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Abstract

In this paper we make a short survey on the proldé@apital Allocation through the use of risk
measures and we apply some of the most populatal@piocation methods to a portfolio of risky
positions by using Value at Risk, Conditional VaateRisk and the entropic risk measure. We then

discuss and compare the results found in our n@adezkample.

1 Introduction

Since the first version of the Basel Accord (sep fbany studies on risk measures and capital
requirements have been driven both from a the@ietitd an empirical point of view. It is well known
indeed that the Basel Accord (see [5] and [6]) isg®oto banks and financial institutions a capital
requirement or margin so to be able to face tHemeéss due to the different sources (market risk,
credit risk, ...). In the first version of the acdsuch a margin had to be measured by means ogVal
at Risk (VaR for short). Even if VaR has been shadwvhave a lot of drawbacks, it has been used
intensively because of its simple interpretatiod astimation. Among the different drawbacks, VaR
does not encourage diversification of risk in gahat is not able to distinguish different tailatb
only considers the quantile, and so on (for a ndetailed study please see Artzner et al. [2], [3]).
Although VaR is still widely used by practitioneasd researchers, Conditional Value at Risk

(CVaR for short, also known as Expected ShortfalAeerage Value at Risk - see [1], [3], [10] and



[14]) is more and more considered. It is well knotlhiat, compared to Value at Risk, Conditional
Value at Risk is a more conservative risk measaeis, it requires a higher margin, and encourages
diversification. In particular, CVaR belongs to ttlass of coherent risk measures (see [2], [3]).

It is worth emphasizing that, for VaR or CVaR, gukator has only to choose a levelof
probability. In particular, the smaller éisthe more expensive is the margin deposit. Itriaricially
reasonable, however, to consider also risk measaka®) into account preferences and loss aversion
of regulators, e.g. in terms of certainty equivideA well-known and used risk measure of that kind
is the so called entropic risk measure, definednmans of the certainty equivalent with an
exponential utility function. See [4], [10] and [Ifbr more details.

We will recall the definitions of these three risleasures afterwards.

Anyway, whatever the risk measure chosen, the naga and motivation of risk measures is
related to capital requirements or margin depobitdeed, given a financial position (or, bettes, it
profit and loss or its return) its riskiness is ni@ed by the minimal cash to be deposited as auiae
of the position or, in other words, such that tlesvrposition is considered as acceptable by the
regulator. More precisely, given a positigrand a risk measuge the riskiness oK by means op
is given by

p(X) =inf{c € R:c+ X is acceptable} (1)

Roughly speaking, the greater is the riskiness @iosition, the higher is the margin to be
deposited. See [3] and [10] for detalils.

Among the many, one of the most relevant probleamected to the use of risk measures in
firms and insurances, is the oneGHpital Allocation
It consists in, once fixed a suitable risk measamd determined the corresponding risk capital
associated to a risky position, finding a divismirthis aggregate capital among the constituents of
the activity, such as business units or variousranrsce lines. This problem is particularly meanimgf
for example in the context of risk managementpoicbmparing the return of various business units
in order to remunerate managers.
As it can be easily understood, there are manyilplessays to allocate the aggregate capital of a
company to its sub-units, according to the featoresswants to capture and to properties one wishes
to verify. In this respect, a huge literature hesag over the years, and several methods have been
proposed (see, for example, [9], [13], [7]), whtre different approaches have motivations that can

be either axiomatic or financial.



In particular, Kalkbrener [13] defines a Capitalo®iation rule as a map whose values depend on the
profit and loss or return of both a portfolio atglsubportfolios, and which is required to satsiyne
suitable properties w.r.t. the chosen risk meastes is, he proposes an axiomatic approach to the
problem. Dhaene et al. [9] put in light some of fimancial aspects of capital allocation: indeed,
some of its core purposes for a firm consist stributing the cost of capital among the various
business units, as well as in being able to makeomparison of their performances through the
return of allocated capital. The authors also te\dan overview on some of the most used algorithms
in practice, namely the proportional ones, whichwii review and use in this paper. Instead, the
approach of Centrone and Rosazza Gianin [7], réfetts to the axiomatic approach and to the game
theoretic stream proposed by Denault [8], wheradiare seen as players of a cooperative cost game
derived by a risk measure, and the allocationisilased on the idea of assigning to each player it
marginal contribution to the overall risk. Denauléipproach is anyway suitable fo coherent and
differentiable risk measures, while the capitabedition method proposed in [7] is a generalization
of the so calleddummann-Shaplegapital allocation rule, suitable also for thesslaf quasi-convex
and non-differentiable risk measures.

The aim of this survey is to show how risk measwaad capital allocation problems are
interconnected: we make use of the before citddmisasures to implement some of the most used

capital allocation methods in the financial praeton a portfolio of stocks.

2 Capital allocationsfor risk measures

We begin by recalling (see, among many others[18], [12] and [14]) the well known
definitions of VaR, CVaR and entropic risk meas@een a future time horizon T and a
financial risky positiorX representing the (random) profit and loss or retidra financial
position at time T, the Value at Risk (VaR) of fh@sitionX at the level € (0,1) is
defined as

VaR,(X) = —inf{x € R:P(X < x) > a} = —qF (X), (2)

while the Conditional Value at Risk (CVaR) of Xthe levela € (0,1) is defined as

_ +
CVaR,(X) = inf {M — x}. (3)
X€ER ¢4
CVaR can be also formulated equivalently as
_ +
CVaR,(X) = M — qq (4)



for any quantile gat the leveb of X, or, in terms of the Average Value of Risk:

a

CVaR,(X) = % J VaRg(X) dB (5)
0

Differently from VaR, CVaR is a coherent risk mea&suhence - in addition to other good
properties - it encourages risk diversification.

While VaR can be seen as the maximal loss one @am\nith probability of at least a given level
a, CVaR at levet represents the average of losses exceeding MR saéme level. So, by definition,
the capital requirement evaluated®@yaR, (X) is always greater than or equal to thaVlar, (X).

The entropic risk measure Xfat the levelr € (0,1) is defined as
e,(X) =aln (E [e‘X/“]) (6)

wherea is the reciprocal of the Arrow-Pratt coefficieritaibsolute risk aversion (see, among others,
Follmer and Schied [10]). This means that whes low, the risk aversion is high and vice versa.
Such a risk measure is called entropic becausmibe seen as the maximal expected loss over a set
of scenarios penalized by a term given by the egtrdhe reason why this risk measure is quite
popular is that it is a convex risk measure fuffdl good properties in a dynamic setting (see, gmon
others, Barrieu and El Karoui [4] for detalls).
Assume now that we have an aggregateXiskich represents the profit and loss of a findncia

position at a future date T, and that this riskleeomposed into sub-uni¥g, ..., X,, that isX =

. X;. A capital allocation problentonsists in finding real numbeks, ..., k., such thap(X) =
Yi—1k; , where eaclk is the capital allocated to each sub-ufijtand it should be linked in some
way to the risk o itself, that is t@(X). We thus require that the whole capital has tallxated,
this property being termed in the literaturefas allocation. Another desirable feature of a capital
allocation rule, is that the capital ki allocateml éach sub-uni; does not exceed the capital

requiremenp(X;) of X; when considered as a stand-alone yabling effect

In the following, we will illustrate through a numeal example some of the most popular capital
allocation principles, namely th@oportional and themarginal one, for the most widely used risk
measures, that is for VaR, CVaR and for the entrojgk measure. These are just few of many
possible capital allocation methods: we choose ddkwvith these methods because they are very
intuitive, easy to implement, and frequently usedhie practice also for performance measurement
purposes. We point out that other very popular wadthare inspired to cooperative game theory
concepts and principles (Shapley value, the intedeseader can see [8]) but they go beyond the

scope of this survey.



The first class of capital allocation methods westirate is the class @roportional ones (see
Dhaene et al. [9]) applied to the risk measuredisted above. Each capital allocation rule (CAR)
consists in choosing a risk measprand assigning the capitiél to each sub-portfoli&, i =1, ...,

n, via
P = Z5_1%;:())(]_)P(Xi)- (7)

We point out that, by using a proportional allocatmethod, we get the desired pooling effect
whenever the risk measure is such #@)>0 and it is subadditive. Also notice that, as tis&
measures we consider are law invariant, that iscdpgtal requirement of a risky position only
depends on its distribution, the same holds foctmsequent capital allocation scheme. The sitoatio
is different if we use the proportional method g consider covariance as a risk measure, that is
p(X)=Cov(X;X) for a fixed portfolioX: in this case the dependences among the P&L ofdheus
business units matter. We also apply this meth@dample.

The second class of capital allocation methodsamsider starts from the idea of measuring how
much a single asset contributes to the total pastio terms of risk, that is it aims at assessing
marginal contributionsFor the sake of simplicity, here we make uséefollowing rule (see Tasche
[15]) applied to the considered risk measurescHmtalK; is attributed to each sub-portfolig, i =
1,...,n via

Ki = p(X) — p(X — Xp), (8)

that is by the difference of the risk capital of ghortfolio with sub-portfolio and the risk capital of
the portfolio without sub-portfolia Since the sum of marginal risk contributions uedémates total

risk, we use an adjusted formula given by

« . _PX) 4
K; Z}‘:IK,-K" (9)

in order to get full allocations. We recall anywdnat a very popular method based on marginal
contributions, intended as partial derivatives wehpect to the weight of an asset in a portfadio,
theEuler methodso called as full allocation is given by the daii of Euler's Theorem for coherent
and differentiable risk measures (see again [15]).

In order to deepen the analysis, we investigate tioersification impacts on capital allocation
methods. To perform this we consider the diveraifan index. For any risk measusesuch that
p(X)>0 the diversification index is given by

DI = p(X) (10)
r =1 p(Xy)



The index shows how much a portfolio is diversifiaehen DI is close to O, it means high
diversification, when the index is close to 1 itans slight diversification. If the index is abové 1
means that the risk measure is not subadditive.

As a further example, we also investigate the doution of sub-portfolios to the total portfolio
Return on Risk Adjusted Capital (RORAC), which efided as

— EIx]
Py (11)
The contribution of each sub-portfoli, i = 1, ..., n is usually given by
_E[X]
R; = K, (12)

whereKj, i =1, ..., ncan be either obtained by using a proportionahogtbr a marginal one. Since
the sum of contributions is not equal to the tptattfolio RORAC, we use, once again, an adjusted

formula which is defined as

x__R p
R; = Z?ZIRJ,RL- (13)

See [15] for details.

3 Numerical example

In this section we apply the capital allocation Inoels presented above to a portfolio of five stocks
of the FTSE-MIB index chosen in different secté&santia (ATL), Brembo (BRE), Eni (ENI), Intesa
San Paolo (ISP) and Telecom ltalia (TIT). We cdétddrom Bloomberg five years of daily prices of
the stocks listed above, in the period 10th Decen2fd 3-2018, obtaining a sample of 1269
observations for each asset.

We model the daily P&L instead of daily prices, each stock is represented by the random
variable

X; =S-S5, (14)

wheres; is the price at day of thei-th stock,i=1, ...,n The portfolioX is simply given byX =
Yj=1X; ; that is, we buy one unit of each stock. Figushaws the dynamics of portfolio prices and

of the P&L; some descriptive statistics of the PéfLthe stocks and of the portfolio are reported in
Table 1.
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Figure 1: Daily portfolio prices and P&L.

Looking at Figure 1 we notice some high peaks fedd by a drop, this shows high volatility of

data; to be more precise, we analyze Table 1.

ATL BRE ENI ISP TIT Port
Mean 0.0011 | 0.0045 | -0.0023 | 0.0002 | -0.0001 | 0.0034
St Dev 0.3683 | 0.1618 | 0.2291 | 0.0547 | 0.0188 | 0.6538
Min -5.2400 | -0.7440 | -1.3400 | -0.5180 | -0.1375 | -5.5933
Max 1.3000 | 0.8840 | 0.8500 | 0.3100 | 0.1010 | 2.3360
Skew -2.3574 | 0.2630 | -0.2875 | -0.5681 | -0.0890 | -0.8073
Kurt 36.3471| 6.0586 | 5.3169 |11.1909| 6.9823 | 9.8177

Table 1: Daily P&L descriptive statistics.

The means are close to zero, in particular forskatend Telecom. This is reasonable since we
consider one-day P&Ls. Standard deviations andesiegnfirm high volatility of the portfolio P&L,
since the first three stocks have a high standevihtion. Skewness is positive for Brembo, while it

is negative for the others and far from zero folaAtia. Kurtosis is very high, in particular for

1 n statistics, the range of a set of data is the difference between the largest and smallest values.



Atlantia: this can be also seen from the minimunLRéhich Atlantia performed in the considered
period. Skewness and Kurtosis highlight how the @a¢ far from being normally distributed, taking
into account that Normal distribution has zero Skess and Kurtosis equal 3. Rather, they seem to
come from heavy-tailed distributions. In such dituas, therefore, it may happen that VaR does not
encourage diversification of risk.

We apply the considered risk measures to each stodkto the whole portfolio, using the
historical simulation method (see for instance alor[12]); that is, we replace the theoretical
distribution of the P&L with the observed time ssrand we compute risk measures using these data.
To illustrate the procedure we show how we compustorical VaR, i.e. how we sample the
empirical quantile. We take each time series antl tbe data concerning daily P&Ls from the
smallest to the largest, then we assign to eacle priveight of 1/1268, where 1268 is the number of
observed daily P&Ls. We compute the empirical cuativé distribution function by computing
cumulative weights: starting from the smallest P&le sum the weight of the previous P&L to the
weight of the current one, until the last obserfA&l . Then we setv=0.01 and we look for the
smallest value which has a cumulative weight greatn 0.01; changing the sign of this value, we
obtain VaR at the level 0.01. We compute in a simivay the other risk measures, letting).01;
this means, for the entropic risk measure, a higk aversion and so a more conservative risk
measure. We also compute the diversification indesxen by Equation (10), for each risk measure.

The results we obtained are shown in Table 2.

ATL BRE ENI ISP TIT Port DI
VaR_0.01 0.8951 | 0.4216 | 0.5600 | 0.1453 | 0.0480 | 1.5721 | 0.7595
CvaR_0.01 1.4950 | 0.5155 | 0.7815 | 0.2045 | 0.0660 | 2.4820 | 0.8104
e_0.01 5.1685 | 0.6725 | 1.2685 | 0.4465 | 0.0662 | 5.5218 | 0.7244
Variance 0.1356 | 0.0262 | 0.0525 | 0.0030 | 0.0004 | 0.4275 | 1.9644

Table 2: Daily risk measures of stocks and portfolio.

Looking at Table 2 we notice that the entropic ns&asure is the most conservative one; this is
due to the small value we set, as we explained®efodiversification effect is obtained for thesti
three risk measures, despite VaR and the entrigkianeasure are, in general, not subadditive. We
check this simply by looking at the diversificatimlex: the first three risk measures hav2l dess
than 1, hence they are subadditive in this exantplparticular, the entropic risk measure obtained
the highest diversification effect. The diversitioa effect is not achieved from the variance, Whic

is super-additive in this example, in fact it hadiversification index greater than 1.



We compute the risk capital allocated to each stosing the proportional methods presented in

the previous section; the results are shown ine'abl

ATL BRE ENI ISP T
VaR_0.01 0.6798 | 0.3202 | 0.4253 | 0.1103 | 0.0365
(43.2%) | (20.4%) | (27.1%) | (7.0%) | (2.3%)
CVaR_0.01 1.2116 | 0.4178 | 0.6334 | 0.1658 | 0.0535
(48.8%) | (16.8%) | (25.5%) | (6.7%) | (2.2%)
e 0.01 3.7442 | 0.4872 | 0.9190 | 0.3235 | 0.0480
(67.8%) | (8.8%) | (16.6%) | (5.9%) | (0.9%)
Variance 0.2123 | 0.0666 | 0.1154 | 0.0259 | 0.0072
(49.7%) | (15.6%) | (27.0%) | (6.1%) | (1.7%)

Table 3: Daily proportional capital allocation of stocks.

Looking at Table 3 we notice that, for the firsteth capital allocation methods the risk capital
allocated to each stock considered as an elemethiegbortfolio does not exceed the risk capital
allocated to the stock considered as a stand-gdortélio. To check this, we simply compare the
results of Table 3 to the results of Table 2; sieaeh value of the first three rows of Table 3&sl
than the respective value of Table 2, the pooliifigce mentioned above is obtained. This follows
straightforwardly from the diversification effecevobtained in Table 2: as on our data the congidere
risk measures turn out to behave subadditivelyaapgXi)>0 for all i, Equation (7) shows that risk
capitals allocated via proportional allocation noeth benefit of the pooling effect. In particuldre t
proportional method based on the entropic risk mmegisas benefited from the highest pooling effect.
The reason is clear, since the entropic risk meakas the highest diversification index and the
proportional methods allocate the capital ¥ia= DI, - p(X;), the allocated capital by using the
entropic risk measure is, for each unit of risk izdpp(Xi), less than the capital allocated via
proportional methods based on different risk measulince variance is superadditive in this
example, the pooling effect is not obtained frons tisk measure and the risk capital allocated to
each stock considered as an element of the partodceeds the risk capital allocated to the stock
considered as a stand-alone portfolio. The futication property is satisfied for each risk measure
summing by row the values in Table 3 we obtain #ydbe last column of Table 2; that is, the sum
of risk capitals allocated to each stock is eqodhe risk capital allocated to the portfolio usthg
respective risk measure. Furthermore, the restiif@ble 3 show also that all the capital allocation
rules here considered agree in putting more wagltlantia than on others, reflecting the largsri
capital assigned to this single stock. Moreovesp déhe ranking of capital allocation weights across
the different sub-units is more or less the samalfidhe different rules that have been considered

9



So far, we have considered proportional capitalcaliions using VaR, CVaR, the entropic risk
measure and covariance. We investigate now whatemepwith marginal or RORAC methods and
we compare the results with those of proportionatirads. A priori we could expect that the marginal
method would distribute differently the capitallde allocated by putting more weight on the riskier
assets.

Here below (see tables 4, 5, 6 and 7) we presentgults obtained by computing the risk capital
allocated to each stock, via marginal methods &edcontribution of stocks to the total portfolio
RORAC. Each table reports the risk capital alloddteeach stock using both proportional methods
and marginal ones and the contribution of eachkstod¢he total portfolio RORAC, for any single

risk measure. For what concerns the contributiaiheéaotal RORAC, we compute the contributions

of stocks by using just the proportional allocatinathods.

ATL BRE ENI ISP TIT
Proportional 0.6798 | 0.3202 | 0.4253 | 0.1103 | 0.0365
(43.2%) | (20.4%) | (27.0%) | (7.0%) | (2.4%)
Marginal 0.7755 | 0.285 | 0.3633 | 0.0928 | 0.0555
(49.3%) | (18.1%) | (23.1%) | (5.9%) | (3.6%)
RORAC 0.0004 | 0.0033 |-0.0013 | 0.0004 | -0.0007
(17.1%) |(154.0%) | (-58.7%) | (20.5%) |(-32.9%)
Table 4: VaR daily contributions of stocks.
ATL BRE ENI ISP TIT
Proportional 1.2116 | 0.4178 | 0.6334 | 0.1658 | 0.0535
(48.8%) | (16.8%) | (25.5%) | (6.7%) | (2.2%)
Marginal 1.3998 | 0.2518 | 0.614 | 0.1651 | 0.0514
(56.4%) | (10.1%) | (24.7%) | (6.7%) | (2.1%)
RORAC 0.0002 | 0.002 |-0.0007 | 0.0002 | -0.0004
(12.1%) | (148.6%) | (-49.7%) | (17.2%) | (-28.2%)
Table 5: CVaR daily contributions of stocks.
ATL BRE ENI ISP TIT
Proportional 3.7442 | 0.4872 | 0.9190 | 0.3235 | 0.0480
(67.8%) | (8.8%) | (16.6%) | (5.9%) | (0.9%)
Marginal 4.9476 | 0.1788 | 0.3283 | 0.0658 | 0.0013
(89.6%) | (3.2%) | (6.0%) | (1.1%) | (0.1%)
RORAC 0.0000 | 0.0010 | -0.0003 | 0.0001 | -0.0003
(5.3%) |(171.2%) | (-46.0%) | (11.8%) | (-42.3%)

Table 6: Entropic daily contributions of stocks.

10



ATL BRE ENI ISP TIT
Proportional 0.2123 | 0.0666 | 0.1154 | 0.0259 | 0.0072
(49.7%) | (15.6%) | (27.0%) | (6.0%) | (1.7%)
Marginal 0.1938 | 0.0718 | 0.1195 | 0.0328 | 0.0094
(45.3%) | (16.8%) | (28.0%) | (7.7%) | (2.2%)
RORAC 0.0009 | 0.0117 | -0.0034 | 0.0014 | -0.0026
(11.0%) | (148.2%) | (-43.4%) | (17.5%) | (-33.3%)

Table 7: Covariance daily contributions of stocks.

Looking at Tables 4, 5, 6 and 7 we notice not igaiicant differences between the proportional
methods and the marginal one: among differentmslasures, both methods agree in putting more
weight on Atlantia than on others and the rankihgapital allocation weights across the different
stocks is the same for both methods. Neverthedgsst from the case of covariance that however is
not really a risk measure, it is worth to emphadizat our “intuition” concerning marginal
contributions was correct. Compared to proportiocabpital allocations, indeed, marginal
contributions put more weight (in terms of capd#ibcation) on Atlantia that is the riskiest asset
the portfolio. Among different risk measures, thaking of the contributions to the total RORAC is
still the same: Brembo gives the best contributighich is even more than the total RORAC, and
Eni gives the worst contribution, which is negative. it is not worth having such an asset in the
portfolio, since it reduces the total RORAC. Riglpitals allocated via marginal methods benefit of
the pooling effect for the first three risk meas,except the capital allocated to Telecom using:Va
this amount is larger than VaR of Telecom considleas a stand-alone portfolio. As well as for
proportional methods, the marginal method basetherentropic risk measure has benefited from
the highest pooling effect. Despite this resulsihot evident from marginal methods' formula, the
data confirm: comparing the values of Table 2 whibse of Tables 4, 5 and 6 we can notice that the
marginal method based on the entropic risk mealsasethe highest difference between the risk
capital of the titles and the capital allocatedhem by using this method. The pooling effect is no
achieved by the covariance marginal allocation wabtlas well as for the proportional one, as we
noted above. The full allocation property for magadiallocation methods is, of course, satisfied for
each risk measure since we use the adjusted fotioia (9). By the same argument, the sum of
RORAC contributions is equal to the total portfdRORAC, for each risk measure.

4 Conclusions
In the present work we have revised a problem wlsakery popular in the financial literature,

namely the one of Capital Allocation. This probleam be faced in many ways, as it is evident from

the huge literature on the subject ([16] gives mplete overview), but one of the most known is the
11



one illustrated in this work, that is through th&ewf risk measures. Namely, for a given risky
financial activityX composed by sub-unitsXy, ..., X», whose riskiness is covered through a capital
requirement assessed by a risk meaputbe problem consists in suitably sharing the oakital

p(X) among the business units, in such a way thatapigat is fully allocated and that a diversificatio
effect is obtained. The possibility of verifyingede properties depends both on the chosen risk
measure and on the Capital Allocation method. ik short paper, we have applied two well known
Capital Allocation methods (theroportional and themarginal one) to a portfolio of stocks whose
capital requirements are determined through thfeé@eomost used risk measures: Value at Risk,
Conditional Value at Risk and the entropic risk swea, and we have compared and discussed the
results obtained. Based on the numerical exampdgealwe cannot conclude that a given capital
allocation method is always better than anothewéier, for the risk measures examined the results
obtained by proportional and marginal methods atestantially very different from those of the
RORAC method. Even if proportional and marginaltabation methods seem to provide similar

results, marginal one better reacts and takesaictount riskier assets.
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