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Résumé 

Lors de maladies cardiovasculaires avancées, telle que l’athérosclérose, les patients doivent 

subir une chirurgie, plus précisément un pontage artériel, afin de rétablir le flux sanguin. 

Cette opération consiste à remplacer l’artère malade, obstruée par des dépôts, par un substitut. 

Cependant, des complications post-implantation telles que la thrombose et l’hyperplasie 

intimale, subsistent et entrainent l’échec de la greffe vasculaire Pour palier à ce problème, 

l’approche proposée serait d’avoir une endothélialisation rapide du substitut vasculaire. Pour 

ce faire, la méthode proposée dans cette thèse est d’enrichir les substituts vasculaires avec 

une molécule pro-endothélialisation et de valider par la suite leurs propriétés biologiques. La 

pléiotrophine (PTN), une cytokine de croissance / différenciation, a été spécifiquement 

choisie dans ce travail, car elle est décrite comme un puissant facteur pro-angiogénique. 

Cependant, ses effets réels sur l'endothélialisation ne sont pas encore complètement connus. 

Aussi, afin d’avoir un effet efficace et à long terme, il apparait crucial de rechercher le 

meilleur moyen d’obtenir un substitut chargé en PTN, tout en conservant et maximisant son 

activité biologique. Les systèmes d'administration de médicaments à base de polymères 

naturels représentent une option intéressante pour une telle application. De plus, les gels de 

collagène de type 1 sont couramment utilisés comme échafaudages pour l'ingénierie des 

tissus vasculaires et pour le développement de systèmes à libération contrôlée grâce à leurs 

propriétés biologiques favorables. Pour mieux contrôler la libération de PTN, des interactions 

spécifiques non covalentes peuvent être utilisées pour stabiliser et immobiliser des 

médicaments dans l’échafaudage de collagène, grâce à l’utilisation d’agents de liaison. 

L'héparine apparait comme molécule de liaison idéale, déjà largement utilisée dans la 

formulation de systèmes d'administration de médicaments, en raison de sa capacité à 

séquestrer, à stabiliser et à protéger les facteurs de croissance et les cytokines. 

En se basant sur les travaux précédents du Laboratoire des Biomatériaux et de la 

Bioingénierie de l'Université Laval, l'objectif de ce travail était donc de développer un 

système de libération contrôlée de PTN à base de gels de collagène de type I modifiés par 

l'héparine. 

Dans un premier temps, les effets de la PTN sur la viabilité et la capacité de migration des 

cellules endothéliales ont été étudiés, et seront comparés aux effets de ceux du facteur 1, 

dérivé du stroma (SDF-1), facteur d’endothélialisation couramment utilisé lors de greffes 
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vasculaires. Ensuite, un gel de collagène de type I a été utilisé comme échafaudage pour le 

développement d’un système à libération contrôlée pour la PTN. Pour augmenter son 

interaction avec le gel et prolonger sa libération dans le temps, de l'héparine en solution a été 

ajoutée à la formulation de gel standard. Des évaluations mécaniques et structurelles ont été 

ensuite réalisées afin d’évaluer les effets de l'addition d'héparine sur les propriétés du gel de 

collagène. La PTN libérée à partir des gels de collagène modifiés par l'héparine a été d’abord 

quantifiée puis son effet sur la viabilité des cellules endothéliales et des cellules musculaires 

lisses a été évalué. Enfin, des tests d'hémocompatibilité ont été effectués pour analyser les 

effets combinés de l'héparine et PTN sur les propriétés thrombogènes des gels de collagène. 
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Abstract 

Arterial bypass graft is the primary therapy for patients with advanced vascular occlusion 

diseases such as atherosclerosis. Post-implantation vascular graft failure is mainly caused by 

in-graft thrombosis and intimal hyperplasia. A fast endothelialization has the benefit of 

reducing these adverse events. Grafts enrichment with pro-endothelialization molecule has 

been proposed as an effective solution. Pleiotrophin (PTN) is a growth/differentiation 

cytokine that has been described as a potent pro-angiogenic factor. However, its pro-

endothelialization effects have not been fully explored, and efficient ways to deliver PTN for 

graft enrichments have to be studied. Natural polymer-based drug delivery systems represent 

an interesting option for such an application. Type 1 collagen gels are commonly used as 

scaffolds for vascular tissue engineering and for the development of controlled release 

systems thanks to their favorable biological properties. To better control the release of PTN, 

specific non-covalent interactions can be used to stabilize and immobilize drugs within the 

collagen scaffold, through the use of binding agents. Heparin has been widely used in the 

formulation of drug delivery systems due to its ability to sequester, stabilize and protect 

growth factors and cytokines. 

Based on previous work of the Laboratory for Biomaterials and Bioengineering at Laval 

University, the objective of this work was to develop a controlled release system for PTN 

based on a heparin-modified Type I collagen gels. 

At first, the effects of PTN on the viability and migration ability of endothelial cells have 

been studied by comparing them with the effects exerted by stromal derived factor 1 (SDF-

1), a known pro-endothelialization factor already used for vascular graft enrichment. 

Following, a type I collagen gel was used as scaffold for the development of a controlled 

release system for PTN. To increase its binding to the gel and to prolong its release over time, 

heparin have been freely added to the standard gel formulation. Mechanical and structural 

assessments were performed to evaluate the effects of the addition of heparin. Quantification 

of the released PTN from the heparin-modified collagen gels was studied along with the 

effects of the released PTN on the viability of endothelial and smooth muscle cells. Finally, 

hemocompatibility tests have been performed to analyze the effects of the addition of both 

heparin and PTN on the thrombogenic properties of the collagen gels. 
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Avant-propos 

Vascular bypass/replacement surgery, despite the improvements observed over the last years, 

is still burden by thrombosis and neointima hyperplasia at the implantation site, leading to 

the ultimate failure of the implants. The fast re-establishment of a functional endothelial cells 

layer (ECs), along with the inhibition of the proliferation of smooth muscle cells (SMCs), is 

of crucial importance to reduce these adverse outcomes. The implants modifications with 

molecules and growth factors capable of speeding up the re-endothelialisation process and 

limiting the SMCs proliferation have been proposed over the last years. However, clinical 

trials of angiogenic factor delivery have been mostly disappointing, underscoring the need to 

investigate a wider array of angiogenic factors. In this work, a drug release system based on 

a type I collagen hydrogel has been proposed for the controlled release of pleiotrophin (PTN), 

a cytokine known for its pro-angiogenetic effects that has recently been shown to be a good 

candidate for vascular grafts enrichment compared to already used pro-endothelialization 

factors. Heparin, in virtue of its ability to sequester, protect and release growth factors, has 

been used to better control the release of PTN from the collagen gel. The biological 

performances of the PTN-based drug delivery systems on both the ECs and the SMCs have 

been investigated. The first part of this project was conducted at the Laboratory of Human 

Anatomy of the University of Piemonte Orientale led by Professor Boccafoschi and installed 

in the premises of Palazzo Bellini in Novara (Italy) while the second part was conducted at 

the Laboratory of Biomaterials and Bioengineering (LBB) of Laval University led by 

Professor Diego Mantovani and installed in the premises from the research center of Saint 

François d'Assise Hospital in Quebec City (Canada). This work was supported by the Natural 

Sciences and Engineering Research Council of Canada (NSERC), the NSERC CREATE 

program for regenerative medicine (NCPRM) and the CHU de Québec Research Center. 
The introduction of this thesis presents the general context in which this work fits, the 

vascular tissue engineering approaches to vascular grafts enrichments and the issues 

associated with them. Chapter 1 presents a literature review on the use of collagen for 

vascular medicine applications. The Chapters 2 and 3 present respectively the validation of 

Pleiotrophin as a pro-endothelialization molecules and the design and development of 

heparin-modified collagen-based delivery system for the controlled release of Pleiotrophin. 
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These chapters are the subject of two scientific papers, one of which has already been 
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Introduction 

0.1 Context 

Cardiovascular diseases are the leading cause of death in Western countries, accounting 

for 17.9 million deaths each year [1]. Among the different cardiovascular diseases, 

atherosclerosis, a condition in which plaques build up inside the arteries leading to the 

partial or complete obstruction of blood flow, is the major cause of deaths. The increase 

of risk factors associated with the pathology (obesity, diabetes, hypertension and 

smoking) coupled with the increase in average life expectancy has led to the urgent search 

for a durable and effective solution. Despite the advances made in the clinical treatment 

of this pathology over the last decades, endoluminal healing techniques (balloon 

angioplasty and stents) are not enough. Faced with the failure of such procedures, 

surgeons resorted to the replacement of the injured vessel (vascular bypass surgery). 

Autologous vessels are preferred as graft materials; However, this approach requires 

multiple surgical procedures and up to 40% of patients needing bypass surgery may not 

have healthy arteries suitable as autografts. Synthetic prostheses are the most established 

vascular substitutes because of their high availability, but the poor clinical efficacy of 

existing synthetic grafts for small diameter (<6 mm) artery surgery limits their use [2]. 

Since the 1980s, researchers have joined their knowledge in the fields of medicine, 

biology and materials science to develop artificial living tissues to be used as alternatives 

to autografts. This led to the development of vascular tissue engineering. The aim of 

vascular tissue engineering is to develop living vascular substitutes showing biological, 

structural and mechanical properties as close as possible to those of the native vessels. 

This project is part of the activities of the Laboratory of Biomaterials and Bioengineering 

(LBB) at Laval University in Quebec City. One of the objectives of the LBB is to develop 

vascular substitutes developed from natural polymers able to present the same mechanical 

and biological behavior than that of the physiological healthy tissue. This work is based 

on previous work in the laboratory, which has enabled the development of a 

physiological-like tri-culture in vitro vascular wall model based on type I collagen gel 

featuring a multi-layered hierarchical organization composed of a fibroblast-containing 

adventitia-like layer, a media-like layer seeded with smooth muscle cells and an intima-

like endothelial cell monolayer. The overall aim of the present research project is to 

enhance the endothelialization of the scaffolding during the regeneration of the vascular 

tissue by the enrichment with pleiotrophin, a pro-angiogenic cytokine, in order to 
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efficiently recruit endothelial cells and to promote their adhesion and growth in the 

matrix. 

In this introductory chapter, after briefly introducing the cardiovascular system and its 

component, its most common diseases, their currently available treatment and the 

strategies under development will be presented and discuss. 

0.2 The Cardiovascular System 

The cardiovascular system, known also as circulatory system, is an organ system 

composed of the heart and blood vessels responsible for the circulation of blood in the 

human body. This ensure the transportation of nutrients, oxygen and signaling molecules 

to the body cells and allows the clearance of carbon dioxide and other waste products of 

cells metabolism, ultimately concurring in the maintenance of the homeostasis. The main 

components of the vascular system will be described hereafter. 

0.2.1 The Heart 

The heart is a muscular organ that resides in the mediastinal space within the thoracic 

cavity. Its main function is to ensure, through automatic and rhythmic contractions, blood 

circulation in two main closed circuits: systemic and pulmonary circulation. A third heart-

specific circulation system, the coronary system, is also present to supply blood to the 

heart. The human heart consists of four distinct compartments: two atria, that collect 

blood and pump it into a pair of ventricles, 

which pump blood into the vessels. Cardiac 

valves, placed at the interface between 

atria/ventricles and ventricles/blood vessels, 

prevent the backflow of blood. 

The oxygenated blood is ejected from the 

heart by the left ventricle to the aorta and is 

then distributed to the organs by the systemic 

arteries. Following the gas exchange, the 

deoxygenated blood returns to the heart 

through the vena cava. It accumulates in the 

right atrium, then in the right ventricle where 

it is ejected in the pulmonary artery to be diffused towards the lungs. Once enriched with 

oxygen in the capillaries of the lungs, the blood returns to the heart, in the left atrium, 

Figure 0.1: Cardiovascular system. [A] 
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through the pulmonary veins (Figure 0.1). The slightest damage to this system can cause 

an alteration in the functioning of the heart and lead to the death of the organism.  

0.2.2 Vascular System 

The vascular system is a network of blood vessels that allow the circulation of blood. 

Vessels are divided into three main categories: Arteries, Veins and Capillaries. The 

different types of vessels are distinguished by thickness, cellular and protein composition 

of their walls. This heterogeneous, yet highly organized structure allows the blood vessels 

to effectively perform their vital functions [3]. Arteries are blood vessels that carry blood 

away from the heart. Blood carried by arteries is usually highly oxygenated, having just 

left the lungs on its way to the body’s tissues. Arteries face high levels of blood pressure 

as they carry blood being pushed from the heart under great force. To withstand this 

pressure, the walls of the arteries are thicker, more elastic, and more muscular than those 

of other vessels. Capillaries are the smallest and thinnest of the blood vessels. They 

connect to arterioles on one end and venules on the other. Capillaries carry blood very 

close to the cells of the tissues of the body in order to exchange gases, nutrients, and waste 

products. The walls of capillaries consist of only a thin layer of endothelium that acts as 

a filter to keep blood cells inside of the vessels while allowing liquids, dissolved gases, 

and other chemicals to diffuse along their concentration gradients into or out of tissues. 

Veins are large return vessels of the body. Because the arteries absorb most of the force 

of the heart’s contractions, veins are subjected to very low blood pressures. This lack of 

pressure allows the walls of veins to be much thinner, less elastic, and less muscular than 

the walls of arteries. Veins rely on gravity, inertia, and the force of skeletal muscle 

contractions to help push blood back to the heart. Some veins contain many one-way 

valves that prevent blood from flowing back. Arteries and veins are mainly composed of 

3 tunics: Intima, Media and Adventitia (Figure 0.2). 
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Figure 0.2: Blood vessels structure: a) Artery; b) Vein; c) Capillary. 

a) The Intima 

The tunica intima is the innermost lining of blood vessels. It is composed by 

the endothelium, which is almost always simple squamous epithelium. 

Endothelial cells (ECs) are flattened and polarized cells whose apical surface 

faces the lumen of the vessel. ECs have many important roles that ensure the 

functionality of the blood vessel [4]. These flat cells are tightly adherent and 

form a smooth surface that minimizes friction between the blood and the inner 

surface of the vessels. They are covered on their apical surface with a thin 

negatively charged layer called glycocalyx [5]. This surface is mainly 

composed of anticoagulant proteins secreted by endothelial cells. ECs also 

ensure mechano-transduction, the conversion by cells of a mechanical signal 

given by the blood flow into cellular physiological signals [6] acting on the 

ECs themselves (pro-inflammatory and proliferative signals) and on cells 

from other layers of the vessel wall (contraction of the media layer). In the 

arteries, a layer of elastic tissue called the internal elastic membrane marks the 

outer boundary of the tunica intima. 

b) The Media 

The tunica media is the middle layer of blood vessels. It consists of concentric 

sheets of contractile smooth muscle cells (SMCs) supported by an 

extracellular matrix (ECM) composed mainly of elastin, collagen type I and 
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III and proteoglycans [7]. The contraction of SMCs is controlled by the 

autonomic nervous system, hormones and local chemicals. Contraction of the 

SMCs is called vasoconstriction and results in a decrease in the size of the 

lumen and a decrease in blood flow. Relaxation of the SMCs is called 

vasodilation which has opposite effects. Small variations in the diameter of 

the vessels have marked effects on blood flow or pressure, thus the media 

plays an important role in the regulation of circulation in tissues and organs. 

Arteries sometimes have an outer layer of elastic tissue called the external 

elastic membrane. When present this marks the boundary between the tunica 

media and tunica adventitia. 

c) The Adventitia 

The adventitia is a connective tissue that forms the outermost layer of the 

vessel. It is composed mainly of collagen type III, elastin and fibroblasts 

(FBs). The composition of the ECM of this layer allow the blood vessels to 

stretch while preventing excessive dilation and often blend into the 

surrounding tissues. In thick-walled vessels, the adventitia may include nerve 

fibers and blood vessels to supply oxygen and nutrients to the outer layers. 

These vessels are called vasa vasorum [8]. 

0.2.3 The Blood 

The primary function of blood is to deliver oxygen and nutrients to and remove wastes 

from body cells. The specific functions of blood also include immunological defense, 

distribution of heat, and maintenance of homeostasis [9]. Blood constitutes approximately 

8% of adult body weight. Blood is a connective tissue and like all connective tissues, it is 

made up of cellular elements and an extracellular matrix. The cellular elements—referred 

to as the formed elements—include: 1) Red blood cells (also known as erythrocyte), 

which are anucleated biconcave disks containing hemoglobin whose primary function is 

to transport oxygen from the lungs to the body’s tissues; 2)  White blood cells (or 

leucocyte), which are a major component of the immune system implied in the defenses 

against infectious diseases and 3) platelets (or thrombocytes), cell fragments critical for 

the process of hemostasis, the stoppage of blood outflow from a damaged vessel 

(hemorrhage). The extracellular matrix, called plasma, makes blood unique among 

connective tissues because it is fluid. Plasma, which is mostly composed of water, 
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perpetually suspends the formed elements and enables them to circulate throughout the 

body within the cardiovascular system. 

0.3 Main Pathologies affecting the Cardiovascular System 

Cardiovascular diseases (CVDs) are one of the leading causes of death in the world. 

According to the World Health Organization (WHO), CVDs were responsible for 17,9 

million deaths in 2017, almost 31% of the total global mortality [1]. CVDs include 

numerous pathologies, many of which are related to a process called atherosclerosis.  

Atherosclerosis [10] affects arteries like the aorta, coronary, brain, pelvis, legs, arms or 

kidneys arteries. It is a condition that develops when a plaque builds up in the walls of 

the arteries, causing a partial or total occlusion (stenosis) of the artery lumen and thus 

reducing the blood flow (ischemia). If the oxygen supply to the heart muscle is reduced 

(hypoxia), a heart attack can occur. Lipids, cholesterol, foamy cells, cellular debris and 

calcium accumulate over time in the artery wall. Up today, the mechanisms underlying 

the insurgence of atherosclerosis are not yet fully understood. These substances stimulate 

SMCs to proliferate and produce other proteins and chemo-attractive biomolecules, 

resulting in the accumulation of more cells in between the intima and media layers of the 

artery where the atherosclerotic lesions form. The arterial wall becomes markedly 

thickened by these accumulating cells and surrounding materials, leading to ischemia 

(Figure 0.3). Often, the rupture of the fibrous cap of the plaque will lead to the formation 

of a blood clot that will block the artery (thrombus), stopping the blood flow. 

 

Figure 0.3: Atherosclerosis: Progression of the atherosclerotic lesion affecting an artery. 
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0.4 Current Clinical Treatments 

Risk factors and the occurrence of a stenosis, or its aggravation, can be prevented. Heart-

healthy lifestyle changes can help in preventing or limiting atherosclerosis. These include: 

Healthy eating, weight loss, managing stress, physical activity and quitting smoking. In 

the presence of a genetic predisposition or when the first clinical signs have already 

appeared, pharmaceutical drugs such as statins (to lower cholesterol levels) [11], 

angiotensin-converting enzyme (ACE) inhibitors and β-blockers (antihypertensive drugs) 

[12] are recommended. 

In presence of severe atherosclerosis, a medical procedure or surgery to remove the 

atherosclerotic plaque is highly suggested. Balloon angioplasty is a procedure used to re-

open blocked or narrowed coronary arteries. This procedure can improve blood flow to 

the heart and relieve chest pain. Through an incision in the femoral artery, a catheter on 

which is placed a balloon is inserted. Once inflated, the balloon compresses the plaque, 

re-opening the artery lumen [13].  Often a stent, a small mesh tube made of metal 

(stainless steel, magnesium alloy or titanium), is placed in the artery to keep it open after 

the surgical procedure [14]( Figure 0.4).  

 

Figure 0.4: Angioplasty: Main steps of balloon and stent angioplasty procedure. 

When the vessel's occlusion is severe and other treatments are not suitable, replacement 

or bypass surgery are the only current solution. During surgery, the diseased part of the 

artery is removed and replaced or bypassed by a graft or a prosthesis to restore blood 

circulation (Figure 0.5).  

Autologous grafts are the ideal substitute solution with a success rate of 90% at one year 

[15]. Most often, the saphenous vein of the patient is used in this procedure. It is a vein 

running through the leg and its diameter and length make it a suitable substitute for 
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femoral, popliteal and carotid bridges and aorto-coronary bypass. In the absence of 

available natural substitutes, the simplest solution is to turn to synthetic substitutes.  

The development of synthetic prostheses took off in the 1950s and opened a therapeutic 

alternative for the replacement of injured arterial segments. In 1952, the first synthetic 

vascular bypass was performed by Voohrees with the implantation of a porous textile 

prosthesis made of polyethylene terephthalate (PET), also known as Dacron® [16, 17]. 

These prostheses are indicated for the replacement of vessels of large calibers (> 10mm 

in diameter). Then in 1976, the first use of expanded polytetrafluoroethylene (ePTFE), 

also known as Teflon®, was reported [16, 18]. These prostheses are indicated in the 

replacement of medium-sized vessels, between 6mm and 10mm in diameter. No studies 

show the superiority of PET compared to ePTFE [19] .  

 

Figure 0.5: Bypass surgery: Use of autologous and synthetic grafts for bypass surgery. 

Although many improvements have been made over the years, the clinical performance 

of these prostheses, especially for small diameter vessels bypass/substitution (Ø<6 mm) 

[20], is still hampered by high rate of graft lumen occlusion due to intra-graft thrombosis 

and intimal hyperplasia, especially at the anastomosis site, that are regularly observed in 

the months or years following surgery [2, 21]. The formation of a functional endothelial 

layer, known as endothelialization, in the lumen of the vascular substitutes would 

significantly improve small-diameter graft survival by: i) Preventing thrombus formation 

on the graft surface; ii) Enhancing internal healing and limiting intimal hyperplasia [22]. 

Developing prostheses for patients without suitable autologous vessels that can be used 

for bypass surgery following vascular pathologies has become necessary [23]. 
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0.5 Vascular Tissue Engineering 

Vascular tissue engineering (VTE) it is an inherently multidisciplinary area of research 

combining the know-how of several research fields with the aim of developing 

technologies for vascular medicine applications featuring biological and mechanical 

properties as close as possible to those of the native vessels, in order to ameliorate the 

integration and healing of the implanted substitutes. The ultimate goal of VTE is the 

development of artificial vascular substitutes. The ideal substitute must fulfil strict 

specifications such as: Absence of thrombogenicity and immunogenicity; Suitable 

mechanical properties; High availability, resistance to suture and infections and low costs 

[24-27]. The tissue engineering derived vascular substitutes can be classified according 

to various criteria. One of these criteria is the origin of the polymer used as a scaffold for 

the vascular substitutes. Polymers can be of synthetic or of natural origin. Synthetic 

polymers include biodegradable synthetic polymers, such as polyglycolic acid (PGA) 

[23], or permanent composite synthetic polymers, such as PET, ePTFE and polyurethane 

[23]. Natural polymers are usually proteins that constitute the original architecture of 

native ECM. The generation of protein polymers that mimic native structural proteins and 

adopt the characteristics of the arterial wall offers a unique approach to develop a vascular 

graft. There are three major types of natural vascular substitutes derived from tissue 

engineering:  

• Decellularized matrices, derived from living tissues that undergo chemical and 

mechanical treatments to remove cells from the tissue obtaining biological 

scaffolds that are expected to maintain the complex 3-D structure and 

biomechanical properties of the ECM [28, 29], allowing the re-cellularization with 

autologous cells to produce a new immunologically compatible tissue adequate 

for implantation [30].  

• Self-assembly derived substitutes, [31, 32] in which the scaffolds are obtained by 

wrapping cellular sheets made of cells and synthesized collagen. Cells (SMCs and 

FBs) are cultured to form cell sheets that are subsequently rolled around a 

mandrel. These tubular structures are further cultured for a maturation period 

before undergoing endothelialization.  

• Scaffolding system based on natural polymers, where cells (most often SMCs 

and FBs), are seeded in a protein solution which is then gelified [33]. This 

approach aims to create protein-bound cell matrices similar to vascular tissue. 
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Type I collagen is the most used protein because it is present in many tissues and 

can be isolated, solubilized and reconstituted according to numerous protocols 

[34]. Fibrin is also used for these applications [35, 36] as also elastin [37]. The 

use of gel solutions based on proteins makes it easy to inoculate cells. This cell 

suspension can then be molded to obtain the desired shape, for example tubular 

structures. The cells are uniformly dispersed and immobilized in the matrix during 

gelation. A reorganization of the matrix by the cells is then observed.  

The clinical application of protein-based gels, however, is still limited owing to 

their low mechanical properties [38-44]. Numerous methods have therefore been 

developed to reinforce these matrices [45] avoiding the use of non-biological 

solutions, such as the use of chemicals or synthetic polymers. 

Despite the progresses made in the last year in the development of artificial blood vessels, 

further work is still required to ensure success towards clinical translation. In fact, despite 

showing promising biological performances, these products still miss important 

characteristics, mainly mechanical properties, that will ensure a successful implantation 

of the tissue engineered vessels[46, 47].  

However, the strategies developed in the pursue of an artificial blood vessel can still find 

application in vascular medicine, representing interesting in vivo model for study needing 

the complex hierarchy typical of the blood vessel architecture [48], or even provide 

material useful for the amelioration of existing vascular graft [49] or for the development 

of drug delivery systems (DDS) [50].  

0.6 Vascular Grafts Enrichment 

As previously stated, the lack of endothelialization is one of the major causes of small 

caliber vascular grafts failure. The absence of a complete and functional ECs layer on the 

luminal surface of the grafts leads to early thrombus formation and late restenosis, 

limiting the use of current vascular substitutes in clinic. Spontaneous endothelialization 

of vascular grafts or long segments of de-endothelialized arteries does not occur, leading 

to early thrombus formation, and the progressive SMC proliferation results in intimal 

hyperplasia, causing the occlusion (restenosis) of the grafted substitute. There is a critical 

need to control these phenomena by eliciting ECs ingrowth to optimize the physiologic 

functions of the vascular substitute. Physiological ECs ingrowth is regulated by complex 

interactions among growth factors and cytokines released by the cells and extracellular 

matrix within the local vascular microenvironment. For these reasons, the modification 
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of the grafts luminal surface to induce a faster re-endothelialization has been proposed. 

In recent years vascular substitutes have been additionally engineered by enrichment with 

growth factors, cytokines, regulatory proteins, bioactive peptide and genes able to 

efficiently recruit resident ECs and promote their adhesion and growth on the graft, 

ultimately guiding the optimal integration and functionality of the implant [51]. Several 

of these approaches have been shown to be able to promote endothelial cells recruitment 

for vascular grafts enrichment applications. In Table 0.1 some of the most used molecules 

are listed.  

Table 0.1: Bio-active molecules used for pro-endothelialization of vascular grafts. 

Peptides 

Name Derived 

from: 

Function References 

RGD (Arg–Gly–Asp) Fibronectin 
Cell adhesion trough integrins 

interaction 
[52, 53] 

CAG (Cys–Ala–Gly) Collagen ECs selective binding tripeptide [54, 55] 

REDV (Arg–Glu–Asp–

Val) 
Fibronectin ECs binding trough α4β1 integrin [56, 57] 

YIGSR (Tyr–Lle–Gly–

Ser–Arg) 
Laminin ECs binding trough 67LR receptor [58, 59] 

Growth Factors 

Name Function References 

FGF 
Fibroblast mitosis, EC migration; SMC 

proliferation; Vasculogenesis 
[60-63] 

VEGF 
ECs migration and mitosis; Vasculogenesis and 

angiogenesis 
[64, 65] 

SDF-1 ECs proliferation; EPCs recruitment; Angiogenesis [66-69] 

Genes 

Name Encode for: Function References 

ZNF580 

C2H2 zinc 

finger 

protein 

ECs proliferation and migration [70] 

Abbreviations: FGF: Fibroblast growth factor; VEGF: Vascular endothelial growth factor; SDF-1: Stromal 

derived factor; ECs: Endothelial cells; SMC: Smooth muscle cells; EPCs: Endothelial progenitor cells. 
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While the discovery of these effects initially had promising prospects for their use in 

therapy, clinical trials of angiogenic factor delivery have been mostly disappointing, 

underscoring the need for a wider array of angiogenic factors [71]. 

0.7 Pleiotrophin 

Pleiotrophin (PTN), also known as “heparin binding growth associated molecule” (HB-

GAM), is a growth/differentiation cytokine first discovered in 1989 that exert different 

biological effects on various cell types and is expressed mainly, but not exclusively, 

during embryogenesis [72]. The corresponding gene, Ptn, have been sequenced [73] and 

it encodes an 18 kDa protein of 168 amino acids. The conservation of PTN amino acid 

sequences among different species (human, bovine, rat, mouse, and chick) is the highest 

of any of the known cytokines [74-76]. PTN is known for its high affinity to heparin [72] 

and with extracellular matrix, from which it can be released into solution by heparin [74]. 

The binding sites of PTN to heparin were found to be located within the β-sheet domains 

of the protein, instead of the previously believed sites at the lysine rich N- and C-termini 

[77]. PTN has been shown to interact with and/or affect cell functions through several 

cell surface receptors such as syndecans [78], the anaplastic lymphoma kinase (ALK) 

[79], integrins [80], nucleolins [81] and neuropilin-1 [82]. However, the primary 

receptors for PTN is protein tyrosine phosphatase beta/zeta (RPTP β/ζ), whose activation 

can regulate multiple functions [83-86]. Over the years, PTN has been proved to be able 

to regulate multiple cell functions. The ability to promote cell growth was first described 

on FBs in 1989 [87]. After this first discovery, PTN has been found to be a mitogen for 

different cell types, including ECs, epithelial cells and different FBs cell lines [88-90]. 

PTN is also involved in cell motility [82, 91] and, by means of its structural similarity to 

the thrombospondin type I (TSR) sequence, PTN can mediate cell-to-extracellular matrix 

and cell-to-cell interactions [77]. It has been demonstrated to affect neural cells, 

stimulating neurite outgrowth from different cultured neuronal cell types [72, 92] and 

promoting process outgrowth when added to glial progenitor cells in primary cultures 

[93]. It also effects bone tissue: PTN has been found to take part in bone repair [94] and 

is also an osteocyte-derived factor that participate in mediating the osteogenic response 

to mechanical loading in bone [95]. Effects of PTN on skeletal muscle regeneration, 

mainly in the formation of neuro-musculature junctions, have been reported [96], as for 

the enhancement of cell survival and large-scale propagation of cultured human 

embryonic stem cells [97]. PTN is known for its effects on the immune system, like 
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promoting lymphocyte survival and driving immune cell chemotaxis [83], and has also 

been shown to exert beneficial effects in the hematopoietic niche, regulating the retention 

and self-renewal of hematopoietic stem cells in the bone marrow [98] and their 

regeneration [99].  

PTN is also highly expressed in multiple human cancers, including breast, pancreas and 

lungs [84][14], in fact it is implicated in tumor angiogenesis and as proliferative driver 

and as factor in the resistance to apoptosis. PTN induce extracellular matrix remodeling, 

increase angiogenesis and stimulate the proliferation of stromal cells in the tumor 

microenvironment [100, 101]. 

• Pleiotrophin and the Cardiovascular System 

Over the years, the effects exerted by PTN on the cardiovascular system, in particular on 

blood vessel and endothelial cells, have been widely studied. These effects of PTN on 

angiogenesis were firstly investigated in 1998, by virtue of its expression by ECs during 

ischemic brain injury healing process [102]. PTN was found to be able to stabilize the 

formation of capillary-like structures by cultured endothelial cells [103]. Subsequently, it 

was demonstrated that the induced overexpression of PTN in a rat model of myocardium 

ischemia was able to promote neovascularization of the infarcted area [104] and it can 

induce angiogenesis in adult and senescent rat aortic rings ex vivo [105]. In recent years, 

the involvement of PTN in physiological angiogenesis has been studied [106]. An 

important effect of PTN is the ability to chemotactically attract EPCs at angiogenic sites 

[107]. PTN seems to play a key role also in inflammation-induced neovascularization. 

The in vitro ability of PTN to induce a downregulation of monocytes/macrophages cell 

markers and an upregulation of endothelial cell characteristics, resulting in their 

transdifferentiation into functional endothelial cells has been reported [108] and further 

confirmed by other studies [109, 110][42, 43]. Moreover, PTN has been shown to be 

involved in the biosynthesis of catecholamine and in the regulation of the 

Renin/Angiotensin system in the mouse aorta [111, 112], thus, implying his involvement 

in the regulation of aortic blood pressure.  

0.8 Collagen-based Releasing Systems 

To efficiently deliver drugs or bioactive molecules, the choice of a suitable scaffold is of 

crucial importance. Among the different options available nowadays, natural polymers 

are one of the most interesting and promising candidates. One of such polymers is 



 

14 

collagen. Collagen comprises 25% (by dry weight) of total protein content in vivo [113]; 

In some types of collagen, the entire molecule is a triple helix (Figure 0.6), while in other 

types only a portion have this structure [114]. Of the various types of collagen, type I is 

by far the most prevalent form [115]. Mature type I collagen is composed of about 1000 

amino acids and present a triple helix structure. 

 

Figure 0.6: Schematic representation of collagen structure. 

It is the main component of extracellular matrices, conferring their strength and shape to 

connective tissues such as bone, teeth, cartilage, tendons, ligaments and fibrous matrices 

of the skin and blood vessels. Type I collagen is widely chosen as a biomaterial for 

medical applications due to its ease of extraction, weak antigenicity, robust 

biocompatibility, and its ability to be physically and chemically modified for a variety of 

applications [116-118]. Among the applications the following can be mentioned: 

Substrate for cell cultures [119], suture material [120], tissue engineering scaffold for 

bladder reconstruction [121], bone tissue engineering scaffold [122], tendons 

reconstruction [123, 124], sponges are used to treat burns and other injuries (58) and 

scaffold for the regeneration of vascular tissue [125]. Due to its favorable biological 

properties, collagen-based matrices have been thoroughly investigated as a releasing 

system for therapeutic drug delivery applications. These investigations date back to the 

‘70s [126] and over the years collagen-based drug delivery systems, including injectable 

microspheres, implantable collagen gels, interpenetrating networks of collagen and 

collagen membranes, have been studied for the delivery of growth factors, proteins, drugs, 

genes and cells [50] for application in several tissues such as bone [127], eye [128], 

ischemic heart [129], ischemic brain [130] and others. In Table 0.2 some of the use of 

collagen-based releasing systems are reported.  
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Table 0.2: Collagen-based matrices/scaffolds for drug, cell and gene delivery used in different tissue engineering applications. 

 

 
Scaffold structure 

Medical 

application 
Biomolecule used Cells seeded Animal model used Reference 

G
ro

w
th

 f
a
ct

o
rs

 /
D

ru
g
s 

Collagen Sponge Cartilage repair bFGF chondrocytes Nude mice [131] 

Collagen gels Vascularization VEGF / Chorioallantonic membrane [132] 

Collagen sponges Wound healing VEGF / Rabbit anterior cricoid cartilage wound [133] 

Collagen sponges Tissue regeneration 

bFGF, HGF, PDGF-

BB, VEGF; IGF-1, 

HB-EGF 

/ Mice subcutaneous implantation [134] 

Collagen sponge Antibacterial Gentamicin / Horse tarsocrural joint [135] 

G
en

es
 Collagen gels 

Bone/Cartilage 

regeneration 
BMP2 (gene) BM-MSC Mouse femoral muscle [136] 

Collagen gels Skin wound repair PDGF A and B (gene) / Rabbit dermal ulcer/ Porcine dermal wound [137] 

C
el

ls
 

Electrospun collagen Bone / BM-MSC / [138] 

Collagen-

Glycosamminglycans 

scaffold 

Cardiovascular / BM-MSC Rat myocardial infarction [139] 

Collagen sponges Brain / NSC Rat cerebral ischemia [140] 

Collagen sponges 

and hydrogels 
Intervertrebal discs / Human intervertebral disc cells / [141, 142] 

Abbreviations: bFGF: Basic fibroblast growth factor; VEGF: Vascular endothelial growth factor; HGF: Hepatocyte growth factor; PDGF-BB: Platelet derived growth 

factor-BB; IGF-1: Insulin like growth factor-1; BMP2: Bone morphogenetic protein 2; HB-EGF: Heparin binding epidermal growth factor-like growth factor; BM-MSC: 

Bone marrow mesenchymal stem cells; NSC: Neural stem cells. 
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Among the different structure used, collagen gels are widely used for soft tissue applications. 

As already mentioned in the introduction, collagen gels are flowable, allowing to mold them 

to obtain different shape, like tubular structures, or to easily inject them. The most readily 

available forms of such collagen gels are suspensions of collagen fibers. However, fibrillar 

collagen gels have an effective pore size too large to allow a controlled release of the loaded 

protein-based drugs, such as growth factors and cytokines, by hindered diffusion. To control 

release, it is necessary to rely on binding of the active agent to collagen. Over the years, many 

types of drug delivery systems based on collagen have been developed for the control release 

of small molecule and protein-based drugs for biomedical applications [143]. The use of 

specific non-covalent interactions to stabilize drugs and immobilize them within a 

biocompatible matrix, thus protecting their biological activity and slowing their diffusion 

from the matrix, has been widely investigated in the last years. To achieve this result, several 

approaches have been used to modify the collagen scaffold.  

• Heparin 

One of such approaches rely on the  modification of the collagen scaffold with heparin [144]. 

Heparin is a linear polysaccharide synthesized only in mast cells, where it is cleaved from 

the core protein serglycin [145]. Heparin polymer chains are made up of repeating 

disaccharides, the most common are 2-O-sulfated iduronic acid and glucosamine with 

varying degrees of sulfation and N-acetylation (Figure 0.7).  

 

Figure 0.7: Heparin major disaccharide repeating units [F]. 

Heparin is best known for its anticoagulant properties, but has also been shown to promote 

cell adhesion, inhibit smooth muscle cell proliferation and to moderate inflammation [146]. 

Moreover, heparin is also known to sequester, stabilize and protect growth factors and 
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cytokines [144] and has been widely used in conjunction with different scaffolds to enhance 

their retention ability (Table 0.3). 

Table 0.3: Heparin-modified scaffolds for growth factor delivery in different tissue engineering 

applications 

Polymer/Scaffold Structure 

Growth 

factor 

used 

Application Reference 

Collagen gel HB-EGF 
Tissue engineered corneal 

equivalent 
[147] 

Collagen coating VEGF 
Porous orbital enucleation 

implants 
[148] 

Collagen-based demineralized bone 

matrix 
PDGF 

Tissue regeneration and wound 

repair 
[149] 

Collagen gel BMP2 Bone repair [150] 

Heparin-conjugated fibrin-filled 

collagen sponges 
BMP2 Bone repair [151] 

Polyethylene glycol hydrogels VEGF 
Vascularization of tissue 

engineering scaffolds 
[152] 

Abbreviations: HB-EGF: Heparin binding epidermal growth factor-like growth factor; VEGF: Vascular 

endothelial growth factor; PDGF: Platelet derived growth factor; BMP2: Bone morphogenic protein-2. 

Heparin interactions with proteins are largely electrostatic, however, there are clearly 

contributions from hydrophobic effects and hydrogen bonding, as well as promoting 

secondary structure in the proteins binding to heparin, which imparts some selectivity and 

specificity [153]. Finally, of importance for its use in cardiovascular applications, heparin 

itself has been shown to be able to stimulate angiogenesis [154, 155]. 

0.9 Strategy and Structure of the Project 

Vascular bypass/replacement surgery is the primary clinical therapy for patients with 

advanced vascular occlusion diseases such as atherosclerosis. For this application, the need 

for functional small-caliber grafts is highly demanded. Autologous replacement vessels are 

the gold standard for this application [156, 157]. However, because of the usual bad condition 

of the vascular system in the patient these vessels are not always available to be used [21, 

158, 159]. In this scenario, the only alternative is the use of an artificial vascular substitute. 

Despite the improvements observed over the last years, the use of synthetic grafts is still 

burden by high rates of implants failure. After implantation, the low patency of the vascular 

substitutes is mainly related to early in-graft thrombosis, caused by platelet deposition and 
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blood coagulation, and to late intimal hyperplasia near the anastomotic regions [160, 161]. 

Failure of vascular grafts is mainly determined by the lack of endothelial cells, as these cells 

effectively inhibit thrombosis and intimal hyperplasia [162, 163]. 

Therefore, the rapid establishment of an endothelial lining on the luminal surface of a 

vascular prosthesis would be beneficial to prevent early thrombosis and failure and for the 

long-term patency of the grafts. Several approaches have been used to achieve the formation 

of an ECs monolayer by seeding with harvested ECs or endothelial progenitor cells (EPCs) 

followed by in vitro maturation steps, resulted in an improvement of the patency [164, 165]. 

Despite these positive results, in vitro endothelialization involves multiple specialized 

procedures and cell cultures require long incubation period, making it cost ineffective, 

inconvenient and limited to adequately-equipped facilities.  

In recent years, to overcome the problem, implants modifications with bioactive molecules 

(growth factors, cytokines and other regulatory proteins) capable to efficiently recruit 

resident ECs, to promote their adhesion and growth speeding up the re-endothelialization 

process and, ultimately, guide the optimal integration and functionality of the grafted vessel 

[166-169] have been proposed over the last years. However, clinical trials of pro-

endothelialization enrichment of vascular grafts have been mostly unsatisfactory, thus the 

need to investigate a wider array of angiogenic factors and new approaches for this 

application [71].  

Pleiotrophin (PTN) is an 18-kDa growth/differentiation cytokine able to regulate multiple 

functions including cell adhesion, cell migration, cell proliferation and cytoskeletal stability 

[170] and has been described to be a potent enhancer of angiogenesis and neovasculogenesis 

[104, 105].  

However, the concentration of biomolecules must be fine-tuned in order to accomplish the 

desired effects on the migration and proliferation of ECs, thus the need to release these 

molecules in a controlled way. The development of drug delivery systems (DDS) capable of 

controlling the release of therapeutic agents have been widely explored in recent years. The 

use of collagen as a scaffold for DDS applications is justified by several favorable properties 

that characterized this natural polymer [116-118]. To further modulate the release of the 

loaded proteins, specific non-covalent interactions can be used to stabilize drugs and 

immobilize them within the collagen scaffold [143]. These systems help in protecting the 
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biological activity of the loaded proteins while further controlling their diffusion from the 

gel. Heparin, a polysaccharide mainly known for its anticoagulation properties, has been used 

in DDS to better control the release of bioactive molecule in virtue of its ability to sequester, 

protect and release growth factors and cytokines [144]. Moreover, PTN is known to have a 

high affinity for heparin  [102]. 

The general hypothesis of this research project is: 

A fast endothelialization of vascular grafts, by means of their modification with pro-

endothelialization molecules, will help in limiting the adverse events that lead to the 

implant failure  

In this context, the specific hypothesis to this research project are: 

a) PTN, due to his known properties towards ECs, can be used as an effective 

endothelialization enhancer. 

b) The use of a collagen-based drug delivery system capable of prolonging the release 

of PTN while preserving its biological properties towards ECs. 

Stated the hypothesis, the general objective of the research project will be: 

The development of a drug delivery system for the administration of pro-endothelialization 

drugs, 

With the specific objective being: 

a) Assess the biological effects exerted by PTN on the viability and migration ability of 

ECs. 

b) Develop a DDS for the controlled release of PTN based on a type I collagen gel 

modified with the addition of heparin to increase the retention and thus prolonging 

the release over time of PTN from the scaffold. 

This PhD research project is part of the activities of both the Laboratory for Biomaterials and 

Bioengineering (LBB) of Laval University and the Laboratory of Human Anatomy of the 

University of Piemonte Orientale (UPO) and was carried out in a joint PhD activity. 

The Laboratory of Human Anatomy main fields of interest concern tissue engineering with 

special attention to the cardiovascular applications, the effects of mechanical stress applied 

to cell cultures (mechano-transduction) and materials bio- and hemocompatibility. The 
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expertise of the laboratory in biological processes linked to tissue engineering applications 

will be used for the characterization of the pro-endothelialization properties of PTN. 

To evaluate these properties,  the effects of PTN on ECs have been compared with the ones 

exerted by SDF-1, a well-known chemokine which plays an important role in angiogenesis 

and neovascularization [171, 172] already used for vascular grafts enrichment. Viability, cell 

migration ability and the expression of molecular marker related to the aforementioned 

process have been analyzed. 

The LBB has chosen to work on vascular tissue regeneration from a scaffolding system based 

on the use of collagen as a natural polymer. One of the short-term objectives of the LBB is 

to develop in vitro models of vascular walls with the long-term mission of create knowledge 

leading to a tissue engineered vascular substitutes. Since 2002, type I collagen has been 

extracted from rat tail tendons and stored according to a protocol developed in the laboratory 

[173, 174]. The obtained collagen solution can be used to obtain collagen gels that seeded 

with vascular cells that can be shaped during gelation by means of molds to give them a flat 

or cylindrical shape [34]. In recent years, a tubular multi-layer tri-culture in vitro model based 

on a cellularised collagen gel has been developed at LBB [175]. This gel features a multi-

layered organization characterized by an adventitia-like layer populated with FBs, a media-

like layer seeded with SMCs and an intima-like ECs monolayer. Despite the significant 

progress that has been made, this tissue engineered model still lack the biological and 

mechanical complexity required to mimic a healthy human artery for vascular substitution 

application. However, it can be readily effective as a pseudo-physiological vascular model 

to study vascular cell interactions, as well as for drug testing and the investigation of 

physiological and pathological processes. Moreover, the collagen scaffold can be used for 

other cardiovascular applications, such as the development of pro-endothelialization DDS. 

The type I collagen gel developed in the LBB of the Laval University [176] has been used as 

a scaffold for the DDS. To increase the binding to the gel and prolong the release of PTN 

over time, heparin has been added to the gel formulation. The PTN-heparin-collagen gels 

have been characterized both for their mechanical and biological properties. Stress/relaxation 

unconfined compression tests and immunofluorescence microscopy have been used to assess 

the mechanical properties of the modified collagen gels. Enzyme-linked immunosorbent 

assay (ELISA) has been used to characterize the release kinetic of PTN from the heparin-
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modified collagen gels. The biological performance on ECs and SMCs viability and 

migration ability of the gel-retained and released PTN have been analyzed. Moreover, the 

effects of the modification with heparin on the hemocompatibility properties of the collagen 

gels have been evaluated.  
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Chapter 1: Collagen-based biomaterials for vascular 

tissue engineering 

1.1 Introduction 

Vascular bypass/substitution surgery represent the most common solution for the treatment 

of progressively occlusive cardiovascular diseases such as arteriosclerosis. The gold standard 

for this kind of application are autologous blood vessels, such as saphenous veins or radial 

arteries, that present the best structural, mechanical and biological properties. However, the 

use of these substitutes is not always possible, due to the multiple surgical procedures 

required. Moreover, a large part of the patients needing bypass surgery, may not have healthy 

arteries useful as autograft. The usual old age of the patients needing treatments, vascular 

diseases preventing the use of autologous vessels or previous harvesting for other surgical 

treatments are some of the limiting factor for the use of autograft. Synthetic grafts have been 

developed as alternatives to autografts, but their low patency owing to short- and 

intermediate-term failure still limits their clinical application, prompting the need for a viable 

alternative for this application. Tissue engineering is a multidisciplinary domain aimed to 

develop biologically-based tissues that can be used in the clinical treatments of diseases. 

Tissue engineering products have already shown to be effective in different applications, 

ranging from burns treatment to osteo-regeneration. The success obtained by this approach 

in other medical fields has opened the door for its use in vascular reconstruction. The use of 

scaffolding system based on natural polymers is one of the strategies used in vascular tissue 

engineering.  Cells are seeded in a polymeric solution which is then jellified [33], with the 

aim to create protein-bound cell matrices similar to the vascular tissue. The ideal scaffold 

should be able to mimic the native vascular extracellular matrix (ECM) and the highly 

complex organization of the artery wall, showing important biological and mechanical 

characteristics, such as non-thrombogenicity, hemocompatibility, biocompatibility, non-

immunogenicity along with tensile strength and viscoelasticity.  

Among the natural polymers currently used for vascular scaffolding, collagen is the most 

used. It is one of the main components of the vascular ECM. Its main function is to guarantee 

structural resistance upon elongation of blood vessels under pressure and to provide suitable 

attachment for vascular cells [12] and several favorable biological features make it a perfect 
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candidate for its use in scaffold-based vascular tissue engineering. In this review, the main 

characteristics of the collagen molecule, along with the different types, will be presented. 

Moreover, the different use of collagen in vascular tissue engineering will be detailed, 

focusing on its use as a scaffold for the study of vascular cells in 3D-environments and its 

use for the development of artificial blood vessels. Collagen-based vascular substitute 

coatings will be then presented and, finally, the use of collagen for the development of drug 

delivery systems (with a focus on the ones with vascular applications), will be discussed. 

1.2 Collagen 

1.2.1 Structure and biosynthesis 

Collagen is the most abundant protein in animals, therefore in the human body [177]. It 

accounts for one third of the total protein content and it is the main component of the ECM. 

To date, 28 different collagen types have been identified in vertebrates, and the discovery of 

collagen in dinosaurs bone fossils make it the oldest protein ever detected [178, 179]. 

Collagens can be divided into two main categories: Fibrillar and non-fibrillar. These 

collagens form elongated fibril structures and are known for their structural role of 

mechanical support in most animal tissues [180]. Non-fibrillar collagens are characterized by 

interruptions in their collagenous domains and are known to form different types of structures 

such as networks, beaded filaments or anchoring fibrils. The main type of both categories of 

collagens, along with their distribution and composition are listed in Table 1.1. 
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Table 1.1: Main Collagen types and their distribution in the human body. Modified from [177].  

Structure Type Composition Chains Distribution 

Fibrillar 

Collagens 

I Heterotrimer [α1(I)]2α2(I) 
Skin, cornea, blood vessels, 

bone, ligaments and tendons 

II Homotrimer [α1(II)]3 Cartilage, intervertebral discs 

III Homotrimer [α1(III)]3 Skin, blood vessels 

V Heterotrimer 
[α1(V)]2α2(V) or 

α1(V) α2(V) α3(V) 

Skin, cornea, blood vessels, 

bone, ligaments and tendons 

XI Heterotrimer α1(XI) α2(XI) α3(XI) Cartilage, intervertebral discs 

FACIT 
IX Heterotrimer α1(IX) α2(IX) α3(IX) Cartilage 

XII Homotrimer [α1(XII)]3 Ligaments and tendons 

Network-

Forming 

IV Heterotrimer [α1(IV)]2α2(IV) Basal lamina 

VII Homotrimer [α1(VII)]3 Under stratified epithelium 

Abbreviations: FACIT: Fibril Associated Collagens with Interrupted Triple helices 

All collagens, being them fibrillar or not, are characterized by the same molecular structures, 

that is composed of three α chains. These chains can either be identical, thus originating an 

homotrimer, or be a combination of 2 or 3 distinct α chains forming an heterotrimer.  Each α 

chain contains three basic amino acids, which are glycine, proline and hydroxyproline, and 

is characterized by the presence of at least one collagenous domain, consisting of a repeating 

Gly-Pro-X triplet [181]. X is usually an hydroxyproline, however it can be any amino acid, 

conferring specific functions for the collagen (Figure 1.1).  
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Figure 1.1: Schematic collagen structure. A) Collagen fiber formed by assembled collagen fibrils. B) Collagen 

Fibrils. C) Assembled tropocollagen. D) Collagen triple helix. E) Hydrogen bond in between collagen α chains. 

Fibrillar collagens are the most used in the production of collagen-based biomaterials, with 

Type 1 representing the gold standard being the most abundant collagen in the human body 

[182]. During the synthesis of a fibrillar collagen molecules, alpha chains are formed by 

ribosomes present on the surface of rough endoplasmic reticulum (RER). These pre-

procollagens present registration peptides and a signal peptide that, once the chains are 

released in the lumen of the RER, is cleaved to form pro-collagen chains. At this point, the 

pro-collagens go through several modifications (mainly hydroxylation of the lysine and 

proline residues and glycosylation of specific hydroxylysines) and they are finally assembled 

in triple helical structures. These pro-collagen triple helixes are then transferred to the Golgi 

apparatus to be encapsulated and secreted by exocytosis. Once in the extracellular 

environment, the registration peptides present on the pro-collagen are cleaved and tropo-

collagen is formed. Trough cross-linking, several tropo-collagen molecules are assembled to 

produce collagen fibrils. In turn, collagen fibrils assemble to form collagen fibers [183]. 

1.2.2 Collagen as a biomaterial 

As previously mentioned, collagen is the most used natural polymer for tissue engineering 

applications due to its presence in the ECM of almost every human tissue. The use of collagen 

as a biomaterial date back to the early decades of the XX century, when the first 

characterization of the interaction between cells and extracted collagen were investigated 
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[184, 185]. The  use of collagen is prompted by several characteristics that make it a good 

material for biomedical applications: Weak antigenicity and robust biocompatibility, [116, 

118, 186, 187], promotion of cell adhesion through cell receptors that recognize specific 

peptide sequence within collagen molecules [188-190] and biodegradability [191-193]. As 

an added value, collagen can be isolated from several sources, being one of the most abundant 

and best conserved proteins among vertebrates. Usual sources for collagen extractions are 

bovine skin and tendons [194], porcine skin [195] and rat tail tendons [174, 185, 196], but 

collagen has been also extracted from other organisms such as sponges [197], fishes [198], 

kangaroos [199] and alligators [200], making it a cost-effective solution for scaffold based 

tissue engineering. 

Collagen-based biomaterials are mainly used for the treatment of burn and as wound dressing 

[201]. Due to their structure, porosity and surface properties collagens sponges have long 

being used for wound dressing application [202, 203]. Moreover, they can be loaded with 

therapeutic agents such as growth factors [204] or antibiotics [205] that greatly improve the 

healing process once implanted. Another common application for collagen products is as an 

osteogenic scaffold and filling material in orthopedy [206, 207]. Type 1 collagen scaffolds 

modified with hydroxyapatite have been used osteochondral scaffold to improve bone and 

cartilage regeneration [208] and collagen scaffolds can be used as injectable mineralized 

bone substitutes [209]. Collagen has been widely used also for dentistry applications, such 

as for the production of membranes for periodontal and implant therapy to improve cells 

proliferation [210]. Another field of application for collagen is in ophthalmology as corneal 

shield [211, 212] and as eye implants for post-operative recovery [213] and corneal 

implantation [214]. Finally, the use of collagen as a scaffold for the development of drug 

delivery system as attracted the attention of many researchers all over the world [50] for 

several applications such as bone regeneration, eye, cardiac and brain medicine [127-130] 

since the ‘70s [126].  

1.3 Collagen as a material for vascular tissue engineering 

1.3.1 Collagen scaffolds for vascularization and artificial blood vessel development 

Over the years, collagen has been used as a pro-vascularization scaffold for several 

application. In fact, the ability of collagen scaffold to promote angiogenesis and the formation 
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of neo-vasculature has been demonstrated [215]. Collagen scaffolds have been first used as 

an in vitro model for the study of the angiogenetic process [216], but their use has been 

shortly translated to the clinic [217] for several application. In 2008, Shen et al. showed how 

a VEGF-modified collagen scaffold was able to efficiently promote penetration, proliferation 

and assembly of ECs in the scaffold [218]. In 2016, Chan and colleagues developed a 3-D 

scaffold from Type 1 bovine collagen able to support capillary formation in vivo and 

vascularization once implanted in animal models [219]. Similarly, other groups demonstrate 

how implanted collagen scaffold were able to promote EC infiltration and vascularization 

[220, 221]. Interestingly, the joint use of other ECM components along collagen, like elastin 

or glycosaminoglycans, have been shown to exert different effects on the vascularization of 

collagen scaffolds [222].  

As already stated, collagen is one of the most abundant protein in vascular ECM. There, 

collagen fibers limit the distension of the vessel and provide attachment for smooth muscle 

cells, allowing them to transmit circumferential forces to the vessel wall, ultimately 

conferring excellent mechanical support to the blood vessels wall [223]. Therefore, the use 

of collagen, in particular Type 1, as a scaffold in the development of tissue engineered 

vascular substitutes has been largely explored. The first use of collagen gels to manufacture 

a vascular substitutes dates back to 1986, when Weinberg and Bell attempted to reconstitute 

a blood vessel [125]. Their method consisted in the production of a multilayered tubular 

construct made of collagen seeded with smooth muscle cells and fibroblasts and of the 

endothelialization of its lumen. Despite showing very low mechanical properties and the 

impossibility to be used for clinical purposes, this work marked a major advance in the field 

of cardiovascular tissue engineering, with several groups following in the footsteps [34, 224, 

225] and trying to improve the system. One of the main problems related to this kind of 

construct is their limited mechanical properties. Different variants of the methodology from 

Weinberg and Bell such as winding leaflets around a mandrel to promote compaction of 

collagen [39], magnetic pre-alignment of collagen fibers to increase tensile strength [226], 

cross-linking of collagen scaffolds by glycation [40] or ultraviolet radiation [227] have been 

developed to improve the mechanical properties of the substitutes. However, the extent of 

these improvements still does not allow the implantation and, thus, the use in the medical 

practice of these grafts. The seeded cells play an important role too: SMC have been 
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demonstrated to actively influence the compaction of the collagen scaffold [41, 45] and to 

align along the direction of the collagen fibers [224], helping in increasing the mechanical 

properties of the substitutes. The biological properties have also been studied. Different 

molecules have been used to modulate the cellular response towards these scaffolds. The 

addition of insulin and growth factors such as TGF-β make it possible to increase collagen 

production by the seeded cells [228] and the addition dermatan sulfate has been able to 

increase the endothelialization of the lumen and, as a results, to reduce platelet adhesion and 

activation [38].  

In recent years, hybrid collagen vascular substitute containing both synthetic [229-231] and 

natural polymers, such as fibrin [232] and elastin in particular [233-235], have been 

developed to further increase the mechanical and biological properties of the collagen-based 

vascular grafts, aiming to obtained an artificial vessel as close as possible to the natural ones. 

1.3.2 Collagen coatings for vascular grafts 

One of the main problems related to the use of synthetic vascular grafts, and especially with 

ones made of polyethylene terephthalate (Dacron), is linked to their high porosity. While this 

characteristic allows tissue ingrowth, insuring a better integration of the implanted grafts and 

a faster healing, on the other side cause excessive bleeding, creating a serious complication 

for the patients. Thus, the walls of the grafts must be rendered impervious in order to avoid 

this outcome. For this reasons, pre-clotting is usually performed on the Dacron grafts. This 

technique consists in the conversion of the porous wall of the prosthesis into one that has 

been rendered impervious by reaction with blood [236]. Despite helping in limiting bleeding, 

this technique is hampered by several disadvantages such as the creation of a rough luminal 

surface of the implanted grafts, increasing the occurrence of turbulent blood flow and 

thrombus formation, and the increase in the rigidity of the graft, that conversely lose their 

pliability.  

The impregnation of porous Dacron vascular grafts with collagen was first proposed in the 

early ‘60s [237] as an alternative to pre-clotting. Striking improvements were obtained years 

later by Scott and colleagues in 1987 [238]. Their bovine collagen-coated grafts did not 

require pre-clotting or special preparation and did not bleed once implanted in a canine 

model. The luminal surface of the grafts showed neointima formation and the collagen 

coating was completely resorbed and substituted by native tissue after 3 months of 
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implantation. Moreover, the collagen was non thrombogenic and antigenic. That opened the 

door for the use of collagen-impregnated vascular grafts in the surgical treatment of 

aneurysms and for arterial bypass [49, 239, 240], proving to be a viable alternative to the 

previously used pre-clotting technique, being able to compete equally against other proposed 

techniques and materials [241].  

Nonetheless, these collagen-coated grafts have been demonstrated over the year not to be 

free from complications: Variable inflammatory response and tissue adhesion [242], need of 

sustained chest drainage [243] and initiation of the immune response in the patients [244] in 

the treated patients. Moreover, they showed no added value for the replacement of small 

caliber arteries [245]. However, the performances of the collagen-coated vascular grafts have 

stood the test of time, resulting being one of the most used vascular grafts for medium and 

large diameter arteries substitution.  

1.3.3 Collagen-based drug delivery systems 

Biological signaling represents an important point in cell-driven tissue regeneration and 

providing signaling molecules greatly improve this process. However, when administering 

molecules and drugs, is of crucial importance to reach the appropriate dose at a specific site 

and for the necessary period of time, in order to accomplish the desired effects. Thus, the 

need to release these molecules in a controlled way. 

The development of collagen-based drug delivery systems (DDS) for the release of pro-

angiogenetic factors for wound healing applications and pro-endothelialization factors for 

vascular implants functionalization is highly sought after. Collagen has been widely studied 

as a biomaterial for DDS [246] and has found several uses in a variety of applications (Table 

1.2). 
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Table 1.2: Collagen-based drug delivery systems. 

 

 

Scaffold 

structure 

Medical 

application 

Biomolecule 

used 
Cells seeded Reference 

G
ro

w
th

 F
a

ct
o

rs
/D

ru
g

s Collagen sponges Wound healing VEGF / [133] 

Collagen sponges 
Tissue 

regeneration 

bFGF, HGF, 

PDGF-BB, 

VEGF; IGF-1, 

HB-EGF 

/ [134] 

 Antibacterial Gentamicin / [135] 

G
en

es
 

Collagen gels 
Skin wound 

repair 

PDGF A and B 

(genes) 
/ [137] 

C
el

ls
 

Electrospun 

collagen 
Bone / BM-MSC [138] 

Collagen-

Glycosaminoglyc

ans scaffold 

Cardiovascular / BM-MSC [139] 

Collagen sponges Brain / NSC [140] 

Collagen sponges 

and hydrogels 

Intervertebral 

discs 
/ 

Human 

intervertebral disc 

cells 

[141, 142] 

Abbreviations: bFGF: basic fibroblast growth factor; VEGF: vascular endothelial growth factor; HGF: 

hepatocyte growth factor; PDGF-BB: platelet derived growth factor-BB; IGF-1: insulin like growth factor-1; 

HB-EGF: heparin binding epidermal growth factor-like growth factor; BM-MSC: bone marrow mesenchymal 

stem cells; NSC: neural stem cells. 

 

The use of collagen-based DDS for vascular application has been explored in recent years. 

Most of the studies performed are aimed to increase the affinity for the collagen scaffolds 

toward ECs. The enrichment of collagen matrices with several pro-angiogenetic growth 

factors, such as vascular endothelial growth factor (VEGF) [132, 247, 248] and stromal 

derived factor-1 alpha (SDF-1α) [249], basic fibroblast growth factor (bFGF) [250] has 

shown promising results in terms of controlling the release of the loaded molecules and the 
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angiogenesis induction, resulting effective during wound repair and for tissue engineering 

applications.  

As stated in the Introduction section of this review, the use of synthetic vascular grafts for 

the treatment of occlusive vascular diseases is still burden by grafts failure, mainly caused 

by thrombosis and neointima hyperplasia. Implants modifications using pro-

endothelialization molecules and growth factors with the aim of speeding up the re-

endothelialization process has been proposed over the last years to guide the optimal 

integration of the grafts and to overcome the aforementioned problems. The use for vascular 

grafts enrichment has also been investigated. In their work from 2000, Wissink and 

colleagues developed an heparinized, crosslinked collagen matrix for the controlled release 

of basic fibroblast growth factor (bFGF) to improve the endothelialization of vascular grafts 

[251]. They were able to improve the binding of the loaded bFGF to the heparinized 

crosslinked matrix and to release it in a controlled way over time, leading to an improvement 

in the proliferation of treated EC in vitro. 

The occurrence of infections in newly implanted synthetic vascular graft is one of 

complications that may arise, hampering the functionality of the prosthesis. Conventional 

treatments of vascular graft infections consists in the excision of the infected graft with extra 

anatomic bypass grafting [252]. To avoid the need of surgical operation to treat the infected 

grafts, the use of DDS has been proposed. In particular, collagen-based matrices have been 

demonstrated to be effective in delivering antibiotic agents to limit and treat bacterial 

infections in implanted synthetic vascular grafts [253, 254], avoiding the need of subsequent 

surgical intervention.  

1.4 Conclusions 

Collagen-based scaffolds have been proven to possess excellent biocompatibility and 

sufficient mechanical properties and have gained great achievements in vascular tissue 

engineering, proving to be a versatile biomaterial for vascular applications. Future 

perspectives are focused on further ameliorate the characteristics of these molecule, in order 

to obtained collagen-based scaffolds with performances able to mimic the one of natural 

collagen, both in structural and biological properties. 
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2.1 Résumé 

 

Un des problèmes majeurs dans le domaine vasculaire sont la non-endothélialisation des 

substituts vasculaires, phénomène induisant des complications cliniques, allant jusqu’à 

l’échec des implants.  Pour pallier ce problème, des promoteurs d’endothélialisation sont 

souvent utilisés, tel que le SDF-1 (stromal cell-derived factor 1). L’alternative proposée dans 

ce travail, est d’utiliser la pléiotrophine, cytokine de croissance / différenciation, et facteur 

pro-angiogénique. Bien que cette molécule soit déjà connue pour exercer des effets 

bénéfiques sur différents types de cellules, son potentiel en tant qu'inducteur de prolifération 

et de migration des cellules endothéliales n'a pas été encore étudié, à notre connaissance. Ce 

travail consiste donc à comparer les effets de la pléiotrophine sur la prolifération et la 

migration des cellules endothéliales par rapport à ceux observés avec le SDF-1. 

Pour ce faire, les effets de la pléiotrophine (50 ng / ml) ou du SDF-1 (50 ng / ml) ont été 

testés sur une lignée de cellules endothéliales, la EA.hy926.. Dans un premier temps, la 

viabilité cellulaire a été évaluée par dosage MTT, puis des essais de migration cellulaire ont 

été réalisés dans des chambres Transwell. Pour finir, le potentiel de cicatrisation de plaies 

induites par égratignure a été évalué et l'expression de différents facteurs tels que CXCR4, 

RPTP β /, PCNA et Rac1 a été déterminée par Western Blot. 

Les résultats ont montré que la viabilité et la migration des cellules endothéliales traitées par 

la pléiotrophine ont considérablement augmenté comparativement à celles traitées par du 

SDF-1. L’analyse Western Blot a démontré aussi que le traitement avec de la pléiotrophine 

induit une plus grande l’expression des facteurs RPTP β / ζ, PCNA et Rac1 par rapport à 

celle obtenue avec du SDF-1. 

En conclusion, les résultats démontrent très clairement les effets bénéfiques de la 

pléiotrophine sur les cellules endothéliales, tant au niveau de leur viabilité, leur capacité à 

migrer mais aussi à induire leur régénération. De plus, ces effets sont nettement plus marqués 

sur les cellules traitées par la pléiotrophine par rapport au SDF-1. La pléiotrophine apparait 

donc comme une molécule intéressante et prometteuse pour favoriser la ré-endothélialisation 

des substituts vasculaires 

Mots-clés: pléiotrophine, SDF-1, prolifération des cellules endothéliales, migration des 

cellules endothéliale. 



 

34 

2.2 Abstract 

Purpose: endothelialisation of vascular substitutes, in fact, remains one of the most unsolved 

problems in cardiovascular diseases treatment. Stromal Derived Factor 1 (SDF-1) has been 

largely investigated as an endothelialisation promoter and pleiotrophin is a promising 

alternative. Although it has been known to exert beneficial effects on different cell types, its 

potential as an inducer of proliferation and migration of endothelial cells was not 

investigated. Therefore, this work is aimed to compare the effects of Pleiotrophin on 

proliferation and migration of endothelial cells with respect to SDF-1. 

Materials/methods: endothelial cell line EA.hy926 was treated with Pleiotrophin (50ng/ml) 

or Stromal Derived Factor 1 (50ng/ml). Cell viability was evaluated by MTT assay and 

migration assays were performed in Transwell chambers. Wound healing potential was 

evaluated by scratch wound assay. CXCR4, RPTP β/ζ, PCNA and Rac1 expression was 

detected by Western Blot.  

Results: Interestingly, Pleiotrophin significantly increased the viability of the treated 

endothelial cells with respects to SDF-1. The migratory ability of the endothelial cells was 

also improved in the presence of Pleiotrophin with reference to the SDF-1 treatment. 

Moreover, Western Blot analysis showed how the treatment with Pleiotrophin can induce an 

increase in the expression of RPTP β/ζ, PCNA and Rac1 compared to SDF-1. 

Conclusion: Due to the significant effects exerted on viability, migration and repair ability 

of endothelial cells compared to SDF-1, Pleiotrophin can be considered as an interesting 

molecule to promote re-endothelialisation. 

Keywords: Pleiotrophin, SDF-1, endothelial cells proliferation, endothelial cells migration 
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2.3 Introduction 

Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. According 

to the World Health Organization (WHO), CVDs are responsible for 15 million deaths in 

2015, almost 30% of the total global mortality [1]. Among the different diseases, vascular 

occlusion remains the leading cause of death in Western countries. Arterial bypass graft 

remains the primary effective surgical therapy for patients with advanced vascular occlusion. 

Autologous grafts are the ideal substitutes with a success rate of 90% at one year. However, 

often patients needing bypass surgery may not possess healthy available arteries useful as 

autograft [255]. In the absence of available natural substitutes, the simplest solution is the 

use of synthetic substitutes. Although many improvements have been made over the years, 

the clinical performance of these prostheses for small arteries bypass remains quite 

disappointing. In fact, lumen occlusion due to blood coagulation and platelet deposition 

under the relatively low flow conditions along with restenosis, that is commonly observed in 

the months or years following surgery [2, 21], hamper their use in the clinic. The rapid 

formation of a functional endothelial layer on the luminal surface of vascular substitutes 

would significantly improve small-diameter graft patency by: preventing thrombus formation 

on the graft surface, enhancing internal healing and limiting intimal hyperplasia [22]. In 

recent years, the enrichment with bioactive molecules such as growth factors and cytokines 

able to efficiently recruit resident endothelial cells (ECs), promote their adhesion and growth 

has been proposed as an approach to overcome this problem [256, 257]. Several molecules 

have been shown to be able to promote angiogenesis or endothelial cells recruitment. Among 

them, SDF-1 has been studied. It is known as C-X-C motif chemokine 12 (CXCL12), a 

chemokine protein that in humans is encoded by the CXCL12 gene. SDF-1 is ubiquitously 

expressed in many tissues and cell types and its receptor, C-X-C chemokine receptor type 4 

(CXCR4), is widely expressed in different tissues like blood vessels, particularly by 

endothelial cells [258]. SDF-1 is released into the circulation in response to ischemia [259] 

and is an initiating signal in the angiogenesis process, promoting endothelial cells 

recruitment. For these reasons, SDF-1 has been widely used for the biological 

functionalization of vascular substitutes [67, 260-264]. However, even if initially the 

application of SDF-1 on vascular prosthesis was regarded as very promising, clinical trials 
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of angiogenic factor delivery have been mostly disappointing, underscoring the need to 

investigate a wider array of angiogenic factors [71]. 

Pleiotrophin (PTN) is an 18-kDa growth/differentiation cytokine with high affinity for 

heparin and it is structurally related to Midkine, the only other member of its protein family 

[265]. It has mitogenic, differentiating and angiogenic properties for various cell types and 

is expressed mainly, but not exclusively, during embryogenesis. Through the activation of its 

receptor, protein tyrosine phosphatase beta/zeta (RPTP β/ζ), PTN is able to regulate multiple 

functions including cell adhesion, cell migration, cell proliferation and cytoskeletal stability 

[170]. PTN was described as a potent pro-angiogenic factor acting on ECs during healing 

from ischemic brain injury, and was found to stabilize the formation of tube structures by 

cultured capillary endothelial cells [105]. Interestingly, recent studies have also pointed out 

a PTN-induced transdifferentiation of monocytes into functional ECs suggesting a role for 

PTN in inflammation-mediated neovascularization [108] and a role in the recruitment of 

endothelial progenitor cells (EPC) during angiogenesis [107]. 

Considering these evidences, herein the in vitro effects of PTN on proliferation, migration 

and repair ability of the endothelial cells were investigated and compared with those exerted 

by SDF-1, finally aiming to unravel the PTN potential as an endothelialisation enhancer. 

2.4 Materials and methods 

2.4.1 Cell Culture 

Human umbilical vein cell line EA.hy926 [266] was used in this study. Cells were supplied 

by the Vascular and Endovascular Surgery Unit, Research Laboratory of Experimental and 

Clinical Vascular Biology, DISC, University of Genoa, Italy. No Ethical Approval was 

needed for the use of this cell line. Briefly, EA.hy926 cells were cultured in a cell culture 

medium so composed: Dulbecco’s modified Eagle’s medium (D-MEM) with 10% foetal 

bovine serum (FBS), penicillin (100U/ml), streptomycin (100U/ml) and L-glutamine (2mM) 

(all products from Euroclone, Milan, Italy). This medium, that will be referred to as complete 

D-MEM (C-D-MEM), has been used in our experiments along with a serum free version of 

it (SF-D-MEM). The cells were maintained at 37 ° C in a saturated atmosphere at 5% CO2. 

Cell culture media were renewed every two days. When 85% - 90% of confluence was 
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reached, cells were then enzymatically detached from the plate (0.05% trypsin) and then 

reseeded at a ratio of 1:10. 

2.4.2 Cell Viability Assay 

Cell viability was evaluated by MTT Assay. EA.hy926 cells were seeded at a density of 

25000 cell/cm2 in 96 well culture plates (5 wells for each condition). After an overnight 

incubation at 37°C in a saturated atmosphere at 5% CO2, cells were treated respectively with: 

1) C-D-MEM (CTRL); 2) C-D-MEM enriched with 50ng/ml SDF-1 (Sigma-Aldrich, Milan, 

Italy); 3) C-D-MEM enriched with 50ng/ml PTN (Sigma-Aldrich, Milan, Italy). The 

concentration used for the PTN has been chosen following a dose-response curve obtained 

in the preliminary steps of the study (data not shown). SDF-1 concentration was chosen 

accordingly to data present in literature [267, 268].  After 24 hours, 3 and 7 days, cells were 

incubated with the MTT reagent (Sigma-Aldrich, Milan, Italy) for 3 hours at 37°C. After the 

incubation, the formazan product obtained by the reduction of MTT reagent by the way of 

the mitochondrial activity was solubilized using dimethyl sulfoxide (Carlo Erba Reagents, 

Milan, Italy). Than the absorbance at 570 nm was measured with a SpectraCount Absorbance 

microplate reader (Packard, Connecticut, USA). Absorbance is proportional to cell viability.  

2.4.3 Wound Healing Assay 

Wound Healing Assay was performed to assess cell migration and reparatory ability in vitro 

in presence of PTN and SDF-1. Briefly, cells were seeded in 6-well multi-plate to obtain a 

confluent monolayer. Then, cell monolayer was scraped in a straight line to create a "scratch" 

with a 200µL pipet tip. Medium containing cellular debris was removed, and cells were 

washed 2 times with sterile PBS 1X and then treated as follow: 1) SF-D-MEM (CTRL), 2) 

SF-D-MEM enriched with SDF-1 (50ng/ml) or 3) SF-D-MEM enriched with PTN (50ng/ml). 

Markings were created to be used as reference points close to the scratch. Images at a 

magnification of 20X were collected at 0, 6, 12 and 24 hours of incubation (n=5). To quantify 

the scratch-area reduction over time, images acquired from each sample were further 

analysed by using ImageJ software (ImageJ 1.49v; Wayne Rasband; National Institute of 

Health, USA). Briefly, for each time point, the outline of the cell-free surface of the scratch 

was drawn and the inner area was calculated using the software. The percentage of wound 
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closure was calculated by comparing the areas measured at the different time points with the 

area at T0.  

2.4.4 Transwell Migration Assay 

To verify the migratory response of EA.hy926 cells to SDF-1 and PTN treatments, the 

transwell migration assay was used. 9x104 cells were seeded in the upper compartment of 24 

well-format transwell with 8µm pores (Corning, Amsterdam, the Netherlands) in 250µL of 

D-MEM without FBS. In the lower compartment, the different treatment compounds were 

added: 1) SF-D-MEM (CTRL); 2) SF-D-MEM enriched with 50ng/ml SDF-1; 3) SF-D-

MEM enriched with 50ng/ml PTN. Cells were incubated at 37°C in a saturated atmosphere 

at 5% CO2 for 6 hours. After the incubation, cells on either faces of the porous membrane 

were fixed by incubation with formalin 4% for 20 minutes at room temperature. Then, cells 

were stained with 1% Crystal Violet for 20 minutes at room temperature. Once stained, cells 

on the upper side of the porous membranes were gently removed using a cotton swab. The 

transwell inserts were then placed under a phase-contrast microscope and images of different 

fields (n=5) were collected at 20X magnification. To assess the migration rate, for each 

condition stained cells were quantified. 

2.4.5 Western Blot 

Cells treated with C-D-MEM (CTRL), C-D-MEM containing 50ng/ml PTN and C-D-MEM 

containing 50ng/ml SDF-1 were lysed in adequate RIPA lysis buffer (Hepes 50mM pH 7.4; 

NaCl 150 mM; SDS 0,1%; Triton X-100 1%; Na Deoxycolate 1%; Glicerol 10%, MgCl2 1,5 

mM; EGTA 1 mM; NaF 1mM) additioned with protease and phosphatase inhibitors (Sigma-

Aldrich, Milan, Italy). Quantification of the protein extract was carried out using the BCA 

Protein Assay Kit (Thermo-Scientific, Rockford IL, USA) according to the manufacturer’s 

instructions. Electrophoretic analysis of 30µg of total proteins was performed using 10% 

SDS–polyacrylamide gel. Gels were blotted onto nitrocellulose blotting membrane (GE 

Healthcare Life Sciences, Milan, Italy). Then, membranes were probed with the following 

primary antibody: mouse monoclonal anti-PCNA (1:1000; Millipore, Darmastadt, 

Germany), mouse monoclonal anti-Rac1 (1:1000), mouse monoclonal anti-PTPz (1:1000), 

rabbit monoclonal anti-CXCR4 (1:100) (all from Abcam, Cambridge, UK). For the analysis 

of PCNA and Rac-1, lysates were obtained by cells with both free receptors for PTN and 
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SDF-1 and with blocked receptors. In the un-blocked receptor group, cells have been grown 

as previously described. In the blocked receptor group, the receptors for PTN and SDF-1 has 

been blocked to impeach the interaction between the molecules and their receptors. To block 

PTN receptor, RPTP β/ζ, cells were incubated with its primary antibody (anti-PTPz, 1:100, 

Abcam, Cambridge, United Kingdom). CXCR4, SDF-1 receptor, was blocked with 25µg/ml 

AMD3100 octahydrochloride (Abcam, Cambridge, United Kingdom), a selective inhibitor 

of CXCR4. Primary antibodies were detected with species-specific horseradish peroxidase-

conjugated secondary antibodies (Perkin Elmer, Milan, Italy). The bands were visualized 

using Western Lightning® Plus-ECL enhanced chemiluminescence substrate (Perkin Elmer, 

Milan, Italy). Results were revealed on membranes and acquired using the VersaDoc 

MP5000 System (Bio-Rad, Milan, Italy). The intensity of protein bands was measured with 

ImageJ software. Results were normalized to tubulin.  

2.4.6 Statistical Analysis 

A n=5 samples for each experiment has been used. Each of the experiment performed was 

repeated three times. The data shown are means ± standard deviation (SD). Data have been 

analysed by two researchers through established protocol used in the laboratory. Statistical 

significance of the presented results was calculated using ANOVA non-parametric Kruskal-

Wallis method through the software InStat ™ (GraphPad Software, La Jolla, CA, USA). 

Values of p <0.05 or less were considered significant. 

2.5 Results and Discussion 

The formation of a functional endothelial layer in newly implanted vascular grafts is of 

crucial importance for their functionality [165]. EC seeding on prosthetic materials was 

proposed as a solution, but several studies demonstrated a significant cell loss after 

implantation and exposure to blood flow [269]. The enrichment of vascular grafts with 

molecules acting as chemoattractant for ECs has been proposed as a method to speed-up the 

re-endothelialisation of the implants in situ. Herein we propose PTN as a promising molecule 

capable of promoting and fastening the formation of a functional endothelial layer. PTN has 

been shown to be an effective angiogenic agent both in vitro and in vivo. Therefore, we have 

investigated whether PTN is able to exert beneficial effects on EC behaviour with respect to 

SDF-1, a chemokine known to play a key role in angiogenesis and EC chemo-attraction [171, 
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172, 270]. In our experiments, the human umbilical vein cell line EA.hy926 was used. This 

cell line demonstrates highly differentiated functions characteristic of human vascular 

endothelium, while offering the advantages of immortality, stability through passage number 

thus allowing a more consistent responses to specific variables and greater reproducibility of 

data [271-274].  

Our results show that the treatment with PTN can significantly improve EC viability in vitro 

with respect to SDF-1 and to CTRL cells. The MTT assay showed that after 24 hours, the 

treatment with both PTN (absorbance at 570 nm: 0.176±0.009) and SDF-1 (0.174±0.015) 

was able to significantly increase cell viability compared to CTRL (0.145±0.012; p<0.01 vs. 

CTRL). This effect was enhanced at longer time, especially for the treatment with PTN that 

after 3 days (0.404±0.072) significantly increased cell viability with respect to both SDF-1 

(0.243±0.036; p<0.001) and CTRL (0.223±0.033; p<0.001). After 7 days, again PTN 

(1.429±0.151) significantly increased cells viability with respect to CTRL (0.664±0.061; 

p<0.001) and SDF-1 (1.197±0.203; p<0.05) (Figure 2.1). Contrary to the results presented 

by Palmieri et al. [110], where the treatments with PTN was not able to induce a better 

viability of the treated ECs, in our experiments PTN was able to efficiently increase the 

viability of the treated ECs, confirming the effects observed by Brewster et al. with the use 

of a chimeric PTN fusion protein [275, 276]. Moreover, the treatment with PTN has been 

shown to obtain better results compared to the treatment with SDF-1.  

 

Figure 2.1: Viability Assay. Ea.hy926 cells were treated up to seven days with: basal growth medium (CTRL); 

growth medium enriched with 50 ng/ml PTN (PTN 50ng/ml); growth medium enriched with 50 ng/ml SDF-1 

(SDF-1 50ng/ml). Cell viability was measured after 24 hours, 3 and 7 days with MTT Assay. The graphic shows 

the mean absorbance recorded for each condition. * p<0.01 vs. 24 hours CTRL; ** p<0.001 vs. 3 days CTRL 

and p<0.01 vs. 3 days SDF-1 50ng/ml; ***p<0.001 vs. 7 days CTRL; # p<0.01 vs. SDF-1 50ng/ml. 
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The expression of CXCR4, SDF-1 receptor, and RPTP β/ζ, PTN receptor, was evaluated by 

Western Blot analysis (Figure 2.2). Concerning the expression of CXCR4, after 24 hours of 

incubation no significant differences were shown. However, after 3 days, the expression of 

CXCR4 in presence of SDF-1 (2.48±0.31) significantly increased with respect to both CTRL 

(0.93±0.14; p<0.001). Interestingly, the treatment with PTN (1.79±0.25; p<0.05) was able to 

significantly increase the expression of CXCR4 compared to CTRL (p<0.05) (Figure 2.2A). 

Concerning RPTP β/ζ, after 24 hours PTN showed an increased expression (1.32±0.17) of 

the receptor with respect to SDF-1 (0.95±0.13; p<0.01). After 3 days, the expression of RPTP 

β/ζ in presence of PTN (1.53±0.21) was significantly increased compared to CTRL 

(0.71±0.13; p<0.001) and SDF-1 (0.93±0.12; p<0.001). (Figure 2.2B). The results here 

obtained show that the treatment of EC with PTN not only induce, an increase in the 

expression of PTN own receptor RPTP β/ζ, but also an increase in the expression of CXCR4, 

suggesting a possible role of PTN in potentiating the response of EC to SDF-1 by means of 

increasing the expression of its receptor. Similar effects of PTN induction of the 

overexpression of other growth factor /chemokine receptor has already been reported [110], 

suggesting a role for PTN in potentiating the pro-endothelialisation effects of other 

endothelial cells enhancer molecules. 
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Figure 2.2: Western Blot Analysis for RPTP β/ζ and CXCR4. The images show the results of the Western Blot 

analysis for the expression of the two receptor in samples obtained by EA.hy926 cells treated with: C-D-MEM 

(CTRL), C-D-MEM containing 50ng/ml PTN (PTN 50ng/ml) and C-D-MEM containing 50ng/ml SDF-1 (SDF-

1 50ng/ml). Lysates were collected after 24 hours (24h) and 3 days (3d).  Data were normalized over tubulin, 

used as loading control. A) Expression of SDF-1 receptor CXCR4. B) Expression of PTN receptor RPTP β/ζ.  

The migration ability of EA.hy926 cells following the treatments with PTN and SDF-1 have 

been tested by the Wound Healing assay. As shown in Figure 2.3A, CTRL showed a 

14.7±7.9% scratch reduction after 6 hours, 19.2±0.4 after 12 hours and a 43.3±5% scratch 

reduction after 24 hours. The enrichment with PTN and SDF-1 significantly increased the 

rate of wound closure compared to CTRL: with PTN, 27.1±6.3% scratch reduction after 6 
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hours; 52.4±7.1% after 12 hours (p<0.001 vs CTRL) and 75±5% after 24 hours (p<0.001 vs. 

CTRL and p<0.01 vs. SDF-1) was achieved; SDF-1 induced a scratch reduction of 

17.5±4.8% after 6 hours, a 44.5±2.4% after 12 hours (p<0.001 vs. CTRL) and 63.1±7.4% 

after 24 hours (p<0.001 vs. CTRL) (Figure 2.3B). 

 

Figure 2.3: Wound Healing Assay. A) Migration of EA.hy926 induced by treatment with: SF-D-MEM (CTRL), 

SF-D-MEM enriched with SDF-1 (SDF-1 50ng/ml) or SF-D-MEM enriched with PTN (PTN 50ng/ml). The 

pictures were acquired right after the scratch (T0) and 6, 12 and 24 hours after the scratch. (magnification: 20X). 

B) Percentage of wound closure. Graphic represents the area as mean ± SD of the percentage reduction of 

original wound at T0, 6, 12 and 24 hours with the different treatments. * p<0.001 vs 12 hours CTRL; **p<0.001 

vs. 24 hours CTRL; # p<0.01 vs. 24 hours SDF-1 50ng/ml. 

EC migration was further analysed by Transwell migration assay. After 6 hours, the average 

number of migrated cells per field counted for CTRL was of 54.6±6.2. In response to the 

treatment with PTN or SDF-1, the average number of migrated cells was significantly higher 

with respect to CTRL: in presence of PTN, the average number of migrated cells per field 
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was 73.7±11.8 (p<0.01 vs. CTRL) while in presence of SDF-1, an average number of 68.6±8 

cells (p<0.05 vs. CTRL) was counted. After 24 hours, the average number of migrated cells 

was not significantly modified for CTRL, with an average of 60.3±9.5 cells per field. Instead, 

both PTN (95.3±9.2 cells/field; p<0.001 vs. CTRL) and SDF-1 (84.2±6.7; p<0.001 vs. 

CTRL) significantly increased the number of migrated cells (Figure 2.4). These results show 

how the treatment with PTN is able to improve the migration rate and repair ability of treated 

ECs compared to CTRL, has shown by other groups [82, 103, 110]. Of interest, the effects 

on migration exerted by PTN resulted being higher than the one obtained with the treatment 

with SDF-1, once again suggesting that the use of PTN for the enrichment of vascular 

substitute may play an important role in the re-endothelialisation process.  

 

Figure 2.4: Transwell Migration Assay. A) Brightfield images showing the migrated cells, stained with Crystal 

Violet, after 24 hours of incubation with different treatments: SF-D-MEM (CTRL); SF-D-MEM enriched with 

50ng/ml SDF-1; SF-D-MEM enriched with 50ng/ml PTN. B) Quantitative analysis of migrated cells expressed 

as mean ± SD of number of migrated cells per field. *p<0.05 vs. 6 hours CTRL; **p<0.001 vs. 24 hours CTRL. 

The expression of Proliferating Cell Nuclear Antigen (PCNA), a marker of cell proliferation, 

and Ras-related C3 botulinum toxin substrate 1 (Rac1), a known marker for cell migration, 

was analysed with both the free and blocked receptor for PTN and SDF-1. The analysis on 

the blocked receptor group, in which cells were treated with blockers specific for PTN 

receptor, RPTP β/ζ, and SDF-1 receptor, CXCR4, has been performed to evaluate if the 
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effects of the two proteins was limited to the interaction with their own specific receptor. As 

shown in Figure 2.5A, after 24 hours, SDF-1 (1.33±0.08) significantly increases the 

expression of PCNA compared to CTRL (1.15±0.06; p<0.01); however, after 3 days, SDF-1 

treatment significantly inhibited PCNA expression (0.51±0.05) with respect to CTRL 

(0.95±0.08; p<0.001) and PTN (1.16±0.04; p<0.001) (Figure 2.5B). With the blocked 

receptors, after 24 hours of incubation the treatment with PTN can significantly increase the 

expression of PCNA (1.72±0.13) compared to CTRL (1.07±0.09; p<0.001) and SDF-1 

(1.17±0.07; p<0.001). After 3 days, PTN treatment again improved the expression of PCNA 

(1.51±0.09) compared to CTRL (0.84±0.08; p<0.001) and SDF-1 (0.50±0.06; p<0.001). Still, 

the treatment with SDF-1 significantly inhibited the expression of PCNA with respects to 

CTRL (p<0.01) (Figure 2.5C).  

 

Figure 2.5: Western Blot Analysis for PCNA on EA.hy926. A) Cells were treated with: C-D-MEM (CTRL), C-

D-MEM containing 50ng/ml PTN (PTN) and C-D-MEM containing 50ng/ml SDF-1 (SDF-1). Lysates were 

collected after 24 hours (24h) and 3 days (3d). Data were normalized over tubulin, used as loading control. B) 

Densitometric analysis showing the absolute quantification for PCNA expression with un-blocked receptors for 

PTN and SDF-1. C) Densitometric analysis showing the absolute quantification for PCNA expression with the 

blocked receptors for PTN and SDF-1. 

The Western Blot analysis for the expression of Rac-1 (Figure 2.6A) showed that, after 24 

hours of incubation with the free receptors, PTN (0.81±0.13) and SDF-1 (0.82±0.12) were 

able to significantly increase the expression of Rac1 compared to the CTRL (0.54±9; 



 

46 

p<0.05). Moreover, after 3 days of incubation with free receptors, Rac-1 was significantly 

higher in PTN (1.63±0.16) group compared to SDF-1 (0.77±0.09; p<0.05) (Figure 2.6B). 

With the blocked receptors, after 24 hours of incubation no significant difference between 

the treatments was observed. However, after 3 days of incubation, the treatment with PTN 

(1.54±0.10), along with CTRL (1.22±0.08), were able to significantly increase the expression 

of Rac-1 compared to the SDF-1 group (0.90±0.11; p<0.001) (Figure 2.6C).  

 

Figure 2.6: Western Blot Analysis for Rac-1 on EA.hy926. A) Cell were treated with: C-D-MEM (CTRL), C-

D-MEM containing 50ng/ml PTN (PTN) and C-D-MEM containing 50ng/ml SDF-1 (SDF-1). Lysates were 

collected after 24 hours (24h) and 3 days (3d). Data were normalized over tubulin, used as loading control. B) 

Densitometric analysis showing the absolute quantification for Rac-1 expression with un-blocked receptors for 

PTN and SDF-1. C) Densitometric analysis showing the absolute quantification for Rac-1 expression with the 

blocked receptors for PTN and SDF-1.  

As the data show, with the free receptors, the treatment with PTN was able to significantly 

increase the expression levels of both PCNA and Rac1 compared to SDF-1 and the CTRL 

conditions.  The PCNA expression analysis with the unblocked receptor, as shown, does not 

shows significative difference in between the CTRL and PTN condition, suggesting that the 

significant increase observed with the MTT assay is due to an amelioration of cells viability 

rather than an increase in cells proliferation. However, the Western Blot analysis has been 

conducted over a 3-days period, while the MTT analysis has been conducted on a longer 7 

days period. Thus, we can’t conclude if PTN, on longer times, is able to induce a proliferation 
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of the treated ECs. However, of interest, is to note how SDF-1, compared to PTN, seems to 

downregulate PCNA expression, suggesting that the use of PTN could be preferred to SDF-

1 for vascular grafts enrichment. Concerning Rac1 expression with the un-blocked receptor, 

the results obtained confirm the one obtained by the Wound Healing and Transwell migration 

assays. Interestingly, the blockage of the receptors seems to not affect the effects of PTN on 

the expression of PCNA and Rac-1, resulting in a significant increase of their expression 

compared to the effects exerted by SDF-1 with its receptor blocked. In this study, the 

interaction of PTN with RPTP β/ζ has been studied: despite the fact that it is not the only 

receptor that is able to bind to PTN [277, 278], RPTP β/ζ is known to be the main receptor 

for PTN [84, 86, 276]. Moreover, has been suggested that for PTN to exert his effects through 

certain receptors, such as Anaplastic Lymphoma Kinase (ALK), a previous interaction 

between PTN and RPTP β/ζ is necessary [279]. However, as shown by our results, even when 

RPTP β/ζ is blocked, PTN is still able to affects the expression of the two marker proteins 

studied. Thus, the effect obtained with the blocked RPTP β/ζ could be explained by the 

interaction of PTN with other receptors, resulting in an increased expression of the two 

markers and conferring an added value to the use of PTN for vascular grafts enrichment. 

2.6 Conclusions 

In conclusion, due to the effects exerted on viability, migration and repair ability of ECs, 

PTN could be an interesting molecule for vascular grafts enrichment. The comparison of the 

effects of PTN with the one exerted by SDF-1, along with the effects of PTN on the 

expression of PCNA and Rac-1 suggesting that PTN can exerts his beneficial effects on 

endothelial cells even when its primary receptor RPTP β/ζ is blocked, can open the path to 

the use of PTN for vascular grafts enrichments applications. 

 

 

 



 

48 

Chapter 3: Collagen gels for controlled release of 

Pleiotrophin: Potential for vascular applications 

Francesco Copes1,2, Pascale Chevallier2, Caroline Loy2, Daniele Pezzoli2, Francesca 

Boccafoschi1,2*, Diego Mantovani2* 

1 Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte 

Orientale, Novara, Italy 

2 Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the 

Innovation in Surgery, Department of Min-Met-Materials Engineering & CHU de Quebec 

Research Center, Laval University, Quebec City, Quebec, Canada. 

 

This chapter has been submitted for publication to Frontiers in Bioengineering and 

Biotechnology in the Biomaterials specialty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 

3.1 Résumé 

Une ré-endothélialisation rapide, associée à l'inhibition de l’hyperplasie néo-intimale, est 

cruciale pour réduire l'échec des substituts utilisés lors de pontage vasculaire. Ainsi, au cours 

des dernières années, l’ajout de différentes molécules capables d'accélérer le processus de ré-

endothélialisation ont été proposées dans la littérature. Cependant, les essais cliniques basés 

sur l'administration de facteurs angiogéniques ont été pour la plupart décevants, soulignant 

ainsi la nécessité d'étudier un plus large éventail de facteurs angiogéniques. Ce travail 

propose un nouveau système de libération de médicament basé sur un hydrogel de collagène 

de type I, chargé de pléiotrophine (PTN), cytokine connue pour ses effets pro- L'héparine, en 

raison de sa capacité à séquestrer, à protéger et à libérer les facteurs de croissance, a été 

utilisée pour mieux contrôler la libération de la molécule d’intérêt, la PTN. Les performances 

de ce système et les effets de la libération de la PTN sur les cellules endothéliales (CE) et 

cellules musculaires lisses (CML) ont été évalués. Une caractérisation structurelle (tests 

mécaniques et analyses par immunofluorescence des fibres de collagène) a été réalisée sur 

les gels afin de déterminer si l'héparine a une quelconque influence sur les propriétés du gel 

ainsi obtenu. Le relargage de la PTN à partir des différentes formulations de gel a été ensuite 

quantifié par dosage ELISA, spécifique à la PTN. La viabilité cellulaire a été aussi évaluée 

par Alamar Blue en faisant des tests directs, cellules ensemencées directement sur les gels, 

et par des tests indirects. Dans ce cas, les cellules sont incubées avec du surnageant, contenant 

la PTN libérée qui était contenue au préalable dans les gels. Les effets des différentes 

compositions de gels sur la migration des CE et des SMC ont été évalués à l'aide d'un essai 

de migration Transwell. L'hémocompatibilité du gel a été contrôlée via un test de coagulation 

/ hémolyse. Les analyses structurelles ont montré que l'héparine ne modifiait pas le 

comportement structural des gels de collagène. La quantification ELISA a démontré que 

l'héparine induisait une libération constante de PTN au fil du temps par rapport aux autres 

conditions testées. Les tests de viabilité directs et indirects ont montré une augmentation de 

la viabilité des CE alors qu'aucun effet n'a été noté sur les CML. Les résultats de la migration 

cellulaire ont aussi démontré que les gels modifiés par l'héparine / PTN augmentaient 

significativement la migration des CE et réduisaient ceux des CML. Enfin, l'héparine a 

considérablement augmenté l'hémocompatibilité des gels de collagène. En conclusion, le 

collagène modifié par l'héparine, pour contrôler le relargage de la PTN, proposé ici semble 
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prometteur et présente une valeur ajoutée pour la médecine vasculaire, car pourrait être 

capable d'améliorer la performance biologique et l'intégration des substituts vasculaires. 

Mots-clés: collagène, pléiotrophine, héparine, cellules endothéliales, cellules musculaires 

lisses  
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3.2 Abstract 

A fast re-endothelialization, along with the inhibition of neointima hyperplasia, are crucial 

to reduce the failure of vascular bypass grafts. Implants modifications with molecules capable 

of speeding up the re-endothelialization process have been proposed over the last years. 

However, clinical trials of angiogenic factor delivery have been mostly disappointing, 

underscoring the need to investigate a wider array of angiogenic factors. In this work, a drug 

release system based on a type I collagen hydrogel has been proposed for the controlled 

release of Pleiotrophin (PTN), a cytokine known for its pro-angiogenetic effects.  Heparin, 

in virtue of its ability to sequester, protect and release growth factors, has been used to better 

control the release of PTN. Performances of the PTN drug delivery system on endothelial 

(ECs) and smooth muscle cells (SMCs) have been investigated. Structural characterization 

(mechanical tests and immunofluorescent analyses of the collagen fibers) was performed on 

the gels to assess if heparin caused changes in their mechanical behavior. The release of PTN 

from the different gel formulations has been analyzed using a PTN-specific ELISA assay. 

Cell viability was evaluated with the Alamar Blue Cell Viability Assay on cells directly 

seeded on the gels (direct test) and on cells incubated with supernatant, containing the 

released PTN, obtained from the gels (indirect test). The effects of the different gels on the 

migration of both ECs and SMCs have been evaluated using a Transwell migration assay. 

Hemocompatibility of the gel has been assessed with a clotting/hemolysis test. Structural 

analyses showed that heparin did not change the structural behavior of the collagen gels. 

ELISA quantification demonstrated that heparin induced a constant release of PTN over time 

compared to other conditions. Both direct and indirect viability assays showed an increase in 

ECs viability while no effects were noted on SMCs. Cell migration results evidenced that the 

heparin/PTN-modified gels significantly increased ECs migration and decreased the SMCs 

one. Finally, heparin significantly increased the hemocompatibility of the collagen gels. In 

conclusion, the PTN-heparin-modified collagen here proposed can represent an added value 

for vascular medicine, able to ameliorate the biological performance and integration of 

vascular grafts. 

Keywords: collagen, pleiotrophin, heparin, endothelial cells, smooth muscle cells 
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3.3 Introduction 

Every year is estimated that around 17.9 million of people die of cardiovascular diseases, 

mainly heart attacks and strokes, making them the first cause of death in the world [1]. Most 

of the time the root of these diseases can be found in atherosclerosis, a progressive pathology 

in which a plaque made of lipids, cholesterol, foamy cells, cellular debris and calcium builds 

up in the walls of the arteries [10]. Overtime, this plaque hardens and narrows the lumen of 

the affected artery, reducing the blood flow and ultimately leading to the aforementioned 

conditions. Despite the advances in pharmacological treatment and minimally-invasive 

surgical treatment, vascular bypass surgery remains the treatment of choice for 

atherosclerosis [18]. The gold standard is the use of autologous vessels, such as saphenous 

vein, internal mammary arteries and radial artery [280]. However, these options are not 

always available because of patients’ condition. For these reasons, over the last 50 years 

surgeons reverted to the use of synthetic graft, such as  polyethylene terephthalate (Dacron) 

or expanded polytetrafluoroethylene (ePTFE) based substitutes, instead of autologous vessels 

[23]. Despite being widely used in the clinical practice, the use of this substitute is still 

hampered by a high rate of graft failure, especially for small diameter vessels (Ø<6 mm) [20]. 

The main reasons of the grafts failure are intra-graft thrombosis, occurring in the first month 

after the implantation, and intimal hyperplasia, arising in the chronic phase especially at the 

anastomotic site [281]. Incomplete healing process of the graft's, especially the lack of 

endothelialization, are the main causes of these two outcomes. The formation of a functional 

endothelial cells (ECs) layer is of crucial importance to avoid complications and to obtain an 

optimal integration of the implanted graft. Modification of the luminal surface with pro-

endothelialization factors has been proposed over the years to help and increase ECs adhesion 

and proliferation, both alone [256, 257, 282] and in tandem with extracellular matrix (ECM) 

proteins [168, 247]. However, clinical trials of pro-endothelialization enrichment of vascular 

grafts have been mostly unsatisfactory, thus the need to investigate new approaches [71] for 

this application. In this work, a release system based on a type I collagen hydrogel [50] has 

been proposed for the controlled release of pleiotrophin (PTN) [277], a 168 amino acids 

secreted cytokine known for its involvement in different cellular processes like cell growth 

and cell motility and for the beneficial effects exerted on the cardiovascular system [86, 104]. 

Moreover, PTN  has been recently shown to be able to exert potent pro-angiogenic factor on 
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ECs compared to already used pro-endothelialization factors [283]. Type I collagen is widely 

chosen as a biomaterial for medical applications due to its ease of extraction, weak 

antigenicity, robust biocompatibility, and its ability to be physically and chemically modified 

for a variety of applications [116-118]. Due to its favorable properties, collagen-based 

matrices have been thoroughly investigated as a releasing system for therapeutic drug 

delivery applications [50, 126, 129, 132]. Drug delivery systems have been widely studied in 

the last years. These systems utilize specific non-covalent interactions to stabilize drugs and 

immobilize them within a biocompatible matrix, thus protecting their biological activity and 

slowing their diffusion from the matrix. One of such drug delivery systems are heparin-based 

delivery systems [144]. Heparin is a polysaccharide made up of repeating disaccharides [145] 

best known for its anticoagulant properties, but has also been shown to promote cell adhesion, 

inhibit smooth muscle cell proliferation and to moderate inflammation [146]. Moreover, 

heparin is also known to sequester, stabilize and protect growth factors and cytokines and 

has been widely used in conjunction with different scaffolds to enhance their retention ability 

[153]. In virtue of this favorable properties and in light of its high binding affinity for PTN 

[72], heparin has been used to better control the release of PTN from the collagen gel. The 

biological performances of the PTN-based drug delivery system have been investigated on 

both ECs and smooth muscle cells (SMCs). 

3.4 Materials and Methods 

3.4.1 Cell Isolation and Culture 

Human umbilical vein endothelial cells (HUVECs) and human umbilical artery smooth 

muscle cells (HUASMCs) were used in this study. Cells were isolated from human umbilical 

cord samples obtained from normal term pregnancies. Written informed consent was 

obtained from all mother donors according to the Declaration of Helsinki. All experiments 

were performed in compliance with the Canadian Tri-Council Policy Statement: Ethical 

Conduct for Research Involving Humans and institutional CHU de Quebec - Laval 

University guidelines. The protocol was approved by the Ethics Committee of the CHU de 

Quebec Research Centre (CER #S11-03-168). Briefly, umbilical cord samples, 

approximately 15 cm in length, were collected in phosphate-buffered saline solution (PBS, 

Fisher Scientific, Fair Lawn, NJ, USA) supplemented with 5% penicillin/streptomycin (P/S, 
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Gibco, Invitrogen Corporation, Burlington, ON, Canada), solution to avoid any 

contamination and maintained at 4 °C until processing.  

As previously described [284], for HUVECs isolation, veins were rinsed with PBS, filled 

with 10× trypsin–EDTA solution (Gibco, Invitrogen Corporation, Burlington, ON, Canada), 

and incubated for 15 min at 37 °C, after which the trypsin–EDTA solution containing the 

HUVECs was collected. PBS was added to wash the lumen, collected along with the previous 

solution, and centrifuged at 1000 rpm for 5 min. Thereafter, the supernatant was removed 

and the cells resuspended in M199 culture medium (Gibco, Invitrogen Corporation, 

Burlington, ON, Canada ) with 5% fetal bovine serum (FBS, Gibco, Invitrogen Corporation, 

Burlington, ON, Canada), 1% P/S (Gibco, Invitrogen Corporation, Burlington, ON, Canada), 

2 ng/ml fibroblast growth factor (FGF, Life Sciences, Grand Island, NY, USA), 1 ng/ml 

endothelial growth factor (EGF, Life Sciences, Grand Island, NY, USA), 1 µg/ml ascorbic 

acid (Sigma Aldrich, Oakville, ON, Canada ), 1 µg/ml hydrocortisone (Sigma Aldrich, 

Oakville, ON, Canada ) and seeded in a 75 cm2 flask (Corning, Oneonta, NY, USA). This 

medium, that will be referred to as complete HUVECs M199 culture medium (HUVEC-

M199), has been used in the experiments along with a basic version containing P/S (P/S-

M199) only. Culture medium was changed after 24 h and then every 48 h until confluence 

was reached. ECs were characterized using a rabbit primary antibody against von Willebrand 

factor (VWF, Abcam, Ab6994, dilution 1/100, Toronto, ON, Canada, data not shown). The 

cells were then maintained in culture at 37 ° C in a saturated atmosphere at 5% CO2. When 

85% - 90% of confluence was reached, cells were then enzymatically detached from the plate 

(0.05% trypsin, Gibco, Invitrogen Corporation, Burlington, ON, Canada) and then reseeded 

at a ratio of 1:3 or used for experiments. For the experiment here reported, cells have been 

used at passage 5 and 6. For the HUASMCs, once all the associated connective tissues were 

carefully removed, arteries were cut open longitudinally. The intima layer, composed of 

endothelial cells, was carefully scraped off and the arteries were then cut in smaller pieces 

using a scalpel. The pieces were then placed in Petri dishes in presence of M199 culture 

medium (Gibco, Invitrogen Corporation, Burlington, ON, Canada) additioned with 5% fetal 

bovine serum (FBS, Gibco, Invitrogen Corporation, Burlington, ON, Canada), 1% 

penicillin/streptomycin (P/S, Gibco, Invitrogen Corporation, Burlington, ON, Canada), 2 

ng/ml fibroblast growth factor (FGF, Life Sciences, Grand Island, NY, USA), 1 ng/ml 
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endothelial growth factor (EGF, Life Sciences, Grand Island, NY, USA), 1 µg/ml ascorbic 

acid (Sigma Aldrich, Oakville, ON, Canada), 1 µg/ml hydrocortisone (Sigma Aldrich, 

Oakville, ON, Canada) and 5 μg/mL of  human  insulin solution  (Santa  Cruz  Biotechnology,  

Dallas,  TX,  USA). This medium, that will be referred to as complete HUASMCs M199 

culture medium (HUASMC-M199), has been used in our experiments along with P/S-M199). 

After two weeks, SMCs from the explants had migrated and colonized the surface of the Petri 

dishes.  Once the artery pieces have been removed, cells were expanded in HUASMC-M199. 

Culture medium was changed every 48 h until confluence. SMCs were identified by 

immunostaining for smooth muscle-α-actin (SM-α-actin) and calponin (Ab7817, dilution 

1/200 and Ab46794, dilution 1/200, Abcam, Toronto, ON, Canada) (data not shown,). Again, 

cells were maintained in culture at 37 ° C in a saturated atmosphere at 5% CO2. When 85% 

- 90% of confluence was reached, cells were enzymatically detached from the plate (0.05% 

trypsin, Gibco, Invitrogen Corporation, Burlington, ON, Canada) and then reseeded at a ratio 

of 1:3 or used for experiments. For the reported experiments, cells have been used at passage 

7. 

3.4.2 Collagen Gels preparation 

Type I collagen was extracted from rat tails tendons and subsequently solubilized in 0.02 N 

acetic acid, as previously reported [34, 174], to obtain a final collagen concentration of 4 g/L. 

For the preparation of the collagen gel, the collagen solution has been mixed with a buffer 

solution containing Dulbecco’s modified Eagle medium (DMEM, Gibco, Invitrogen 

Corporation, Burlington, ON, Canada, 1.1X), NaOH (15 mM), and HEPES (20 mM) in 

deionized water to adjust the pH of the final solution and to initiate the polymerization 

process. P/S-M199 was then added to complete the basic composition of the control collagen 

gel (CTRL Gel). For the heparin-modified collagen gels, heparin sodium salt (Sigma Aldrich, 

Oakville, ON, Canada) has been added to the M199 portion of the collagen gel mix to obtain 

a final concentration of 10 µg/ml (H10 Gel). Heparin concentration have been chosen based 

on gelification analysis results of 3 different concentrations obtained in the preliminary steps 

of the study (data not shown). For the PTN-modified collagen gels, recombinant human PTN 

(Sigma Aldrich, Oakville, ON, Canada) has been added to the M199 portion of the collagen 

gel mix to obtain a final concentration of 150 ng/ml (P150 Gel). For the heparin-PTN-

modified collagen gels, both heparin and PTN have been added to the M199 portion of the 
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collagen gel mix to obtain the aforementioned concentration (H/P Gel). The concentrations 

used for the heparin and PTN have been chosen following a dose-response curve obtained in 

the preliminary steps of the study (data not shown). All the blends for the different 

experimental condition have been carefully mixed and 500 µl of the different solutions were 

poured into 24 wells culture plates and let gelify at room temperature (RT) for 1 hour. Once 

jellified, collagen gels have been used for the subsequent experiments. 

3.4.3 Unconfined stress/relaxation compression mechanical tests 

Stress/relaxation unconfined compression tests were performed on CTRL gel and H10 gels 

to evaluate possible changes in the mechanical properties due to the addition of heparin to 

the gel mix. Briefly, CTRL and H10 gels were prepared and after 24 hours they have been 

placed in the chamber of a MACH-1 Mechanical Testing System (Biomomentum Inc., Laval, 

QC, Canada). Tests were performed in a bath containing PBS 1X at room temperature. The 

relaxation test consisted of compressing the sample according to parameter presented in 

Table 3.1. The relaxation time was defined in order to consider the viscoelastic behavior of 

the collagen gels and to reach a steady value for the load (equilibrium stress). The stress was 

recorded as a function of time. 

Table 3.1: Parameter used for the stress/relaxation test performed on the Collagen gels. 

Parameter Value 

Ramp Amplitude (mm) 5% of initial sample thickness 

Ramp Velocity (mm/s) 5% of initial sample thickness 

Number of Ramp 5 

Fixed Relaxation Time (s) 1500 s 

 Following the stress/relaxation, the data obtained have been analyzed using MATLAB 

software (MathWorks, Natick, MA, USA) considering equilibrium strains and using the 

linear portion of the stress-strain curve at 15% of strain to obtain the equilibrium elastic 

modulus of the different gel formulations.  

3.4.4 Immunofluorescence 

For immunofluorescence, CTRL and H10 gels have been prepared as already mentioned. 

After 24 hours, gels have been incubated in PBS 1X with 3% of bovine serum albumin (BSA, 

Sigma Aldrich, Oakville, ON, Canada) for 10 minutes. Then gels have been incubated with 



 

57 

mouse primary antibody for collagen type 1 (1: 1000; Novus Biological, Oakville, ON, 

Canada) for 2 hours at 37°C. Following, gels were incubated with an Alexa Fluor® 488 goat 

anti-mouse secondary antibody (Life Technologies, Sigma Aldrich, Oakville, ON, Canada) 

for 2 hours at room temperature under agitation. Afterwards, gels have been rinsed three time 

with PBS 1X with 0.01% Tween 20 and have been kept overnight at 4°C before being placed 

on fluorescent microscope slides. Images at a magnification of 20X have been collected using 

an Olympus BX51 Fluorescence Microscope (Olympus Canada Inc., Toronto, ON, Canada). 

3.4.5 Conditioned Medium Collection 

After gelification, 600 µl of P/S-M199 has been added to each experimental condition. After 

1, 3 and 7 days of incubation, medium has been completely removed and collected for 

subsequent experiment. For the ELISA quantification, additional time points at 10 and 14 

days were added. At each time point, 600 µl of fresh P/S-M199 medium has been added to 

the gels. 

3.4.6 ELISA quantification 

For the quantification of the amount of PTN released by the different collagen gels 

preparation, an enzyme-linked immunosorbent assay (ELISA) was applied. Examination of 

PTN was done by RayBio® Human Pleiotrophin ELISA kit (RayBiotech, Norcross, Georgia, 

USA). The assay was performed according to the protocol provided by the manufacturer. 

Absorbance at a wavelength of 450nm was recorded using a SpectraMax i3x Multi-Mode 

Plate Reader (Molecular Devices, San Jose, California, USA). 

3.4.7 Indirect Viability assay 

The effect of the released PTN on cells viability have been analyzed using an indirect 

viability assay performed on both HUVECs and HUASMCs. Briefly, cells have been seeded 

at a concentration of 20000 cells/cm2 in 96 well culture plates. After 24 hours of incubation 

with HUVEC-M199 or HUASMC-M199, depending on the cell type used, at 37 °C in a 

saturated atmosphere at 5% CO2 to allow the adhesion of the cells, media has been removed 

and cells have been incubated for 24 hours in presence of the different conditioned media 

collected as previously described. Cells cultivated in P/S-M199 medium have been used as a 

positive control (CTRL Cell). After the treatment, the conditioned media have been removed 

and cells have been incubated with a resazurin solution for 4 hours. After the incubation, the 
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highly fluorescent resorufin product obtained by the reduction of the resazurin was collected 

and fluorescence intensity at a 545 nmex/590 nmem wavelength was measured with a 

SpectraMax i3x Multi-Mode Plate Reader (Molecular Devices, San Jose, California, USA). 

Fluorescence intensity is proportional to cell viability. Data has been normalized towards the 

CTRL Cell condition. 

3.4.8 Direct Viability Assay 

The effect of the addition of heparin and PTN to the CTRL gel formulation on cells viability 

has been analyzed using a direct viability assay performed using both HUVECs and 

HUASMCs. Briefly, the following collagen gels formulations have been prepared: 1) CTRL 

gel; 2) H10 gel; 3) P150 gel and 4) H/P gel. After gelification, cells have been seeded in 

HUVEC-M199 or HUASMC-M199, according to the cell type, at a concentration of 20000 

cells/cm2 onto the different gels and incubated at 37 °C in a saturated atmosphere at 5% CO2. 

Cells cultivated on culture polystyrene in HUVEC-M199 or HUASMC-M199 medium have 

been used as a positive control (CTRL Cell). After 1, 3 and 7 days 2, media has been removed 

and cells have been incubated for 6 with a resazurin solution. After the incubation, the 

resorufin product obtained was collected and fluorescence intensity at a 545 nmex/590 nmem 

wavelength was measured with a SpectraMax i3x Multi-Mode Plate Reader (Molecular 

Devices, San Jose, California, USA). Fluorescence intensity is proportional to cell viability. 

3.4.9 Migration Assay 

To test the effects of the released PTN on the migration of HUVECs, the transwell migration 

assay was used. 7500 cells were seeded in the upper compartment of 24 well-format transwell 

with 8µm pores (Corning, Amsterdam, the Netherlands) in 250 µL of HUVEC-M199 or 

HUASMC-M199, according to the cell type. In the lower compartment, the following 

collagen gels formulations have been prepared: 1) CTRL gel; 2) H10 gel; 3) P150 gel and 4) 

H/P gel and 600 µl P/S-M199 have been added. Cells were incubated at 37°C in a saturated 

atmosphere at 5% CO2 for 24 hours. After the incubation, cells on both faces of the insert 

membranes were fixed by incubation with formaldehyde 3.7% for 20 minutes at room 

temperature. Then, cells were stained with 1% Crystal Violet for 20 minutes at room 

temperature. Once stained, cells on the upper side of the porous membranes were gently 

removed using a cotton swab. The transwell inserts were then placed under a phase-contrast 
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microscope and images of different fields (n=5) were collected at 20X magnification. To 

assess the migration rate for each condition, stained cells were counted. 

3.4.10 Hemocompatibility Assay 

To study the hemocompatibility of the different collagen gel formulations, the hemoglobin 

free methodology was used [285]. Briefly, the following collagen gels formulations have 

been prepared: 1) CTRL gel; 2) H10 gel; 3) P150 gel and 4) H/P gel. After 24 hours, 100 ml 

of citrated blood were deposited onto the surfaces of the different collagen gels and 20 µl of 

0.1 M CaCl2 (Sigma Aldrich, Oakville, Canada) were immediately added to inhibit the anti-

coagulant effect of the citrate. Samples were incubated at 37°C in a saturated atmosphere at 

5% CO2 and after 10, 25 and 50 minutes, 2 ml of distilled water were added to each sample. 

The erythrocyte not entrapped in a blood clot were hemolyzed. One minute later, the obtained 

solution was removed and placed into a 96 well plate. The free hemoglobin molecules 

released in water following hemolysis were measured by reading the absorbance at a 540 nm 

wavelength by means of a SpectraMax i3x Multi-Mode Plate Reader (Molecular Devices, 

San Jose, California, USA). The higher is the absorbance recorded, the higher is the amount 

of free hemoglobin, therefor the higher is the hemocompatibility. The test was performed, 

with blood from different donors used for each experiment. The maximum amount of 

hemoglobin (Max Hemoglobin) was obtained by immediately hemolyzed after the citrate 

inhibition. Data where normalized towards the Max Hemoglobin value. 

3.4.11 Statistical Analysis 

For each experiment, a n=5 replicates for each condition has been used. Each of the 

experiments were performed 3 independent times. For the hemocompatibility test, blood 

from 3 different donors was used for each experiment. The data shown are means ± standard 

deviation (SD). Statistical significance of the presented results was calculated using ANOVA 

non-parametric Kruskal-Wallis method through the software InStat ™ (GraphPad Software, 

La Jolla, CA, USA). Values of p <0.05 or less were considered significant. 
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3.5 Results 

3.5.1 Mechanical and Structural characterization  

The stress/relaxation unconfined compression tests were performed on CTRL gels and on the 

H10 gels to evaluate if the addition of heparin to the gel mix caused any changes in the 

mechanical properties of the gels. The equilibrium elastic modulus of the two gels 

composition has been analyzed: no significant differences in the equilibrium elastic modulus 

of the two gel compositions were detected. The immunofluorescence performed on the gels 

confirmed the results obtain by the mechanical characterization. In fact, no visible differences 

were noted in the arrangement of the collagen fibers in both the CTRL gels and the Hep 10 

µg/ml gels (Figure 3.1). 

 

Figure 3.1: Mechanical and Structural Characterization. The images show the immunofluorescent staining of 

the type 1 collagen fibers (green color) in the two gel formulations tested: CTRL and Hep 10µg/ml gels. Images 

were taken after 24 hours at a 20X magnification. In yellow are reported the values of the Equilibrium Elastic 

Modulus for the two gels formulation. 

3.5.2 Released PTN quantification 

The amount of PTN released over a 10-days period, along with the kinetic of its release, has 

been analyzed by means of a PTN-specific ELISA quantification assay (Figure 3.2).   
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Figure 3.2: PTN ELISA Quantification. The graphic shows the results for the quantification of PTN release by 

the Hep 10 µg/ml (H10), PTN 150 ng/ml (P150) and Hep 10 µg/ml PTN 150 ng/ml (H/P) collagen gels after 1, 

3, 7 and 10 days of incubation. A) The graphic shows the mean cumulative release ± SD measured at each time 

point. *p<0.001 vs. 1 Day P150; **p<0.01 vs. 3 Days P150; # p<0.01 vs. 10 Days P150. B) The graphic shows 

the % of released PTN ± SD measured at each time point. 

The results of the ELISA quantification have been used to analyses the cumulative released 

of PTN over 14 days, as shown in Figure 3.2A. For P150, after 1 day, the concentration of 

PTN found in the collected conditioned medium was 51.6 ± 4.7 ng/ml. After 3 days, the total 

PTN concentration detected was 65.8 ± 4.9 ng/ml and after 7 days the concentration was 74.6 

± 4.8 ng/ml. At 10 days, the cumulative released PTN was 81.2 ± 9.5 ng/ml wile at 14 days 

it reached 85.0 ± 9.2 ng/ml. A similar cumulative release was observed for the H/P gel, but 

the concentrations of PTN measured at the 1 and 3-days time points were significantly lower 

compared to the P150 condition (Day 1: 22.2 ± 1.5 ng/ml, p<0.001 vs. P150 gel; Day 3: 49.0 

± 2.1 ng/ml, p<0,01vs. P150 gel). At 7 days, the cumulative release for the H/P gel, 74.3 ± 

2.3 ng/ml, was almost the same as for the P150.  However, at Day 10 the cumulative released 

PTN was higher compared to the P150 gel (97.3 ± 1.5 ng/ml, p<0.01 vs. P150 gel). This trend 

continued until Day 14, with the cumulative release of H/P (112.3 ± 0.1 ng/ml) being higher 

than the P150 condition (p<0.01 vs. P150 gel). Figure 3.2B shows the release kinetic of the 

different gel formulation expressed as % of released PTN at each time point studied. It is 

possible to observe how the PTN 150 ng/ml gel released a high amount of PTN at the first 
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day while, during the following time points, the amount of released PTN decreased 

drastically. On the contrary, the amount of PTN released by the H/P gel was constant over 

time. 

3.5.3 Indirect viability test 

Indirect viability tests have been performed on ECs and SMCs to evaluate if the released 

PTN present in the collected conditioned medium was able to exert any effect on the viability 

of the treated cells. Regarding the ECs (Figure 3.3A), viability test has shown that after 1 

day of incubation, the conditioned medium collected after 1 day from the H/P gel condition 

(2.23 ± 0.17)E8 was able to significantly increase the viability compared to the CTRL Cell 

(1.71 ± 0.06)E8 (p<0.01), the CTRL Gel (1.77 ± 0.33)E8 (p<0.01)  and the H10 gel (1.76 ± 

0.30)E8 (p<0.01) conditions. For the 3 days conditioned media, the P150 gel condition (2.09 

± 0.22)E8 was able to significantly increase the ECs viability against th CTRL Gel (1.62 ± 

0.24)E8 (p<0.01). Again, the H/P gel (2.29 ± 0.17)E8 was able to significantly increase the 

viability of the HUVECs compared to CTRL Cell (p<0.001) and CTRL gel (p<0.001). With 

the 7 days conditioned media, both P150 gel (2.17 ± 0.18)E8 and H/P gel (2.46 ± 0.15) 

conditions were able to significantly increase cells viability compared to the CTRL Cell  

(p<0.05 vs. P150 gel, p<0.001 vs. H/P gel) and CTRL Gel conditions (1.76 ± 0.11)E8 (p<0.05 

vs. P150  gel and p<0.001 vs. H/P gel).   
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Figure 3.3: Indirect Viability Assay. HUVECs and HUASMCs were treated with conditioned medium collected 

after 1, 3 and 7 days of incubation with the following collagen gel conditions: control collagen gel (CTRL Gel); 

collagen gel with 10 µg/ml of heparin (H10 gel); collagen gel with 150 ng/ml of PTN (P150 gel); collagen gel 

containing 10µg/ml of heparin and 150 ng/ml of PTN (H/P gel). Cell viability was measured after 24 hours by 

means of a resazurin salt solution assay. A) The graphic shows the relative viability ± SD recorded from 

HUVECs treated with the different experimental conditions. * p<0.01 vs. Day 1 CTRL Cell, CTRL Gel and 

H10 gel; ** p<0.001 vs. Day 3 CTRL Cell and CTRL Gel; ¥ p<0.01 vs. Day 3 CTRL Gel; # p<0.05 vs. Day 7 

CTRL Cell and CTRL Gel; § p<0.001 vs. Day 7 CTRL Cell and CTRL Gel. B) The graphic shows the mean 

fluorescence ± SD recorded from HUASMCs treated with the different conditions. 

The indirect viability assay performed on SMCs has shown that, regardless of the time point 

at which the conditioned media were collected from the different collagen gel conditions, no 

significant change was observed in between the CTRL Cell and CTRL Gel conditions and 

the modified collagen gels (Figure 3.3B). 

3.5.4 Direct Viability Assay 

Direct viability tests have been performed on ECs and SMCs directly seeded on the different 

collagen gel conditions to evaluate the direct effects of the PTN present in the gels. After 1 

day of incubation, HUVECs seeded on the P150 gels (1.90 ± 0.05)E8 showed a significant 

increased viability compared to the CTRL Cell (1.15 ± 0.11)E8 (p<0.,01) and to cells seeded 

on the H10 gels (1.08 ± 0.05)E8 (p<0.01). After 3 days of incubation, both P150 gels (2.61 ± 

0.17)E8 an H/P gels (2.22 ± 0.11)E8 were able to significantly increase the viability of the 
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seeded HUVECs compared to the CTRL Cell (1.89 ± 0.20)E8 (p<0.001 vs. P150 gel and 

p<0.01 vs. H/P gel), CTRL gel (1.96 ± 0.11)E8 (p<0.001 vs. P150 gel and p<0.01 vs. H/P 

gel) and the H10 gel (1.15 ± 0.05)E8 (p<0,001 vs. P150 gel and p<0.01vs. H/P gel). Finally, 

both P150 gels (2.86 ± 0.33)E8 an H/P gels (2.86 ± 0.11)E8 were able to significantly increase 

the viability of the seeded huvec compared to the CTRL Cell (2.30 ± 0.22)E8 (p<0.001 vs. 

P150 gels and H/P gel),  CTRL gels (2.19 ± 0.15)E8 (p<0.001 vs. P150 gels and H/P gel) and 

H10 gels (1.57 ± 0.14)E8 (p<0.001 vs. P150 gels and H/P gels) (Figure 3.4A). 

 

Figure 3.4: Direct Viability Assay. HUVECs and HUASMCs were directly seeded on the following collagen 

gel conditions: control collagen gel (CTRL Gel); collagen gel with 10µg/ml of heparin (H10 gel); collagen gel 

with 150ng/ml of PTN (P150 gel); collagen gel containing 10µg/ml of heparin and 150ng/ml of PTN (H/P gel). 

Cell viability was measured after 1, 2 and 7 days by means of a resazurin salt solution assay. A) The graphic 

shows the mean fluorescence ± SD recorded from HUVECs treated with the different experimental conditions. 

* p<0.01 vs. Day 1 CTRL Cell and H10 gel; ** p<0.001 vs. Day 3 CTRL Cell, CTRL Gel and H10 gel; # 

p<0.01 vs. Day 3 CTRL Cell, CTRL Gel and H10 gel; § p<0.01 vs. Day 7 CTRL Cell, CTRL Gel and H10 gel. 

B) The graphic shows the mean fluorescence ± SD recorded from HUASMCs treated with the different 

experimental conditions. 

Regarding the direct viability tests performed on the SMCs, as for the indirect tests, no 

significant difference was shown between the different experimental conditions (Figure 

3.4B). 
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3.5.5 Migration Assay 

EC migration was analyzed using the Transwell migration Assay. After 24 hours of 

incubation, the H/P gel was able to induce a significant higher migration (1.90 ± 0.44) 

compared to the CTRL gel (1.00 ± 0.41; p<0.001) and the H10 gel (1.14 ± 0.32; p<0.001) 

(Figure 3.5A). 

 

Figure 3.5: Transwell Migration Assay. A) Quantitative analysis of migrated HUVECs expressed as mean ± 

SD of number of migrated cells per field. Results have been normalized against the CTRL Gel condition. 

*p<0.01 vs. CTRL gel and H10 gel. B) Quantitative analysis of migrated HUASMCs expressed as mean ± SD 

of number of migrated cells per field. Results have been normalized against the CTRL Gel condition. **p<0.01 

vs. CTRL gel; # p<0.001 vs. CTRL gel and P150 gel. 

Concerning the SMCs migration, the Transwell Assay (Figure 3.5B) showed that after 24 

hours of incubation, the H10 gel were able to significantly inhibit the HUASMCs migration 

(0.64 ± 0.18) compared to the CTRL gel (p<0.01). Moreover, in presence of the H/P gel the 

migration of the HUASMCs (0.49 ± 0.21) was also significantly lower if compared to the 

CTRL gel (p<0.001) and the P150 gel (0.83 ± 0.24; p<0.001). 

3.5.6 Hemocompatibility Assay 

The hemocompatibility of the different collagen gel formulation has been tested using the 

hemoglobin free methodology. Absorbance at a wave length specific for hemoglobin 
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(540nm) was measured after the blood was incubated for 10, 25 and 50 minutes with the gels 

(Figure 3.6). After 10 minutes, both the gel formulation containing heparin, the H10 gel 

(0.39 ± 0.03) and the H/P gel (0.43 ± 0.06) where able to significantly increase the amount 

of free hemoglobin, hence the hemocompatibility, compared to both the CTRL gel (0.22 ± 

0.01; p<0.05 vs. H/P gel) and P150 gel (0.14 ± 0.01; p<0.001 vs. H10 gel and H/P gel). The 

same behavior was observed after 25 minutes of incubation: both the H10 gel (0.45 ± 0.11) 

and the H/P gel (0.37 ± 0.09) were able to significantly increase the hemocompatibility 

compared to the CTRL gel (0.15 ± 0.07; p<0.001 vs. H10 gel and H/P gel) and P150 gel 

(0.12 ± 0.02; p<0.001 vs. H10 gel and H/P gel). Again, after 50 minutes of incubation, the 

H10 gel (0.24 ± 0.08) and the H/P gel (0.29 ± 0.11) significantly increase the measured free 

hemoglobin compared to the CTRL gel (0.08 ± 0.01; p<0.001 vs. H10 gel and H/P gel) and 

the P150 gel (0.08 ± 0.01; p<0.001 vs. H10 gel and H/P gel). 

 

Figure 3.6: Hemocompatibility Test. Whole human blood was put in contact with the following collagen gel 

conditions: control collagen gel (CTRL Gel); collagen gel with 10µg/ml of heparin (H10 gel); collagen gel with 

150ng/ml of PTN (P150 gel); collagen gel containing 10µg/ml of heparin and 150ng/ml of PTN (H/P gel). 

Blood was incubated with the gels for 10, 25 and 50 minutes. At each time point blood was solubilized and 

absorbance was recorded at 540nm. The graphic shows the relative free hemoglobin ± SD. * p<0.001 vs. 10 

minutes P150 gel; ** p<0.05 vs. 10 minutes CTRL gel and p<0.001 vs. 10 minutes P150 gel; ***p<0.001 vs. 

25 minutes CTRL gel and P150 gel; # p<0.001 vs. 50 minutes CTRL gel and P150 gel. 

3.6 Discussion 

An effective and fast re-endothelialization is of crucial importance to guarantee the patency 

of polymeric vascular graft [165]. The formation of confluent endothelial coverage has the 



 

67 

benefit to speed up and improve the integration of the implanted graft, effectively shortening 

the healing time [22]. Moreover, graft endothelialization has the benefit of limiting the 

insurgence of adverse processes like in-graft thrombosis and neo-intima hyperplasia [2]. 

These two conditions, as of today, represent a major concern hampering the performances of 

synthetic vascular graft in the clinical practice. The modification of the luminal surface of 

synthetic graft with natural components of the vascular extracellular matrix (ECM), such as 

collagen, has been already used to provide receptor-ligand binding sites for ECs on the graft 

surface. Another important factor in promoting ECs adhesion and proliferation on the 

implanted graft is the use of biological signaling. This represents a crucial point in cell-driven 

tissue regeneration. However, the concentration of biological molecules must be fine-tuned 

in order to accomplish the desired effects, thus the need to release these molecules in a 

controlled way. Therefore, the development of collagen-based drug delivery systems, in 

which specific non-covalent interactions are used to stabilize small molecule and protein-

based drugs, immobilize them within the collagen scaffold and to control their release for 

biomedical applications, have been widely developed [50]. These systems help in protecting 

the biological activity of the loaded molecules while slowing their diffusion from collagen 

scaffolds, providing optimal effects on the targeted vascular cells. The use of heparin to 

control the release of therapeutic agents from collagen scaffolds has been widely studied, due 

to its ability to sequester, stabilize and protect growth factors and cytokines [144]. In this 

study, a drug delivery system for PTN, a known pro-angiogenetic factor, is presented as a 

potential strategy to induce in-graft migration and proliferation of ECs. The release system 

is based on a Type 1 collagen hydrogel, chosen for his favorable biological properties. The 

hydrogel has been further modified with the addition of heparin to help controlling the release 

of the loaded PTN over time and to confer anticoagulant properties to the system. The 

mechanical properties of the modified gels have been tested, along with the biological 

performances. To do so, the different gel compositions have been tested for cell viability and 

migration on both ECs and SMCs, in order to evaluate their effects on cell behaviors. 

The effect of the addition of heparin to collagen gels has been studied for long time [286]. 

Heparin was reported to alter the structure of the collagen fibers, potentially leading to 

changes in the mechanical and biological properties of the modified collagen gels [287, 288]. 

Mechanical tests leading to the equilibrium elastic modulus have shown how the addition of 
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10 µg/ml of heparin, H10 gels, does not alter in a significant way the mechanical properties 

of the CTRL gels. Moreover, the immunofluorescence staining for the type 1 collagen fibers 

shows how the H10 gels presents an unaltered fibers structure, further demonstrating the 

absence of negative effects of heparin on the collagen gel structure (Figure 3.1). The 

concentration chosen to modify our collagen gel, besides showing the best results in terms of 

structure preservation compared to other concentration tested (data not shown), is in 

accordance with pre-existing data present in literature [150].   

The release of growth factors and cytokine from heparinized collagen gels is dependent on 

diffusion from the collagen matrix and the binding affinity to heparin, whereas for simple 

collagen gels the release rely mainly on the diffusion from the gel [289]. The analysis of the 

release of PTN from the unmodified (P150 gels) and heparin-modified gels (H/P gels) shed 

light on how the addition of heparin was able to induce a more controlled, sustained release 

of PTN over the time period studied. The amount of PTN released during the first week by 

the H/P gels is significantly lower compared to the P150 gels. Moreover, the amount of PTN 

released by the H/P gels increase until the fourteenth day, whereas a significant drop in 

release is notable with the P150 gels. The results here obtained are in accordance with 

previous observation made with the use of heparin to modulate the release of several growth 

factor [289, 290], implying a direct effect of heparin in controlling the release of PTN from 

the collagen gels. Moreover, as shown in Figure 3.2B, the addition of heparin to collagen 

gels resulted effective in decreasing the initial burst of PTN released, as with previously 

described results where heparin successfully controlled the release of growth factors from 

heparinized gel scaffolds [291]. 

PTN is known for is beneficial effects exerted on the cardiovascular system, and especially 

on ECs. In fact, it has been shown to be a neovasculogenesis inducer [104], a potent pro-

angiogenetic factor [105] and to be able to effectively differentiate mononuclear cells into 

functional ECs [110]. Moreover, as described in our previous work [283], PTN can induce 

significant effects on viability, migration and repair ability of ECs. The results hereby 

presented show how the incorporation of PTN in the Heparin-Collagen gel delivery system 

does not altered the beneficial effects towards the ECs associated to PTN. Regarding the 

HUVECs directly seeded onto the different collagen gel formulations, the presence of PTN 

was able to induce a significant increase in cell viability compared to the conditions without 
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it. Moreover, while in presence of the sole heparin (H10 gel condition) a decrease in ECs 

viability is appreciable, in the H/P gels no negative effects are detectable, showing a behavior 

similar to the P150 gels (Figure 3.4A), displaying the ability of the added PTN to “mask” 

the effect of heparin. Those results are in accordance with our previous findings about PTN 

mitogenic effects on ECs. Regarding the indirect viability tests (Figure 3.3A), again PTN 

was able to significantly increase the treated HUVECs viability compared to the control 

conditions. Of interest, the released PTN from the H/P gels seems to exert better effects 

compared to the one obtained from the P150 gels. This difference in efficacity could be 

explained by the presence of heparin in the H/P gels: heparin has been demonstrated to be 

able to stabilize and preserve the structure, thus the function of several growth factors and 

cytokine [144, 292]. The binding of heparin to growth factor has been also demonstrated to 

be able to increase the efficacy of the bounded factors [293]. Considering the high binding 

affinity between PTN and heparin, a protective action of the latter on the released PTN could 

be at the base of the H/P gel released PTN effects towards the treated ECs. The results 

obtained from the migration assay show a response from the ECs similar to the one obtained 

for the viability assay. As shown in Figure 3.5A, the H/P gels were able to induce a 

significant increase in the migration of the treated HUVECs compare to control conditions, 

confirming the beneficial effects of PTN on ECs migration [283, 294]. Interesting, contrary 

to the H/P gels, the effect exerted by the P150 gels resulted being not significantly higher 

compared to the control conditions, further validating the hypothesis of a 

protective/enhancing effect of heparin on PTN activity towards ECs. 

Regarding the effects of PTN on the viability and migration of SMCs, the results obtained 

gave a different picture. In fact, both the indirect and direct cell viability test (Figure 3.3B 

and 3.4B) show how the presence of PTN does not induce any significant effect on the 

viability of treated SMCs, contrary to the results presented by Brewster et al. [275], where 

the treatments with a chimeric PTN fusion protein induced an increase in the viability of 

SMCs, thus suggesting a non-specificity of PTN for SMCs. The results of the migration assay 

performed on the HUASMCs (Figure 3.5B), show how with the H10 and H/P gels, meaning 

in presence of heparin, the migration ability of the SMCs was significantly inhibited 

compared to the CTRL and P150 gels. The inhibitory effects of heparin on SMCs viability, 

proliferation and migration ability [295, 296] along with their mechanism [146, 297] are well 



 

70 

known. This, along with the results hereby presented, suggests a role for the heparin present 

in our gel in the inhibitory effects observed on the treated HUASMCs. Moreover, since 

heparin added to our gels is not immobilized in the collagen matrix, this may account for a 

portion of the added heparin to be released along with PTN, thus explaining the inhibitory 

effects observed on SMCs migration and the aforementioned protective/enhancing effect on 

PTN towards ECs. Altogether, these findings demonstrate how are system could be useful 

for an application in vascular graft functionalization, showing pro-endothelialization 

properties and inhibitory effects on SMCs, two of the most sought-after effects for vascular 

biomaterials.   

The effects of heparin as an anticoagulant factor are well known and characterized [298], as 

is its use in tissue engineering to confer anticoagulation properties [299]. In accordance to 

the data present in literature, the hemocompatibility of our gels containing heparin, in 

particular in the H/P gels, was significantly increase compared to the CTRL and P150 gels, 

suggesting a potential in limiting the formation of thrombosis in an in vivo application. These 

results fall in accordance with the existing literature, where the use of heparin to modify 

collagen scaffolds to enhance their hemocompatibility properties has already been 

investigated with promising results [300]. Moreover, the previously described effects of the 

addition of heparin on the release of PTN and the preservation of its beneficial effects, further 

support the possible application in vascular medicine of our drug delivery system.  

3.7 Conclusions 

The obtained results show how the addition of heparin to a type I collagen gel can control 

over time the release of PTN, without altering the gel properties while limiting the 

thrombogenicity of the modified gels. The added PTN, moreover, is able to exert beneficial 

ECs-specific effects on cell viability and migration while not affecting SMCs behavior. In 

conclusion, the PTN-heparin-modified collagen gels here proposed can represent an added 

value for their use in vascular medicine, being able to improve the biological performance 

and integration of vascular grafts. 
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Chapter 4: General Discussion 

Vascular occlusive diseases, and in particular atherosclerosis, remain the leading cause of 

death in Western countries. Several strategies have been developed over the years and are 

currently available for their treatment. Arterial bypass surgery remains the primary therapy 

for patients with severe vascular occlusive diseases. In bypass surgery, blood is redirected 

around a section of a blocked or partially blocked artery to restore the blood flow to the 

affected area. This procedure involves that a healthy blood vessel harvested from the patient 

vascular bed will be implanted to replace the blocked arteries. As previously stated, 

autologous vessels represent the privileged choice. However, this approach requires multiple 

surgical procedures, and the vascular bed of patients needing bypass surgery is often in bad 

conditions. Therefore, synthetic prostheses have been developed as alternatives to autografts. 

These implants, mainly made of Dacron and Teflon, are commonly used in the medical 

practice.  Unfortunately, due to low patency especially in small diameter grafts (<6 mm), the 

use of synthetic vascular is burden by high-rate failure, thus limiting their applications. The 

main causes of post-implantation failure are in-graft thrombosis and intimal hyperplasia. In-

graft thrombosis is the formation of a blood clot inside the implanted vascular substitutes. 

The main cause is the lack of biocompatibility of the graft, linked to several properties of the 

implant itself (inherent thrombogenicity, hemodynamic characteristics). The incomplete 

healing process contribute to the formation of blood clots during the first months after the 

implantation. Intimal hyperplasia, which is the abnormal migration and proliferation of 

vascular smooth muscle cells in the vessel lumen (starting from the anastomotic site), is the 

main cause of post-implantation arterial restenosis. Intima hyperplasia is characterized by the 

migration of vascular smooth muscle cells (VSMC) from the media to the intima, where they 

proliferate and deposit extracellular matrix, that greatly contributes to the re-occlusion of the 

artery. Several events may cause this condition, all of them involving damage or lack of a 

functional and confluent endothelial layer. This results in the missed production by the 

endothelial cells of factors capable to inhibit VSMC proliferation. 

To overcome all of these complications, the development of tissue-engineered vascular 

substitutes has emerged as a promising alternative to generate physiologically-relevant 

substitutes. These vascular substitutes are expected to mimic the complex three-dimensional 

extracellular matrix (ECM) structure of the native tissues and, thus, their original mechanical 
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properties. The seeding of these scaffolds with vascular cells will then ensure the suitable 

biological properties for the optimal integration and functionality of the graft. In the past 

thirty years, several groups have focused their efforts on the in vitro construction of blood 

vessels from collagen, especially Type 1, as a natural polymer scaffolds. Weinberg and Bell 

first reported the use of collagen gels as substrates for cells in vascular tissue engineering 

[125]. After this work, several groups have developed different technique to obtain tissue-

engineered blood vessel. Despite the promising results obtained, the mechanical properties 

of collagen-based products remain inadequate for clinical implantation. To overcome this 

limit, the use of specialized bioreactors to stimulate collagen-based substitutes have been 

developed, along with the addition to the scaffold of other ECM components or the use of 

polymeric mesh as support. The cellular component, especially the presence of vascular 

smooth muscle cells, has been proven to contribute largely to the increase in the mechanical 

properties of the grafts. Slight improvements in the mechanical properties of the substitutes, 

with an increase in both cellular and matrix reorganization, have been achieved. However, 

they are still not enough to allow the implantation and, thus, the clinical use. Nonetheless, 

the knowledge gathered on the use of collagen as a biomaterial and strategies developed 

pursuing the goal of an implantable artificial blood vessel may still find a practical use in 

vascular medicine, such as provide biomaterials for advances in vitro models or for the 

amelioration of existing vascular graft.  

Another strategy to face the high-rate failure of vascular grafts is their enrichment with pro-

endothelialization molecule. This approach involves the modification of the luminal surface 

of the artificial vascular grafts with bio-active molecules, such as growth factors, cytokines, 

natural polymers, proteins, peptides and genes to improve the endothelialization of the 

implants. Regarding pro-endothelialization growth factors and cytokines, several molecules, 

including vascular endothelial growth factor (VEGF) and stromal cell derived factor 1 (SDF-

1) among the others, have been tested and have shown to promote angiogenesis or endothelial 

cells recruitment. The discovery of these effects initially had promising prospects for their 

use in therapy. However, clinical trials of angiogenic factor delivery have been mostly 

disappointing, underscoring the need for a wider array of angiogenic factors for this 

application. Another problem linked to the application of this strategy is that the 

concentrations of the bioactive molecules must be fine-tuned in order to accomplish the 
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desired effects on the targeted ECs and to avoid complications or adverse outcomes. Thus, 

the need to release these molecules in a controlled way results being of crucial importance. 

For the all these reasons, the aim of this project was to develop a drug delivery system based 

on a Type 1 collagen gel for the controlled release of pleiotrophin (PTN), a 

growth/differentiation cytokine that has been described as a potent pro-angiogenic factor. As 

a first step, the biological effects of PTN on the viability, migration and repair ability of ECs, 

both at a cellular and molecular level, have been compared to the one exerted by SDF-1, a 

chemokine known for its important role in angiogenesis and neovascularization and already 

used for vascular grafts enrichments. Subsequently, a Type I collagen gel developed in the 

Laboratory for Biomaterials and Bioengineering at Laval University (LBB) [34] has been 

used as a scaffold for the development of a controlled release system for PTN. To increase 

the binding of PTN to the gel and to prolong its release over time, heparin has been added to 

the standard gel formulation. Finally, structural analyses have been performed on the heparin-

modified collagen gels. Quantification of the released PTN has been analyzed to evaluate the 

ability of the modified collagen gels to bind and released PTN over time in a controlled way. 

The effects of the released PTN on the viability and migration of both ECs and SMCs has 

been evaluated along with the evaluation of the hemocompatibility properties of the modified 

collagen gels. 

This chapter will discuss the work done throughout this thesis and review the important 

results obtained throughout the different steps of the project. The discussion will focus on 

the methodologies and characterization techniques developed as well as the challenges 

encountered. This discussion will also bring together the work presented and propose some 

future perspectives envisioned for the project. 

4.1 Assessment of PTN effects on the viability and migration ability of 

ECs 

4.1.1 Selection of cell lines as ECs model 

Before starting the assessment of the biological effects exerted by PTN, one of the choices 

to face was related to the experimental model to be used. In order to guarantee a higher 

reproducibility of the data and to ensure a more solid consistency of the results, compared to 

the one obtainable with the use of a primary cell line, the human umbilical vein endothelial 
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cell line EA.hy926 has been chosen. This cell line has been established in 1983 and since 

then has been widely used as in vitro model for endothelial cells. These cells demonstrated  

the highly differentiated functions characteristic of human vascular endothelium, while 

offering the advantages of immortality, stability through passage number and permits more 

consistent responses to specific variables and greater reproducibility of data. For these 

reasons, they were selected for the biological characterization of PTN.  

4.1.2 Choice of PTN concentrations 

Another important point was the choice of concentration of PTN to be used for the project. 

For the comparation of the biological effects of PTN and SDF-1, the concentration of PTN 

has been selected following an experiment to determine a dose-response curve for the protein. 

In Figure A.1 of the Annex, the results of the dose-response experiments are presented. They 

show how the 10ng/ml, despite being able to significantly increase cell viability, was still not 

able to achieve the results seen with the concentration of 50ng/ml. On the other end, the 

concentration of 100ng/ml did not induce better effects on the viability of the treated cells 

compared to the 50ng/ml concentration. For these reasons, we opted for the 50ng/ml 

concentration. Regarding SDF-1, the concentration has been chosen accordingly to data 

present in literature [267, 268].  

4.1.3 Comparison of the pro-endothelialization effects of PTN compared to SDF-1 

Pleiotrophin has been known to have mitogenic, differentiating and angiogenic properties 

[86]. Through the activation of its receptor, protein tyrosine phosphatase beta/zeta (RPTP 

β/ζ), PTN can regulate multiple functions including cell adhesion, cell migration, cell 

proliferation and cytoskeletal stability. PTN has been described as a potent pro-angiogenic 

factor acting on ECs. Its expression by endothelial cells during healing from ischemic brain 

injury has been reported and was found to stabilize the formation of tube structures by 

cultured capillary endothelial cells [105]. Interestingly, recent studies have also showed a 

PTN-induced transdifferentiation of monocytes into functional EC suggesting a role for PTN 

in inflammation-mediated neovascularization [108] and its role in the recruitment of 

endothelial progenitor cells (EPC) during angiogenesis [107]. The hypotheses behind the first 

part of the project was that PTN could promote fast endothelialization of vascular grafts. The 

novelty of this research lays in the fact that the effects of PTN has been compared with the 
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ones exerted by SDF-1, a known pro-endothelialization factor that has been already used to 

improve/enhance the re-endothelialization of vascular grafts. We showed that, if compared 

to SDF-1, higher effects on the viability and migration ability of ECs were achieved with the 

use of PTN. The MTT Viability Assay and both the Wound Healing and Transwell Migration 

assay demonstrated the superiority of PTN on SDF-1 in promoting the viability and migration 

of the treated EA.hy926. Moreover, the results obtained by the analysis of two molecular 

markers, PCNA for proliferation and Rac-1 for migration, further demonstrated the beneficial 

effects exerted by PTN.  Interestingly, the analysis of the expression of PCNA and Rac-1 

suggests that PTN is able to exert these beneficial effects on endothelial cells even if its 

primary receptor, while RPTP β/ζ, is blocked or not available. This suggests that PTN can 

have more possibility to beneficially influence ECs compared to other pro-endothelialization 

factors. Thus, the results of this research can shed light on the properties of this cytokine, and 

on its possible application for vascular grafts endothelialization. 

4.2 Development of a DDS for the controlled release of PTN based on type 

I collagen  

4.2.1 Addition of Heparin to the collagen gel 

The protein structure of PTN has been analyzed with heteronuclear nuclear magnetic 

resonance (NMR) [77]. The analysis revealed that PTN contains two β-sheet domains closely 

related to the thrombospondin type I repeat (TSR) domain, which mediate different 

cell/extracellular matrix and cell/cell interactions. PTN, through these sites, can bind to 

heparin with high affinity [85]. In fact, additional studies identified the binding sites of 

heparin primarily within the β-sheet domains of the protein [301]. To enhance the binding of 

PTN to the collagen gels, we decided to add heparin. The addition of heparin to biomaterials 

for the controlled delivery of protein-based drugs, such as growth factors and cytokines has 

already been reported. These systems utilize the specific non-covalent interactions between 

heparin and the target molecule to stabilize immobilize it within a biomaterial matrix, thus 

protecting its biological activity, while slowing the diffusion from the matrix, thus mimicking 

the interaction naturally occurring with native ECM proteoglycans [144]. 

In this project, 3 different concentration of heparin (0,1; 0,25 and 0,5mg/ml) were added to 

the standard collagen gel recipe used in the LBB. After the addition of heparin, the collagen 
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gel mixes were poured in the wells of a 24-well plate then left to gelify for 1 hour at room 

temperature (RT). While the control gels gelified normally after 1 hour. However, the gels 

containing the three concentration of heparin did not. Even after 2 and 24 hours, still no 

gelification was observed with the heparin-containing gel mixes, that stayed in a liquid state. 

Two possible causes were thought for the non-gelification of the heparin-modified collagen: 

1) changes in the pH of the gel mix; 2) too high concentration of heparin in the mix. 

Following pH analyses on the different mixes (Figure A.2 of the Annex) that show no 

significant differences in the pH of the different gel preparations, the concentration of heparin 

was identified as the cause of the non-gelification of the gels. For the following experiments, 

the concentrations of heparin used were lowered to 10, 25 and 50µg/ml. As for the previous 

gels, gels were poured in a 24-well plate and left to gelify at RT for 1 hour. After 30 minutes 

of incubation, both the control and 10µg/ml heparin gels have gelified, while the 25 and 

50µg/ml have not. After 1 hour of incubation, the 25µg/ml heparin gels have correctly 

gelified. Again, the 50µg/ml heparin gel did not. Even after 2 and 24 hours of incubation, the 

gelification never happened. Considering the results of these preliminary experiments, we 

decided to work with the heparin concentration of 10µg/ml. 

4.2.2 Choice of cell lines as ECs model 

For the development of the collagen-based PTN release system, the choice for the cells to 

use in the experiments fell on the use of two primary cell lines, the human umbilical vein 

endothelial cells (HUVECs) and human umbilical artery smooth muscle cells (HUASMCs), 

both of them isolated in the LBB following an established ethical protocol [284]. This time, 

primary lines were chosen to perform the biological characterization experiments to better 

mimic in vitro the condition of heterogeneity found in the medical application of this kind of 

devices. Once established the effects of PTN in a more stable model, as done in the first part 

of the project, in Chapter 3 the effect of the system was investigated in an advanced model. 

While retaining the intrinsic simplicity of a 2-D cell culture model, this model was able to 

show a higher degree of complexity, thus a higher noteworthiness of the obtained results. 

4.2.3 Choice of PTN concentrations 

As for the first part of the project, a dose-response curve has been repeated also for the second 

part. The test was performed anew since, as previously described, the cellular model for the 
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ECs changed. Being the HUVECs used in the characterization of the release system primary 

cells, their response to the PTN treatment may have been different than the one obtained with 

the EA.hy926 cell line. As shown in Figure A.3 of the Annex, the concentration of 150ng/ml 

achieved the best results among the concentration tested, thus the choice to use it in the 

experiments. 

4.2.4 Performances of the heparin-modified collagen-based PTN controlled release 

system 

The aim of the second part of the project was to determine if the addition of Heparin to the 

standard formulation of a Type 1 collagen gel could affect its retention and release ability 

towards PTN, without modifying both 1) collagen gels mechanical properties; 2) the 

biological properties of PTN towards endothelial cells. The obtained results showed how the 

addition of heparin at the concentration of 10µg/ml to the collagen gel formulation currently 

used in the LBB, not only does not alter the mechanical properties and the structure of the 

collagen gel, but induce a controlled release of PTN over time, thus avoiding a burst of release 

during the first time-points and maintaining a constant release over time. Moreover, heparin 

seems to help in preserving the beneficial properties of PTN on endothelial cells viability. In 

fact, the released PTN was found to retain its ability to increase the viability and the migration 

ability of the treated HUVEC compared to the other conditions. Moreover, also the ECs 

seeded directly on the modified gels are beneficially influenced by the presence of PTN. 

Noteworthy, PTN seems to have no influence on the SMC. In fact, the beneficial effects 

exerted by PTN on HUVECs viability and migration ability were completely absent in 

presence of the HUASMCs. Therefore, the system developed seems to be specific for ECs 

and imply a possible role in limiting neointima hyperplasia. These results constitute a genuine 

novelty. They show that the pro-endothelialization effects of PTN mainly focus on the 

response of ECs, and not on the effects exerted on SMC. Moreover, hemocompatibility tests 

showed how the addition of heparin to the collagen gel formulation, both with or without 

PTN, resulted in an increase of the detected free hemoglobin, meaning a reduction of the 

thrombogenicity and a better hemocompatibility of the modified collagen gels. All these 

findings prompt the use of the developed PTN release system in cardiovascular applications 

for pro-endothelialization purposes. 
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Conclusion 

This project took place in a multidisciplinary atmosphere requiring notions in biology, 

biochemistry, biomaterials, biomechanics and bioengineering. The research was focused on 

the development of drug delivery system for the controlled release of Pleiotrophin with the 

aim of ameliorate the endothelialization performances of synthetic vascular grafts. Starting 

from a Type 1 collagen gel intended for tissue engineering purposes, and through the 

modification with heparin to increase the binding/release ability of the scaffold, this project 

allowed design of collagen gel easy to produce and able to significantly increase the 

proliferation and migration ability of endothelial cells, without stimulating the same effects 

in smooth muscle cells. The higher hemocompatibility resulting from the addition of heparin 

further increase the prospect of its use for vascular graft enrichment. 

Different perspectives are possible for these controlled release systems. One of the first steps 

will be the validation of the effects here reported in more complex model. To do so, the 

physiologically relevant model of the artery wall developed in the LBB will be used. This 

model of the arterial wall has characteristics close to those of a natural artery, displaying 

important mechanical and biological features, such as the complex interactions existing 

between different vascular cells types. This model could be adapted to the study of 

pathophysiological processes, such as neo-intima hyperplasia, and for validation studies of 

pharmacological molecules and medical devices, such as the developed PTN release system. 

This model will definitely be of great use for the validation of the PTN release system to be 

an effective strategy for the induction of the endothelialization process and the limitation of 

smooth muscle cells-related pathologies affecting the human cardiovascular system. 
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Annexes 

A.1 Pleiotrophin dose/response curve on EA.hy926 cells 

The response of the EA.hy926 cells to different concentrations of pleiotrophin (PTN) was 

analyzed using the MTT Assay. EA.hy926 cells were seeded at a density of 25000 cell/cm2 

in 96 well culture plates (5 wells for each condition). After an overnight incubation at 37°C 

in a saturated atmosphere at 5% CO2, cells were treated respectively with: 1) C-D-MEM (D-

MEM with 10% FBS, 100U/ml penicillin, 100U/ml streptomycin and 2mM L-glutamine) 

(CTRL); 2) C-D-MEM enriched with 10ng/ml PTN; 3) C-D-MEM enriched with 50ng/ml 

PTN and 4) C-D-MEM enriched with 100ng/ml PTN. After 24 hours, 3 and 7 days, cells 

were incubated with the MTT reagent for 3 hours at 37°C. After the incubation, the formazan 

product obtained by the reduction of MTT reagent by the way of the mitochondrial activity 

was solubilized using dimethyl sulfoxide. Than the absorbance at 570 nm was measured with 

a SpectraCount Absorbance microplate reader (Packard, Connecticut, USA). Absorbance is 

proportional to cell viability.  

 
 
Figure A.1: Pleiotrophin dose/response curve on EA.hy926 cells. Ea.hy926 cells were treated up to seven days 

with: C-D-MEM (CTRL); C-D-MEM enriched with 10 ng/ml PTN (PTN 10ng/ml); C-D-MEM enriched with 

50 ng/ml PTN (PTN 50ng/ml), C-D-MEM enriched with 100 ng/ml PTN (PTN 100ng/ml). Cell viability was 

measured after 24 hours, 3 and 7 days with MTT Assay. The graphic shows the mean absorbance recorded for 

each condition. * p<0.001 vs. 24 hours CTRL and p<0.05 vs 24 hours PTN 10nh/ml; ** p<0.001 vs. 3 days 

CTRL; # p<0.01 vs. 3 days PTN 10ng/ml; ***p<0.001 vs. 7 days CTRL; § p<0.05 vs. PTN 10ng/ml. 

 
 

A.2 Heparin-modified collagen gels pH analysis 

The pH of the different gel concentration was measured in order to assess if a possible 

difference in the pH values was responsible for the non gelification of the collagen gels. 

Briefly, type I collagen was extracted from rat tails tendons and subsequently solubilized in 

0.02 N acetic acid to obtain a final collagen concentration of 4 g/L. For the preparation of the 
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collagen gel, the collagen solution has been mixed with a buffer solution containing 

Dulbecco’s modified Eagle medium (DMEM), NaOH (15 mM), and HEPES (20 mM) in 

deionized water to adjust the pH of the final solution and to initiate the polymerization 

process. M199 culture medium was then added to complete the basic composition of the 

control collagen gel (CTRL Gel). For the heparin-modified collagen gels, heparin sodium 

salt has been added to the M199 portion of the collagen gel mix to obtain the final 

concentrations of 0.1 0.25 and 0.5 mg/ml (H 0.1, H 0.25 and H 0.5 Gels). After mixing, the 

pH value of each solution was measured using an Accumet® pH meter 25 (Fisher Scientific, 

Fair Lawn, NJ, USA). Readings were performed in triplicate on three different experiments. 

 
Figure A.2: pH measurements. The graphic shows the results of the pH measurements performed on the 

different collagen gel preparations: control collagen gel (CTRL gel); CTRL gel containing 0.1mg/ml heparin 

(H 0.1); CTRL gel containing 0.25mg/ml heparin (H 0.25); CTRL gel containing 0.5mg/ml heparin (H 0.5). 

As shown in Figure A.2, no significant differences were noted among the different 

conditions. 

A.3 Pleiotrophin dose/response curve on HUVECs 

The response of HUVECs to different concentrations of PTN was analyzed using a resazurin-

based viability assay. Briefly, HUVECs cells were seeded at a density of 20000 cells/cm2 in 

96 well culture plates (5 wells for each condition). After an overnight incubation at 37°C in 

a saturated atmosphere at 5% CO2, cells were treated respectively with: 1) HUVEC-M199 

(M199 culture medium with 5% FBS, 1100U/ml penicillin, 100U/ml streptomycin, 2ng/ml 

FGF, 1 ng/ml EGF, 1 µg/ml ascorbic acid and 1 µg/ml hydrocortisone) (CTRL); 2) HUVEC-

M199 enriched with 50ng/ml PTN; 3) HUVEC-M199 enriched with 100ng/ml PTN; 4) 

HUVEC-M199 enriched with 150ng/ml PTN; 5) HUVEC-M199 enriched with 250ng/ml 

PTN and 6) HUVEC-M199 enriched with 500ng/ml PTN. After 24 hours, 3 and 7 days, cells 

have been incubated with a resazurin salt solution for 4 hours. After the incubation, the highly 
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fluorescent resorufin product obtained by the reduction of the resazurin was collected and 

fluorescence intensity at a 545 nmex/590 nmem wavelength was measured with a SpectraMax 

i3x Multi-Mode Plate Reader (Molecular Devices, San Jose, California, USA). Fluorescence 

intensity is proportional to cell viability. 

 
Figure A.1: Pleiotrophin dose/response curve on HUVECs. Cells were treated up to seven days with HUVEC-

M199 (CTRL); HUVEC-M199 enriched with 50 ng/ml PTN (PTN 50ng/ml); HUVEC-M199 enriched with 100 

ng/ml PTN (PTN 100ng/ml), HUVEC-M199 enriched with 150 ng/ml PTN (PTN 150ng/ml), HUVEC-M199 

enriched with 250 ng/ml PTN (PTN 250ng/ml), HUVEC-M199 enriched with 500 ng/ml PTN (PTN 500ng/ml). 

Cell viability was measured after 24 hours, 3 and 7 days with resazurin salt viability assay. The graphic shows 

the mean fluorescence recorded for each condition. * p<0.01 vs. 3 Days CTRL; ** p<0.05 vs. 3 Days CTRL; 

***p<0.01 vs. 7 Days CTRL. 


