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Abstract The paper deals with a test procedure able to state the compatibility of
observed data with a reference model, by using an estimate of the volumetric part
in the small-ball probability factorization which plays the role of a real complexity
index. As a preliminary by-product we state some asymptotics for a new estimator
of the complexity index. A suitable test statistic is derived and, referring to the
U–statistics theory, its asymptotic null distribution is obtained. A study of level
and power of the test for finite sample sizes and a comparison with a competitor
are carried out by Monte Carlo simulations. The test procedure is performed over
a financial time series.

Keywords U-Statistics, Small–Ball Probability, Multiple test, Holm-Bonferroni
procedure

1 Introduction

During the last twenty years, various theoretical results and statistical techniques
have been developed to describe, analyze and modelize statistical problems involv-
ing functional data, that is, (discretized) trajectories of a random element valued
in suitable functional space (for a review, see for instance Bosq, 2000; Ferraty and
Vieu, 2006; Horváth and Kokoszka, 2012; Ramsay and Silverman, 2005 and, for
recent developments, Goia and Vieu, 2016; Aneiros et al., 2017).

Consider a sample of observations drawn from a random process X (t) defined
over a compact interval that, without loss of generality, we take equal to [0, 1].
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One problem in dealing with this kind of data is to model the underlying process
X (t) because of descriptive (e.g. dimensionality reduction) and forecasting needs
(e.g. model misspecification could lead to drastically wrong predictions). A no-
table example often occurs in financial settings, where stock prices, interest rates,
currency exchange rates, or commodity prices are modelled by means of Gaussian
diffusion processes (see Fusai and Roncoroni, 2007).

In practice, starting from the sample, the goal is to identify a compatible model
for X (t). This problem has been faced up in the literature, in a goodness-of-fit
perspective, for instance in Cuesta-Albertos et al. (2007). In Bongiorno et al.
(2017) a new approach to explore the modelling nature of functional data has
been introduced and discussed. It is based on the information that the small–ball
probability (SmBP) ϕχ (ε) of X (that is the probability that X belongs to a ball
of center χ and radius ε with the latter tending to zero) brings on the nature of
the process. In particular, assuming that ϕχ (ε) can be factorized in two terms
depending on the center of the ball and the radius of it and denoted by f (χ)
and φ (ε) respectively, it is shown how the volumetric term φ (ε) may reveal some
latent features of the process so that it could be interpreted as complexity index
and then used in detecting a model for X.

In this paper, we develop a goodness-of-fir test procedure able to state the
compatibility of observed functional data with a reference model, by using as test
statistic a simple estimate of the complexity index φ (ε), which takes the form of a
second order U-statistic, conveniently standardized. In practice, we implements a
multiple test procedure where one compares an estimate of φ (ε) with a benchmark
φ0 (ε) for some selected ε. Referring to the theory of U-statistics, the asymptotic
null distribution is derived and a studentized version is introduced. To asses the
performance of the test procedure for finite sample sizes, a study of level and power
of the test is carried out by Monte Carlo simulations under various experimental
conditions and for different processes (finite and infinite dimensional). Moreover,
the empirical level and power of the proposed test are compared, by Monte Carlo
experiments, with the ones obtained by the random projection test introduced in
Cuesta-Albertos et al. (2007). Finally, as a by-product, it is shown how to extend
directly the one-sample test procedure to the context of comparison of two samples.

The outline of the paper is the following: in Section 2 the main notations, defi-
nitions and the main theoretical results are introduced, in Section 3 the hypothesis
are formalized, the test statistic is defined and its null distribution derived. More-
over, the practical implementation of the test is illustrated and two extensions are
proposed: the case of two-population and the situation in which nuisance parame-
ters appear. Section 4 collects results of numerical experiments, Section 5 provides
a comparison with the competitor, whereas the last Section 6 illustrates an appli-
cation to financial datasets. Mathematical aspects are collected in the Appendix.

2 Statistical background

Consider a random curve X valued in a Hilbert space F endowed with the L2

norm ‖·‖. The Small Ball Probability (SmBP) ϕχ (ε) is the probability that X
belongs to the ball of center χ ∈ F and radius ε > 0 when ε is small:

ϕχ (ε) = P (‖X − χ‖ ≤ ε) .
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Operatively, it is useful to assume that the SmBP satisfies the following factoriza-
tion

ϕχ (ε) ∼ f (χ)φ (ε) as ε→ 0 (1)

with the constraint

E [f (X)] = 1 (2)

to ensure the identifiability of the decomposition. The factorization (1) isolates the
manner in which the SmBP depends upon χ and ε. In Bongiorno and Goia (2017)
some theoretical conditions for which the factorization (1) holds are provided in
a Hilbert setting and a kernel–type estimator only for the spatial factor f (X)
is defined: its asymptotic properties are studied and its performances in the the
finite–sample case are considered. That term is used to effectively implement some
density–based classification procedures in Bongiorno and Goia (2016).

To define inferential procedures (like as tests) based on the complexity index
φ(ε), one firstly needs asymptotic properties of a related estimate. The literature
on this topic is not so much developed and this is why, in a first step, we state
a result in this sense, namely Proposition 1 that gives asymptotic normality of
a nonparametric complexity index estimate. This result will serve as a crucial
preliminary tool for getting asymptotic distributions of our testing procedures (see
Section 3), but it should be noted that these asymptotic results could of course be
used in the future for other purposes.

Given a sample {X1, . . . , Xn} of i.i.d. random functions as X, an estimate of
φ (ε) is given by

φ̂n (ε) =
1

n (n− 1)

n∑
i=1

∑
j 6=i

I{‖Xi−Xj‖≤ε} (3)

which is a U-statistic of order two with kernel g (x, y) = I{‖x−y‖≤ε}. From a
practical point of view, since the functional data Xi are observed over a grid of
points in [0, 1], the computation of the norm must be approximated by summation.

It is worth to noticing that φ̂n is invariant by deterministic translations applied
to the process X.

In order to provide some properties of such an estimator, we need some tech-
nical hypothesis. In particular, as done in Ferraty et al. (2012), we assume that:

(H1) for any ε > 0, ϕχ (ε) > 0

(H2) sup
χ∈F

∣∣∣∣ϕχ (ε)

φ (ε)
− f (χ)

∣∣∣∣ = o (1)

(H3) φ is increasing on a neighbourhood of zero, strictly positive and tends to
zero as ε→ 0

(H4) f is bounded and f (χ) > 0.

Given these, estimator (3) satisfies the following proposition.

Proposition 1 Under (H1)–(H4) and when ε→ 0 the estimator φ̂n (ε) is asymp-
totically unbiased with variance

Var
(
φ̂n (ε)

)
=

4 (n− 2)

n (n− 1)
σ2
1 (ε) +

2

n (n− 2)
σ2
2 (ε) (4)
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where σ2
1 (ε) = Var (ϕX2

(ε)) and σ2
2 (ε) = Var

(
I{‖X2−X1‖≤ε}

)
are positive and

finite. Moreover, its standardized version converges in law to a standard Gaussian
distribution as n→∞.

Even if, the U-statistic (3) is built from a sample of random curves, its kernel

takes its values in {0, 1} and then φ̂n(ε) is a real random variable for each ε. Hence,
to obtain results in Proposition 1, one can evoke standard results on U–statistics
(see, e.g. Lee, 1990; Lehmann, 1999): as shown in the technical details collected in
the Appendix, the functional nature of data appear only along the calculations of
bias and variance.

3 A general test procedure

In order to identify a compatible model for a sample drawn from X(t) up to a
deterministic translation, we exploit the information carried by the complexity
index φ (ε). In this view, we compare the latter with a benchmark φ0 (ε). Thus, to
test compatibility of the model φ0 at the significance level α ∈ (0, 1) consider the
following hypothesis:

H0 : φ (ε) = φ0 (ε) for any ε ∈ E \ {0}
H1 : ∃ε : φ (ε) 6= φ0 (ε)

where E is a suitable right neighbourhood of zero.
From a practical point of view, it is not possible to explore the whole E and

one has to fix a finite set of possible values for the radius. This leads to design a
multiple test with the following hypothesis:

H0 : φ (h) = φ0 (h) for any h ∈ H
H1 : ∃h ∈ H : φ (h) 6= φ0 (h)

where
H = {h1, . . . , hm} ⊂ E, m ∈ N?

being m the number of tests to be run.
The remaining part of this section is divided in four subsections: in Subsec-

tion 3.1 the test statistic is introduced and its limit distribution derived; Sub-
section 3.2 addresses some issues concerning the test statistic and the benchmark
complexity index whereas Subsection 3.3 provides some practical details about the
implementation of the algorithm; finally, a generalization to the two-sample case
is presented in Subsection 3.4.

3.1 The test statistic and its limit distribution

Denote by Hk
0 the k–th marginal null hypothesis, that is Hk

0 : φ(hk) = φ0(hk).
We define the m–dimensional set of test statistics {D2

k, k = 1, . . . ,m}, where

D2
k =

(
φ̂n (hk)− φ0 (hk)

)2
Var

(
φ̂n (hk)

) , k = 1, . . . ,m. (5)
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The convergence in law result in Proposition 1 allows to derive the asymptotic
null distribution of each test statistic:

Proposition 2 For any k = 1, . . . ,m, under Hk
0 the test statistic D2

k is asymp-
totically distributed as a chi-square distribution with one degree of freedom.

It is worth noting that the null distribution does not depend neither from k
nor from the complexity index φ0 (and then, from the conjectured model). Thanks
to Proposition 2, the asymptotic p-value pk associated to Hk

0 can be calculated
directly as follows:

pk = 1− C21
(
d2k

)
where C21 is the pdf of the r.v. χ2 (1) and d2k is an estimate over a sample.

Since we deal with a multiple testing procedure, the decision rule can be based
on different strategies. The simplest is the well-known Bonferroni correction con-
sisting in rejecting the null hypothesis if at least one of the p-values pk is less
than α/m. It is known that this approach has some drawbacks, in particular it
conduces to a too conservative test procedure. Thus, we implement the Holm-
Bonferroni method (see Holm, 1979) which is less conservative and controls the
familywise error rate. According to the latter approach, the decision rule is the
following: order p-values p(1) ≤ · · · ≤ p(m) and reject H0 if p(k) ≤ α/(m+ 1− k)
for at least one k.

To conclude this section, we prove that our test is consistent with respect to
some special alternatives.

Proposition 3 Consider the following multiple hypothesis:

H0 : φ (h) = φ0 (h) for any h ∈ H
H1 : φ (h) = φ1 (h) with φ1 (h) 6= φ0 (h) for any h ∈ H.

Then the test based on the statistics D2
1, . . . , D

2
m is consistent with respect to the

marginal alternatives H1
1 , . . . , H

m
1 .

The proof is a direct consequence of the consistency of the marginal alterna-
tives, more details are given in Appendix.

3.2 Operationalize the test procedure

The introduced test procedure needs some adjustments in order to allow its prac-
tical applicability. The first problem concerns the nuisance parameters σ2

1 (hk) and

σ2
1 (hk) contained in the variance Var

(
φ̂n (hk)

)
that appears in (4). Since a direct

calculation is hard to obtain, it is convenient to estimate the variance following a
different strategy. We propose to use the jackknife variance estimator:

Vn =
n− 1

n

n∑
i=1

(
φ̂[−i]
n (hk)− φ̂n (hk)

)2
(6)

where φ̂
[−i]
n is the estimates of φ leaving out the i-th observation Xi, whose theo-

retical properties are widely studied in the literature (see e.g. Maesono, 1998)

The studentized version of (5), obtained by replacing Var
(
φ̂n (hk)

)
with its

jackknife estimator Vn, satisfies the following asymptotic result.
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Proposition 4 For any k = 1, . . . ,m, under Hk
0 the studentized version of D2

k is
asymptotically distributed as a chi-square distribution with one degree of freedom
χ2 (1).

The latter proposition allows to compute the asymptotic p-value for each test and
then to apply the Holm-Bonferroni procedure.

The second issue concerns the exact expression of φ0 (h). It is rarely available
and, in such cases, often some unknown constants appear making it unusable for
practical purpose. To overcome this shortcoming, φ0 can be estimated from an
artificial sample, with a suitable sample size n0 and generated according to the
benchmark model which is supposed to be true. As a consequence, φ0 is replaced
in D2

k with the random object φ̂0 and the variance of the test statistics is given
by the sum of variances of φ̂n and φ̂0. The new test statistics write as follows:

D̃2
k =

(
φ̂n (hk)− φ̂0 (hk)

)2
Var

(
φ̂n (hk)

)
+ Var

(
φ̂0 (hk)

) k = 1, . . . ,m.

Also in this case the variance of φ̂0 (hk) can be estimated by using the jackknife
estimator (6) leading to the following asymptotic result for the studentized test
statistic, obtained by replacing the variances with their jackknife estimators, and
allowing to compute the asymptotic p-value for each test and then to apply the
Holm-Bonferroni procedure.

Proposition 5 For any k = 1, . . . ,m, under Hk
0 the studentized version of the

test statistic D̃2
k is asymptotically distributed as a chi-square distribution with one

degree of freedom, χ2 (1), under each marginal null hypothesis.

3.3 Algorithm details

The testing procedure depends on many parameters: the number of marginal tests
m, the values of hj ∈ H, and the size n0 of the artificial sample used to generate
the target φ0 (h).

About the choice of m, one has to balance different conflicting aspects. On
the one hand, if one chooses m large, a better exploration of the range E would
be possible with potential beneficial effects on the power, but it could conduce to
a too conservative test (effective level is less than the nominal one) for practical
purposes as known from multiple test literature, with a possible time consuming
procedure. On the other hand, take m = 1 produces a robust test (effective level
equals the nominal one) and a fast procedure, but it could reduce drastically the
power. Moreover, it is reasonable to take m depending on n, since when n is small,
one could obtain the same value of (3) and hence of the test statistic for different
hk. The rule of thumb we adopt is to choose m as the integer part of logn that
seems to offset the different needs.

Once m is fixed, one has to select a range of values where to pick hk. Taking
into account the fact that the factorization of the SmBP holds when h tends to
zero, one should take h as smaller as possible. The problem is that a too small
value of h nullifies estimator (3). To avoid this, one can refer to distances δij =
‖Xi −Xj‖, with j > i, and select h1 and hm as low quantiles of the set of numbers
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∆ = {δij , i = 1, . . . , n, j > i}. A solution which provides reasonably good results in
simulation is to take h1 and hm as the quantiles of order 5% and 25% respectively.
Quantiles of lower order can be taken when n is large enough. It is worth to
noticing that the quality of the test results could be related to the approximation
of the integral in computing the distances δij : if the trajectories of the process are
discretized over a sparse mesh, one could experience a deterioration of the test
abilities. In this view it is preferable to have a process observed over a relative
dense grid (our simulations suggest that a grid of 100 points on [0, 1] is enough).

For what concerns n0, that is the size of the artificial sample used to generate
the target index φ0 (h), simulations suggest that n0 = 200 is enough to obtain
satisfying results.

3.4 A two-sample generalization

Consider two independent samples of random curves {X1, . . . , Xn1} and {Y1, . . . , Yn2}
drawn from the random processes X and Y . One may wonder if X and Y can be
modelled in the same way. To do this, consider φ1 (ε) and φ2 (ε) the complexity
indexes associated to X and Y respectively. The hypotheses write:

H0 : φ1 (ε) = φ2 (ε) for any ε ∈ E \ {0}
H1 : ∃ε : φ1 (ε) 6= φ2 (ε) .

Following similar arguments as above in this section, and using similar notations,
one writes the test hypothesis:

H0 : φ1 (h) = φ2 (h) for any h ∈ H
H1 : ∃h ∈ H : φ1 (h) 6= φ2 (h) ,

whose test statistic can be adapted from D̃2
k to the two sample problem as follows:

D̃2
[2],k =

(
φ̂1,n1 (hk)− φ̂1,n2 (hk)

)2
Var

(
φ̂1,n1 (hk)

)
+ Var

(
φ̂1,n2 (hk)

) k = 1, . . . ,m

where φ̂j,nj (hk) is the estimate (3) obtained for the j-th sample. Moreover, the
following result applies when n1 and n2 are large enough.

Proposition 6 For any k = 1, . . . ,m, under Hk
0 the studentized version of D̃2

[2],k,
obtained by replacing the variances with their jackknife estimators, is asymptoti-
cally distributed as a chi-square distribution with one degree of freedom.

The latter result allows to compute the marginal p-values and then to apply the
Holm-Bonferroni procedure.
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3.5 The case of nuisance parameters

So far we have analyzed tests with simple null hypothesis. This is enough if one
works with some specific random processes X(t) which do not depend on real
parameters, as in the Wiener case, the Brownian Bridge and the most finite di-
mensional processes. In this section we complete the framework by dealing with
the case of composite null hypothesis.

Consider the random process Z (t) = H (X (t) , ρ) where H is an invertible
known real function and ρ ∈ Rp (p ≥ 1) is a vector of parameters. An example is
the Geometric Brownian Motion (GBM), which is a transformation of a Wiener
process characterized by ρ = (µ, σ), where µ ∈ R and σ > 0 are called drift term
and volatility rate respectively.

Given a sample {Z1, . . . , Zn} drawn from Z, whenever ρ is known, it is sufficient
to invert H and to perform the test procedure illustrated in the previous sections
by using the sample

{
Xi = H−1 (Zi, ρ) , i = 1, . . . , n

}
.

If ρ is unknown, one has to test the composite null hypothesis φ (h) = φ0 (h, ρ),
h ∈ H. In this case, as usually done in the goodness-of-fit framework, the test
statistic is computed on the sample

{
X?
i = H−1 (Zi, ρ̂) , i = 1, . . . , n

}
. For in-

stance, in the case of GBM, µ and σ2 can be estimated by using the maximum
likelihood estimators. More in general, one can suppose that each sampled curve
Zi depends on a specific parameter ρi so that Zi (t) = H (Xi (t) , ρi). In such case
each ρ̂i is estimated from the discretization points of Zi.

Denote φ̂?n (ε) the estimator computed over the sample {X?
i , i = 1, . . . , n} and

φ̂n (ε) the corresponding one computed if ρ was known. If
∣∣∣φ̂?n (ε)− φ̂n (ε)

∣∣∣ =

o

(√
V ar

(
φ̂n (ε)

))
for any ε, direct computations give

E
[
φ̂?n (ε)

]
= E

[
φ̂n (ε)

]
+ o

(√
V ar

(
φ̂n (ε)

))
and

V ar
(
φ̂?n (ε)

)
= V ar

(
φ̂n (ε)

)
+ o

(
V ar

(
φ̂n (ε)

))
.

Consequently, the test statistics computed using φ̂?n are asymptotically equiv-
alent to those obtained with φ̂n and hence the statements of the propositions
in the previous subsections still hold when the test statistic is computed on
{X?

i , i = 1, . . . , n}.

4 Simulation study

The aim of this section is to explore finite sample properties of the test by eval-
uating the empirical level and the power for different families of processes (finite
and infinite dimensional) and sample sizes.

All the experiments are conducted using the software R (R Core Team, 2013)
under the following general experimental conditions:

– sample sizes n = 25, 50, 75, 100, 150, 200;
– number of marginal tests m = blognc (where bac is the integer part of a);
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– {h1, . . . , hm} are m equispaced points from max {q0.05 (∆) , q0.05 (∆0)} and
min {q0.25 (∆) , q0.25 (∆0)} (where qv denotes the v-quantile, ∆ and ∆0 are the
sets of distances δij , with j > i , computed for the observed data and the target
ones respectively);

– the targets φ0 (hj) are computed from an artificial sample of n0 = 200 curves
generated according to a process whose volumetric term is the one in the null
hypothesis;

– all the curves are discretized over a mesh of 100 equispaced points on [0, 1].

For each of the treated family of process, the power is estimated as the propor-
tion of times that the null hypothesis H0 is rejected at the nominal level α = 5%
over 1000 Monte Carlo replications. The p-values are computed using the asymp-
totic null distribution.

The family of processes we deal with are the following:

Experiment 1 - Finite-dimensional processes - In the first experiment we consider
finite dimensional processes X generated according to the model:

X (t) =
d∑
j=1

ξj
√
λjvj (t) t ∈ [0, 1]

where ξj ∼ N (0, 1) i.i.d., {vj} is the Fourier basis, and λj = β−j . The aim is to
evaluate the power of our test procedure when one wants to discriminate the null
hypothesis d = 3 against the alternatives d = 2, 4, 5 taking β = 2, 3.

Experiment 2 - Wiener against finite-dimensional processes - Consider the process
X generated according to

X (t) =
√

2
d∑
j=1

ξj
2

(2j − 1)
sin

(
1

2
(2j − 1)πt

)
t ∈ [0, 1]

where ξj ∼ N (0, 1) i.i.d.. If d =∞ this is a Wiener process. The aim is to test the
null hypothesis that the process is Wiener against the alternatives d = 3, 5, 10, 20.
The trajectories of the Wiener process are generated according to cumulative sum-
mation of independent standard Gaussian r.v.s.

Experiment 3 - Wiener against a generalized Wiener processes - Consider the Ornstein-
Uhlenbeck process, a process of the family of generalized Wiener, and generated
according to the following stochastic differential equation:

dX (t) = θ (µ−X (t)) dt+ σdW (t) t ∈ [0, 1]

where W (t) is a Wiener process and θ, µ ≥ 0 and σ > 0. Set X (0) = 0, and µ = 5,
σ = 1, one tests the null hypothesis θ = 0 (that is, X is Wiener) against θ =
0.5, 1, 3. The Ornstein-Uhlenbeck trajectories (for θ > 0) are generated by using
the classical Euler-Maruyama simulation scheme (see e.g. Fusai and Roncoroni,
2007).

In figures 1 and 2 the results of above illustrated experiments are reproduced.
The plots depict the behaviour of the estimated level and power varying the sample
size for each considered family of processes. In all the plots, the full horizontal line
indicates the nominal level of the test (that is 5%).
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As expected, the test is rather conservative, and its performances improve as
n increases. More in details, we note that the performances are relatively good for
all the defined families of processes. In the finite dimensional case (see Figure 1),
the test provides better results, also for small sample size, and with the smallest
eigenvalue decay rate: if the weight λ3 is too small, it is more difficult to discrim-
inate the case d = 3 from d = 4. When one has to discriminate a Wiener process
from finite dimensional ones (see the left panel in Figure 2), the sample size plays
a central role: in fact, if one wants to distinguish an infinite dimensional process
from a relatively high dimensional (but finite) one, the sample size must be large,
otherwise the test often fails. Finally, for what concerns the test of Wiener against
an Ornstein-Uhlenbeck process, the results (see the right panel in Figure 2) show
how the power behaves varying θ: if θ is relatively small, a large sample size is
necessary to discriminate the Ornstein-Uhlenbeck process from the Wiener one,
whereas if θ is large the test performs well also for small sample sizes.

Fig. 1 Estimated power for experiment 1 with β = 2 (left panel) and β = 3 (right panel).
The lines represent: d = 3 (level): solid line, d = 2: dashed line, d = 4: dotted line, and d = 5:
dot-dashed lines.

5 Comparison with the random project test

Through Monte Carlo simulations, we compare the empirical level and power of our
test with the random projections test proposed in Cuesta-Albertos et al. (2007).
Curves are generated according to the following family of models:

X(t) = (1 + a1t
2 + a2 sin(2πt) + a3e

t)W (t)

where W (t) is a Wiener Process and aj are constants. If a1, a2, a3 are null, one
tests the null hypothesis that X is a Wiener Process, otherwise, one considers local
alternatives.
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Fig. 2 Left panel - Estimated power for experiment 2. The lines represent: d = ∞ (level):
solid line, d = 3: long-dashed line, d = 5: dot-dashed line, d = 10: dotted line, and d = 20:
dashed. Right panel - Estimated power for experiment 3. The lines represent: θ = 0 (level):
solid line, θ = 0.5: dashed line, θ = 1: dotted line, and θ = 3: dot-dashed lines.

The experimental setting is the following: the sample size is n = 50, 100, the
power is estimated through 1000 Monte Carlo replications, m = 1, 2, 3, 4 and the
hj and φ0(hj) are computed as in Section 4. The nominal level is α = 5%.

The results are reported in Table 1 together with the ones obtained by the
random projections test using k-dimensional projections with k = 3, 5 and B = 200
bootstrap iterations to compute the critical values.

In general, the test based on the complexity index performs well if compared
with the random projection one. As already shown in Section 4 the first one is
rather conservative, in particular for n = 50 and when m increases; this can be
also explained by the fact that we used the asymptotic null distribution. For a lot
of parameter constellations, our test is equivalent or outperforms the competitor.
One exception is the case a1 = 0, a2 = 1, a3 = 0 where the complexity index is not
able to discriminate the generated process with a Wiener one: in order to obtain
better results it is necessary to increase a2. In fact for a1 = 0, a2 = 1, a3 = 0
the estimated powers are comparable with those obtained through the random
projections.

6 Application to real data

A crucial problem in finance is the modelization of stock prices time series with
the aim of building models to evaluate derivatives and other contracts, which
have these prices as underlying. Along the years, various approaches have been
proposed: a common assumption is that the prices follow a Geometric Brown-
ian Motion (GBM), with drift and volatility which evolve during the time (see
e.g. Campbell et al., 2012 or Fusai and Roncoroni, 2007).

The verification of such hypothesis is still an open problem and only indirect
empirical evidences have been provided to support it (for instance, by testing
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Parameters Our Test Projection Test
a1 a2 a3 n m = 1 m = 2 m = 3 m = 4 k = 3 k = 5
0 0 0 50 0.044 0.039 0.029 0.022 0.043 0.058

100 0.046 0.04 0.031 0.031 0.041 0.043
1 0 0 50 1.000 1.000 1.000 1.000 0.136 0.154

100 1.000 1.000 1.000 1.000 0.251 0.271
0 1 0 50 0.085 0.064 0.05 0.044 0.968 0.991

100 0.079 0.063 0.042 0.036 0.993 0.999
0 2 0 50 1.000 1.000 1.000 1.000 0.991 1.000

100 1.000 1.000 1.000 1.000 0.998 1.000
0 0 1 50 1.000 1.000 1.000 1.000 0.104 0.102

100 1.000 1.000 1.000 1.000 0.178 0.142
0.5 1 0 50 0.966 0.938 0.928 0.918 0.823 0.86

100 0.998 0.995 0.993 0.992 0.957 0.979
1 0 1 50 1.000 1.000 1.000 1.000 0.161 0.148

100 1.000 1.000 1.000 1.000 0.282 0.31
0 2 1 50 1.000 1.000 1.000 1.000 0.541 0.588

100 1.000 1.000 1.000 1.000 0.776 0.834
1 2 0.5 50 1.000 1.000 1.000 1.000 0.692 0.749

100 1.000 1.000 1.000 1.000 0.912 0.944

Table 1 Estimated power for our test and for the random projections test under different
local alternatives, with sample sizes n = 50, 100.

marginal Gaussianity, serial correlation of increments, and so on; see among many
others, Marathe and Ryan, 2005 and Yen and Yen, 1999).

In this section we apply the procedure illustrated above in order to test if finan-
cial data are compatible with the GBM assumption. In particular, we handle the
S&P500 index recorded with 1 minute frequency during the period 14th October
2016, 6th May 2017 (the dataset consists in 54810 observations).1 The trajectory
of the whole time series is depicted in the left panel of Figure 3.

To implement the test procedure, a preliminary step is to cut the time series
in order to obtain a sample of functional data. Let S (t) be the S&P500 observed
at time t, from the time series {S (tj) , j = 1, . . . , N} one builds a sample of n
discretized functional data Xi by dividing the interval T = [t1, tN ] in n disjoint
intervals Ti with constant width τ (a positive integer, so that N = nτ) and then
cutting the whole trajectory as follows:

Xi (tj) = S ((i− 1) τ + tj) tj ∈ [0, τ) , i = 1, . . . , n.

If one assumes that the underlying continuous process X (t) which generates data
follows the GBM model, then

Xi (t) = Xi (0) exp

{(
µi −

1

2
σ2
i

)
t+ σiWi (t)

}
t ∈ [0, τ)

where µi and σi are the specific drift term and the specific volatility rate associated
to Ti and W (t) is a Wiener process. In such a way:

Wi(t) =
[
log (Xi (t) /Xi (0))−

(
µi − σ2

i /2
)
t
]
/σi.

1 Data have been weekly downloaded by using the link:
https://www.google.com/finance/getprices?i=60&p=200d&f=d,o,h,l,c,v&df=cpct&q=.INX
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In our analysis we decided to divide the whole intervals in subintervals of 145
minutes each one, in order to have a discretization mesh dense enough. This leads
to a relatively large sample of size n = 378. The parameters µi and σi are estimated
from each curve by using the classical maximum likelihood approach. The sample
of curves Wi(t) obtained after these transformations is plotted in the right panel
of Figure 3.

Fig. 3 Trajectory of S&P500 value from 14th October 2016 to 6th May 2017 with 1 minute
frequency (left panel) and the functional sample after the transformations (right panel).

At this stage, one wants to test the null hypothesis that the underlying process
W (t) is Wiener. The target φ0 is built by using an artificial sample of size n0 = 500
(we initialize the random generator of R with the seed 1234567890), the number
of marginal test m is selected according to the rule of thumb blognc and the range
of H is based on the quantile of order 1% and 10%.

The first line in Table 2 collects the sorted p-values: the decision (the test
is conducted at the level 5%) is to accept the null hypothesis. We test also the
null hypothesis that the process W (t) is finite dimensional with d = 5, 10, 15, 20.
Results in Table 2 tell us that the process can not be modelled with a finite
dimensional process with dimension smaller or equal to 20. From the modelling
and simulation point of view, higher dimensions are not considered since they are
redundant.

Ordered p-values
H0 p(1) p(2) p(3) p(4) p(5) Decision

Wiener 0.5499 0.5597 0.5673 0.5804 0.6133 Accept

d = 5 0.0000(∗) 0.0000(∗) 0.0000(∗) 0.0000(∗) 0.0000(∗) Reject

d = 10 0.0000(∗) 0.0000(∗) 0.0000(∗) 0.0001(∗) 0.0008(∗) Reject

d = 15 0.0000(∗) 0.0000(∗) 0.0000(∗) 0.0003(∗) 0.0013(∗) Reject

d = 20 0.0001(∗) 0.0030(∗) 0.0119(∗) 0.0394 0.0867 Reject

Table 2 Estimated p-values and decision under various target model. The notation (∗) means
that p(k) ≤ α/ (m− k − 1).
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In order to evaluate the stability of results with respect to the way in which we
built the sample of functional data, we repeated the test by using different cutting
criteria: choosing 105 and 203 minutes for each subinterval (to which correspond
samples of size n = 522 and n = 270 respectively). All of the explored cases present
very similar result in terms of p-values (that therefore are omitted), leading to the
same conclusion: the GBM assumption for the underlying process is compatible
with data.

A – Appendix: Theoretical results

A.1 Proof of Proposition 1 and some further details

The proof is based on similar arguments as in Corollary 5.1 in Ferraty et al. (2012).

Bias

Compute the mean of the estimator:

E
[
φ̂n (h)

]
= E

 1

n (n− 1)

n∑
i=1

∑
j 6=i

I{‖Xi−Xj‖≤h}


=

1

n (n− 1)

n∑
i=1

∑
j 6=i

E
[
I{‖X2−X1‖≤h}

]
= E

[
I{‖X2−X1‖≤h}

]
.

Using the law of total expectation, one has

E
[
I{‖X2−X1‖≤h}

]
= E

[
E
[
I{‖X2−X1‖≤h}|X2

] ]
= E

[
ϕX2 (h)

]
.

Thanks to (H2) and the constraint (2) it follows

E
[
ϕX2

(h)
]

= (E [f (X2)] + o (1))φ (h) = φ (h) + o (φ (h)) . (7)

Combining the results one gets

E
[
φ̂n (h)

]
= φ (h) + o (φ (h)) (8)

that allows to conclude that the estimator is unbiased when h→ 0 and n→∞.

Variance

By using classical results on U-statistics (see e.g. Lehmann, 1999, Theorem 6.1.1) it follows

Var
(
φ̂n (h)

)
=

4 (n− 2)

n (n− 1)
σ2
1 (h) +

2

n (n− 2)
σ2
2 (h)

where

σ2
1 (h) = Var

(
E
[
I{‖X2−X1‖≤h}|X2

])
= Var

(
ϕX2

(h)
)
,

σ2
2 (h) = Var

(
I{‖X2−X1‖≤h}

)
.
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Consider the second term σ2
2 (h), one has

Var
(
I{‖X2−X1‖≤h}

)
= E

[
I{‖X2−X1‖≤h}

] (
1− E

[
I{‖X2−X1‖≤h}

])
.

Since (see equation (7))

E
[
I{‖X2−X1‖≤h}

]
= E

[
E
[
I{‖X2−X1‖≤h}|X2

]]
= E

[
ϕX2

(h)
]

= φ (h) + o (φ (h))

it follows

σ2
2 (h) = (φ (h) + o (φ (h))) (1− φ (h)− o (φ (h))) = φ (h) + o (φ (h)) .

About the first term σ2
1 (h), one has

Var
(
ϕX2 (h)

)
= E

[
ϕ2
X2

(h)
]
− E2

[
ϕX2 (h)

]
where

E2
[
ϕX2

(h)
]

= φ2 (h) + o
(
φ2 (h)

)
.

Since

ϕ2
X2

(h) = E2
[
I{‖X2−X1‖≤h}|X2

]
≤ E

[
I2{‖X2−X1‖≤h}|X2

]
= E

[
I{‖X2−X1‖≤h}|X2

]
= ϕX2

(h)

then
E
[
ϕ2
X2

(h)
]
≤ E

[
ϕX2

(h)
]

= φ (h) + o (φ (h)) .

Concluding, there exist two finite positive constants c1 and c2 depending on h, such that

Var
(
φ̂n (h)

)
≤

4 (n− 2)

n (n− 1)
c1 (h) +

2

n (n− 2)
c2 (h)

and then

Var
(
φ̂n (h)

)
= O

(
1

n

)
. (9)

Asymptotic distribution

Using classical asymptotic results on U-statistics (see e.g. Lehmann, 1999, theorems 3.3.1 and
6.1.2) since 0 < σ2

1 (h) <∞ and 0 < σ2
2 (h) <∞ (thanks to (H3) and results above), one gets,

for h→ 0, and n→∞,

φ̂n (h)− E
[
φ̂n (h)

]
√

Var
(
φ̂n (h)

) d−→ N (0, 1) . (10)

It is worth to noting that combining (10) with (8) we get, as n→∞,

φ̂n (h)− φ (h)√
Var

(
φ̂n (h)

) d−→ N (0, 1) . (11)

A.2 Proof of propositions 2, 4, 5 and 6

For what concerns Proposition 2, the result is a consequence of asymptotic normality of the

estimator φ̂n and its unbiasness (8). In particular, for any k = 1, . . . ,m, under the marginal
null hypothesis Hk

0 , when h→ 0 from (11) it follows:(
φ̂n (h)− φ0 (h)

)2
Var

(
φ̂n (h)

) d−→ χ2 (1) as n→∞.

About the statements in propositions 4, 5 and 6, the estimators consistency, their asymptotic
unbiasness and normality, together with consistency of the jackknife variance estimators allow
to invoke Slustky’s Theorem and lead to the results (see e.g. Maesono (1995)).
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Proof of Proposition 3

Recalling that a multiple test is consistent w.r.t. the marginal alternatives H1
1 , . . . , H

m
1 if each

marginal test is consistent (see e.g. Alt, 2005), then we have to prove that, under each Hk
1 one

has
D2
k −→ +∞ in probability as n→∞.

Observe that for any k,

D2
k =

 φ̂n (h)− φ1 (h)

Var
(
φ̂n (h)

) +
φ1 (h)− φ0 (h)

Var
(
φ̂n (h)

)
2

= (An +Bn)2 .

On the one hand, under each Hk
1 , thanks to (11), the sequence of random variables An is

bounded in probability. On the other hand, under each Hk
1 , thanks to (9), the deterministic

sequence Bn diverges with n. The conclusion follows immediately.
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Horváth, L., Kokoszka, P., 2012. Inference for functional data with applications. Springer Series
in Statistics. Springer, New York.

Lee, J., 1990. U-statistics: Theory and Practice. Citeseer.
Lehmann, E. L., 1999. Elements of large-sample theory. Springer Science & Business Media.
Maesono, Y., 1995. On the normal approximations of Studentized U -statistic. J. Japan Statist.

Soc. 25 (1), 19–33.
Maesono, Y., 1998. Asymptotic mean square errors of variance estimators for U -statistics and

their Edgeworth expansions. J. Japan Statist. Soc. 28 (1), 1–19.
Marathe, R. R., Ryan, S. M., 2005. On the validity of the geometric Brownian motion assump-

tion. The Engineering Economist 50 (2), 159–192.
R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria.
Ramsay, J. O., Silverman, B. W., 2005. Functional data analysis, 2nd Edition. Springer Series

in Statistics. Springer, New York.
Yen, G., Yen, E. C., 1999. On the validity of the Wiener process assumption in option pricing

models: Contradictory evidence from Taiwan. Review of Quantitative Finance and Account-
ing 12 (4), 327–340.


	Introduction
	Statistical background
	A general test procedure
	Simulation study
	Comparison with the random project test
	Application to real data
	– Appendix: Theoretical results

