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Abstract 
 
In this paper we make a short survey on the problem of Capital Allocation through the use of risk 

measures and we apply some of the most popular Capital Allocation methods to a portfolio of risky 

positions by using Value at Risk, Conditional Value at Risk and the entropic risk measure. We then 

discuss and compare the results found in our numerical example. 

 

 
1 Introduction 

 

Since the first version of the Basel Accord (see [5]) many studies on risk measures and capital 

requirements have been driven both from a theoretical and an empirical point of view. It is well known 

indeed that the Basel Accord (see [5] and [6]) imposes to banks and financial institutions a capital 

requirement or margin so to be able to face the riskiness due to the different sources (market risk, 

credit risk, ...). In the first version of the accord such a margin had to be measured by means of Value 

at Risk (VaR for short). Even if VaR has been shown to have a lot of drawbacks, it has been used 

intensively because of its simple interpretation and estimation. Among the different drawbacks, VaR 

does not encourage diversification of risk in general, it is not able to distinguish different tails but 

only considers the quantile, and so on (for a more detailed study please see Artzner et al. [2], [3]). 

Although VaR is still widely used by practitioners and researchers, Conditional Value at Risk 

(CVaR for short, also known as Expected Shortfall or Average Value at Risk - see [1], [3], [10] and 
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[14]) is more and more considered. It is well known that, compared to Value at Risk, Conditional 

Value at Risk is a more conservative risk measure that is, it requires a higher margin, and encourages 

diversification. In particular, CVaR belongs to the class of coherent risk measures (see [2], [3]). 

It is worth emphasizing that, for VaR or CVaR, a regulator has only to choose a level α of 

probability. In particular, the smaller is α the more expensive is the margin deposit. It is financially 

reasonable, however, to consider also risk measures taking into account preferences and loss aversion 

of regulators, e.g. in terms of certainty equivalents. A well-known and used risk measure of that kind 

is the so called entropic risk measure, defined by means of the certainty equivalent with an 

exponential utility function. See [4], [10] and [11] for more details. 

We will recall the definitions of these three risk measures afterwards. 

Anyway, whatever the risk measure chosen, the main idea and motivation of risk measures is 

related to capital requirements or margin deposits. Indeed, given a financial position (or, better, its 

profit and loss or its return) its riskiness is quantified by the minimal cash to be deposited as guarantee 

of the position or, in other words, such that the new position is considered as acceptable by the 

regulator. More precisely, given a position X and a risk measure ρ, the riskiness of X by means of ρ 

is given by 

 ���� = ���	
 ∈ �: 
 + �  ��  �

�������� (1) 

 

Roughly speaking, the greater is the riskiness of a position, the higher is the margin to be 

deposited. See [3] and [10] for details. 

 

Among the many, one of the most relevant problems connected to the use of risk measures in 

firms and insurances, is the one of Capital Allocation. 

It consists in, once fixed a suitable risk measure and determined the corresponding risk capital 

associated to a risky position, finding a division of this aggregate capital among the constituents of 

the activity, such as business units or various insurance lines. This problem is particularly meaningful 

for example in the context of risk management, or for comparing the return of various business units 

in order to remunerate managers. 

As it can be easily understood, there are many possible ways to allocate the aggregate capital of a 

company to its sub-units, according to the features one wants to capture and to properties one wishes 

to verify. In this respect, a huge literature has grown over the years, and several methods have been 

proposed (see, for example, [9], [13], [7]), where the different approaches have motivations that can 

be either axiomatic or financial. 
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In particular, Kalkbrener [13] defines a Capital Allocation rule as a map whose values depend on the 

profit and loss or return of both a portfolio and its subportfolios, and which is required to satisfy some 

suitable properties w.r.t. the chosen risk measures, that is, he proposes an axiomatic approach to the 

problem. Dhaene et al. [9] put in light some of the financial aspects of capital allocation: indeed,  

some of its core purposes  for a firm consist in distributing the cost of capital among the various 

business units, as well as in  being able to make  a comparison of their performances through the 

return of allocated capital. The authors also provide an overview on some of the most used algorithms 

in practice, namely the proportional ones, which we will review and use in this paper. Instead, the 

approach of Centrone and Rosazza Gianin [7], refers both to the axiomatic approach and to the game 

theoretic stream proposed by Denault [8], where firms are seen as players of a cooperative cost game 

derived by a risk measure, and the allocation rule is based on the idea of assigning to each player its 

marginal contribution to the overall risk. Denault's approach is anyway suitable fo coherent and 

differentiable risk measures, while the capital allocation method proposed in [7] is a generalization 

of the so called Aummann-Shapley capital allocation rule, suitable also for the class of quasi-convex 

and non-differentiable risk measures. 

The aim of this survey is to show how risk measures and capital allocation problems are 

interconnected: we make use of the before cited risk measures to implement some of the most used 

capital allocation methods in the financial practice on a portfolio of stocks. 

 
 

2 Capital allocations for risk measures 
 

We begin by recalling (see, among many others, [3], [10], [12] and [14]) the well known 

definitions of VaR, CVaR and entropic risk measure. Given a future time horizon T and a 

financial risky position X representing the (random) profit and loss or return of a financial 

position at time T, the Value at Risk (VaR) of the position X at the level � ∈ �0,1� is 

defined as 

 ������� = −���	� ∈ �:  �� ≤ �� > �� = −#�$���, (2) 
 

while the Conditional Value at Risk (CVaR) of X at the level � ∈ �0,1� is defined as 

 %������� = ���&∈' ()*�� − ��$+
� − �, . (3) 

 
CVaR can be also formulated equivalently as 
 

 %������� = )*�#� − ��$+
� − #� (4) 
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for any quantile qα at the level α of X, or, in terms of the Average Value of Risk: 
 

 %������� = 1
� . ���/��� 01�

2
 (5) 

 
Differently from VaR, CVaR is a coherent risk measure, hence - in addition to other good 

properties - it encourages risk diversification. 

While VaR can be seen as the maximal loss one can have with probability of at least a given level 

α, CVaR at level α represents the average of losses exceeding VaR at the same level. So, by definition, 

the capital requirement evaluated by %������� is always greater than or equal to that by �������. 

The entropic risk measure of X at the level � ∈ �0,1� is defined as 

 ����� = � ln 5) 6�78 �9 :; (6) 

 

where α is the reciprocal of the Arrow-Pratt coefficient of absolute risk aversion (see, among others, 

Föllmer and Schied [10]). This means that when α is low, the risk aversion is high and vice versa. 

Such a risk measure is called entropic because it can be seen as the maximal expected loss over a set 

of scenarios penalized by a term given by the entropy. The reason why this risk measure is quite 

popular is that it is a convex risk measure fulfilling good properties in a dynamic setting (see, among 

others, Barrieu and El Karoui [4] for details). 

Assume now that we have an aggregate risk X which represents the profit and loss of a financial 

position at a future date T, and that this risk is decomposed into sub-units X1, …, Xn, that is � =
∑ �=>=?@ . A capital allocation problem consists in finding real numbers k1, …, kn, such that ���� =
∑ A=>=?@  , where each ki is the capital allocated to each sub-unit Xi, and it should be linked in some 

way to the risk of Xi itself, that is to ρ(Xi). We thus require that the whole capital has to be allocated, 

this property being termed in the literature as full allocation. Another desirable feature of a capital 

allocation rule, is that the capital ki allocated to each sub-unit Xi does not exceed the capital 

requirement ρ(Xi) of Xi  when considered as a stand-alone unit (pooling effect). 

 

In the following, we will illustrate through a numerical example some of the most popular capital 

allocation principles, namely the proportional and the marginal one, for the most widely used risk 

measures, that is for VaR, CVaR and for the entropic risk measure. These are just few of many 

possible capital allocation methods: we choose to work with these methods because they are very 

intuitive, easy to implement, and frequently used in the practice also for performance measurement 

purposes. We point out that other very popular methods are inspired to cooperative game theory 

concepts and principles (Shapley value, the interested reader can see [8]) but they go beyond the 

scope of this survey. 
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The first class of capital allocation methods we illustrate is the class of proportional ones (see 

Dhaene et al. [9]) applied to the risk measures we listed above. Each capital allocation rule (CAR) 

consists in choosing a risk measure ρ and assigning the capital Ki to each sub-portfolio Xi, i = 1, …, 

n, via 

 B= = C�8�
∑ C�8D�EDFG ���=�. (7) 

 

We point out that, by using a proportional allocation method, we get the desired pooling effect 

whenever the risk measure is such that ρ(Xi)>0 and it is subadditive. Also notice that, as the risk 

measures we consider are law invariant, that is the capital requirement of a risky position only 

depends on its distribution, the same holds for the consequent capital allocation scheme. The situation 

is different if we use the proportional method but we consider covariance as a risk measure, that is 

ρ(Xi)=Cov(Xi;X) for a fixed portfolio X: in this case the dependences among the P&L of the various 

business units matter. We also apply this method to a sample. 

The second class of capital allocation methods we consider starts from the idea of measuring how 

much a single asset contributes to the total portfolio in terms of risk, that is it aims at assessing 

marginal contributions. For the sake of simplicity, here we make use of the following rule (see Tasche 

[15]) applied to the considered risk measures: the capital Ki is attributed to each sub-portfolio Xi, i = 

1, …, n,  via 

 B= = ���� − ��� − �=�, (8) 

 

that is by the difference of the risk capital of the portfolio with sub-portfolio i and the risk capital of 

the portfolio without sub-portfolio i. Since the sum of marginal risk contributions underestimates total 

risk, we use an adjusted formula given by 

 B=∗ = C�8�
∑ IDEDFG B=. (9) 

 

in order to get full allocations. We recall anyway that a very popular method based on marginal 

contributions, intended as partial derivatives with respect to the weight of an asset in a portfolio, is 

the Euler method, so called as full allocation is given by the validity of Euler's Theorem for coherent 

and differentiable risk measures (see again [15]). 

In order to deepen the analysis, we investigate how diversification impacts on capital allocation 

methods. To perform this we consider the diversification index. For any risk measure ρ such that 

ρ(Xi)>0 the diversification index is given by 

 JKC = ����
∑ �������=1

 
(10) 
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The index shows how much a portfolio is diversified: when DI is close to 0, it means high 

diversification, when the index is close to 1 it means slight diversification. If the index is above 1 it 

means that the risk measure is not subadditive. 

As a further example, we also investigate the contribution of sub-portfolios to the total portfolio 

Return on Risk Adjusted Capital (RORAC), which is defined as 

 � = L*8+
C�8�. (11) 

 

The contribution of each sub-portfolio Xi, i = 1, …, n, is usually given by 

 �= = )*�=+
B=  (12) 

 

where Ki, i = 1, …, n,can be either obtained by using a proportional method or a marginal one. Since 

the sum of contributions is not equal to the total portfolio RORAC, we use, once again, an adjusted 

formula which is defined as 

 �=∗ = '
∑ 'DEDFG �=. (13) 

 

See [15] for details. 

 

 

3 Numerical example 
 

In this section we apply the capital allocation methods presented above to a portfolio of five stocks 

of the FTSE-MIB index chosen in different sectors: Atlantia (ATL), Brembo (BRE), Eni (ENI), Intesa 

San Paolo (ISP) and Telecom Italia (TIT). We collected from Bloomberg five years of daily prices of 

the stocks listed above, in the period 10th December 2013-2018, obtaining a sample of 1269 

observations for each asset. 

We model the daily P&L instead of daily prices, i.e. each stock is represented by the random 
variable 

 �= = MN= − MN7@=  (14) 

 

where MN= is the price at day t of the i-th stock, i=1, …,n. The portfolio X is simply given by � =
∑ �O>O?@  ; that is, we buy one unit of each stock. Figure 1 shows the dynamics of portfolio prices and 

of the P&L; some descriptive statistics of the P&L of the stocks and of the portfolio are reported in 

Table 1. 
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Figure 1: Daily portfolio prices and P&L. 

 
 

Looking at Figure 1 we notice some high peaks followed by a drop, this shows high volatility of 

data; to be more precise, we analyze Table 1. 

  ATL BRE ENI ISP TIT Port 

Mean 0.0011 0.0045 -0.0023 0.0002 -0.0001 0.0034 

St Dev 0.3683 0.1618 0.2291 0.0547 0.0188 0.6538 

Min -5.2400 -0.7440 -1.3400 -0.5180 -0.1375 -5.5933 

Max  1.3000 0.8840 0.8500 0.3100 0.1010 2.3360 

Skew  -2.3574 0.2630 -0.2875 -0.5681 -0.0890 -0.8073 

Kurt 36.3471 6.0586 5.3169 11.1909 6.9823 9.8177 

Table 1: Daily P&L descriptive statistics. 

 
The means are close to zero, in particular for Intesa and Telecom. This is reasonable since we 

consider one-day P&Ls. Standard deviations and ranges1 confirm high volatility of the portfolio P&L, 

since the first three stocks have a high standard deviation. Skewness is positive for Brembo, while it 

is negative for the others and far from zero for Atlantia. Kurtosis is very high, in particular for 

                                                           
1 In statistics, the range of a set of data is the difference between the largest and smallest values. 
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Atlantia: this can be also seen from the minimum P&L which Atlantia performed in the considered 

period. Skewness and Kurtosis highlight how the data are far from being normally distributed, taking 

into account that Normal distribution has zero Skewness and Kurtosis equal 3. Rather, they seem to 

come from heavy-tailed distributions. In such situations, therefore, it may happen that VaR does not 

encourage diversification of risk. 

We apply the considered risk measures to each stock and to the whole portfolio, using the 

historical simulation method (see for instance Jorion [12]); that is, we replace the theoretical 

distribution of the P&L with the observed time series and we compute risk measures using these data. 

To illustrate the procedure we show how we compute historical VaR, i.e. how we sample the 

empirical quantile. We take each time series and sort the data concerning daily P&Ls from the 

smallest to the largest, then we assign to each price a weight of 1/1268, where 1268 is the number of 

observed daily P&Ls. We compute the empirical cumulative distribution function by computing 

cumulative weights: starting from the smallest P&L, we sum the weight of the previous P&L to the 

weight of the current one, until the last observed P&L. Then we set α=0.01 and we look for the 

smallest value which has a cumulative weight greater than 0.01; changing the sign of this value, we 

obtain VaR at the level 0.01. We compute in a similar way the other risk measures, letting α=0.01; 

this means, for the entropic risk measure, a high risk aversion and so a more conservative risk 

measure. We also compute the diversification index, given by Equation (10), for each risk measure. 

The results we obtained are shown in Table 2. 

 

         

   ATL BRE ENI ISP TIT Port DI 

VaR_0.01  0.8951 0.4216 0.5600 0.1453 0.0480 1.5721 0.7595 

CVaR_0.01  1.4950 0.5155 0.7815 0.2045 0.0660 2.4820 0.8104 

e_0.01  5.1685 0.6725 1.2685 0.4465 0.0662 5.5218 0.7244 

Variance  0.1356 0.0262 0.0525 0.0030 0.0004 0.4275 1.9644 

 Table 2: Daily risk measures of stocks and portfolio.  

 

 

        

Looking at Table 2 we notice that the entropic risk measure is the most conservative one; this is 

due to the small value we set, as we explained before. A diversification effect is obtained for the first 

three risk measures, despite VaR and the entropic risk measure are, in general, not subadditive. We 

check this simply by looking at the diversification index: the first three risk measures have a DI less 

than 1, hence they are subadditive in this example. In particular, the entropic risk measure obtained 

the highest diversification effect. The diversification effect is not achieved from the variance, which 

is super-additive in this example, in fact it has a diversification index greater than 1. 
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We compute the risk capital allocated to each stock, using the proportional methods presented in 

the previous section; the results are shown in Table 3. 

 

   ATL BRE ENI ISP TIT  
VaR_0.01  0.6798 0.3202 0.4253 0.1103 0.0365  
   (43.2%) (20.4%) (27.1%) (7.0%) (2.3%)  
CVaR_0.01  1.2116 0.4178 0.6334 0.1658 0.0535  
   (48.8%) (16.8%) (25.5%) (6.7%) (2.2%)  
e_0.01  3.7442 0.4872 0.9190 0.3235 0.0480  
   (67.8%) (8.8%) (16.6%) (5.9%) (0.9%)  
Variance  0.2123 0.0666 0.1154 0.0259 0.0072  
   (49.7%) (15.6%) (27.0%) (6.1%) (1.7%)  

 Table 3: Daily proportional capital allocation of stocks.  
 
 

Looking at Table 3 we notice that, for the first three capital allocation methods the risk capital 

allocated to each stock considered as an element of the portfolio does not exceed the risk capital 

allocated to the stock considered as a stand-alone portfolio. To check this, we simply compare the 

results of Table 3 to the results of Table 2; since each value of the first three rows of Table 3 is less 

than the respective value of Table 2, the pooling effect mentioned above is obtained. This follows 

straightforwardly from the diversification effect we obtained in Table 2: as on our data the considered 

risk measures turn out to behave subadditively and as ρ(Xi)≥0 for all i, Equation (7) shows that risk 

capitals allocated via proportional allocation methods benefit of the pooling effect. In particular, the 

proportional method based on the entropic risk measure has benefited from the highest pooling effect. 

The reason is clear, since the entropic risk measure has the highest diversification index and the 

proportional methods allocate the capital via B= = JKC ∙ ρ��=�, the allocated capital by using the 

entropic risk measure is, for each unit of risk capital ρ(Xi), less than the capital allocated via 

proportional methods based on different risk measures. Since variance is superadditive in this 

example, the pooling effect is not obtained from this risk measure and the risk capital allocated to 

each stock considered as an element of the portfolio exceeds the risk capital allocated to the stock 

considered as a stand-alone portfolio. The full allocation property is satisfied for each risk measure: 

summing by row the values in Table 3 we obtain exactly the last column of Table 2; that is, the sum 

of risk capitals allocated to each stock is equal to the risk capital allocated to the portfolio using the 

respective risk measure. Furthermore, the results of Table 3 show also that all the capital allocation 

rules here considered agree in putting more weight on Atlantia than on others, reflecting the large risk 

capital assigned to this single stock. Moreover, also the ranking of capital allocation weights across 

the different sub-units is more or less the same for all the different rules that have been considered. 
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So far, we have considered proportional capital allocations using VaR, CVaR, the entropic risk 

measure and covariance. We investigate now what happens with marginal or RORAC methods and 

we compare the results with those of proportional methods. A priori we could expect that the marginal 

method would distribute differently the capital to be allocated by putting more weight on the riskier 

assets. 

Here below (see tables 4, 5, 6 and 7) we present the results obtained by computing the risk capital 

allocated to each stock, via marginal methods and the contribution of stocks to the total portfolio 

RORAC. Each table reports the risk capital allocated to each stock using both proportional methods 

and marginal ones and the contribution of each stock to the total portfolio RORAC, for any single 

risk measure. For what concerns the contribution to the total RORAC, we compute the contributions 

of stocks by using just the proportional allocation methods. 

 

        

   ATL BRE ENI ISP TIT  
Proportional  0.6798 0.3202 0.4253 0.1103 0.0365  
   (43.2%) (20.4%) (27.0%) (7.0%) (2.4%)  
Marginal  0.7755 0.285 0.3633 0.0928 0.0555  
   (49.3%) (18.1%) (23.1%) (5.9%) (3.6%)  
RORAC  0.0004 0.0033 -0.0013 0.0004 -0.0007  
   (17.1%) (154.0%) (-58.7%) (20.5%) (-32.9%)  

 Table 4: VaR daily contributions of stocks.  
 

    ATL BRE ENI ISP TIT  
Proportional   1.2116 0.4178 0.6334 0.1658 0.0535  
    (48.8%) (16.8%) (25.5%) (6.7%) (2.2%)  
Marginal   1.3998 0.2518 0.614 0.1651 0.0514  
    (56.4%) (10.1%) (24.7%) (6.7%) (2.1%)  
RORAC   0.0002 0.002 -0.0007 0.0002 -0.0004  
    (12.1%) (148.6%) (-49.7%) (17.2%) (-28.2%)  

  Table 5: CVaR daily contributions of stocks.  
         

    ATL BRE ENI ISP TIT  
Proportional   3.7442 0.4872 0.9190 0.3235 0.0480  
    (67.8%) (8.8%) (16.6%) (5.9%) (0.9%)  
Marginal   4.9476 0.1788 0.3283 0.0658 0.0013  
    (89.6%) (3.2%) (6.0%) (1.1%) (0.1%)  
RORAC   0.0000 0.0010 -0.0003 0.0001 -0.0003  
    (5.3%) (171.2%) (-46.0%) (11.8%) (-42.3%)  

  Table 6: Entropic daily contributions of stocks.  
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   ATL BRE ENI ISP TIT  
Proportional  0.2123 0.0666 0.1154 0.0259 0.0072  
   (49.7%) (15.6%) (27.0%) (6.0%) (1.7%)  
Marginal  0.1938 0.0718 0.1195 0.0328 0.0094  
   (45.3%) (16.8%) (28.0%) (7.7%) (2.2%)  
RORAC  0.0009 0.0117 -0.0034 0.0014 -0.0026  
   (11.0%) (148.2%) (-43.4%) (17.5%) (-33.3%)  

 Table 7: Covariance daily contributions of stocks.  
 

Looking at Tables 4, 5, 6 and 7 we notice not too significant differences between the proportional 

methods and the marginal one: among different risk measures, both methods agree in putting more 

weight on Atlantia than on others and the ranking of capital allocation weights across the different 

stocks is the same for both methods. Nevertheless, apart from the case of covariance that however is 

not really a risk measure, it is worth to emphasize that our “intuition” concerning marginal 

contributions was correct. Compared to proportional capital allocations, indeed, marginal 

contributions put more weight (in terms of capital allocation) on Atlantia that is the riskiest asset in 

the portfolio. Among different risk measures, the ranking of the contributions to the total RORAC is 

still the same: Brembo gives the best contribution, which is even more than the total RORAC, and 

Eni gives the worst contribution, which is negative; i.e. it is not worth having such an asset in the 

portfolio, since it reduces the total RORAC. Risk capitals allocated via marginal methods benefit of 

the pooling effect for the first three risk measures, except the capital allocated to Telecom using VaR: 

this amount is larger than VaR of Telecom considered as a stand-alone portfolio. As well as for 

proportional methods, the marginal method based on the entropic risk measure has benefited from 

the highest pooling effect. Despite this result it is not evident from marginal methods' formula, the 

data confirm: comparing the values of Table 2 with those of Tables 4, 5 and 6 we can notice that the 

marginal method based on the entropic risk measure has the highest difference between the risk 

capital of the titles and the capital allocated to them by using this method. The pooling effect is not 

achieved by the covariance marginal allocation method, as well as for the proportional one, as we 

noted above. The full allocation property for marginal allocation methods is, of course, satisfied for 

each risk measure since we use the adjusted formulation in (9). By the same argument, the sum of 

RORAC contributions is equal to the total portfolio RORAC, for each risk measure. 

 
 

4 Conclusions 

In the present work we have revised a problem which is very popular in the financial literature, 

namely the one of Capital Allocation. This problem can be faced in many ways, as it is evident from 

the huge literature on the subject ([16] gives a complete overview), but one of the most known is the 
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one illustrated in this work, that is through the use of risk measures. Namely, for a given risky 

financial activity X composed by n sub-units X1, …, Xn,  whose riskiness is covered through a capital 

requirement assessed by a risk measure ρ, the problem consists in suitably sharing the risk capital 

ρ(X) among the business units, in such a way that the capital is fully allocated and that a diversification 

effect is obtained. The possibility of verifying these properties depends both on the chosen risk 

measure and on the Capital Allocation method. In this short paper, we have applied two well known 

Capital Allocation methods (the proportional and the marginal one) to a portfolio of stocks whose 

capital requirements are determined through three of the most used risk measures: Value at Risk, 

Conditional Value at Risk and the entropic risk measure, and we have compared and discussed the 

results obtained. Based on the numerical example above, we cannot conclude that a given capital 

allocation method is always better than another. However, for the risk measures examined the results 

obtained by proportional and marginal methods are substantially very different from those of the 

RORAC method. Even if proportional and marginal contribution methods seem to provide similar 

results, marginal one better reacts and takes into account riskier assets. 
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