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Abstract: The preparation of porous carbons by post-synthesis treatment of hypercrosslinked
polymers is described, with a careful physico-chemical characterization, to obtain new materials for
gas storage and separation. Different procedures, based on chemical and thermal activations, are
considered; they include thermal treatment at 380 ◦C, and chemical activation with KOH followed by
thermal treatment at 750 or 800 ◦C; the resulting materials are carefully characterized in their structural
and textural properties. The thermal treatment at temperature below decomposition (380 ◦C)
maintains the polymer structure, removing the side-products of the polymerization entrapped
in the pores and improving the textural properties. On the other hand, the carbonization leads to a
different material, enhancing both surface area and total pore volume—the textural properties of the
final porous carbons are affected by the activation procedure and by the starting polymer. Different
chemical activation methods and temperatures lead to different carbons with BET surface area ranging
between 2318 and 2975 m2/g and pore volume up to 1.30 cc/g. The wise choice of the carbonization
treatment allows the final textural properties to be finely tuned by increasing either the narrow pore
fraction or the micro- and mesoporous volume. High pressure gas adsorption measurements of
methane, hydrogen, and carbon dioxide of the most promising material are investigated, and the
storage capacity for methane is measured and discussed.

Keywords: activated carbon; hyper-crosslinked polymers; gas storage; raman spectroscopy

1. Introduction

In the current hydrocarbon economy, transportation is fueled primarily by petroleum. The burning
of hydrocarbon fuels has an adverse effect on the environment, as it is responsible for the increase
of CO2 and other pollutants. A number of potential solutions for conservation and remediation of
the environment threatened by CO2 emission growth are cutting edge research topics. These include
studies on CO2 capture and storage [1], as well as on the use of cleaner fuels, such as natural gas
(mostly CH4) [2] or hydrogen (H2) [3,4].

New porous materials characterized by appropriate surface area and nanometer pore size have
been developed both for an optimal gas storage [5–8] and for applications in different fields, such
as molecular separations [9–11] and catalysis [12–14]. Microporous materials, such as activated
carbons (ACs) [15–19], zeolites, silicas, porous organic-inorganic hybrid frameworks [20–22], and
porous organic polymer networks [23–25], are excellent candidates for these applications. Among the
porous organic systems, the Porous Aromatic Framework (PAF) family has received great attention
recently [26–28], thanks to their exceptional stability and their very high surface area; in particular,
PAF-302 (also called PAF-1 in the literature) exhibits one of the highest BET surface areas reported so
far, along with a high affinity for methane [29–31], and to a certain extent, for CO2 [32–36].
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A related, wide family of porous materials that have been investigated for decades is that of
carbonaceous solids, obtained by carbonization of biomass [37–39] or by decomposition of organic
materials, generally polymers [40], through physical or chemical activations [41–43]. Physical activation
implies the pyrolysis of the precursor at high temperatures with gases such as carbon dioxide, steam, or
others. Chemical activation also involves pyrolysis, but at lower temperatures, as well as impregnation
of the starting precursor with chemicals such as H3PO4, ZnCl2, K2CO3, NaOH, or KOH [44–48].
Chemical activation offers several advantages with respect to the physical one, including an easy
procedure, lower temperatures, shorter time, higher yields, and better porous structure of the resulting
material [49–51].

In this field, a method which has provided excellent results is based on KOH activated
carbonization at high temperature. This approach, applied to various microporous organic materials,
led to porous carbons with surface area as high as 3000 m2 g−1 and excellent gas storage
properties [23,52–54]. PAF-302 was also treated by KOH at different temperatures (500–900 ◦C),
obtaining porous carbons with high surface area, high heat of adsorption, and very good uptakes of
CO2, CH4, and H2 [55–57].

In our previous work, we reported on the synthesis and storage capacity of microporous solids
with high surface area, belonging to the class of Hyper-Crosslinked Polymers (HCPs) [30]. In the
following these solids are referred to as UPO (from University of Piemonte Orientale). UPO materials,
prepared from tetraphenylmethane (TPM) and formaldehyde dimethyl acetal (FDA), represent
a very attractive family of porous organic networks easily prepared by Friedel–Crafts reaction
(Figure 1); in general, HCPs combine high gas uptake capacity, low synthetic costs, and easy industrial
scalability [58–63].
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Figure 1. Scheme of the synthesis of UPO materials.

Obtaining a reliable model of HCP amorphous structures is a very complex task. Recently,
the UPO network was modeled by a trial-and-error procedure, based on the simulation of N2 and
CO2 adsorption in different tentative models of suitable stoichiometry, compared with experimental
uptake [64]. A snapshot of the structure proposed by this procedure is shown in Figure 2.

Herein, we report on the effect of different chemical activation and thermal treatments on
UPO materials to obtain microporous carbons with improved surface area and total pore volume.
Two polymers were used as precursors, namely UPO8 and UPO16, obtained by reacting different
ratios of TPM and FDA (1:8 and 1:16, respectively); the post-synthesis treatments tested in this work
include a mild thermal treatment at 380 ◦C, below the decomposition temperature, and three more
aggressive treatments at 750 and 800 ◦C, combined with different activation reactions with KOH.

All the obtained carbon materials were carefully characterized, with different physico-chemical
techniques. In particular, we described their textural properties (surface area, porous volume, pore
size distribution) depending on the starting polymer and the post-synthesis treatment. The gas
uptake performance at high pressure was then tested for the sample with the most interesting
textural properties, and both gravimetric and volumetric storage of methane (298 K, up to 100 bar),
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carbon dioxide (298 K, up to 40 bar), and hydrogen (77 K, up to 100 bar) are reported. Furthermore
different packing procedures were tested to form compact carbon samples from the pristine,
as-synthesized powders.
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2. Experimental Section

2.1. Synthesis of UPO Materials

The Hyper-Crosslinked Polymers were prepared using the procedure reported by some of the
authors recently [30]; in particular, ferric chloride and TPM were suspended in dichloroethane (DCE,
135 mL). The resulting mixture was stirred vigorously at room temperature to obtain a homogeneous
solution. Then, FDA was added drop-wise. The resulting thick gel was stirred at room temperature for
4 h and then heated under reflux overnight. After cooling to room temperature, the gel was diluted
with ethanol and washed several times with water until the pH become neutral, and finally dried in
oven at 100 ◦C overnight. The reaction was carried out using the TPM:FDA molar ratios of 1:8 (UPO8)
and 1:16 (UPO16), while the FeCl3:FDA ratio was 1:1.

2.2. Post Synthesis Treatments

After the synthesis, the polymers were activated with the following thermal and
chemical treatments.

(1) Heating activation at 380 ◦C: 1.0 g of UPO material was placed in an alumina crucible and
heated to 380 ◦C for 16 h with a heating rate of 2 ◦C/min under nitrogen flow. The materials were
labeled as UPO8-380 and UPO16-380, depending on the starting material.

(2) Chemical activation with KOH at high temperatures: a number of different chemical activation
procedures were used, differing for the pre-activation method and the final temperature (800 or 750 ◦C),
as detailed below.

Pre-activation method 1: 1.0 g of UPO material was homogeneously grinded with 3 g of KOH.
The mixture was kept in the air for 5 h.

Pre-activation method 2: 1.0 g of UPO material was added to a 1 M solution of KOH in ethanol
(95% v/v in water), with a 1:4 ratio by weight, and stirred for 18 h at room temperature. Subsequently,
the mixture was dried under vacuum at 50 ◦C.
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Pre-activation method 3: 1.0 g of UPO material was homogeneously grinded with 3 g of KOH,
under inert conditions.

After the preparation, the mixture was placed in a crucible of alumina and thermally treated under
N2 flow with a ramp of 2 ◦C/min up to 750 or to 800 ◦C, and subsequently held under isothermal
conditions for 1 h. After the chemical activation, all the resulting carbons were washed with deionized
water (250 mL), neutralized with 2 M HCl (200 mL), and washed again with deionized water to remove
potassium salts, and then dried at 110 ◦C for 18 h.

The carbonaceous materials obtained by these procedures were labeled as KUPOx-y-z, where x
indicates the FDA/TPM ratio of the parent polymer (i.e., 8 or 16), y refers to the pre-activation method
(1, 2, or 3), and z to the activation temperature (750 or 800 ◦C). The yields of the polymers are between
45% and 55%. This discrepancy is related to the temperature activation process.

2.3. Characterization Techniques

The materials in KBr pellets were characterized by Fourier transform infrared spectroscopy
(FT-IR) using a Bruker Equinox 55 spectrometer (Bruker Optics, Billerica, MA, USA) equipped with
a pyroelectric detector (DTGS type) with a resolution of 4 cm−1. Raman spectra were recorded on
as-prepared powders using a Jobin Yvon HR800 LabRam µ-spectrometer (Horiba, Kyoto, Japan),
equipped with an Olympus BX41 microscope, a HeNe 20 mW laser working at 632.8 nm, and a
charge-coupled device (CCD) air-cooled detector. Instrument calibration was carried out before each
analysis, by checking the position and intensity of the Si band at 520.65 ± 0.05 cm−1. To improve the
signal to noise ratio, 40 cycles of 70 s (about 11 h) were performed. The spectra were recorded in the
3500–500 cm−1 spectral region.

N2 physisorption measurements were carried out at 77 K in the relative pressure (P/P0) range
1 × 10−7 to 1 by using an Autosorb iQ/ASiQwin instrument (Anton Paar QuantaTec Inc., Boynton
Beach, FL, USA). Prior to the analysis, the samples were outgassed at 150 ◦C for 16 h (residual pressure
lower than 10−6 Torr). The apparent BET surface areas were calculated over a relative pressure
range recommended by the “Micropore BET Assistant”, a program that is implemented in ASiQWin
Quantachrome software to facilitate the selection points within the linear range of the BET plot for
microporous materials. The pore size distribution for all samples is calculated using quenched solid
density functional theory (QSDFT) on a carbon surface with slit/cylindrical geometry applied to the
adsorption branch (method with the smallest fitting error).

Thermogravimetric analyses (TGA) were performed on a Setaram SETSYS Evolution instrument
(SETARAM Instrumentation, Caluire, France) under Ar (gas flow rate 20 mL/min), heating the samples
from 30 to 800 ◦C with a rate of 2 ◦C/min. The derivate of thermogravimetric curves (DTG) was
also calculated.

The true (skeletal) density of the samples was measured by Helium pycnometry at room
temperature. The apparent density of the as-synthesized powders was computed by combining
the true density and the porous volume provided by N2 physisorption. Packing density was calculated
by pressing the powder either to 0.75 or to 15 tons/cm2 for different times, as detailed in the following.

The EDS analyses were recorded on a Quanta 200 (FEI Company, Eindhoven, Netherlands)
Scanning Electron Microscope equipped with energy dispersive spectrometer (EDAX Inc., Mahwah,
NJ, USA) attachment, using a tungsten filament as electron source at 25 KeV

High-pressure gas adsorption measurements for H2, CO2, and CH4, were carried out at different
temperature and pressure and the isotherms were performed on an automated Sieverts’ apparatus
(PCT-Pro-E&E from SETARAM Instrumentation, Caluire, France). Prior to the gas adsorption
measurements, approximately 200 mg of the sample were degassed at 150 ◦C under high vacuum for
~18 h. H2 adsorption measurements were carried out at liquid nitrogen temperature (77 K) up to a
maximum pressure of 100 bar. Both CO2 and CH4 adsorption experiments were performed at room
temperatures and up to a final pressure of 40 bar and 100 bar, respectively.
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3. Results and Discussion

Two HPC polymers (UPO8 and UPO16), obtained by Friedel-Crafts reaction as described in
reference [30] with 1:8 and 1:16 TPM/FDA ratios, respectively, were subjected to two post synthesis
treatments, with the aim of improving their textural properties.

The polymers underwent either: (i) a thermal treatment at 380 ◦C, below the degradation
temperature, with the purpose of clearing the polymer pores, or (ii) a chemical activation with KOH
using differing pre-activation methods to find the best conditions for KOH moisture to diffuse into the
UPO pores. The mixtures were then thermally treated at 750 or 800 ◦C.

3.1. Effects of Thermal Treatment at 380 ◦C

The results of the thermal gravimetric analysis (TGA) on the starting polymers and on the sample
treated at 380 ◦C are compared in Figure 3.
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Figure 3. TGA analysis of UPO materials before (I) and after (II) thermal treatment at 380 ◦C for
UPO8 (frame (A)) and UPO16 (frame (B)). The DTG derivatives are also reported (dashed curves).
The analyses are performed under Ar flow (20 mL/min) using a heating ramp of 2 ◦C/min.

The TGA profiles report two distinct weight losses in the original polymers (before the thermal
treatment, curves I in Figure 3), one of which (centered at about 300 ◦C) is attributed to reaction
impurities still present in the pores and the second (above 450 ◦C) to the framework decomposition.
On the other hand, the thermal profiles of UPO8-380 and UPO16-380 samples (Figure 3, curves II)
show only the weight loss starting at about 460 ◦C due to the structure decomposition. This behavior
demonstrates the complete removal of impurities trapped in the porous structure upon treatment at
380 ◦C, however, this does not alter the thermal stability of UPO frameworks.

To detect the type of impurities present in UPO8 and UPO16 starting materials, FTIR spectroscopy
was used (Figure 4).
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The bands between 3000 and 2800 cm−1, assigned to aliphatic C–H stretching, are strongly
weakened after the thermal treatment (Figure 4, curves II: the effect is better appreciated by
comparing them to the bands above 3000 cm−1, attributed to aromatic C–H stretching, left unaltered),
demonstrating the removal of aliphatic impurities. In particular UPO16, synthesized with a higher
FDA concentration, shows a band at 2975 cm−1 due to the asymmetric stretching of methyl groups
in FDA fragments that disappears after thermal treatment. In the low frequency region, the bands at
1710 and 1680 cm−1, due to vibrations of substituted aromatic rings, undergo an intensity decrease
probably caused by the removal of part of the chloro-methylene groups or FDA side-reaction products.
Indeed, the band at 1269 cm−1, due to the CH2 wagging mode of the chloro-methylene groups, is
still present, but with lower intensity compared to the situation before the treatment. Moreover, the
absorption at 1100 cm−1, which is very intense in the starting polymers, disappears completely after
treatment. This band has been assigned to ether groups and the disappearance confirms that the
treatment cleaned the pores from trapped fragments of FDA. To summarize, the as-prepared UPO
polymers show: (i) chloro-methylene groups attached to the aromatic rings of the polymer skeleton
and (ii) FDA side-reaction products linked or trapped into the pore of the polymer. The precise
nature of these fragments is far beyond the scope of the present paper, and will be the subject of a
specific contribution.

Then the pore size distribution (PSD) of all the samples was analyzed by N2 physisorption at
77 K: the adsorption isotherms, and the corresponding PSD are reported in Figure 5 for UPO materials
before and after the thermal treatment.
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Figure 5. N2 adsorption-desorption isotherms at 77 K and pore size distributions of UPO polymers
before (black circles) and after thermal treatment at 380 ◦C (red triangles): (A) UPO8 and UPO8-380
isotherms; (B) UPO8 and UPO8-380 PSD; (C) UPO16 and UPO16-380 isotherms; (D) UPO16 and
UPO16-380 PSD.

According to the IUPAC classification, all the isotherms shown in Figure 5 are of type I in the
adsorption branch with H2-type hysteresis in the desorption branch. A large quantity of gas (>200
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cm3/g) is adsorbed at low relative pressures, as expected for microporous materials; the isotherms also
display a further gradual filling of mesopores at higher relative pressures in the range of 0.45–1 P/P0.

The porous properties of the polymers are summarized in Table 1. UPO8 shows a higher BET
surface area (1435 m2·g−1) than UPO16 (1289 m2·g−1). After the thermal treatment, the surface area
increases for both the materials, reaching a similar value higher than 1500 m2·g−1. The increment of
surface area is much larger for UPO16 (17%) than for UPO8 (6.5%), showing that the former sample
contains a higher amount of side-products of the cross-linking polymerization entrapped inside the
micropores, in agreement with TGA and FTIR results. Interestingly, while UPO16 and UPO16-380
exhibit a similar PSD with ultramicropores at about 5.4 Å and micropores at 11 Å, the effect of thermal
treatment on UPO8 is different: in fact, ultramicropores at about 5.4 Å appear only after the thermal
treatment, when micropores at 8.5 Å disappear and a family at 11 Å increases. In other words, the
parent materials (UPO8 and UPO16) exhibit quite a different PSD, while their counterparts after the
treatment (UPO8-380 and UPO16-380) are much more similar to each other. In all the cases, the thermal
treatment at 380 ◦C led the micropore volume to increase, and the mesoporous volume to decrease.

The observed increase of the microporous volume upon thermal treatment is particularly
interesting for gas storage or gas separation applications, as these kind of pores are responsible
for the adsorption at low pressure.

Table 1. Textural properties (BET surface area and pore volume) for the samples before and after
thermal treatment.

Sample SSA BET
(m2g−1) a

Volume TOTAL
(cm3g−1) b

Volume MICRO (cm3g−1) c Volume MESO
(cm3g−1) c

<7 Å 7 < Å< 20 Total

UPO8 1435 1.09 – 0.31 0.31 0.78
UPO8-380 1528 1.04 0.14 0.27 0.41 0.63

UPO16 1289 0.96 0.09 0.22 0.31 0.65
UPO16-380 1513 0.99 0.14 0.28 0.42 0.57

a Surface area calculated from N2 adsorption isotherm using the BET method; b Total pore volume at P/P0 = 0.995;
c Micropore volume derived using QSDFT method.

3.2. Effects of Chemical Activation at High Temperature

UPO8 and UPO16 were also activated chemically with KOH at high temperatures, causing
the carbonization of the materials: this is an effective method for the preparation of highly
microporous materials. The activation mechanism occurs as a stoichoimetric solid–solid/solid–liquid
reaction [63,64], according to equation 6KOH + 2C→ 2 K + 3H2 + 2K2CO3. With the increase of the
activation temperature above 700 ◦C, the resulting K2CO3 starts to decompose into K2O and CO2.
Thus, the high microporosity in the carbon matrix is formed due to the ternary collaborative effects of
chemical activation, physical activation, and the expansion of the carbon lattices by metallic potassium
intercalation; this expansion is maintained even after the final wash.

The elemental composition of the KUPO materials was determined by EDX analysis, allowing
exclusion of the presence of potassium in the washed samples.

In the literature [65] it is known that the key parameters for obtaining an efficient carbonization
are the temperature, the nature of the activating agent, and the precursor/activating agent ratio. Here
we investigated the effect of different combinations of these factors on the textural properties of the
resulting carbons. Thus, UPO8 was either homogeneously grinded with KOH, and then left in open
air for 5 h before carbonization (Method 1), or stirred for 18 h in a 1 M KOH solution in EtOH, and
then dried and carbonized (Method 2), or grinded with KOH in inert atmosphere and then carbonized
(Method 3). Since the carbonization temperatures were either 750 or 800 ◦C, a total of 6 porous carbon
materials were obtain from UPO8; as for UPO16, for each activation method only the temperature that
gave the best results for KUPO8 was applied, thus obtaining three KUPO16 materials in total.
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The carbonization degree after the KOH-activated thermal process described above was evaluated
with Raman spectroscopy (Figure 6).
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Figure 6. Raman spectra in the region 1900–900 cm−1 of KUPO carbon samples.

The curves correspond to the samples reported in Table 2.

Table 2. ID/IG values obtained from Raman spectra for all the KUPO carbons.

Curve Sample ID/IG

a KUPO8-1-750 1.81
b KUPO8-1-800 1.78
c KUPO16-1-800 1.51
d KUPO8-2-750 1.35
e KUPO8-2-800 1.34
f KUPO16-2-750 1.27
g KUPO8-3-750 1.66
h KUPO8-3-800 1.65
i KUPO16-3-800 1.45

The spectra show two main vibrational bands at 1340 and 1600 cm−1: the latter (G peak)
corresponds to the Raman-allowed E2g mode in the ideal graphite, while the signal at 1340 cm−1

(D peak) corresponds to the disorder-induced band, which is associated with the large density of
phonon states [66].

In particular, since the ratio of the bands D and G (ID/IG) is inversely related to the crystalline
domain dimension [67], the strong D-peak in our samples demonstrates that the microporous carbons
have an intermediate degree of graphitization (ID/IG = 1.27–1.81) and contain a significant amount of
disordered domains and defects.

Considering the three different carbonization methods, in all cases the value of ID/IG decreases
with the increase of temperature and the TPM/FDA ratio, indicating that these conditions lead to
more ordered materials. Analogously, the ID/IG values for the carbons obtained from UPO16 are
systematically lower than those from UPO8, revealing again a more ordered structure for the former.
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Compared to carbonized PAF-302 (ID/IG = 0.70–0.90) [55], KUPO carbons have a higher ID/IG

ratio, and this can be explained by considering the structural difference of the parent materials.
In HCPs, the –CH2– linkers make the structure more flexible and disordered than in PAF-302, also
reflecting on the carbonized materials.

The PSD and the pore volume were evaluated for KUPO materials with N2 physisorption at 77 K.
The adsorption isotherms and the related pore size distributions are reported in Figure 7. The structural
data were obtained from the adsorption branches by applying the QSDFT method, parameterized for
carbon surfaces and slit/cylindrical pores (Table 3) [68].
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All KUPO materials show a type I(b) isotherm with a minimal hysteresis at high relative pressures,
and a large quantity of gas (>400 cm3·g−1) adsorbed at low relative pressures, as expected for
microporous materials. The carbonization of UPO16 with all three methods leads to similar PSD, with
predominant micropores centered at 8.5 and 14 Å. On the contrary, the activated carbons obtained
from UPO8 have different pore sizes depending on the activation method. Method 1 leads to a pore
distribution centered at 8.5 and 14 Å (very similar to KUPO16), method 2 at 750 ◦C yields micro and
mesopores, while at 800 ◦C ultramicropores at 5.2 Å are also formed; on the contrary, with method 3,
micropores are obtained at 800 ◦C and both ultramicropores and micropores at 750 ◦C.

High surface areas, ranging from 2318 to 2975 cm−1, and high total pore volume, ranging from
1.03 to 1.30 cm3·g−1, characterize all the activated carbons (Table 3). The apparent surface areas and
pore volumes of the activated carbons are remarkably improved with respect to the parent materials.

Table 3. Surface area and pore volume for KUPO materials compared to the parent polymers.

Sample SSABET
(m2g−1) a

Vtotal
(cm3g−1) b

Vmicro (cm3g−1) c Vmeso (cm3g−1) c

<7 Å 7 < Å< 20 Total

UPO8 1435 1.09 – 0.31 0.31 0.78
UPO16 1289 0.96 0.09 0.22 0.31 0.65
KUPO8-1-750 2500 1.03 – 0.93 0.93 0.11
KUPO8-1-800 2400 1.19 – 0.84 0.84 0.35
KUPO16-1-8002700 1.20 – 0.98 0.98 0.22
KUPO8-2-750 2527 1.09 – 0.95 0.95 0.14
KUPO8-2-800 2318 1.21 0.14 0.50 0.64 0.57
KUPO16-2-7502975 1.24 – 1.12 1.12 0.12
KUPO8-3-750 2562 1.20 0.24 0.54 0.78 0.42
KUPO8-3-800 2666 1.12 – 0.99 0.99 0.13
KUPO16-3-8002950 1.30 – 1.07 1.07 0.23

a Surface area calculated from the nitrogen adsorption isotherm using the BET method; b Total pore volume at
P/P0 = 0.995; c Micropore and mesopore volumes derived using QSDFT method.

It is noteworthy that all the results reported here refer to parent UPO materials not treated at
380 ◦C. If the same chemical and thermal activation procedures are applied to UPO8-380 or UPO16-380,
the resulting carbons present systematically much lower surface areas and pore volumes (data not
reported for simplicity). Thus, the removal of side-products obtained by heating at 380 ◦C with the
consequent modifications of the textural properties described (see in Table 1) affects the carbonization
process adversely.

The above data demonstrate that the chemical activation leads to porous carbons with improved
textural properties, increasing microporous volumes and decreasing mesoporous volumes. The PSD
and the total volumes are affected not only by the temperature but also by the pre-treatment with
KOH, as well as by the textural and structural properties of the parent polymers. The pore occlusion,
more abundant in the UPO16 sample, may in fact play a role in determining the higher pore volume
and surface area of the carbon KUPO16.

Among the porous carbons obtained, KUPO16-2-750 is characterized by the highest surface
area and microporous volume (Table 2), so we selected this material to test the gas storage capacity,
measuring the excess adsorptions of CH4, H2, and CO2 at high pressures. The KUPO16-2-750 uptakes
are compared to the results of the parent UPO16 to highlight the effect of the carbonization treatment.

3.3. High Pressure Gas Uptake

In particular, narrow pores (i.e., ultramicropores) are important for adsorbing gas at low pressures,
since in these conditions the uptake is dominated by the host-guest interactions between gas molecules
and pore walls. On the other hand, micropores and mesopores with small diameter, contributing to
high surface area and large pore volume, are very important for the adsorption at higher pressure.

Note that the performance of an adsorbent in gas storage applications can be described either
on gravimetric or on volumetric scales (measuring the quantity of adsorbed gas per gram or per
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cubic centimeter of adsorbent, respectively). Gravimetric uptakes are usually correlated to textural
properties (surface area, porous volume, pore size distribution) [69–71], which are in turn often
measured and reported per gram of material; on the other hand, volumetric uptakes also depend
on the adsorbent density [72–74]. When different materials are compared, volumetric capacities are
usually more reliable (if the densities are very different, less-dense materials are artificially favored in
the gravimetric comparison); moreover, in practical applications, the main interest is often the amount
of gas that can be stored in a reservoir of given volume.

In the following, the gravimetric gas uptakes of methane, carbon dioxide, and hydrogen are
discussed first, then we consider how to effectively measure the density of compact samples to obtain
a useful estimate of the volumetric uptakes.

For all the tested molecules, KUPO16-2-750 uptakes are highly improved with respect to UPO16,
as expected due to the higher surface area and optimal porosity obtained under controlled KOH
chemical activation. For CH4 storage, both the materials do not reach saturation at 100 bar, but the
storage is still increasing with pressure. The maximum CH4 adsorption at 100 bar is 9 and 18 wt % for
UPO16 and KUPO16-2-750, respectively.

The CO2 uptake at 40 bar reaches 35 and 52 wt % (12,4 and 24,0 mmol/g) for UPO16 and
KUPO16-2-750, respectively (Figure 8B). The excellent uptake of CO2 by KUPO16-2-750 is explained
by the presence of high amounts of pores with sizes in the range 8–11 Å.
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(C) hydrogen (77 K, up to 100 bar).

For both CO2 and CH4 storage, KUPO16-2-750 sorption properties compare well with those of
the top performing carbon materials described in the literature (Table 4). For example, KUPO16-2-750
adsorbs 15.1 wt % of CH4 at 35 bar, whereas K-PAFs adsorb in the 8.7–17.1 wt % range [57], commercial
activated carbons (ACs) (Maxsorb, F400, RGC30) in the 5.6–11 wt % range [8], ACs obtained from
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mesophase pitches in the 15.2–16.6 wt % range [8], and activated graphene-derived porous carbon in
the 13.2–15.3 wt % range [75]. As for CO2 capture at 298 K and pressures up to 40 bar, the KUPO16-2-750
performance (52 wt %) is very high compared to other top performing carbons reported in the literature,
namely K-PAFs (31.5–56.9 wt %) [57], commercial carbon AX21 (49.7 wt %, 20 bar) [76], and a-GDC
graphene-derived carbons (41–48 wt %, 20 bar) [75].

Concerning the hydrogen adsorption, the maximum storage capacities of KUPO16-2-750 and
UPO16 are 4.7 wt % and 2.2 wt % at 30 bar, respectively (Figure 8C). These data match well with the
results from other porous carbon adsorbents with similar porosities. For example, Panella et al. [77]
reported a capacity storage of 4.5 wt % at 77 K for the Activated Carbon I obtained from coke, whereas J.
Wang et al. [78] reported H2 uptake of 4.2–4.7 wt % at 77 K for fungi-based porous carbons. H2 uptake
of KUPO16-2-750 is also comparable (4.4–5.2 wt %) to different mesoporous carbide-derived carbons
with very high surface areas (2500–3000 m2g−1) [79,80]. These results confirm the correlation of the
hydrogen uptake capacity at high pressure with total micropore volume of ACs, with similar pore size
and chemical surfaces [81].

Table 4. Methane, hydrogen, and carbon dioxide uptake for different materials evaluated at different
pressures and temperatures.

Material
CH4 Uptake, 298 K 35 bar (100 bar) H2 Uptake, 77 K 30 bar CO2 Uptake, 298 K 40 bar

Wt % Wt % Wt %

KUPO16-2-750 15.1 (17.5) 4.7 51.3
K-PAFs [57] 8.7–17.1 3.5–6.2 31.5–56.9

GDC [75] 13.2–15.3 3.73–3.82 (10 bar) 41.0–48.0 (20 bar)
Maxsorb [8] 10.7 (12.3) 5.3 (40 bar) [79] 52.4 (50 bar) [82]

AX21 14.5 [83] 4.8 (40 bar) [84] 49.7 (20 bar) [76]

3.4. Packing Densities

Both UPO and KUPO materials are synthesized as highly fine-grained powders: in this case,
the apparent density estimated from the skeletal density (usually measured with helium adsorption)
and the porous volume is often poorly related to the effective volumetric uptakes and to the storage
capacity discussed below, for the presence of macropores and grain–grain mispacking.

Then KUPO16-2-750 powder was pressed into compact tablets that could be handled more easily,
also eliminating the dead volume to a good extent (clearly this is different from the process of pellet or
monolith formation, requiring more severe conditions). The samples were pressed at 0.75 tons/cm2

for variable times (from 10 to 180 min) until the density was stable; another sample was pressed at
15 tons/cm2 for 10 min. The resulting packing densities are reported in Table 5; a similar procedure
with a pressure of 0.75 tons/cm2 was applied to measure the density and the gas storage of porous
carbons in other studies [8,85].

After the compression, the tablet obtained at 15 tons/cm2 for 10 min (with the highest packing
density) was further characterized with N2 adsorption to verify the extent to which the micro- and
mesoporosity were affected, with the results illustrated in Table 6. The packing process cuts the total
porous volume to 12%, entirely due to a small reduction of the microporous fraction.

Table 5. Packing density (rpack) of KUPO16-2-750 samples pressed at different pressures for
variable time.

Packing Pressure (tons cm−2) Time (min) rpack (g cm−3)

0.75 10 0.35
0.75 180 0.41
15.0 10 0.47
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Table 6. BET surface area, total porous volume, micro- and mesoporous volumes of KUPO16-2-750
before and after the tablet formation (pressing at 15 tons/cm2 for 10 min).

Sample SSABET (m2·g−1) Vtotal (cm3·g−1) Vmicro (cm3·g−1) Vmeso (cm3·g−1)

As-synthesized 2975 1.24 1.12 0.12
After compression 2578 1.09 0.97 0.12

3.5. Methane Storage Capacity of KUPO16-2-750

The performance of an adsorber in real working conditions is estimated better by the storage
capacity (nstg), which corresponds to the density of gas that can be stored in a container completely
filled by the adsorber. In other words, nstg is the absolute amount of gas per unit volume adsorbed
inside the porous material plus the density of gas in the large macropores (which are not included in
the porous volume measured by nitrogen) and in the interparticle space. To calculate this value, the
following equation has been proposed [8]:

nstg = nexc + rgas (1 − rpack/rHe)

combining the excess volumetric uptake (nexc) with the free gas density (rgas), the quantity in
parentheses estimates the fraction of dead volume in the container from the adsorbent skeleton
density (rHe, determined by helium pycnometry) and its packing density (rpack).

The methane storage capacity of KUPO16-2-750 is illustrated in Figure 9 for pressures up to 100 bar.
Considering the easy and low cost synthesis of the material, this performance is very satisfactory.
At 20 bar, the storage capacity is almost equal to the capacity reported for LMA738, the best carbon
material reported so far for this kind of application. For higher pressures, KUPO16-2-75 storage
capacity is lower (210 v/v compared to 260 v/v for LMA738, at 100 bar) due to the smaller mesoporous
volume. On the other hand, some widely-used commercial porous carbons (namely, F400 and Maxsorb)
provide markedly lower storage capacities at 100 bar, at 166 and 210 v/v, respectively [8].
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4. Conclusions

We have investigated different post-synthesis treatments applied to some microporous aromatic
frameworks, whose preparation has been recently reported, to understand the structural modifications
induced by the various treatments, and the possible applications for gas adsorption and storage.

Thermal treatment at 380 ◦C (i.e., below the polymer decomposition temperature) proved very
effective in removing the side-products from the polymerization process: as a consequence, the treated
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UPO materials present higher BET areas, and increased microporous volume, along with a slight
decrease of the mesoporous volume. Remarkably, the two samples tested here (and obtained with
different precursors ratios) end up with very similar porosity after this treatment.

On the other hand, chemical treatment with KOH led to porous carbon materials with
large microporous and mesoporous volume and BET area. Different pre-activation methods and
temperatures were tested, finely tuning the textural properties. Such a tuning can be useful for
developing materials for specific applications, e.g., KUPO8-3-750 seems more suited for gas separation
at low pressure (due to the high micro- and ultramicroporous volume), while KUPO16-3-800 is
expected to perform better for gas storage at higher pressure. It is also found that the best porous
materials are obtained starting from parent UPO8 and UPO16 polymers. If the parent materials are
previously subject to mild treatment at 380 ◦C to remove the reaction side products, the final porous
carbons exhibit lower surface areas and porous volumes.

The gas uptake of the material with the highest surface area and microporous volume
(KUPO16-2-750) was evaluated with high pressure adsorptions of methane, hydrogen, and carbon
dioxide; the storage capacity, as recently defined, of KUPO16-2-750 with respect to methane
was also measured and compared to the best performing carbon material described so far, with
satisfactory results.
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