we tested with 6 prediction programs (SIFT; PolyPhen2; MutationTaster; 

MutationAssessor; LRT; FATHMM), and, for non coding variants with the annotation based on 

TFBS, TargetScans, ENCODE. In particular in the group of coding variants (filters 1-6), we identified 

988 variants for filter 1 (synonymous, missense, nonsense, splicing variants with a MAF<0.01); from 

this filter we derived the filter 3 (missense, nonsense, splicing variants with a MAF<0.01) in which 

we found 622 variants and the filter 5 (nonsense and missense variants predicted damaging by at least 

two prediction programs with a MAF<0.01) with 379 variants. For filter 2 (missense, nonsense, 

splicing variants with a MAF<0.5), we identified 649 variants, which become 393 in the derived filter 

4 (nonsense and missense variants with a MAF<0.05 predicted damaging by at least two prediction 

programs). We also created in this category a filter for disruptive variants (filter 6) which included 

nonsense and splicing variants for a total of 17 variants (8 of which located in EFCAB13 gene).  

Furthermore, we created a for variants with a possible regulatory role with a MAF <0.01 (filter 7) and 

we found 1922 variants. Finally, we created two negative control filters: filter 8 as control of filters 

for coding variants with 11,795 variants and filter 9 as control of filter 7, with 9,595 variants.  

For each gene, the cumulative frequency of the variants selected from each of the applied filters, was 

compared between MS patient and control pools with three different statistical tools for burden test 

(WSS, C-ALPHA and Fisher Hybrid Test). The results of burden test identified 17 genes, showing a 

significant difference in the number of rare or low frequency variants between patients and controls 

in at last one of the 7 filters with at last one of the three statistical tests used for the analysis (figures 

18-25). In particular, the highest signal was observed for a gene on chromosome 17, EFCAB13 (EF-

Hand Calcium Binding Domain 13) (p<1.0e-4), coding for a protein of unknown function. In fact, 

this gene showed a statistically significant burden test for all the 6 filters which contain variants that 

alter the coding sequence. In particular, EFCAB13 showed 12 nonsynonymous, 5 stop-gain, 3 splicing 

and 10 synonymous variants. It was the gene with the highest number of variants with a probable 

severe effect on protein function (“disruptive” variants) accounting for 8 variants (5 stop-gain and 3 

splicing variants). Seen these results, these 17 genes were selected for the replication phase in an 

independent cohort of MS patients and controls. 
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Figure 18: Results of Burden test after filter 1 (synonymous, missense, nonsense, splicing variants with a MAF<0.01). 

The bar-plots show the –log10 of the p-value obtained with the 3 tests. The red line corresponds to p=0.05 
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Figure 19: Results of Burden test after filter 2 (missense, nonsense, splicing variants with a MAF<0.5). The bar-plots 

show the –log10 of the p-value obtained with the 3 tests. The red line corresponds to p=0.05. 

 

 

Figure 20: Results of Burden test after filter 3 (missense, nonsense, splicing variants with a MAF<0.01). The bar-plots 

show the –log10 of the p-value obtained with the 3 tests. The red line corresponds to p=0.05. 
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Figure 21: Results of Burden test after filter 4 (nonsense and missense variants with a MAF<0.05 predicted damaging by 

at least two predicted programs). The bar-plots show the –log10 of the p-value obtained with the 3 tests. The red line 

corresponds to p=0.05 
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Figure 22: Results of Burden test after filter 5 (nonsense and missense variants predicted damaging by at least two 

predicted programs with a MAF<0.01). The bar-plots show the –log10 of the p-value obtained with the 3 tests. The red 

line corresponds to p=0.05 
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Figure 23: Results of Burden test after filter 7 (variants with a possible regulatory role with a MAF <0.01). The bar-plots 

show the –log10 of the p-value obtained with the 3 tests. The red line corresponds to p=0.05 

 

 

Figure 24: Results of Burden test after filter 8. The bar-plots show the –log10 of the p-value obtained with the 3 tests. 

The red line corresponds to p=0.05 
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Figure 25: Results of Burden test after filter 9. The bar-plots show the –log10 of the p-value obtained with the 3 tests. 

The red line corresponds to p=0.05. 
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5.3 Replication phase results  

 

 

Figure 26: Description of the filters used for the burden test analysis in the replication phase. Filters 1,2, 3,4,5, and 6 

were used for coding variants; filter 7 for noncoding variants.  

 

We performed NGS target resequencing for the coding regions of the 17 genes selected from the 

discovery phase, in 504 MS patients and 504 controls pooled in group of 12 individuals, as in the 

discovery phase. Paired end multiplexed sequencing was performed on the Illumina NextSeq 500 

(Illumina San Diego) platform, producing 2x150 bp read length and we analysed our data like in the 

discovery phase (as described in materials and methods). The MS cohort was selected regardless the 

genetic risk score of common susceptibility variants and was enriched in patients with positive family 

history of MS: in particular, for the Novara patients 108 were familial MS and 144 non-familial 

patients.  Among the non-familial MS cases and the healthy controls, we selected  individuals which 

have previously been analyzed with  SNP genotyping  platforms (Immunochip, Replication chip) 

(Beecham et al., 2013) (IMSGC, 2017) in order to avail of genotyping data at single individual level 

that will be used, during the quality control analysis, to compare the pooled allelic frequencies with 
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the real ones. The mean coverage obtained in total was 98,87%, with a total target of 430,870 bps. 

From the NGS analysis we obtained 780 variants, and after quality controls (call quality>100, 

filter=pass), we obtained 638 variants: 555 of them with MAF <0.05 (152 nonsynonymous, 4 

nonsense, 2 splicing, 85 synonymous, 118 UTR3’/5’, 172 intronic, 17 upstream+downstream, 2 

ncRNA_intronic, 3 intergenic).  

The significant data observed in the discovery phase was replicated after meta-analysis of the two 

cohorts (discovery and replication) for TUBD1 (Tubulin Delta 1) and MYC (MYC Proto-Oncogene) 

for filters involving coding variants, for NPEPPS (Aminopeptidase Puromycin Sensitive) for the filter 

involving regulatory variants and for EFCAB13 genes if we consider the “disruptive” filter (filter 6: 

stop-gain, stop-loss, splicing variants) (Table 4 and figures 27-28). In particular, for MYC filters 2 

and 4 (both containing low-frequency missense variants) were significant both in the discovery (with 

c-alpha test) and in the replication and meta-analysis cohorts (with WSS test); for TUBD1 gene all 

filters containing rare or low frequency missense variants were significant after meta-analysis. 

 

 

Table 4: Meta-analysis Between Discovery and Replication cohorts which displays the results for the 3 genes that showed 

a significant burden with at least 1 of the filters after meta-analysis. In particular, this analysis used 2 tests: Weighted-

Sum Statistic, and C-alpha. 

* Filter 2: MAF<0.05, Missense, nonsense, splicing; Filter 4: MAF<0.05, nonsense and damaging missense; Filter 3: 

MAF<0.01, Missense, nonsense, splicing; Filter 5: MAF<0.01, nonsense and damaging missense; Filter 7: variants with 

a possible regulatory role with a MAF <0.01; Disruptive variants filter: stop-gain, stop-loss, splicing variants. 

 

p-value Discovery p-value Replication p-value Meta-analysis

WSS 0.5549 0.0043 0.0392

C-Alpha 0.0101 0.901 0.4411

WSS 0.0583 0.0259 0.0065

C-Alpha 0.0121 0.8944 0.2389

WSS 0.0919 0.1022 0.0331

C-Alpha 0.143 0,2403 0.1051

WSS 0.2311 0.0343 0,0353

C-Alpha 0.5059 0.2403 0.5448

WSS 0.0919 0.1022 0.0331

C-Alpha 0.143 0.2403 0.1051

WSS 0.2311 0.0343 0.0353

C-Alpha 0.5059 0.2403 0.3127

WSS 0.0213 0.4152 0.0565

C-Alpha 0.0039 0.2553 0.0095

WSS 0.0001 0.3292 0.0016

C-Alpha 0.0023 0.0062 8.9e-5
EFCAB13 Disruptive variants filter*

Cohort

MYC

Filter 2*

Filter 4*

TUBD1

Filter 2*

Filter 4*

Filter 3*

Filter 5*

NPEPPS Filter 7*
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Figure 27: Meta-analysis between discovery and replication cohorts: results for the 3 of 4 genes that showed a significant 

burden with at least 1 of the filters after meta-analysis. The bar-plots show the –log10 of the p-value obtained with 2 tests 

(Weighted-Sum Statistic, blue and C-alpha, orange). The red line corresponds to p=0.05. 

 

 

Figure 28: Meta-analysis between discovery and replication cohorts: results for the disruptive variants in EFCAB13. The 

red line corresponds to p=0.05. 

 

Again, the strongest result was observed for EFCAB13, which is also the more enriched in disruptive 

variants in both sequencing experiments (discovery and replication): in fact, there is an overlap of 6 

disruptive variants in EFCAB13 between the discovery and the replication: 5 stop-gain variants, 1 

splice acceptor variant. In addition to these 6 variants, in the discovery we found 2 additional 

disruptive variants in EFCAB13: 1 splice acceptor and 1 splice donor variant (figure 29). Among the 

two NGS experiments, 4 variants (SNV 2, 4, 5, 7) showed a similar trend in the distribution of allele 

counts between MS patients and controls (figure 30).   
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Figure 29: Number of disruptive variants (stopgain, stoploss, splicing) in discovery and replication cohorts. 

 

 

 

 

Figure 30: Distribution of minor allele counts for disruptive variants in EFCAB13 in discovery and replication cohorts. 
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5.4 Discussion and conclusions 

 

In these years Multiple Sclerosis research is focused on the research of susceptibility genes and 

variants. In particular the discovery of rare variants associated with Multiple Sclerosis is still 

controversial, in fact it is difficult to identify these signals on one side because of the need of very 

huge cohorts, on the other side because it is difficult to discriminate these rare variants with the 

available techniques. Therefore, the research of rare susceptibility variants in MS susceptibility is still 

not so deeply studied. Recently, a paper published from International Multiple Sclerosis Genetics 

Consortium on Cell journal (IMSGC, 2018), analyzing 120,991 low-frequency non-synonymous 

coding variants in 68,379 cases and controls, identified 7 low-frequency variants in 6 genes outside 

the HLA region. Two of these variants were in regions identified by MS GWAS and showed linkage 

disequilibrium with the common-variant associations previously reported (Sawcer et al., 2011), while 

the remaining signals were novel and did not show linkage disequilibrium to common variant 

association signals in GWASs. This work concludes that nearly 5% of heritability is explained by 

coding low-frequency variants and that more low-frequency and rare-variant associations remain to 

be discovered and it will be necessary larger sample sizes to increase statistical power. The laboratory 

of Human Genetic of Health Science Department is involved in the research of rare genetic variants 

involved in MS susceptibility using cumulative evaluation of the different distribution in MS patients 

and healthy controls of all the rare and low frequency variants in genes mapping in MS associated 

regions (Burden Test analysis). This approach was performed through a Next Generation Sequencing 

(NGS) analysis on a high number of pooled patients and controls and aimed to identify possible genes 

and so possible variants involved in the MS susceptibility. The Next Generation Sequencing on pools 

of individuals technique is a method that has been developed in the recent years to analyze extended 

portion of the genome on an elevated number of individuals with reduced costs compared to the 

classic analysis of sequencing on single individuals (Christian Schlötter, 2014). For example, 

different studies of genic associations and Burden Test analysis with Next generation sequencing on 

pools had been effectuated: one study on Rheumatoid Arthritis by Diogo et al (Dorothée Diogo et al, 

2013) in which 10 pools of patients and 13 of healthy controls (each of 50 individuals) were used.  

Moreover, it is possible to account also the study of Yohei Kirino et al (Yohei Kirino et al, 2013) on 

Behçet disease and the study of Hongsheng Gui et al (Hongsheng Gui et al, 2014) on the Hirschsprung 

disease. However, pooling of DNA creates new problems and challenges for accurate variant call and 

allele frequency (AF) estimation. In particular, sequencing errors confound with the alleles present at 

low frequency in the pools possibly giving rise to false positive variants. Thus, it is necessary to 

remove sequencing errors during the analysis phase to obtain an accurate AF estimation as described 
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by Anand S. (Anand S. et al, 2016). During our discovery phase, a specific pipeline was developed 

and it was decided, after quality controls and quality analysis (comparison of pooled sequencing data 

with single individual level genotype data), to apply a quality filter (Quality filter ≥100) and a 

threshold (2.6%) on the alternative (ALT) allele frequency observed in the single pools: this value of 

threshold allowed to eliminate from data the possible variants due to artificial problem of the NGS 

technique, and to maintain the variants that can be with more probability true. In the discovery phase 

we examined the data from the Burden Test analysis with 9 different filters with the use of three 

statistical programs: in particular 2 filters has been used as a negative control filter to verify if the 

significant burden observed in the discovery filters was actually due to the effect of functional 

variations or to a general unbalance of all rare variants of the region between patients and controls. 

In total 17 genes resulted statistically significant and in particular EFCAB13, MYC, SKAP2, TGFBR3 

appears in more than one filter for variants selection. Seen the results of the Discovery phase, we 

selected these genes for the Replication in the new cohort of patients and controls. In the Replication 

phase we found 3 genes (MYC, TUBD1 and EFCAB13) that showed a significant burden in at least 

one of the 6 filters for coding variants with at least one of the statistic programs. The meta-analysis 

between the two studies confirmed a significant burden with one of the statistical test for MYC and 

TUBD1 genes for filters involving coding variants, NPEPPS for the filter involving regulatory 

variants and for EFCAB13 for the “disruptive” filter (filter 6: stop-gain, stop-loss, splicing variants). 

In particular EFCAB13 seemed to show the most promising result. It was the only gene resulted to 

have a statistically significant p-value with 2 statistic test (C-ALPHA and WSS) both in discovery 

and replication study and in meta-analysis among the two data sets. Among the two studies, it is the 

gene most enriched in disruptive variants (totaling 8 between discovery and replication). Six of these 

variants were observed both in discovery and in replication subset, and among them, 4 variants (3 

stop-gained and 1 splice acceptor) showed a concordant trend for minor allele count between patients 

and controls. This gene encodes for two main transcripts: a transcript variant A of 117,351 bp 

(NM_152347) which leads to the formation of a protein of 973 aa, and a transcript variant B of 

106,750 bp (NM_001195192) lacking 3 of the 25 exons, which leads to the formation of a protein of 

784 aa. The function of EFCAB13 protein is still unknown, however this protein has 6 different EF-

hand domains, that are helix-loop-helix structural domains that usually bind calcium ions.  The 

observed 8 disruptive variants could impact the gene function at various levels: 5 stop-gained (a 

variation falls into a EF-hand 2 domain (524-559 aa) which is a structural domain involved in calcium 

ions binding) some of them isoform-specific (2/5 only for A isoform), two splicing acceptor variants 

(one not present in public databases) and one splicing donor. EFCAB13 is a not deeply investigated 

gene, so for the future we will plan to study in vitro the function of these variants on RNA expression 
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and protein production, in order to find a possible explanation about the role of this gene in MS 

pathogenesis.   
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6. Chapter 4: Genomic and functional analysis on TNFSF14-TNFRSF14 

pathways 

 

6.1 Introduction 

 

Until now, our effort allowed us to identify the primary associated variant in TNFSF14 gene in the 

susceptibility to Multiple Sclerosis. Furthermore, we propose a possible functional role of this variant 

in the gene regulation and protein production. Our second task was to pose our attention on possible 

interactors of this gene. TNFSF14 gene encodes for LIGHT, a protein that binds 2 different receptors: 

HVEM (herpes virus entry mediator) on T lymphocytes and natural killer cells and LTβR 

(lymphotoxinβ receptor) on stromal cells and monocytes. In previous international studies, different 

SNPs in the region of the gene that encodes for HVEM (TNFRSF14 gene) were reported as associated 

to MS, in details: rs4648356 in IMSGC-WTCCC2 GWAS (Sawcer et al., 2011) (p = 1E-14, OR= 

1.14), rs3748817 in the Immunochip project (IC) (Beecham et al., 2013) (p =1.33E-12, OR=1.14)  

and rs6670198  in  MS replication chip (MS chip, the follow-up of the Immunochip project and the 

IMSGC-WTCCC2 GWAS) (IMSGC, 2017) (p=2,09E-13, OR= 1.15). These variants map in 

neighboring genes (MMEL1 and FAM213B) within a region with high LD (r2>0.8, chr1:2473821-

2711009, SNAP tool Broad institute, data from 1000 genomes) including the TNFRSF14 gene. These 

variants were associated also in the Italian population (IC: 961 MS, 962 HC; rs3748817: p=1.73E-

03, OR= 1.28; MS chip: 941 MS, 950 HC, rs6670198: p=0.001869, OR=1.27). Paralleling what 

observed for TNFRSF14 locus, other MS associated variants fall in genetic regions containing genes 

coding for other interactors of TNFSF14/TNFRSF14 or other protein part of TNFSF14 pathway, such 

as LTβR and STAT3. Although these genes are confirmed MS-associated loci, the genetic variants 

primarily responsible of the association and the disease molecular mechanisms controlled by these 

genes are unknown. As reported in literature, it is known that immunological response plays a key 

role in MS pathogenesis and given the role of TNFSF14 in immunological process, it is possible that 

also the molecules that interact with LIGHT could take part in the MS etiopathogenesis. The receptor 

of LIGHT, HVEM plays important roles in the immune system such as T-cell co-stimulation, 

regulation of dendritic cells (DC) homeostasis, autoimmune-mediated inflammatory responses, as 

well as host defense against pathogens. Based on these assumptions, the second aim of our project 

was to focus our attention on TNFRSF14 locus since the product of these gene (HVEM) is known the 

be the main interactor of LIGHT. We wanted to better investigate the association signals in this region 
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in order to find the primary associated variant through a sequencing and a fine-mapping approach, 

following the same strategy previously applied for the TNFSF14 locus.  

Parallel to this, we aimed to expand the analysis to other possible interactors of TNFSF14 following 

different strategies: 

a) we analyzed rare variants in the genes of TNFSF14 pathway constructing a series of burden tests; 

b) we performed a gene-gene interaction analysis on couples of interacting genes including TNFSF14 

or TNFRSF14; 

c) we built a weight genetic risk score on interactors of TNFSF14 and TNFRSF14.  

 

6.2 Sequencing of TNFRSF14 region 

 

 

Figure 31: Regional association plot from resequencing data on TNFRSF14 region. 

 

The TNFRSF14 gene maps in a region characterized by high linkage disequilibrium (LD) spanning 

for about 100 kb and containing 5 genes: MMEL1, FAM213B, TNFRSF14, LOC115110 and 

LOC100133445. We sequenced the whole region of 100 kb containing TNFRSF14 gene by NGS 

rs2258734 
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method in 588 MS and 408 HC pooled in groups of 12 individuals, following the same strategy used 

for TNFSF14 gene (see materials and methods). After quality controls, we observed 491 variants in 

TNFRSF14 gene region. Among these, 64 were in the coding regions and 143 with a MAF >0.01. 

Significant association (p<0.05) was observed for 123 variations (figure 31). The best hit (rs2843402, 

p=1.23e-14, r2=1 with rs3748817, r2=0.96 with rs6670198) was an intronic variant in the MMEL1 

gene. In details, we found 141 variants in a region that includes TNFRSF14 gene and two long non-

coding genes (LOC115110 and LOC100133445) which partially overlap with it. In this region 27 

variants were statistically associated (p<0.05) and the best hit was rs2258734 (p=9.37e-08, r2=0.82 

with rs3748817), an exonic variant of the long non-coding gene LOC115110, mapping in the 

promoter of TNFRSF14.  

The next step was to perform a conditional analysis of this region in order to identify the primarily 

associated variant. To perform this analysis, we availed of 4 independent datasets (listed in table 6), 

totaling 3314 MS and 3272 healthy controls (HC) of Italian origin: IMSGC GWAS (IG), Immunochip 

(IC), MSchip (MSC), all 3 available thanks to the involvement in international IMSGC projects 

(Beecham et al., 2013; IMSGC, 2017; Sawcer et al., 2011), and OminiExpress GWAS (OE) provided 

by prof. Filippo Martinelli Boneschi and Federica Esposito group of San Raffaele Hospital (HSR).  

 

Sample set Abbreviation MS HC 

IMSGC GWAS IG 734 1250 

Immunochip IC 961 962 

MSchip MSC 938 952 

OmniExpress GWAS OE 1269 360 

Total sample set  3314 3272 

Table 6: list of data sets used for the conditional analysis on Italian population. 

 

 IC and MSC platforms have a deep coverage for the TNFRSF14 region, while the other 2 datasets 

were imputed with the “1000Genome ALL” reference panel using MACH (Li et al., 2010) and 

Minimac (Fuchsberger et al., 2015). The most associated SNPs within TNFRSF14 region were 

determined in the large international sample set, then conditional association analysis was performed 

with PLINK software (Purcell et al., 2007), using logistic regression covariated for sex. Analysis was 

performed on each sample set separately, then the 4 datasets were meta-analysed to increase statistic 
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power. There were 102 SNPs in the MSC, 154 SNPs in the IC, 253 in the IG and 108 in the OE 

platforms mapping in this region. After meta-analysis of the 4 sample sets (66 SNPs) we observed a 

strong association (p<10-7) for a cluster of variants in high LD, located mainly in MMEL1 gene and 

including rs3748817. The best associated SNP (p=1e-15) in this region in the international MSchip 

dataset was an intronic variant within MMEL1 gene (rs3748817), which was also significantly 

associated in our cohort (p=6.27e-8). After conditioning for this variant, we still observed nominal 

significance (p=0.003) for 2 intronic SNPs in MMEL1 (rs72646016, rs12138909) in complete LD 

(r2=1) that may underlie an independent signal (figure 32). 

 

Figure 32: Regional association plot from meta-analysis before (A) and after (B) the conditioning for rs3748817. 

 

Our data confirmed that association in this region is mainly driven by some marker in MMEL1 gene, 

part of a LD cluster that comprise at least 97 SNPs (among the variants reported in the public database 

1000 genomes as reported in figure 33, there are 96 SNPs with r2 > 0.8 with rs3748817). Therefore, 

the genetic association analysis alone is not able to distinguish which of them is the functional 

variation. 
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Figure 33: The LD within the TNFRSF14 region by SNAP proxy tool of Broad Institute. 

 

So, we tried to prioritize these variants using different in silico approaches and prediction tools aimed 

to identify putative effects at the expression and/or protein levels. Moreover, we performed a 

haplotype analysis on two datasets to better define the association signal in this region. 

 

6.3 Haplotype analysis on TNFRSF14 gene region. 

 

In parallel with these analysis, we conducted a haplotype analysis of TNFRSF14 gene region in order 

to find a possible risk haplotype that could be associated to the disease more than the single variants 

in this region. We performed this analysis both on MSchip (MSC) and Immunochip (IC) sample sets. 

Haplotype blocks were defined using two parallel different strategies and then we performed 

association analysis on all haplotypes showing a frequency > 0.01. For one strategy, we defined 

haplotype blocks according to Gabriel rule using Haploview software (Barrett et al., 2005). Due to 

high LD, only 1 block, was generated for both platforms. In details the program recognized 15 

haplotypes with frequency < 0.01 in IC and 6 in MSC. The second strategy was based on analysis of 

all haplotypes generated by sliding windows of 3, 4, 5 and 6 SNPs by PLINK software (Purcell et al., 

2007). Overall, 390 windows were analyzed for MSC and 602 for IC. We observed only 10 

haplotypes, in MSC subset, that retained statistical significance when Bonferroni correction was 

applied (correction for the number of SNPs in this region), and they all contain the same core of three 

SNPs. The p-value for the haplotype (p=0.0005) is more significant than those of the single variants 
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comprising it (p≥0.030). The three variants are not significant in the IC sample set, so we are not 

powered to replicate this association in IC platform. None of the variants retains significance after 

conditioning for the best SNP (rs3748817), so we can conclude that this signal is probably secondary 

to the main one. 

 

6.4 Annotation of functional elements in TNFRSF14 gene region.  

 

 

 

Figure 34: UCSC track of 97 SNPs of the TNFRSF14 LD block. The best associated SNP in MMEL1 (rs3748817) and 

in TNFRSF14 promoter (rs2258734) are displayed within a circle.  

 

We have evaluated if the 97 SNPs of the TNFRSF14 LD block fall in functionally relevant regions, 

such as coding regions, splicing sites, UTRs or promoters using the annotation software 

wANNOVAR (web ANNOVAR) (Wang et al., 2010) and the tracks in the UCSC genome browser 

(figure 34). We found that 79 of these SNPs are intronic variants, and most of them (72) map within 

MMEL1 gene. There are 5 exonic variations, all mapping in the MMEL1 gene: 4 synonymous and 

one missense variation (M518T, rs3748816, r2=0.928). This variant is predicted as benign according 

to 6 prediction algorithms (SIFT; PolyPhen2; MutationTaster; MutationAssessor; LRT; FATHMM).  
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We did not observe coding variants with a clear impact on protein function such as nonsense (stop-

gain, stop-loss), splicing variants or missense annotated as damaging. So, we rather focused on the 

possible regulative effect of these variations. 

One SNP (rs2258734) (r2=1.00 with the best signal, rs3748817) maps in the promoter of TNFRSF14 

gene and within a long non-coding RNA (LOC115110 also named as TNFRSF14-AS1) annotated as 

a transcript partially overlapping the TNFRSF14 gene. There are 2 intergenic SNPs (rs4310388, 

r2=0.928 and rs60733400, r2= 0.963) falling in a peak of high acetylation of the histone H3 

(H3K27AC mark), correlating with an open conformation of the chromatin, thus with active 

transcription. Furthermore, one intergenic SNP (rs60733400) binds several transcription factors, 

including ELF1 in Jurkat T cells (data from RegulomeDB). Several SNPs fall in CpG islands, in 

particular three intronic variants: rs9970196 (r2=0.926) mapping in the TTC34 gene, and rs4648657 

(r2=0.852) and rs4130092 (r2=0.926) both mapping in MMEL1, and two synonymous variants 

(rs4648658 (r2=0.888, A14A) and rs4648659 (r2=0.888, P7P)) in exon 2 of MMEL1 gene.  

 

6.5 SNP prioritization 

 

We performed a prioritization analysis using three tools: RegulomeDB (Boyle et al., 2012), SPOT 

(SNP Prioritization Online Tool) (Saccone et al., 2008) and Variant Ranker (Alexander et al., 2017). 

RegulomeDB is a database that annotates SNPs within known and predicted regulatory elements in 

the intergenic and promoter regions, including DNAase hypersensitivity regions, transcription factors 

binding sites (from TRANSFAC and JASPAR CORE databases), and promoter regions that have 

been biochemically characterized for transcription regulation. Source of these data include public 

datasets from GEO, the ENCODE project, and published literature. Thanks to this analysis we found 

the highest score (1f) for two intronic variants in MMEL1 gene (rs10910099, rs6684865), followed 

by 4 variants with a score of 2b (in details: intronic SNP rs10910111in MMEL1, intergenic SNP 

rs4648565, synonymous SNP rs4648659 in MMEL1, intergenic SNP rs2100574).  

SPOT is a tool based on the Genomic Information Network (GIN) method, designed to provide a 

systematic method for incorporating specific biological hypotheses into the design of a genetic 

association study. The highest score was observed for an intergenic SNP (rs897628), followed by 4 

exonic variants in MMEL1 (rs4648659, rs4648658, rs4648562, rs10797440).  

Variant Ranker is a tool that implements and aggregates multiple prediction algorithm scores, 

conservation scores, allelic frequencies and clinical informations. The highest scores were reported 

for 3 exonic variants in MMEL1 gene (rs4648562, rs3748816, rs4648659).  
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The variant in the TNFRSF14 promoter (rs2258734), the SNP reported as best signal in the 

international dataset (rs3748817) and the 2 variants that maintain significance after conditioning for 

the best SNP (rs72646016, rs12138909) had medium-low priority scores with all the tools. We did 

not observe a SNP or a group of SNPs with high prediction scores with all used tools, so we 

considered conclusions from this analysis to be inconsistent. 

 

6.6 eQTL data from online databases 

 

To predict the biological relevance of SNPs of the TNFRSF14 LD block and hence to identify the 

most likely causal variant, we performed an in silico eQTL analysis merging multi omics data derived 

from several public databases like Gtex (Melé et al., 2015), Geuvadis (Lappalainen et al., 2013) and 

eQTL Blood Browser (Westra et al., 2013). Expression Quantitative Trait Loci (eQTL) analysis 

performed by Gtex portal on 44 tissues for 449 healthy donors have showed that there are 3 genes 

(MMEL1, FAM213B and TNFRSF14) in the region with a significant eQTL with the best associated 

SNP (rs3748817). In details for MMEL1, we observe that the MS risk allele (T) is associated with a 

statistically significant increase in gene expression in 18 different tissues, particularly whole blood 

(p=1,4e-13, beta= 0,496), and brain-nucleus accumbens (basal ganglia) (p=3,2 e-12, beta= 0,71). The 

same trend was observed for FAM213B in 16 tissues, particularly whole blood (p=5,2e-7, beta= 

0,217), and brain-caudate (basal ganglia) (p=5,1 e-4, beta = 0,3). In contrast, there is an opposite trend 

for TNFRSF14 where the MS risk allele correlates with a statistically significant decrease in gene 

expression especially in brain-cerebellum (p-value=2,2e-04, beta=-0,4) and in EBV- transformed 

lymphocytes (p=2,3e-3, beta=-0,15). Similar results have been observed for further two SNPs 

(rs6670198 and rs2258734), interestingly, one maps in the TNFRSF14 promoter. Consistent data 

were observed performing eQTL analysis on EBV transformed cell lines with other two cohorts: 

Geuvadis consortium (RNA sequencing data of 465 lymphoblastoid cell lines from 5 populations of 

the 1000 genomes project), and Blood eQTL browser (expression quantitative trait locus (eQTL) 

meta-analysis in peripheral blood samples from 5,311 individuals) where we observed that the 

presence of the risk alleles (T) of rs3748817 was correlated to a lower TNFRSF14 expression in both 

datasets (Geuvadis data set: p = 3,03e-06; Blood eQTL browser p = 1,534e-13). Altogether, these 

data suggest that at least three SNPs within the TNFRSF14 LD bock are potentially involved in the 

regulation of the TNFRSF14 gene expression. In particular, one SNP maps in the TNFRSF14 

promoter. Another interesting finding is the identification of a long non-coding RNA (TNFRSF14-

AS1) annotated as a transcript partially overlapping the TNFRSF14 gene, containing one SNP of the 
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LD block. The three identified SNPs might be potentially involved also in the expression of this long 

non-coding RNA.  

 

6.7 Functional analysis on HVEM protein. 

 

We analyzed HVEM expression by flow cytometry in several types of immune cells in the peripheral 

blood: CD8+T cells, CD4+T cells, B cells (CD19+), myeloid dendritic cells (mDC Lin-/HLA-

DR+/CD11c+), three subsets of NK cells (CD56dim/CD16bright, CD56-/CD16bright, 

CD56dim/CD16-) and monocytes CD14+. These flow cytometry analyses were performed thanks to 

the cooperation with the Immunology laboratory headed by prof. Umberto Dianziani at University of 

Eastern Piedmont, department of Health Sciences, in Novara.  We collected the blood from 22 healthy 

controls: 10 homozygous for the risk allele (T) of rs3748817, 10 heterozygous and 2 homozygous for 

the protective allele (C). The mean percentage of HVEM positive cells among the analyzed 

populations was found to range between 12.69% (NK 56-/16bright cells) and 45.87% (NK 56 dim/16 

bright). No difference was observed according to the genotype of the associated variant (rs3748817). 

We compared the expression of HVEM in myeloid derived dendritic cells (MDDC) obtained by 

culturing monocytes for 5 days with GM-CSF+IL-4 or GM-CSF+IFNβ or IL-3 alone or IL-3+IFNβ 

or GM-CSF+IL-15, which are different MDDC types described in the literature. Results showed that 

HVEM expression was quite different in the different types of MDDC: it was low in immature MDDC 

and upregulated in mature MDDC using MDDC derived with GM-CSF+IL-4 or GM-CSF+IFNβ or 

IL-3+IFNβ, whereas it was high in immature MDDC and downregulated in mature MDDC using 

MDDC derived with IL-3 alone or GM-CSF+IL-15 (Figure 35). 
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Figure 35: Mean percentage (+SE) of HVEM positive immature and mature (LPS-activated) monocyte-derived DC 

(MDDC) obtained by culturing monocytes with GM-CSF+IL-4, GM-CSF+IFNβ, IL-3, IL-3+IFN β, GM-CSF+IL-15 

detected by flow cytometry, from 5 healthy donors. 

 

As previously seen for LIGHT, we also focused our attention toward MDDC obtained with GM-

CSF+IL-15 since express high levels of surface HVEM. The same analysis in this dendritic 

population was performed for HVEM in 21 HC (8 TT, 10 TC, 3 CC): we confirmed a down 

modulation of this protein after maturation (paired T-test: p= 0.0007) as previously observed, while 

no difference was found according to the genotype of the associated variant (rs3748817) (figure 36). 

 

 

Figure 36: Mean percentage (+SE) of HVEM positive immature (iMDDC) and mature (mMDDC, LPS-activated), 

monocyte-derived DC (MDDC) (detected by flow cytometry) obtained by culturing monocytes with GM-CSF+IL-15 

from 21 healthy donors. 
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6.8 TNFSF14-TNFRSF14 pathways analysis 

 

As a secondary task, we investigated the other genes belonging to the TNFSF14-TNFRSF14 pathway 

with three aims:  

1) we performed sequencing analysis in these genes to investigate the role of rare (MAF < 1%) and 

low frequency (MAF 1-5%) variants by burden test analysis with the aim to analyze the cumulative 

burden of rare functional variations of the genes belonging to TNFSF14 pathway. It is in fact possible 

that MS patients present an enrichment in rare variants for several genes involved in the same 

functional pathway. 

2)  We conducted a gene-gene interaction analysis for pairwise interacting SNPs, testing interactions 

between SNPs located in TNFSF14 or TNFRSF14 genes and 370 in silico selected interactors, with 

the aim to search for strong associations with interactions within TNFSF14 pathway. 

3) We constructed a weighted Genetic Risk Score (wGRS) using MS susceptibility variants located 

in chromosome regions containing interactors of TNFSF14/TNFRSF14, in order to define the 

cumulative effect of common susceptibility variants within this pathway. 

These analyses were performed thanks to the contribution of the laboratory of Human Genetics of 

Neurological Disorders at San Raffaele Hospital headed by professor Filippo Martinelli Boneschi and 

Federica Esposito.  

 

6.8.1 Burden test on TNFSF14-TNFRSF14 pathway 

 

We identified on the basis of literature data and of 4 protein-protein interaction analysis algorithms 

(PINA (Protein Interaction Network Analysis) v2 (Cowley et al., 2012), STRING v10(Jensen et al., 

2009), GPS-Prot (Fahey et al., 2011) and IID (Integrated Interaction Database) (Kotlyar et al., 2016) 

370 genes in total belonging to the TNFSF14-TNFRSF14 pathway. 31 of them (LTBR, TRAF3, 

GRB2, MAP3K14, TNFSF14, TNFRSF14, STAT3, APP, LTB, TRAF2, BIRC2, TNFRSF6B, DIABLO, 

BTLA, GDI2, SLC25A22, NDUFS2, ZBTB48, PFDN2, CDC37, RUVBL2, DRAP1, PSPH, EIF3I, 

PSMB1, TNFSF13, PTPN11, RAD21, HSPE1, EIF3E and ATXN10), were prioritized for sequencing 

analysis on the basis of the following criteria:  

-the interaction was based on or supported by experimental data,  

-the gene was located within 500 kb upstream/downstream a SNP showing a genome-wide 

significance level association (p<5*10-8) with MS in the MSchip international cohort,  

-the gene was located within 500 kb upstream/downstream a SNP showing a suggestive association  

(p<1*10-5) with MS in the MSchip international cohort.  
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The sequencing analysis was performed in 504 MS patients and 504 healthy controls pooled in group 

of 12 individuals on the Illumina NextSeq 500 (Illumina San Diego) (as described in materials and 

methods and following the same strategy adopted for rare variants analysis as described in chapter 

2). For the NGS analysis we sequenced only the coding regions (+/-50 bp from the exons) and after 

quality controls, we obtained 657 variants, from which 131 non-synonymous, 147 synonymous, 307 

intronic, 3 ncRNA exonic, 5 ncRNA intronic, 1 splicing, 41 UTR3’/5’). 

Our laboratory in collaboration with a group in San Raffaele institute, leaded by Prof. Filippo 

Martinelli-Boneschi and dr. Federica Esposito have already conducted an analysis on rare variants 

involved in the susceptibility to MS (as seen in chapter 2).  

For the current task, we defined new criteria for variants filtering compared to the analysis described 

in chapter 2. In fact, thanks to our past experience we observed that the most consistent results were 

found for variants with a strong functional impact on protein production, such as disruptive variants 

(stop-gain, stop-loss, splicing) and r missense variants predicted as damaging. Based on these 

evidences, for the present analysis on genes belonging to TNFSF14 pathways we focused our 

attention on non-sense, splicing and missense variants predicted as damaging. Furthermore, we also 

investigated non-coding variants with a possible regulatory role, paralleling the same analysis already 

performed with the previous experiments (filter 7 in chapter 2). Compared to the annotation 

performed for the study described in chapter 2, the number of available predictors of missense 

variants effect increased (21 vs 60). Therefore, we made a literature search in order to choose the best 

strategy for the filtering of missense variants, and we decided to use the strategy suggested by (Ghosh 

et al., 2017), who used 5 predictors (Polyphen, SIFT, CADD, PROVEAN and MutationTaster).  

According to the authors, who tested 18 prediction algorithms, this strategy resulted in higher 

concordance against ClinVar variants, with 79% concordance for pathogenic variants. So, we filtered 

variants on the basis of the following criteria: 

• Filter 1 for disruptive filter which includes all the stop-gain, stop-loss and splicing variants; 

• Filter 2 which includes disruptive variants and non-synonymous variants with a MAF < 0.01 

predicted as damaging with at last one of the 5 prediction programs (SIFT; Polyphen; 

MutationTaster; PROVEAN; CADD with a score >=20); 

• Filter 3 which includes disruptive variants and non-synonymous variants with a MAF < 0.01 

predicted as damaging with at last 4 of the 5 prediction programs (SIFT; Polyphen; 

MutationTaster; PROVEAN; CADD with a score >=20); 

• Filter 4 for downstream/upstream, UTR3’/5’, intronic variants with a MAF < 0.01 predicted 

as regulatory with the annotation based on TFBS, TargetScans, ENCODE; 
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• Filter 5 for synonymous variants and non-synonymous with a MAF < 0.01 predicted as benign 

in all the 5 predictor programs as control filter. 

We found 97 variants for filter 2, 40 for filter 3, 60 for filter 4 and 484 for filter 5. We did not observe 

any stop-gain or stop-loss variants for the analysed genes, so we did not apply the filter for disruptive 

variants. For each gene, the cumulative frequency of the variants selected from each of the applied 

filters was compared between MS patient and control pools with three different statistical tools for 

burden test (WSS, C-ALPHA and Fisher Hybrid Test). We observed a significant burden for rare 

regulative variants (filter 4) for EIF3E (p=0,043 with WSS test, p= with Fisher Hybrid Test) and 

RUVBL2 (p=0.008 with C-ALPHA test, p=0.037 with Fisher Hybrid Test) and for rare missense 

variants (filter 2) for CDC37 (p=0.0278 with WSS test). The contribution of these results were mainly 

due to 2 variants in EIF3E (rate of minor allele counts in HC: 0.000496, rate of minor allele counts 

in MS: 0.00248), 2 variants in RUVBL2 (rate of minor allele counts in HC: 0.002976, rate of minor 

allele counts in MS: 0.001488)  and to 5 missense variants in CDC37 that we found only in patients 

(rate of minor allele counts in MS: 0.000992).  

 

6.8.2 Gene-gene interaction analysis for TNFSF14 and TNFRSF14 interactors.  

 

We adopted a “candidate-interactions” strategy, leveraging information from freely available protein-

protein interaction (PPI) and pathways resources: 

a) selecting physical and validated interactors of genes TNFSF14 and TNFRSF14 from various PPI 

resources (STRING, Reactome, GPS-PROT, PINA), bona-fide experimental interactions (n=165 

interacting gene pairs). 

b) genes annotated to three 3 KEGG pathways in which TNFSF14 and TNFRSF14 were present: 

Cytokine-cytokine receptor interaction pathway, Herpes Simplex Infection Pathway and NF-kappaB 

Signaling Pathway. 

c) HLA class I and class II genes, reported on coordinate file available at https://www.cog-

genomics.org/plink/1.9/resources#genelist URL (N=24 genes: HLA-A, HLA-B, HLA-C, HLA-E, 

HLA-F, HLA-G, HLA-H, HLA-J, HLA-L, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-

DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB4, 

HLA-DRB5, HLA-DPB2, HLA-DRB6). 

Epistatic interactions were tested in the four cohorts (IG, IC, MSC, OE). We tested pairwise 

interacting SNPs, extracting markers within region of each gene, with located in a flanking window 

of ±10kb for each gene, to account both for coding SNPs and for variants that can affect 

transcriptional regulation. Overall, we tested 561 interactions among TNFSF14 and TNFRSF14 and 

https://www.cog-genomics.org/plink/1.9/resources#genelist
https://www.cog-genomics.org/plink/1.9/resources#genelist
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370 genes. Pairwise SNP interaction analyses were conducted using logistic regression model 

(PLINK software). Logistic regression models were fitted incorporating the two SNPs' additive 

marginal effects and a multiplicative interaction term, according to additive coding, on which Wald 

test was performed to detect departure from additivity on the log-odds scale. Only for 71 pairs of 

SNPs has been found a significant interaction after Bonferroni correction (p<10-4) but in only one 

data-set. These results belong to the interaction of TNFSF14 with 5 genes: C3, PLCG2, PTPN11 and 

2 HLA genes. 

 

6.8.3 Calculation of a weighted Genetic Risk Score on interactors of TNFSF14 and 

TNFRSF14. 

 

We constructed a genetic score to analyse the cumulative effect of strongly validated MS risk variants 

located in genes involved in the TNFSF14 pathway. We used only physical and validated interactors 

of TNFSF14 and TNFRSF14, (156 genes), that were prioritized basing on the reported association on 

the international MSchip cohort. We selected only genes for which an association signal (p<1*e-5) 

was reported in the region of ±50kb containing the gene. Thanks to these criteria, we selected for this 

analysis 13 genes which are: LTBR, TNFRSF14, TNFSF14, STAT3, EIF3I, TNFRSF6B, BAD, 

CDC37, DRAP1, GRB2, CASP8, PSPH, PTPN11. 

We calculated wGRS both on MSC (13 SNPs; 938 MS, 952 HC) and IC (10 SNPs; 961 MS, 962 HC) 

data sets, following a model developed by De Jager et al (De Jager et al., 2009a). The effect of each 

variant was weighted basing on the ln of the OR of the international MSchip sample set. The mean 

wGRS value was higher in MS compared to HC for both populations (p<0.0001, T-test). As expected 

the area under the Receiver Operating Characteristic (ROC) curve was small (<0.6) although 

significantly different from the null value (0.5), indicating that these variants account only for a small 

fraction of total MS genetic susceptibility (figures 37-38).  
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Figure 37: Distribution of the wGRS on MS chip data set of 13 SNPs in 938 MS patients and 962 healthy controls (on 

the left) and the graph of the ROC curve (on the right). The comparisons between the wGRS of MS patients and of 

controls was statistically significant (p-value<0,0001). 

 

 

Figure 38:  Distribution of the wGRS on Immunochip data set of 10 SNPs in 961 MS patients and 962 healthy controls 

(on the left) and the graph of the ROC curve (on the right). The comparisons between the wGRS of MS patients and of 

controls was statistically significant (p-value<0,0001). 

 

6.9 Discussion and conclusions 

 

In this chapter we reported the analysis conducted on TNFRSF14 gene which encodes for HVEM 

(LIGHT receptor) and our attempt to look for the primary associated variant in this region as 

previously done for TNFSF14 gene. Unfortunately, after sequencing analysis and fine mapping 

approach on a large sample set of 3314 MS and 3272 healthy controls we were not able to distinguish 
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which is the primary associated variant due to high LD present in this region. So, we tried to purse 

various approaches in order to prioritize the cluster of variants in high LD with the most associated 

variant (rs3748817) in the international cohort and also confirmed in our data set, and the most 

consistent data were observed for eQTL analysis. In fact, we found in different databases an eQTL 

effect for the associated variant rs3748817 and its proxy rs2258734 (r2= 1), a variant that maps in the 

promoter of TNFRSF14 gene. In details the risk alleles of both these variants significantly correlated 

with a decrease expression of TNFRSF14 in different data sets, especially in brain-cerebellum (p-

value=2,2e-04, beta=-0,4) and in EBV-transformed lymphocytes (p=2,3e-3, beta=-0,15) from Gtex 

and Geuvadis data set (p = 3,03e-06) and in whole blood from Blood eQTL browser (p = 1,534e-13). 

No association was found for the expression of surface HVEM protein and the risk genotype of 

rs3748817 by flow cytometry analysis in whole blood in different cell types, as well as no association 

was reported for its expression on in vitro MDDC cells. Parallel to this analysis we explored the 

interactome of TNFSF14 and TNFRSF14 pathway, at the purpose to conduct an analysis for rare 

variants following the same pipeline conducted for other MS risk loci (as described in chapter 3) in 

order to investigate the cumulative effect of rare variants in the susceptibility to MS. We selected for 

this analysis genes which showed an interaction with TNFSF14 or TNFRSF14 genes experimentally 

valuated or predicted from online tools. Among these, we prioritized those genes which showed a 

SNP with an already reported association in the international MSchip project. With these criteria we 

prioritized 31 genes for NGS analysis. We found a significant burden for three genes: EIF3E for rare 

regulative variants, RUVBL2 and CDC37 for rare missense variants. EIF3E (eukaryotic translation 

initiation factor 3, subunit E) is a component of the eukaryotic translation initiation factor 3 complex, 

which is required for several steps in the initiation of protein synthesis. In a recent work this gene 

was found down-regulated in systemic lupus erythematosus after a meta-analysis of gene expression 

profiles of peripheral blood cells (Bae and Lee, 2018).  

RUVBL2 gene encodes for the second human homologue of the bacterial RuvB gene, a protein 

belonging to the AAA+ family (ATPases Associated with diverse cellular Activities). Functional 

analysis showed that this gene product has both ATPase and DNA helicase activities. This protein is 

also a component of the NuA4 histone acetyltransferase complex which is involved in transcriptional 

activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This 

modification may both alter nucleosome-DNA interactions and promote interaction of the modified 

histones with other proteins which positively regulate transcription. In previous works was identified 

a high level of autoantibodies against RuvB protein in sera of patients with autoimmune diseases such 

as polymyositis/dermatomyositis and autoimmune hepatitis (Makino et al., 1998), also Anti-

RuvBL1/2 antibody was detected in patients with systemic sclerosis (Pauling et al., 2018). Finally, 
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gene encodes for a protein similar to Cdc 37, a cell division cycle control protein of Sacchromyces 

cerevisiae. This protein is a molecular chaperone with specific function in cell signal transduction. It 

has been shown to form complex with Hsp90 and a variety of protein kinases including CDK4, 

CDK6, SRC, RAF-1, MOK, as well as eIF2 alpha kinases. It is thought to play a critical role in 

directing Hsp90 to its target kinases. Heat shock protein 90 (Hsp90), a 90-kDa molecular chaperone, 

is responsible for biological activities of key signalling molecules such as protein kinases, ubiquitin 

ligases, steroid receptors, cell cycle regulators, and transcription factors regulating various cellular 

processes, including growth, survival, differentiation, and apoptosis.  Recent in vitro and in vivo 

studies have shown that Hsp90 is also involved in activation of innate and adaptive cells of the 

immune system (neutrophils, dendritic cells, macrophages, B and T lymphocytes) and that anti Hsp90 

therapies have a clinical used in several autoimmune diseases (Tukaj and Węgrzyn, 2016). Since 

epistasis seems to be a ubiquitous phenomenon in complex traits (Moore, 2003), being an important 

contributor that might account for a substantial proportion of missing heritability (Zuk et al., 2012) 

we thus conducted gene-gene interaction analysis for the two genes TNFSF14 and TNFRSF14, 

modelling multiple loci jointly, searching for non-additive effects beyond the single SNP effects. We 

adopted a “candidate-interactions” strategy, leveraging information from freely available protein-

protein interaction (PPI) and pathways resources. Potentially interacting SNPs were hence prioritized 

in order to narrow down the search space, extracting candidate interacting pairs from three sources: 

PPI resources (STRING, Reactome, GPS-PROT, PINA), 3 KEGG pathways, HLA class I and class 

II genes (22 genes) for a total of 561 interactions among TNFSF14 and TNFRSF14 and 370 genes. 

Epistatic interactions were tested in four cohorts (IG, IC, MSC, OE). No significant interaction after 

Bonferroni correction (p<10-4) was found for pairs of SNPs in common among the 4 data sets. 

Finally, we calculated the weight genetic risk score (wGRS) on 13 genes belonging to TNFSF14 

pathways in two different data sets (Immunochip and MS chip) and we found a significant wGRS for 

both data sets, confirming that variants in this pathway have a role in MS susceptibility. The area 

under the ROC curve was however very small (<0.6), indicating that these variants account only for 

a small fraction of total MS genetic susceptibility. 
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7. General conclusions and future perspectives 

 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous 

system (CNS) with an etiology not still completely understood. It is known that both environmental 

and genetics factors contribute to its etiology. In this thesis we disclosed about genetic factors 

involved in the susceptibility of the disease. In fact, in the last decade, thanks to the efforts of genome-

wide association studies (GWAS) and the international collaboration of different countries, analyzing 

47,429 MS subjects and 68,374 controls, 233 loci have been associated to MS susceptibility to date. 

Among them, 32 maps in HLA region, one on chromosome X and 200 outside the HLA region 

(GWAS –IMSGC 2011; IC-IMSGC, 2013; IMSGC 2017). Significantly these studies have confirmed 

the role of adaptive and innate immune cells and pathways steering the risk of developing MS. The 

results also suggest functional responses of brain-resident cells such as microglia and astrocytes 

affecting susceptibility. For most loci, however, the specific DNA variation causative of the 

association statistical signal and the mechanism linking susceptibility with brain inflammation and 

autoimmunity remain unknown. Our genetics laboratory aimed to investigate genetic markers 

involved in the susceptibility to MS specific for the Italian population. At this purpose we focused on 

known MS associated regions showing a significant association in the Italian population in order to 

find the primary associated genes or variants and then to try to define their functional role. Thanks to 

our analysis, we identified an intronic variant (rs1077667) in the TNFSF14 gene (encoding for LIGHT 

protein) as the primary associated one and we were able to define its functional role in the regulation 

of gene transcription and protein production. In details this variant seems to be associated with a low 

TNFSF14 RNA expression in a mixed population of PBMCs and with a higher percentage of LIGHT 

positive cells in myeloid dendritic cells, suggesting a cell specific influence of this variant on LIGHT 

expression at the protein level. Furthermore, we showed that patients in general displayed a lower 

expression level of this gene compared to controls as reported in previously studies (Jernås et al., 

2013; Romme Christensen et al., 2013). Our discoveries also are in line with the role of LIGHT in 

determining MS pathogenesis in MS murine model of experimental autoimmune encephalomyelitis 

(EAE), In fact, LIGHT-deficient mice developed severe EAE resulting in an atypically high mortality 

rate (Maña et al., 2013). Seen the involvement of dendritic cells in MS pathogenesis (Serafini et al., 

2006), our results might suggest a key role of this gene in the etiology of the disease and, in future, 

will be interesting to better investigate the role of  LIGHT in dendritic cell signaling in the immune 

response in order to unveil new possible disease mechanisms and therapeutic targets. In this thesis 

we also showed our analyses on interactors of LIGHT, and first among all, TNFRSF14 gene which 

encodes for HVEM receptor (the main receptor of LIGHT in the immune cells) and one among the 
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MS risk loci. We tried to define the most associated variant in the TNFRSF14 gene region but without 

success, due to high linkage disequilibrium (LD). Despite this, we observed a cis-eQTL effect for 

different variants in this region on TNFRSF14 gene expression. So, based on these evidences, we 

proposed for these variants a possible role in gene regulation (especially for a SNP in the gene 

promoter, in high LD with the associated variant in the international studies). Although we did not 

confirm this effect on protein production in a specific cell population, further analysis will be required 

to confirm our hypothesis and to try to better investigate the regulative role for the most interesting 

variants inside the region of TNFRSF14 gene region. Gene-gene interaction analysis, burden test and 

weight genetic risk score on TNFSF14-TNFRSF14 pathway seemed to confirm our hypothesis that 

also genes which interact with TNFSF14, can also play a role in MS pathogenesis. Further analysis 

will be required to better investigate the causative variant in these genes and to study in deeper the 

role of this pathway in MS pathogenesis. 

Parallel to these analysis, we conducted a research of rare functional variants in MS associated loci 

in order to assess if the genes in these regions showed an imbalance of rare variant frequencies 

(burden) between MS patients and healthy controls. EFCAB13 was the gene that seemed to show the 

most promising result especially for disruptive variants (stop-gain, stop-loss and slicing). EFCAB13 

encodes for EF-hand calcium-binding domain-containing protein 13 which is a poorly characterized 

calcium binding adaptor protein.  Further analysis will be required in order to define its functional 

role in mediating calcium induced cytoskeletal remodelling, mechanisms of endocytosis and 

recycling of membrane receptors, and modulating gene expression profile by specific shRNA and 

overexpression using lentiviral constructs in cell lines. Our preliminary RT-PCR experiments showed 

that EFCAB13 is expressed in PMBC, activated T cells and dendritic cells (both immature and LPS 

activated), so in future we wanted to conduct immunological analysis of individuals carrying risk 

allele variants of EFCAB13 such as in vitro functional analyses of cultured T and B cells and serologic 

analyses on cytokine levels.  

Among the possible future perspectives of this study, the analysis of the role of epigenetics in MS 

seems particularly attractive. Previous studies have demonstrated that epigenetic modifications such 

as DNA methylation and histone acetylation can play a role in MS pathogenesis (Rito et al., 2018). 

Epigenetic changes in MS could explain a portion of missing hereditability as well as provide a 

contribution to the interpretation of the functional role of MS loci identified by means of GWAS. 

Accordingly, for the future, it will be interesting to investigate this aspect especially at the light of 

our results that showed a cell specific regulation in the gene transcription and protein production. 

Like many complex diseases, Multiple Sclerosis presents a varied clinical picture. Despite the 

improvements in the knowledge about disease susceptibility variants, little is known so far about the 
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genetic variants involved in disease severity and progression, or about the response to therapy. 

Recently, our laboratory has took part in a European project (MultipleMS) with the aim to develop 

novel personalised medicine approaches for MS patients. To this end we will identify a combination 

of evidence-based selection of clinical, biological, and lifestyle features that can predict the clinical 

course, stratify patients based on their risk and the therapeutic response to the existing DMTs in a 

real-world setting, and to gain in-depth knowledge of distinct pathogenic pathways to allow 

identification of targets for novel treatments. Uncovering these aspects can open the way that may 

lead to personalised medicine. 
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Appendix 

 

Table S1: list of 15 associated variants derived from sequencing analysis of TNFSF14 gene. 

 

All the analysis, apart from the association analysis on the pooled sequencing dataset, have been covaried for sex. We could not confirm four variants on the target genotyping 

platform dataset due to bad quality, but two of them have been replicated on one of the two GWAS datasets. Aminoacid positions are referred to the full-length isoform. 

 * Designed failed 

** Removed after QC for bad clustering 

*** Below frequency threshold 

 

 

 

 

 

Position (hg19) SNP ALT REF Function a AF MS AF HC P-value OR AF MS AF HC P-value OR P-value OR AF MS AF HC P-value OR P-value OR AF MS AF HC P-value OR P-value OR P-value OR P-value OR

19:6658613 rs344570 T C intergenic 0.081 0.12 0.013 0.68 0.088 0.097 0.33 0.89 0.46 1.10 0.065 0.11 4.1E-06 0.54 0.0022 0.65 0.091 0.08 0.86 1.03 0.43 1.14 0.0012 0.7780 0.3402 0.9233

19:6658863 rs8113119 A G intergenic 0.061 0.041 0.042 1.53 0.062 0.053 0.24 1.20 0.45 1.13 0.027 0.034 0.20 0.77 0.10 0.72 0.041 0.044 0.85 0.96 0.84 0.96 0.95 1.0069 0.6695 0.9552

19:6659597 rs344566 A G intergenic 0.080 0.12 0.0081 0.67 NA (*) NA (*) NA (*) NA (*) NA (*) NA (*) 0.16 0.19 0.0026 0.75 0.088 0.84 0.086 0.075 0.57 1.10 0.22 1.24 NA NA NA NA

19:6661983 rs12461880 C T intergenic 0.067 0.094 0.028 0.70 0.073 0.095 0.015 0.72 0.95 0.99 0.08 0.12 0.0029 0.71 0.63 1.08 0.079 0.102 0.023 0.71 0.13 0.74 8.1E-06 0.7126 0.6154 0.9506

19:6663092 rs148085223 A G downstream 0.012 0.025 0.036 0.48 0.017 0.0093 0.094 1.74 0.10 1.72 0.0034 0.0084 0.086 0.41 0.074 0.40 NA NA NA NA NA NA NA NA NA NA

19:6665020 rs344560 T C

exonic          

(missense K214E) 0.041 0.070 0.0080 0.57 0.064 0.060 0.82 1.04 0.16 1.26 0.051 0.063 0.15 0.80 0.82 1.04 0.056 0.056 0.76 0.94 0.88 1.03 0.37 0.9191 0.2787 1.1140

19:6665387 rs142044586 T G intronic 0.025 0.045 0.015 0.54 0.024 0.038 0.039 0.65 0.42 0.83 0.020 0.046 4.4E-05 0.41 0.016 0.56 0.025 0.031 0.43 0.82 0.92 0.97 4.03E-05 0.5841 0.0464 0.7523

19:6666427 ND T G intronic 0.0036 0.028 3.1E-06 0.12 0.0011 0.00058 0.680 1.70 0.76 1.49 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

19:6666428 ND C T intronic 0.054 0.033 0.029 1.67 NA (**) NA (**) NA (**) NA (**) NA (**) NA (**) NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

19:6668972 rs1077667 T C intronic 0.11 0.18 1.5E-05 0.56 0.13 0.18 3.2E-05 0.66 NA NA 0.13 0.19 8.4E-07 0.62 NA NA 0.138 0.162 0.088 0.82 NA NA 1.4E-10 0.6810 NA NA

19:6669934 rs2291668 A G

exonic           

(synonymous A49A) 0.10 0.16 5.3E-05 0.58 0.11 0.15 0.0003 0.67 0.67 0.91 0.11 0.16 0.0002 0.68 0.059 1.65 0.121 0.132 0.33 0.88 0.20 1.45 6.20E-04 0.7252 0.1623 1.2255

19:6672763 rs77612372 A G intergenic 0.037 0.017 0.0095 2.27 NA (**) NA (**) NA (**) NA (**) NA (**) NA (**) 0.023 0.045 0.0008 0.50 0.0002 0.46 0.035 0.041 0.25 0.77 0.21 0.75 NA NA NA NA

19:6672995 rs62123257 C T intergenic 0.37 0.42 0.020 0.80 0.39 0.41 0.12 0.89 0.69 1.04 0.40 0.43 0.078 0.88 0.27 1.10 0.377 0.378 0.98 1.003 0.31 1.11 0.04349 0.9139 0.1537 1.0776

19:6673164 rs78637822 C G intergenic 0 0.0051 0.028 0 NA (*) NA (*) NA (*) NA (*) NA (*) NA (*) NA (***) NA (***) NA (***) NA (***) NA (***) NA (***) NA NA NA NA NA NA NA NA NA NA

19:6675230 rs1862509 A G intergenic 0.097 0.15 0.00050 0.61 0.12 0.14 0.0066 0.74 0.28 1.28 0.11 0.15 0.0004 0.69 0.078 1.50 0.112 0.125 0.28 0.87 0.49 1.19 1.233E-05 0.7494 0.0389 1.3249

allelic frequencies

meta-anlysis 3 datasets

association            

(conditioned for 

rs1077667)

association            

(not conditioned)

association            

(conditioned for 

rs1077667)

GWAS 2 data set 

association            

(not conditioned)

association            

(conditioned for 

rs1077667)

 Sequencing data set

allelic frequencies

Target genotyping  platform data set 

allelic frequencies

GWAS 1 data set 

allelic frequencies
association            

(not conditioned)

association            

(not conditioned)

association            

(conditioned for 

rs1077667)

association            

(not conditioned)
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Table S2: list of 22 variants derived from the meta-analysis step in TNFSF14 gene 

 

 

 

 

 

 

 

 

 

POSITION SNP A1 A2 P-value OR P-value OR P-value OR I P-value OR I P-value OR I P-value OR I P-value OR I P-value OR I

19:6658613 rs344570 T C 0.013 0.68 0.3293 0.8873 0.001192 0.7780 82.92 0.3402 0.9233 79.22 0.1863 0.8930 81.43 0.0271 0.8366 76.09 0.0003067 0.7544 84.88 0.03743 0.8420 81.45

19:6658636 rs344569 A G 0.950 1.012 0.9711 0.9966 0.002844 0.8410 64.49 0.4108 0.9500 59.77 0.0593 0.8923 63.54 0.0006107 0.8179 63.29 0.299 0.9328 0.00 0.08124 0.8933 43.55

19:6658863 rs8113119 A G 0.042 1.53 0.2318 1.203 0.9485 1.0069 35.43 0.6695 0.9552 35.02 0.7087 0.9605 27.73 0.8987 0.9864 36.93 0.9753 1.0033 49.25 0.701 0.9591 29.07

19:6659855 rs12608923 A G 0.613 1.053 0.3593 1.075 0.04281 1.1016 0.00 0.6486 1.0228 0.00 0.223 1.0622 0.00 0.0605 1.0952 0.00 0.1256 1.0772 0.00 0.1731 1.0700 0.00

19:6659982 rs10410439 C G NA NA 0.1387 1.276 0.9582 0.9943 52.15 0.5139 0.9302 43.49 0.6339 0.9485 44.36 0.8826 0.9838 56.81 0.9214 0.9891 60.77 0.438 0.9164 18.22

19:6660287 rs62123253 G A 0.270 1.124 0.6477 1.037 0.8417 1.0096 24.45 0.203 0.9393 0.00 0.3104 0.9513 0.00 0.625 0.9765 0.00 0.714 0.9823 20.30 0.4378 0.9624 0.00

19:6661983 rs12461880 C T 0.028 0.70 0.01513 0.7223 8.126e-006 0.7126 0.00 0.6154 0.9506 10.66 0.02345 0.8210 0.00 1.81e-006 0.6937 0.00 0.0009376 0.7682 0.00 0.06934 0.8191 0.00

19:6663594 rs2279627 C G 0.310 1.112 0.284 1.088 0.04491 1.0993 0.00 0.6814 1.0203 0.00 0.3468 1.0470 0.00 0.1031 1.0809 0.00 0.1694 1.0683 0.00 0.1954 1.0657 0.00

19:6664054 rs344561 G A 0.0798 0.84 0.05229 0.8551 0.01561 0.8896 67.66 0.744 1.0178 41.90 0.5021 0.9655 48.06 0.1608 0.9317 55.67 0.02865 0.8985 67.12 0.355 0.9534 52.99

19:6665020 rs344560 T C 0.0080 0.57 0.8173 1.037 0.3716 0.9191 0.00 0.2787 1.1140 0.00 0.442 1.0813 0.00 0.3132 0.9086 0.00 0.2164 0.8890 0.00 0.5658 1.0592 0.00

19:6665387 rs142044586 T G 0.015 0.54 0.03922 0.6458 4.03e-005 0.5841 57.73 0.04637 0.7523 21.37 0.01715 0.7043 37.44 NA NA NA 2.639e-005 0.5736 62.33 9.484e-005 0.5970 60.18

19:6666316 rs4533396 A G NA NA 0.3684 1.07 0.8299 0.9903 4.92 0.3129 0.9545 0.00 0.3937 0.9614 0.00 0.2836 0.9515 0.00 0.907 1.0054 0.00 0.507 0.9698 0.00

19:6668972 rs1077667 T C 1.5E-05 0.56 0.0000324 0.6642 1.363e-010 0.6810 38.02 NA NA NA 6.202e-005 0.5807 39.35 1.297e-006 0.7281 0.00 4.395e-009 0.6981 36.67 3.19e-006 0.5587 13.40

19:6669934 rs2291668 A G 5.3E-05 0.58 0.0002796 0.6749 6.199e-007 0.7252 35.02 0.1623 1.2255 42.10 NA NA NA 0.001547 0.7958 0.00 1.59e-007 0.7106 37.81 0.01236 0.7863 0.00

19:6670094 rs8112236 A G 0.262 1.291 0.1715 1.249 0.7978 1.0279 22.28 0.7437 0.9652 20.86 0.8159 0.9751 10.69 0.8621 1.0190 35.33 0.918 1.0112 34.50 0.711 0.9602 0.00

19:6670253 rs344558 C A 0.685 0.929 0.4815 0.9024 5.012e-005 0.6929 74.78 0.002308 0.7547 73.67 6.412e-006 0.6617 74.47 1.122e-005 0.6697 72.55 NA NA NA 0.0003424 0.7132 65.82

19:6670529 rs3760746 G A 0.213 0.89 0.07676 0.8775 0.0058 0.8854 5.72 0.7811 1.0141 0.00 0.4347 0.9621 0.00 0.03976 0.9109 0.00 0.1504 0.9357 0.00 0.3175 0.9526 0.00

19:6671369 rs12461821 A G NA NA 0.0007534 0.6956 2.324e-006 0.7375 36.97 0.05124 1.3222 21.65 NA NA NA 0.002767 0.8052 0.00 4.384e-007 0.7195 43.05 0.04141 0.8218 0.00

19:6672104 rs72988360 T C 0.7022 1.053 0.2377 1.122 0.04903 1.1256 14.98 0.447 1.0477 44.54 0.2792 1.0686 40.90 0.1432 1.0929 33.69 0.1288 1.0966 33.87 0.3012 1.0661 39.39

19:6672995 rs62123257 C T 0.020 0.80 0.1165 0.8892 0.04387 0.9139 0.00 0.1537 1.0776 0.00 0.7503 1.0164 0.00 0.2624 0.9496 0.00 0.06038 0.9188 0.00 0.9928 1.0005 0.00

19:6675230 rs1862509 A G 0.00050 0.61 0.006595 0.7416 1.233e-005 0.7494 0.00 0.03893 1.3249 0.00 0.3134 0.9058 0.00 2.66e-005 0.7562 0.00 0.0002361 0.7795 0.00 NA NA NA

19:6675334 rs1874072 G A 0.1108 0.86 0.9088 0.992 0.1717 0.9426 5.56 0.1332 1.0747 0.00 0.6221 1.0237 0.00 0.4552 0.9674 0.00 0.8397 0.9909 0.00 0.7832 1.0132 0.00

Sequencing data set    

(not conditioned)

Meta-analysis                                     

(conditioned for rs344558)

Meta-analysis                                     

(conditioning for rs1862509)

Target genotyping 

data set                     

(not conditioned)

Meta-analysis                                      

(not conditioned)

Meta-analysis                                  

(conditioned for rs1077667)

Meta-analysis                                

(conditioned for rs2291668)

Meta-analysis                                  

(conditioned for rs142044586)
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Table S3: rare variants in TNFSF14. 

 

(*) 588 MS patients, 408 HC; (**)504 MS patients, 504 HC. 

 

 

 

 

 

 

 

 

 

Position (hg19) SNP AA_Change Function Af_HC Af_MS Af_HC Af_MS

19:6664955 rs79452416 TNFSF14:NM_172014:exon4:c.C597T:p.F199F,TNFSF14:NM_003807:exon5:c.C705T:p.F235F synonymous - - 0 0.0013

19:6665057 rs145049392 TNFSF14:NM_172014:exon4:c.C495T:p.S165S,TNFSF14:NM_003807:exon5:c.C603T:p.S201S synonymous - - 0.0011 0

19:6665138 rs141976417 TNFSF14:NM_172014:exon4:c.C414T:p.P138P,TNFSF14:NM_003807:exon5:c.C522T:p.P174P synonymous - - 0 0.0010

19:6667151 rs143854617 TNFSF14:NM_172014:exon3:c.G163A:p.E55K,TNFSF14:NM_003807:exon4:c.G271A:p.E91K nonsynonymous 0 0.0028 0.0012 0

19:6670024 rs138116115 TNFSF14:NM_172014:exon1:c.C57T:p.I19I,TNFSF14:NM_003807:exon2:c.C57T:p.I19I synonymous 0 0.0027 0 0.0025

19:6670030 rs200256328 TNFSF14:NM_172014:exon1:c.C51T:p.T17T,TNFSF14:NM_003807:exon2:c.C51T:p.T17T synonymous - - 0 0.0011

19:6664984 rs371136658 TNFSF14:NM_003807:exon5:c.C676A:p.R226R,TNFSF14:NM_172014:exon5:c.C568A:p.R190R synonymous 0.0030 0 - -

19:6669986 rs2291667 TNFSF14:NM_003807:exon2:c.C95T:p.S32L,TNFSF14:NM_172014:exon2:c.C95T:p.S32L nonsynonymous 0 0.0011 - -

19:6665020 rs344560 TNFSF14:NM_172014:exon4:c.A532G:p.K178E,TNFSF14:NM_003807:exon5:c.A640G:p.K214E nonsynonymous 0.0698 0.0413 0.0561 0.0674

19:6669934 rs2291668 TNFSF14:NM_003807:exon2:c.C147T:p.A49A synonymous 0.1646 0.1018 0.1366 0.1138

2nd sequencing (**) 1st sequencing (*)



92 
 

Table S4: results of the analysis of rare variants in TNFSF14 

 

588 MS patients, 408 HC; (**)504 MS patients, 504 HC; (***)1092 MS patients, 912 HC. 

 

 

variants 

(n) MS HC P-value

variants 

(n) MS HC P-value

1st sequencing (*) 2 4 0 0.15 4 7 2 0.32

2nd sequencing (**) 1 0 1 1 6 6 2 0.29

1st and 2nd sequencing (***) 2 4 1 0.38 8 13 4 0.088

Missense variants MAF<1%

Cumulative number 

of mutated alleles

Synonymous and missense variants MAF<1%

Cumulative number 

of mutated alleles
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