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Abstract

In this research, we develop a new discrete-time model approach with flexibly changeable driving

dynamics for pricing Asian options, with possible early exercise, and a fixed or floating strike

price. These options are ubiquitous in financial markets but can also be recast in the framework

of real options. Moreover, we derive an red accurate lower bound to the price of the European

Asian options under stochastic volatility. We also survey theoretical aspects; more specifically,

we prove that our tree method for the European Asian option in the binomial model is uncondi-

tionally convergent to the continuous-time equivalent. Numerical experiments confirm smooth,

monotonic convergence, highly precise performance, and robustness with respect to changing

driving dynamics and contract features.

Keywords: finance, discrete-time model, tree method, Asian option, early exercise, stochastic

volatility

1. Introduction

Tree approaches are classic all-purpose tools in fields of finance and operations research. For

example, Muroi and Suda (2013) have combined with discrete Malliavin calculus to compute

price sensitivities. In addition, the modelling of operational problems sharing salient features

with the modelling of options with early exercise opportunities has been highlighted via several

researches; (e.g., see Nadarajah et al., 2017 and references therein). More specifically, Zmeškal

(2010) has fused with real American options, as trees are a standard practical method for

appraising options with possible early exercise (see also Chockalingam and Muthuraman, 2015

for likely alternatives) and handling management decisions, and a fuzzy methodology in order

to allow for vagueness of the input parameters. De Reyck et al. (2008) used decision trees

to model uncertainty in projects. In general, real options are usually evaluated on trees as

they tend to be more understandable and transparent (see, for example, Guthrie, 2009). Other

earlier contributions include, for example, Ekvall (1996) who developed a lattice approach for

valuing multivariate contingent claims that could handle American-type exercise.

Asian options are among the most popular path-dependent options actively traded in fi-

nancial markets, such as exchange rates, interest rates and commodities, due to their appealing

payoffs dependent on the averages of underlying asset prices during a pre-specified time window.
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They can be used to hedge thinly traded assets over a certain period of time. Also, due to av-

eraging, their payoff is less susceptible to market manipulations at maturity compared to plain

vanilla options. More importantly, the application of Asian options to investment and manage-

ment problems (real options) receives increasing attention in the literature (see, for example,

Driouchi et al., 2010) which motivates this paper.

More specifically, we revisit the long-standing problem of valuing non-linear derivatives

contingent on the arithmetic average and provide several advances. We can distinguish between

arithmetic average options, with a fixed or floating strike price, and with European or American-

type exercise. The distribution of the underlying arithmetic average asset price is not known.

For this reason, exact closed-form solutions for pricing arithmetic Asian options are inexistent,

however numerical methods can be employed to solve the pricing problem.

Papers in the literature on pricing Asian options adopt, for example, transform techniques,

analytical approximations based on moment matching, Monte Carlo simulation and partial

differential equations (PDEs); it is beyond our scope to provide a repetitorium, rather we

refer to Fusai and Kyriakou (2016) for more details. Despite the overwhelming volume of the

literature on Asian options, the state of affairs for them is still quite not complete. Our aim is

to contribute to their already well-publicized success by developing reliable approaches suitable

for new practices, such as model calibration and real option applications.

Pricing American options with Asian features is hard, especially under general driving dy-

namics. To this end, we resort to a discrete-time model approach. Commonly, trees offer a

convenient way of visualizing simplified models of stochastic dynamics for the underlying asset

price, which makes them attractive for pedagogical purposes and computation of derivative

prices. They are easy to explain and implement and are described virtually in every textbook

on derivatives.

Evaluating arithmetic average options in a discrete-time model can be quite cumbersome

as the number of alternative average realizations grows fast with the number of time steps.

Hull and White (1993) circumvent this by pricing the option for only certain designated values

of the average at each level in the lattice, using linear interpolation to estimate the option

price at the other average values. Facing the same challenge, Chalasani et al. (1998) adapt

instead the lower bound of Rogers and Shi (1995) in the binomial model and combine with

interpolation. Chalasani et al. (1999) additionally allow for early-exercise provision. Other

contributions with early-exercise feature are limited, for example, to floating strikes (see Hansen

and Jørgensen, 2000) or, to lognormal price dynamics (e.g., see Zvan et al., 1998), or incur

notable speed-accuracy imbalances (e.g., see Ritchken et al., 1993). Lo et al. (2008) extend

the model of Chalasani et al. (1998) by considering higher moments of the underlying asset

return distribution and apply an Edgeworth binomial lattice. On the other hand, Reynaerts

et al. (2006) adhere to an alternative bound-based approach by putting in less information

than Chalasani et al. (1998), implying some loss of accuracy but improvement of computational

ease. Neave and Ye (2003) derive bounds by combining paths and exploiting the structural

information in the binomial trees to simplify computations. Succinctly, amidst others, the

aforementioned contributions rely on path grouping and approximation techniques and bounds,

which represent their main sources of error and drawback, in addition to model restriction for

the underlying state variable. Instead, we do pricing on a magic tree in the sense that we do
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not require explicit access to paths, but rather only their distributional properties which allows

us to obviate any kind of approximation and computational challenge. Also, as access to paths

is not imminent, the computational burden is not affected despite the fact that the tree does

not recombine; furthermore, the computational effort reduces perceptibly by exploiting state

space reduction.

The work in this paper is concerned with several overarching themes. We propose a discrete-

time model approach for Asian options of European or American exercise, with a fixed or floating

strike price, in a one or two-dimensional setting depending on the contract type and the asset

price process as we summarize in Table 1 and we explain in the paper. Our technique is

precise, simple and easily adaptable to a general class of discrete-time models that are able to

reproduce stylized properties of the asset prices in the various markets, such as random jumps

and/or stochastic volatility, while maintaining excellent convergence properties. As a case in

point, we prove the convergence of the European Asian option price in the binomial model of

Cox et al. (1979) to the continuous-time equivalent, while we demonstrate smooth, monotonic

convergence by means of several numerical examples under alternative driving dynamics.

The remainder of the paper is organized as follows. In Section 2, we present our discrete-

time model framework and exemplify some specifications, with extended details given in the

appendix. In Section 3, we propose our novel tree approach for pricing arithmetic Asian options

with different payoff structures and possible early exercise. In Sections 4 and 5, we focus on

the specific treatment of models with stochastic volatility. Section 6 presents the proof of

the consistency of our method with a PDE approach and a study of the convergence of the

proposed methods to the continuous-time model. In Section 7, we provide various numerics

that demonstrate the accuracy and scale of applicability of our methods. Section 8 concludes

the paper. Extended option payoff structures and supporting theoretical results are collected

in additional appendices.

2. The discrete-time model

In a N -period discrete-time model, the time period [0, T ] is partitioned into N equal time

steps of length ∆ := T/N . The price of the underlying asset under the risk neutral probability

P at arbitrary time n∆ ≤ T is given by

Sn = S0e
∑n
j=0 ξj , (1)

where ξ0 := 0 and {ξj}Nj=1 is a sequence of discrete random variables with probability distribu-

tion

ξj :=


lnx1 p1(Yj−1)

lnx2 p2(Yj−1)
...

...

lnxd pd(Yj−1)

, (2)

d∑
i=1

pi(Yj−1) = 1,
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where x1 > x2 > ... > xd and {Yj}Nj=1 is a (possibly multi-dimensional) Markov process. In

particular, we consider three classes of models:

Model 1. lnS is an independent increment process (e.g., a discrete-time analogue of a Lévy

process), in which case the distribution of ξj does not depend on Yj , i.e., pi(Yj−1) = pi

for each j = 1, ..., N and i = 1, ..., d. This is, for example, the case of the binomial

model of Cox et al. (1979) and the bivariate tree model of Hilliard and Schwartz

(2005), although various alternative lattice specifications are encompassed, such as

Jarrow and Rudd (1983), Boyle (1988), Omberg (1988), Amin (1991) and Tian (1993).

Model 2. S is a one-dimensional diffusion with Yj := Sj for each j = 1, ..., N . This class of

one-dimensional diffusion models nests a variety of popular asset pricing models, such

as exponential Ornstein–Uhlenbeck, Brennan–Schwartz, Cox–Ingersoll–Ross and the

constant elasticity of volatility (CEV) models (see Cai et al., 2014). In this paper,

we consider in more details the binomial lattice model approach of Hilliard (2014)

applied to the CEV model.

Model 3. S has stochastic variance V and Yj := (Sj , Vj). Here, we study the two-dimensional

binomial lattice of Akyıldırım et al. (2014) applied to the Heston model.

In Appendix A, we put under the microscope each of the models above separately, present

class-specific constructions and narrow down to model-specific cases to facilitate the exposition.

In the above models, absence of arbitrage follows by imposing that the risk neutral process

e−rn∆Sn is a martingale, where r is the continuously compounded risk-free rate of interest. The

parameters of the discrete distribution are chosen so that the required moments either match

exactly those of the continuous distribution, or in the limit as ∆→ 0, so that the discrete-time

Markov chain converges weakly to the continuous-time stochastic model. We can generalize

further by taking into account deterministic time-inhomogeneities: the parameters describing

the local behaviour will now be time-dependent but non-random. Thereby, construction (1)–(2)

represents a flexible parametric and tractable family of models, depending on the choice of {ξj},
that is able to reproduce the whole range of option prices across strikes and maturities.

3. Tree approach for arithmetic Asian options

In this section, we present a tree method for pricing Asian options of European or American-

style exercise, with fixed or floating strike price. Our result covers all possible variations of

this contract in terms of payoff specification, option exercise and monitoring frequency of the

underlying, in a general and practically useful model framework. We also expand to the cases

of a forward start option and an Asian option with a fixed finite monitoring frequency (details

are deferred to Appendix B and Appendix C). In what follows, we consider different cases

separately.

3.1. European fixed strike option

The payoff at maturity T = N∆ of an Asian call option with fixed strike has form(∑N
n=0 Sn
N + 1

−K

)+

=

(∑N
n=0 Sn∆

T + ∆
−K

)+

,
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where (·)+ denotes the positive part function, K is the strike price and Sn is given by (1).

Define the process Z as

Zj =

∑j
n=0 Sn∆−K(T + ∆)

Sj
=
Zj−1

eξj
+ ∆, 0 < j ≤ N, (3)

where the second equality follows from (1). By recursive substitution, we get that

ZN = Zj
∏N

k=j+1
e−ξk + ∆

∑N−1

i=j+1

∏N

k=i+1
e−ξk + ∆. (4)

The (forward) price of the option is then given by

E
(
SNZ

+
N

)
T + ∆

=
S0e

rT

T + ∆
Ē
(
Z+
N

)
, (5)

where Ē(·) is the expected value under the new measure P̄ with the numéraire given by the

underlying asset price S.1 The Radon–Nikodym derivative is given by

dP̄
dP

∣∣∣∣
n

=
Sn

S0 er n∆
,

and the probability distribution of ξj under P̄ is given by

p̄n(Yn−1) = pn(Yn−1)
Sn

S0 er n∆
.

Results (3)–(4) imply that (5) can be evaluated recursively backwards from maturity. To

this end, we build truncated ranges for z at each time step j, [zL,j , zU,j ], zL,j ≤ 0 ≤ zU,j . From

(5), we set zL,N = 0 and by reversing recursion (3) we get for the lower cut-off point

zL,j−1 = (zL,j −∆)x1, 0 < j ≤ N, (6)

noting that zL,j < 0 for j < N , where x1 is the largest one-period return value (see equation 2).

If Z0 ≥ 0, then from the inverse relation (3), we have that Zj > 0 for any 0 ≤ j ≤ N and the

option is eventually exercised for sure. Hence, we set zU,0 = 0, and from (3) we get by forward

propagation in time

zU,j =
zU,j−1

xd
+ ∆, 0 < j ≤ N, (7)

where xd is the smallest one-period return value yielding the upper cut-off range point. If

Z0 < zL,0, then ZN < 0 and the option expires out-of-the-money surely. Following the previous

analysis, we define

c (y, z,N) = z+, (8)

c (y, z, j) =


zµ̄j + ∆ for z > zU,j∑d

i=1 p̄i(y) c
(
Yj+1,

z
xi

+ ∆, j + 1
)

for zL,j < z < zU,j

0 for z < zL,j

(9)

1For a general treatment of change of numéraire techniques, readers are referred to Geman et al. (1995).
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for 0 ≤ j < N , where µ̄j = Ēj−1(e−ξj ), {p̄i(y)}di=1 is the probability distribution of ξj under

the measure P̄ and Yj+1 = Yj+1(y, xi). In Model 2 for example, where Y = S, we have that

Yj+1(y, xi) = y xi. The forward price of the option is then given by

S0e
rT

T + ∆
c

(
Y0,∆−

K

S0
(T + ∆), 0

)
.

Note that, in Model 1, recursion (9) does not depend on y, hence it reduces to a one-

dimensional non-recombinant tree. In Model 2, we have a two-dimensional tree, which is re-

combinant in Y (but not in Z). In Model 3, we end up with a three-dimensional tree, which is

computationally demanding; for this, we propose a two-dimensional alternative lattice method

and a lower bound for stochastic volatility models, whose discussion is postponed to Sections 4

and 5.

Back to our discussion of recursion (9), we implement, for computational convenience equally

spaced grids for z at each time step j: zj := {zm,j}nz−1
m=0 , where zm,j := zL,j +mδz. Note that,

in general, if zm,j is a grid point, it is not guaranteed that zm,j/xi+ ∆ (see equation 9) will also

be, as the tree model for Z does not recombine. More specifically, if

zm,j
x

+ ∆ ∈
(
zL,j+1 +mx

j+1δz, zL,j+1 +
(
mx
j+1 + 1

)
δz
)
, x = x1, x2, ..., xd,

where

mx
j+1 :=

⌊
zm,j/x+ ∆− zL,j+1

δz

⌋
,

b·c denoting the floor function, then, in practice, c (y, zm,j/x+ ∆, j + 1) can be obtained by

interpolation; we opt for linear interpolation. For a twice differentiable function c(y, z, j+ 1) in

z, for each value of y and j, and bounded second derivative,

c
(
y,
zm,j
x

+ ∆, j + 1
)

= αxj+1c
(
y, zL,j+1 +mx

j+1δz, j + 1
)

+
(
1− αxj+1

)
c
(
y, zL,j+1 +

(
mx
j+1 + 1

)
δz, j + 1

)
+ γxj+1, (10)

where

αxj+1 :=
zL,j+1 +

(
mx
j+1 + 1

)
δz − zm,j/x−∆

δz

and the error is given by

γxj+1 :=
1

2

∂2c(y, z∗mxj+1
, j + 1)

∂z2

(zm,j
x

+ ∆− zL,j+1 −mx
j+1δz

)(
zL,j+1 + (mx

j+1 + 1)δz − zm,j
x
−∆

)
for some z∗mxj+1

∈
(
zL,j+1 +mx

j+1δz, zL,j+1 +
(
mx
j+1 + 1

)
δz
)

. From (9) and (10), we get that

the accumulated interpolation error at time step j and node m is

εm,j :=
d∑
i=1

p̄i(y)
[
αxij+1εmxij+1,j+1 + (1− αx1

j+1)εmxij+1+1,j+1

]
+

d∑
i=1

p̄i(y) γxij+1. (11)
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The norm of the interpolation error is given by

‖εj‖ := max
y

max
m
|εm,j | . (12)

Also, ∣∣γxj+1

∣∣ ≤M (δz)2 , (13)

where

M = max
y

max
j

max
m

∣∣∣∣∂2c(y, z∗m, j + 1)

∂z2

∣∣∣∣ .
From (12) and (13), recursion (11) becomes

‖εj‖ ≤ ‖εj+1‖+M (δz)2 ,

and, at time zero,

‖ε0‖ ≤ ‖εN‖+NM (δz)2 =
TM (δz)2

∆

as the terminal payoff is evaluated exactly. Hence, if (δz)2 has a larger order than ∆, i.e.,

δz <
√

∆, (14)

the norm of the accumulated interpolation error converges to zero as ∆→ 0.

3.2. American fixed strike option

An American option can be exercised before maturity. For this, it is necessary to re-define

the process Z based on weights 1/(j + 1) for arbitrary j:

Zj =

1
j+1

∑j
n=0 Sn

Sj
=

j

j + 1

Zj−1

eξj
+

1

j + 1
, 0 ≤ j ≤ N. (15)

The original recursion (8)–(9) is adapted for (15) and the early-exercise feature leading to the

following recursion

c̃ (y, z,N) :=

(
z − K

S

)+

,

c (y, z, j) :=
d∑
i=1

p̄i(y) c̃

(
Yj+1,

j + 1

j + 2

z

xi
+

1

j + 2
, j + 1

)
, 0 ≤ j < N

c̃ (y, z, j) := max

(
c (y, z, j) , z − K

S

)
, 0 ≤ j < N, (16)

where in (16) the holder chooses between the continuation value and the exercise payoff of the

option. c̃ is the value of the option immediately before the exercise opportunity. At the end of

the recursion, the forward price of the option is given by

S0e
rT c (Y0, 1, 0) .
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By explicit dependence of the terminal payoff on S = Y , the pricing problem remains two-

dimensional even under the simplest Model 1.

3.3. floating strike option

For the case of an Asian option with a floating strike price, we adhere to the definition of

Z in (15). Then, pricing the particular option of European put type with coefficient K̄ ≥ 0

amounts to calculating

E
[
SN
(
ZN − K̄

)+]
= S0e

rT Ē
[(
ZN − K̄

)+]
= S0e

rT c (1, 0)

recursively backwards based on

c (y, z,N) =
(
z − K̄

)+
, (17)

c (y, z, j) =

d∑
i=1

p̄i(y) c

(
Yj+1,

j + 1

j + 2

z

xi
+

1

j + 2
, j + 1

)
, 0 ≤ j < N. (18)

In the case of the American-type option, the holder chooses between the continuation value

and the early-exercise payoff of the option

c̃ (y, z, j) = max
(
c (y, z, j) , z − K̄

)
, 0 ≤ j < N,

where

c (y, z, j) =

d∑
i=1

p̄i(y) c̃

(
Yj+1,

j + 1

j + 2

z

xi
+

1

j + 2
, j + 1

)
, 0 ≤ j < N,

initialized by

c̃ (y, z,N) =
(
z − K̄

)+
.

It is worth noting that, by nature of the payoff of the floating strike Asian option, S is factorized

out and, by change of measure, the pricing problem becomes one-dimensional for both European

and American options under Model 1.

4. Tree method for arithmetic Asian options and stochastic volatility

The discrete-time stochastic volatility model proposed in Akyıldırım et al. (2014) combined

with the method proposed in the previous section leads to a three-dimensional tree that is

computationally quite unmanageable. Hence, we propose a two-dimensional recombinant tree

method for European and American floating strike Asian options; the fixed strike case is treated

separately in the next section. Consider the asset price process S with stochastic variance V

defined by the stochastic differential equations (A.3). For the sake of exemplification, we focus

here on the Heston model specification (A.4). We revisit the continuous-time variable Z(t)

defined in Rogers and Shi (1995),

Z(t) =
1

t

∫ t
0 S(u)du

S(t)
. (19)
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Additionally, we employ the change of variable

X(t) =
lnZ(t)√

V0
+ ρ

V (t)

η
, (20)

ν(t) =
2

η

√
V (t), (21)

that leads to a transformed system of stochastic differential equations driven by independent

Brownian motions. The dynamics of X and ν under the measure P̄ are described by

dX(t) = µX(X(t), ν(t), t) dt+ σX(ν(t)) dW̄ (t),

dν(t) = µν(ν(t)) dt+ dB̄(t),

where W̄ and B̄ are independent Brownian motions and

µX(x, ν, t) :=
1

t
√
V0

(
e−
√
V0 (x− ρη

4
ν2) − 1

)
− 1√

V0

(
r +

1

2

η2ν2

4

)
+
ρ

η

(
kv̄ + (ρη − k)

η2ν2

4

)
,

σX(ν) :=
η ν
√

1− ρ2

2
√
V0

,

µν(ν) :=
2kv̄/η2 − 1/2

ν
− 1

2
(k − ηρ) ν.

Then, we apply a two-stage tree approach to ν and X. More specifically, from Hilliard (2014)

we get for ν(t)

νn = ν0 +

n∑
j=1

ζj ,

where

ζj :=

{ √
∆, pj = 1/

(
1 + e−2 µν(νj−1)

√
∆
)

−
√

∆, 1− pj
,

and from Akyıldırım et al. (2014) we get for X(t)

Xn = X0 +

n∑
j=1

κj + αnκn, (22)

where

κj :=

{ √
∆, qj(Xj−1, νj−1)

−
√

∆, 1− qj
.
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The coefficients {αj} and the probabilities {qj} are chosen by matching the first two moments

of the continuous-time distribution of the increment of X, i.e.,

Ēj−1(κj) = µX(Xj−1, νj−1, j − 1) ∆ + o(∆),

Ēj−1(κ2
j ) = σ2

X(νj−1)∆ + o(∆).

The normalization of the variable lnZ(t) by
√
V0 allows us to control the explosive behaviour of

µX(x) for x→ −∞ and, hence, to guarantee that the probabilities {qj} fall in the range [0, 1].

Moreover, we note that ζj and κj are independent, hence, for example, the joint probability

of an upward movement of both X and ν is given by the product qj pj . Therefore, floating

strike Asian options are priced through the following recursion

c(x, ν,N) =
(

exp
(√

V0 (x− ρη

4
ν2)
)
− K̄

)+

c(x, ν, j) = qj+1 pj+1 c(x+
√

∆, ν +
√

∆, j + 1)

+ qj+1 (1− pj+1) c(x+
√

∆, ν −
√

∆, j + 1)

+ (1− qj+1) pj+1 c(x−
√

∆, ν +
√

∆, j + 1)

+ (1− qj+1) (1− pj+1) c(x−
√

∆, ν −
√

∆, j + 1), (23)

for 0 ≤ j < N . Note that in (23) interpolation is not required. Finally, the price at time zero is

given by c(X0, ν0, 0). Recursion (23) can be adapted to the early exercise feature by replacing

c by its continuation value.

The method presented in this section is not applicable to fixed strike Asian options.2

5. Lower bound for arithmetic Asian options with stochastic volatility model

In light of the limitation of the approach presented in the previous section under stochastic

volatility (Model 3), in what follows we propose a lower bound for prices of European Asian

options with a fixed or floating strike in the stochastic volatility model framework shown in

Appendix A.3.

5.1. fixed strike option

The idea for the derivation of a price bound stems from Fusai and Kyriakou (2016). More

specifically,

LB(λ) ≤ E
[
(AN −K)+] , (24)

where

AN :=

∑N
n=0 Sn
N + 1

, (25)

LB(λ) := E
[
(AN −K) 1{GN>λ}

]
, (26)

2The reason is that the relevant variable Z proposed by Rogers and Shi (1995) for this type of option,

Z(t) =
∫ t
0 S(u)du−KT

S0
, is not positive, hence the transformation (20) cannot be used. The transformation is

necessary, otherwise using directly the variables Z and V the recursion for fixed strike options performs very
poorly.
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and

GN :=

∑N
n=0 lnSn
N + 1

.

The replacing exercise-triggering event {GN > λ} and the actual {AN > K} relate closely

aiming to minimize the distance between the lower bound and the true option price, while, at

the same time, making the problem more analytically tractable compared to the original one.

We adopt here the asset price dynamics with variance factor process V by Akyıldırım et al.

(2014), i.e.,

Sn = S0e
∑n
j=1 ξj+αnξn , (27)

where

ξj =

{ √
∆, pj

−
√

∆, 1− pj
.

The coefficients {αj} and the probabilities {pj} for j = 1, ..., N are given by

αj =
σ2
S(Vj−1)− 1

2
,

pj =
exp

(
r∆ +

√
∆αj−1ξj−1

)
− exp

(
−
√

∆(1 + αj)
)

exp
(√

∆(1 + αj)
)
− exp

(
−
√

∆(1 + αj)
) .

where σS(·) is as in (A.4). From (27),

GN = lnS0 +
N∑
j=0

(
1− j

N + 1

)
ξj +

1

N + 1

N∑
j=1

αjξj . (28)

The lower bound (26) is given in terms of the Fourier inversion formula (see Goldberg, 1961,

Theorem 5C)

LB(λ) =
e−δλ

2π

∫
R
e−iuλΦ(u; δ)du, (29)

where the constant δ > 0 ensures integrability and the Fourier transform is given by

Φ(u; δ) :=

∫
R
eiuλ+δλ

{
1

N + 1

∑N

n=0
E
[
(Sn −K) 1{GN>λ}

]}
dλ

=
Siu+δ

0

iu+ δ

{
S0

N + 1

∑N

n=0
E
[
e
∑n
j=0 ξj+αn ξn+i(u−iδ)

∑N
j=0

(
1−

j−αj
N+1

)
ξj

]
−KE

[
e
i(u−iδ)

∑N
j=0

(
1−

j−αj
N+1

)
ξj

]}
=

Siu+δ
0

iu+ δ

{
S0

N + 1

∑N

n=0
Ψ(−iw1,n, . . . ,−iwN,n)−KΨ(−iv1, . . . ,−ivN )

}
, (30)

where the second equality follows from expressions (1) and (28), and

Ψ(u1, . . . , uN ) := E
(
ei
∑N
j=1 uj ξj

)
(31)

is the joint characteristic function of the random variables {ξj}Nj=1. The characteristic function

Ψ can be calculated by backward recursion. We define the conditional characteristic function

ϕn = En
(
ei
∑N
j=n uj ξj

)
.

11



Starting from

ϕN = eiuN ξN ,

we calculate for each of n = 1, ..., N

ϕn−1 = En−1

(
eiun−1 ξn−1 ϕn

)
yielding eventually Ψ = ϕ0. The coefficients {vj} and {wj,n} are given by

vj := i(u− iδ)
(

1− j−αj
N+1

)
, 0 < j ≤ N ,

wj,n :=


1 + vj , 0 < j < n

1 + αj + vj , j = n

vj , n < j ≤ N
.

Varying the free parameter λ in (26) leads to different lower bounds; we denote by λ∗ the

maximizer of (26):

λ∗ := arg max
λ

LB(λ).

This satisfies the optimality condition

E (AN |YN = λ∗) = K. (32)

5.2. floating strike option

The case of the floating strike Asian option is dealt with similarly with an additional change

of numéraire given by the underlying S. In particular,

E
[(
AN − K̄SN

) +
]

= S0e
rT Ē

[(
ANS

−1
N − K̄

)+]
,

and

LB(λ) = Ē
[(
ANS

−1
N − K̄

)
1{GN−lnSN>λ}

]
≤ Ē

[(
ANS

−1
N − K̄

)+]
,

where GN is given by (28). The lower bound is given from the Fourier transform representation

(29) with

Φ(u; δ) =
1

iu+ δ

{
1

N + 1

∑N

n=0
Ē
[
e−
∑N
j=n+1 ξj−αnξn−i(u−iδ)

∑N
j=0

j−αj
N+1

ξj

]
− K̄Ē

[
e−i(u−iδ)

∑N
j=0

j−αj
N+1

ξj

]}
=

1

iu+ δ

{
1

N + 1

∑N

n=0
Ψ̄(−iw1,n, . . . ,−iwN,n)− K̄Ψ̄(−iv1, . . . ,−ivN )

}
,

where

Ψ̄(u1, . . . , uN ) = E
(
e−rN∆+i

∑N
j=1(uj−i)ξj

)
,

vj = −i(u− iδ) j−αjN+1 , 0 < j ≤ N ,

wj,n =


vj , 0 < j < n

vj − αj , j = n

vj − 1, n < j ≤ N
.

12



We note that the lower bounds for fixed and floating strike options can be adapted to Models

1 and 2. More details can be made available by the authors upon request, including an upper

bound for the error of this lower bound price approximation.

6. Relationship with continuous-time diffusion model

In this section, we focus on the application of our tree method for pricing a European Asian

option with a fixed strike price based on the construction in Section 3.1 in the binomial model

setting of Cox et al. (1979) (see Appendix A.1). In what follows, we prove that our method is

consistent with the PDE of Rogers and Shi (1995). This is important as we show that our tree

method overcomes the well-known instability of Rogers and Shi (1995) PDE numerical schemes

when the volatility is low (see Barraquand and Pudet, 1996 and Dubois and Leliévre, 2005). In

fact, we prove the unconditional convergence of our method later in Section 6.2 in the diffusion

model case and we demonstrate the convergence of the method via extensive numerical tests

for the other models.

6.1. Discrete-time model and PDE consistency

Consider the PDE
∂c

∂t
+ Gc = 0, (33)

where c(z, t) is a sufficiently smooth function, G the differential operator

G := (1− rz) ∂

∂z
+

1

2
σ2z2 ∂

2

∂z2
,

and the relevant boundary condition is

c(z, T ) = z+.

The solution of (33) satisfies

c

(
−KT
S0

, 0

)
=
e−rT

S0
E

[(∫ T

0
S(t)dt−KT

)+
]
,

when S(t) is represented by the geometric Brownian motion.

Proposition 1. For any sufficiently smooth function c(z, t),

lim
∆→0

G∆c− c
∆

=
∂c

∂t
+ Gc,

where the differential operator G is defined in (33) and we additionally define the operator

G∆c(z, t) = p̄c

(
z

x1
+ ∆, t+ ∆

)
+ (1− p̄)c

(
z

x2
+ ∆, t+ ∆

)
from (9).3

3Compared to (9), we have here accentuated, by slightly abusing the original notation, the dependence on
time t.
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Proof. From the Taylor expansion

c
( z
x

+ ∆, t+ ∆
)

= c(z, t) +
∂c(z, t)

∂t
∆ +

∂c(z, t)

∂z

[
z

(
1

x
− 1

)
+ ∆

]
+

1

2

∂2c(z, t)

∂z2

[
z2

(
1

x
− 1

)2

+ 2z

(
1

x
− 1

)
∆

]
+ o(∆),

we obtain

G∆c(z, t)− c(z, t) =
∂c(z, t)

∂t
∆ +

∂c(z, t)

∂z

[
zp̄

(
1

x1
− 1

x2

)
+ z

(
1

x2
− 1

)
+ ∆

]
+

1

2

∂2c(z, t)

∂z2

[
z2p̄

(
1

x1
− 1

)2

+ z2(1− p̄)
(

1

x2
− 1

)2

+2zp̄

(
1

x1
− 1

x2

)
∆ + 2z

(
1

x2
− 1

)
∆

]
+ o(∆).

Using the expansions

p̄

(
1

x1
− 1

x2

)
+

1

x2
− 1 = −r∆ + o(∆),

p̄

(
1

x1
− 1

)2

+ (1− p̄)
(

1

x2
− 1

)2

= σ2∆ + o(∆),

p̄

(
1

x1
− 1

x2

)
∆ +

(
1

x2
− 1

)
∆ = o(∆),

we further obtain

G∆c(z, t)− c(z, t) =

(
∂c(z, t)

∂t
+ (1− rz) ∂c(z, t)

∂z
+

1

2
σ2z2∂

2c(z, t)

∂z2

)
∆ + o(∆),

hence the proposition is proved.

From Proposition 1, we conclude that our discrete-time option price model approach is

consistent with the PDE proposed by Rogers and Shi (1995). As highlighted, for example, in

Dubois and Leliévre (2005), applying a standard finite difference scheme to this PDE results

in instability for low volatility. On the contrary, we prove using probabilistic arguments in the

next section that, for a fixed strike Asian option in the Cox et al. (1979) model, our method

is unconditionally convergent. If we take into account also the interpolation error due to the

non-recombinant tree, we recall from Section 3.1 the sufficient condition (14) for the error

convergence to zero.

6.2. Convergence of the tree method

In this section, we prove the convergence of the actual European Asian option price with a

fixed strike in the discrete-time model to the continuous-time equivalent when the underlying

process is a diffusion. The challenge when proving the convergence resides in showing that the

discrete average defined in (25) converges to the continuous average defined in equation (35).

To prove this convergence, the assumptions of the Functional Limit Theorem (see Theorem 4,

Appendix D) must be satisfied.
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Theorem 2. Consider Sn defined in (1) with E(ξj) = m∆ + o(∆) and Var(ξj) = σ2∆ + o(∆),

j = 1, 2, ..., n, and AN defined in (25). Assume that

sup
N

E
(
A2
N

)
<∞. (34)

Then,

lim
N→∞

E
[
(AN −K)+] = E

[
(AT −K)+] ,

where

AT :=
1

T

∫ T

0
S(t)dt, (35)

S(t) := S0e
mt+σW (t)

and W is the standard Brownian motion.

Proof. Without loss of generality assume T = 1, hence 0 ≤ t ≤ 1 and ∆ = 1/N . Define the

random function

XN (t) =

bNtc∑
j=1

ξj −
m

N
bNtc .

From the Functional Central Limit Theorem (see Theorem 4, Appendix D),

XN (t)
d→ σW (t)

with respect to the Skorokhod topology on the space of càdlàg functions D[0, 1]. Hence,

bNtc∑
j=1

ξj
d→ mt+ σW (t).

Sn can be rewritten as

Sn = S0e
∑n
j=1 ξj = S0e

m n
N

+Xn(1).

From the Integral Functional Convergence Theorem (see Theorem 5, Appendix D), we have

that4

1

N

N∑
n=1

eXn(1) d→
∫ 1

0
eσW (t)dt.

For X0(1) = 0, we rewrite

AN =
S0

N + 1

N∑
n=0

em
n
N

+Xn(1)

=
S0N

N + 1

(
1

N
+

1

N

N∑
n=1

em
n
N

+Xn(1)

)
d→
∫ 1

0
S0e

mt+σW (t)dt = A1.

We now prove that the pricing expectation of the discrete arithmetic Asian option converges

4Note that for each n ∈ N, n ≤ N , there exists t ∈ [0, 1] such that n = bNtc.
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to that of the continuous Asian option. Indeed,

E
[
(AN −K)+] = E

(
AN1{AN>K}

)
−KE

(
1{AN>K}

)
,

where the second expected value can be written as

E
(
1{AN>K}

)
= 1− P (AN < K)

by convergence in distribution. Regarding the first expected value, define function h : R → R:

h(a) = a1{a>K}. The set of discontinuities of h is Dh = {K} and P (A1 ∈ Dh) = 0. Then, from

the Continuous Mapping Theorem (see Theorem 6, Appendix D),

h(AN )
d→ h(A1).

Next, we prove that h(AN ) is uniformly integrable. A sufficient condition for the uniform

integrability is that, for some ε > 0,

sup
N

E
[
|h(AN )|1+ε

]
<∞.

We fix ε = 1 and obtain

sup
N

E
[
h(AN )2

]
< sup

N
E
(
A2
N

)
<∞,

by assumption (see Example 3). Finally, from convergence of mean (see Theorem 7, Appendix

D), we get

lim
N→∞

E [h(AN )] = E [h(A1)] .

Example 3. The assumptions of Theorem 2 are satisfied in the Cox et al. (1979) model (see

Appendix A.1). In fact, we have that

E (ξj) =

(
r − σ2

2

)
∆ + o(∆), Var (ξj) = σ2∆ + o(∆),

and

E
(
A2
N

)
=

S2
0

(N + 1)2

[
1− e2rN+1

N

1− e2r 1
N

+ 2
(1− e2rN+1

N )(1− er
N−1
N )

(1− er
1
N )(1− e2r 1

N )

]
. (36)

Hence, for each fixed N , (36) is finite. Finally,

lim
N→∞

E
(
A2
N

)
=
S2

0

2

(1− e2r)(1− er)
r

<∞.

We conclude that

sup
N

E
(
A2
N

)
<∞.

7. Numerical results and analysis

For the purposes of our numerical experiments we consider the binomial model of Cox et al.

(1979), the bivariate tree of Hilliard and Schwartz (2005) when the underlying process is a
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Merton (1976) jump diffusion, as a possible way of including sudden and extreme departures,

the binomial tree of Hilliard (2014) to represent the CEV model and Akyıldırım et al. (2014) for

the Heston stochastic volatility model. We consider options of European and American exercise

type, fixed strike calls and floating strike puts.

In Figures 1–3, we study the convergence of discrete-time model option prices to their

continuous-time equivalents with increasing number of time steps. More specifically, in Figure

1, in the case of European Asian options, we compute error patterns given by the distances of

the computed option prices using our tree method (see Table 1 for the indicated cases) from

the result of Fusai (2004) in the lognormal model (values are reported in the top panel of

Table E.9). In the absence of an analogous universal benchmark in the American Asian option

case (e.g., the methodology of Hansen and Jørgensen, 2000 does not generalize to fixed strike

options; the PDE approach of Zvan et al., 1998 is limited to lognormal dynamics), we adhere

to standard practice of computing differences of prices from our method (see Table 1) following

successive time grid refinements and studying their pattern. Despite a widely documented

in the literature convergence of tree models to Black–Scholes prices in a wavy fashion (e.g.,

see Broadie and Detemple, 1996 and Tian, 1999), our method is, in general, endowed with

monotonic convergence, which is remarkably good for sufficiently large number of time steps.

In particular, the error ratio converges to 2 quickly enough, implying that the error is almost

exactly halved when we double the time steps, hence the convergence can be further accelerated

by Richardson extrapolation. This powerful feature allows us to gauge the precision of the

method and value options to the desired level of accuracy. Regardless of the driving dynamics,

a similar behaviour is embedded in the jump diffusion and the CEV model as observed in

Figures 2 and 3. (More results can be made available by the authors upon request, for example,

for one-dimensional diffusions.) In the absence of a true analytical benchmark in the European

option case under continuous averaging in the continuous-time Merton model, we compute this

using an accurate control variate Monte Carlo (CVMC) strategy as described in Fusai and

Kyriakou (2016) (results are reported in the bottom panel of Table E.9). In the CEV model, for

European options, the continuous-average continuous-time prices are calculated by Monte Carlo

simulation. In both the jump diffusion and CEV models, for the American option, we adhere to

a similar practice as in Figure 1. The cases presented in Figures 1–2 are accompanied by Tables

2–3 which contain converged prices of our method enhanced by extrapolation, corresponding to

European and American Asian options with a fixed or floating strike, in the Black–Scholes or

the Merton jump diffusion model. Our results in the former model choice match, for example,

those from the implementation of the van Leer flux limiter of Zvan et al. (1998) and finite

differences in Hansen and Jørgensen (2000). As already discussed, higher precision is possible

if we extrapolate raw prices computed for a larger number of time steps.

To verify the accuracy of our proposed tree method, in Tables 4–7 we compare our results

with the maximum lower bound (MLB) proposed in Fusai and Kyriakou (2016) and other

important discrete-time option price model contributions. For different strikes, model and

market parameters, monitoring frequencies and contract specifications, we report option prices

as well as % relative pricing errors and the average error, obtained for each method against

highly accurate reports from Monte Carlo simulation using the MLB as a control variate. More

specifically, from Table 4, we see that, as expected, in all thirty-two parameter combinations
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our tree method is very close to the Monte Carlo price estimates (the latter are accurate to

4–6 decimals with 95% confidence): the average absolute % relative error of our tree prices

against the Monte Carlo estimates is 0.001%. The raw MLB, i.e., not combined with Monte

Carlo simulation, slightly underperforms, being a lower bound price approximation, still it is

sufficiently accurate resulting in a lower average error of 0.014%. The prices from Chalasani

et al. (1998) and the improved Lo et al. (2008) are less precise with average errors of 1.143% and

0.032%, respectively. In Table 5, we extend to comparisons with Neave and Ye (2003) and Hull

and White (1993). As before, the tree method performs best with a 0.001% average error, or

equivalently an observed overall accuracy of 4–5 decimals, whereas the MLB comes second with

an average error of 0.035%. Our proposed method produces a price in a tenth of a second for

30–40 time steps, whereas Monte Carlo simulation is far more computationally intensive. Each

reported time corresponds to one option price computed in Matlab R2018a based on an Intel

Core i7 CPU at 2.50 GHz and 16.0 GB of RAM. The generally high accuracy of our tree method

is transferred to the parametrization in Table 6 for the Hilliard and Schwartz (2005) model with

average errors of 0.006% and 0.088%, respectively, against the Monte Carlo benchmarks. We

achieve a precision of 4 decimals in around one second with 200 time steps. In Table 7, we

compare our tree method for European fixed strike options with the prices from Cai et al.

(2014) for the CEV model and find an average error of 0.074% for the former (accuracy of 3

decimals) versus 0.112% for the latter. The computing time of our method is 4.4 seconds for 250

time steps. Cai et al. (2014) report a computing time of 0.2 seconds per option price calculated

using their small-time expansion method (with the computing time of the coefficients of the

expansion excluded). Finally, in Table 8, we produce option prices within the Heston stochastic

volatility model framework, and compare our methods, i.e., the tree method for floating strike

options and the MLB for fixed strike options (see Table 1), with the Monte Carlo results by

Akyıldırım et al. (2014). Our discrete-time option prices return an average error of 0.42% and

0.21% for 300 time steps in 1.5 and 2.7 seconds, respectively, for floating and fixed strikes. The

computing times of 7.6 seconds of the Monte Carlo implementations are from Akyıldırım et al.

(2014).

8. Conclusions

In this paper, we propose a new discrete-time model approach to pricing options with Amer-

ican features and a payoff dependent on an arithmetic average price. The method lends itself

to general driving dynamics.

A series of numerical tests demonstrate our fast solution mechanisms capable of generating

monotonic and smooth convergence price patterns for European and American options under

different model specifications, including tree constructions for asset price dynamics with inde-

pendent log-increments, one-dimensional diffusions, and stochastic volatility models. Also, by

exploiting the smooth convergence, we can easily accelerate this by extrapolation techniques.

Our research forms a fertile ground for further investigations. Due to the exceptional

runtime-accuracy balances of our methods, we may efficiently build richer price evolution mod-

els that can better fit the market reality allowing, for example, time-inhomogeneity, and apply

to computing the implied parameters. In addition, our choice of the particular product payoff

structure was motivated in the first place by the scope in applications such as the capacity prob-
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lem studied in Driouchi et al. (2010) with flexible expansion decision of American type aiming

to better capture the favourable economic timing. Our method is endowed with robustness and

flexibility to this end, and this is where our subsequent paper focuses the spotlight on.
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Figure 1: Plots show convergence patterns with increasing number of time steps N of our method in the binomial
model for European and American Asian options with different fixed strikes K, coefficients K̄ for the floating-
strike option (refer to relevant Sections 3.1–3.3), and volatilities σ. For more information about the computation
of error, refer to Section 7. Parameters used are reported on the plots; additional parameters: S0 = 100, r = 0.09
per annum, and T = 1 year.
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Figure 2: Plots show convergence patterns with increasing number of time steps N of our method in the bivariate
tree model of Hilliard and Schwartz (2005) for European and American Asian options (refer to relevant Sections
3.1 and 3.3). See also notes about the error computation in Section 7. Parameters used are reported on the plots;
additional parameters: S0 = 40, T = 1 year, and r = 0.08 per annum.
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Figure 3: Plots show convergence patterns with increasing number of time steps N of our method in the binomial
tree of Hilliard (2014) for the CEV model and for European and American Asian options (refer to relevant
Sections 3.1 and 3.3). See also notes about the error computation in Section 7. Parameters used are from Cai
et al. (2014, Table 8): β = −0.5, δ Sβ0 = 0.25, S0 = 100, T = 1 year, and r = 0.05 per annum.
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European
PPPPPPPPPModel

Type
Fixed strike Floating strike

Independent
increments

Section 3.1 (Eqs. 8–9)
Variable Z (Eq. 3)

Section 3.3 (Eqs. 17–18)
Variable Z (Eq. 15)

One-dimensional
diffusions

Section 3.1 (Eqs. 8–9)
Variables S,Z (Eqs. 1, 3)

Section 3.3 (Eqs. 17–18)
Variables S,Z (Eqs. 1, 15)

Stochastic
volatility

Section 5
Lower bound (Eq. 26)

Section 4 (Eq. 23)
Variables X, ν (Eqs. 20–21)

American
PPPPPPPPPModel

Type
Fixed strike Floating strike

Independent
increments

Section 3.2 (Eq. 16)
Variables S,Z (Eqs. 1, 15)

Section 3.3 (Eqs. 17–18)
Variable Z (Eq. 15)

One-dimensional
diffusions

Section 3.2 (Eq. 16)
Variables S,Z (Eqs. 1, 15)

Section 3.3 (Eqs. 17–18)
Variable Z (Eqs. 1, 15)

Stochastic
volatility

–
Section 4 (Eq. 23)
Variables X, ν (Eqs. 20–21)

Table 1: Summary of our methods and models.

Asian fixed-strike call option Asian floating-strike put option
σ K European σ American σ K̄ European American
0.05 90 13.3782 0.05 13.4487 0.2 0.9 7.5982 12.7314
0.05 95 8.8088 0.05 8.8550 0.2 0.95 4.6567 8.5164
0.05 100 4.3082 0.05 4.3255 0.2 1 2.6210 5.0668
0.05 105 0.9583 0.05 0.9596 0.2 1.05 1.3582 2.6670
0.05 110 0.0521 0.05 0.0522 0.2 1.1 0.6513 1.2646
0.4 90 16.4999 0.2 15.518 0.4 0.9 11.4822 18.4072
0.4 95 13.5106 0.2 11.032 0.4 0.95 8.9622 14.7736
0.4 100 10.9237 0.2 7.297 0.4 1 6.8994 11.5957
0.4 105 8.7299 0.2 4.524 0.4 1.05 5.2476 8.9162
0.4 110 6.9034 0.2 2.637 0.4 1.1 3.9488 6.7346

Table 2: The table reports prices of European and American continuous Asian options in the Black–Scholes
model for different volatilities σ, fixed strikes K, and coefficients K̄ for the floating-strike option by convergence
of our tree method (refer to relevant Sections 3.1–3.3) based on the binomial model with increasing monitoring
frequency. Parameters used are reported in the table; additional parameters: S0 = 100, r = 0.09 per annum, and
T = 1 year.

22



Asian fixed-strike call option Asian floating-strike put option
σ K European σ K̄ American√

0.05 30 11.48036
√

0.05 0.75 13.9893√
0.05 35 8.0242

√
0.05 0.875 10.0466√

0.05 40 5.3875
√

0.05 1 6.9119√
0.05 45 3.5532

√
0.05 1.125 4.6676√

0.05 50 2.3456
√

0.05 1.25 3.1273
0.05 30 11.3290 0.05 0.75 13.6657
0.05 35 7.7147 0.05 0.875 9.6323
0.05 40 4.9377 0.05 1 6.3381
0.05 45 3.1121 0.05 1.125 4.2263
0.05 50 1.9748 0.05 1.25 2.8028

Table 3: The table reports prices of European and American continuous Asian options in the Merton (1976)
model for different fixed strikes K and coefficients K̄ for the floating-strike option by convergence of our tree
method (refer to relevant Sections 3.1–3.3) based on the bivariate tree of Hilliard and Schwartz (2005) with
increasing monitoring frequency. Model parameters are from Hilliard and Schwartz (2005): σ ∈ {

√
0.05, 0.05},

λJ = 5, σJ =
√

0.05, and µJ = −σ2
J/2; additional parameters: S0 = 40, T = 1 year, r = 0.08 per annum.
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K σ σJ Tree Abs. rel. MLB Abs. rel. CVMC Std. err.
err. (%) err. (%) CV MLB ×10−4

30
√

0.05
√

0.05 11.47656 0.000 11.47188 0.044 11.4769 0.733

35
√

0.05
√

0.05 8.01953 0.003 8.01690 0.058 8.0216 0.712

40
√

0.05
√

0.05 5.38301 0.005 5.38170 0.077 5.3859 0.692

45
√

0.05
√

0.05 3.54873 0.008 3.54715 0.123 3.5515 0.778

50
√

0.05
√

0.05 2.34122 0.007 2.33810 0.207 2.3429 0.881
30 0.1 0.3 12.01148 0.002 12.01157 0.018 12.0137 1.273
35 0.1 0.3 8.81714 0.004 8.81728 0.042 8.8210 1.223
40 0.1 0.3 6.34105 0.008 6.34126 0.073 6.3459 1.370
45 0.1 0.3 4.58644 0.008 4.58672 0.075 4.5902 1.373
50 0.1 0.3 3.36379 0.013 3.36415 0.116 3.3681 1.463

30 0.05
√

0.05 11.32546 0.000 11.32146 0.035 11.3254 0.639

35 0.05
√

0.05 7.71002 0.003 7.70861 0.047 7.7123 0.638

40 0.05
√

0.05 4.93491 0.008 4.93463 0.089 4.9390 0.646

45 0.05
√

0.05 3.10849 0.011 3.10870 0.100 3.1118 0.638

50 0.05
√

0.05 1.97045 0.011 1.96823 0.222 1.9726 0.791
AAPRE 0.006 0.088

time (sec) 0.8 1.0

Table 6: The table reports prices of European Asian call options with fixed strikes K in the bivariate tree model
of Hilliard and Schwartz (2005). Comparisons are presented between our tree model approach (9) and the MLB
against CVMC price estimates. See also notes in Table 4. Model parameters are from Hilliard and Schwartz
(2005): σ ∈ {

√
0.05, 0.1, 0.05}, λJ = 5, σJ ∈ {

√
0.05, 0.3}, and µJ = −σ2

J/2; additional parameters: S0 = 40,
T = 1 year, r = 0.08 per annum, and N = 200 time steps. CPU times are per option price.

K β Tree Abs. rel. Cai et al. Abs. rel. MC Std. err.
err. (%) err. (%)

80 -0.5 21.7162 0.024 21.7143 0.033 21.7214 0.0084
90 -0.5 13.3322 0.015 13.3288 0.041 13.3342 0.0075

100 -0.5 6.8584 0.004 6.8537 0.065 6.8581 0.0058
110 -0.5 2.8640 0.061 2.8612 0.161 2.8658 0.0039
120 -0.5 0.9559 0.433 0.9554 0.484 0.9601 0.0022
80 -0.25 21.6731 0.032 21.6712 0.041 21.6800 0.0085
90 -0.25 13.2726 0.026 13.2690 0.053 13.2761 0.0076

100 -0.25 6.8536 0.006 6.8485 0.081 6.8541 0.0060
110 -0.25 2.9327 0.023 2.9296 0.128 2.9334 0.0041
120 -0.25 1.0413 0.261 1.0407 0.313 1.0440 0.0024
80 0.25 21.6025 0.005 21.6017 0.009 21.6037 0.0088
90 0.25 13.1594 0.011 13.1555 0.019 13.1580 0.0080

100 0.25 6.8462 0.043 6.8403 0.044 6.8433 0.0064
110 0.25 3.0755 0.046 3.0718 0.075 3.0741 0.0045
120 0.25 1.2285 0.123 1.2284 0.134 1.2301 0.0029

AAPRE 0.074 0.112
time (sec) 4.4 0.2

Table 7: The table reports prices of European Asian call options with fixed strikes K in the binomial model
for the CEV diffusion. Comparisons are presented between our tree method (9) and Cai et al. (2014) against
Monte Carlo (MC) price estimates. Parameters used are reported in the table; additional parameters: S0 = 100,
δ Sβ0 = 0.25, T = 1 year, r = 0.05 per annum and N = 250 time steps. CPU times are per option price. The
CPU times in (Cai et al., 2014, Table 8) are reproduced here.
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Asian floating-strike put option Asian fixed-strike call option
K̄ Tree Abs. rel. MC Std. err. K MLB Abs. rel. MC Std. err.

err. (%) err. (%)
0.88 4.82723 0.36 4.84473 0.00088 44 6.9183 0.07 6.9135 0.0113
0.9 3.89742 0.44 3.91478 0.00086 45 5.973 0.06 5.9692 0.0113

0.92 3.01976 0.57 3.03697 0.00081 46 5.0298 0.01 5.03 0.0112
0.94 2.22003 0.6 2.23339 0.00074 47 4.1198 0.17 4.113 0.011
0.96 1.5288 0.89 1.54247 0.00064 48 3.2497 0.04 3.2511 0.0105
0.98 0.97629 0.81 0.98427 0.00053 49 2.4697 0.22 2.4644 0.0098

1 0.57086 0.02 0.57099 0.00041 50 1.797 0.16 1.794 0.0089
1.02 0.30119 0.34 0.30017 0.00029 51 1.251 0.36 1.2555 0.0077
1.04 0.14436 0.33 0.14389 0.0002 52 0.8437 0.21 0.8454 0.0065
1.06 0.06448 0.39 0.06423 0.00013 53 0.5511 0.03 0.5509 0.0053
1.08 0.02585 0.25 0.02578 0.00008 54 0.3487 0.66 0.3464 0.0043
1.1 0.01005 0.15 0.01003 0.00005 55 0.2153 0.19 0.2157 0.0034

1.12 0.00367 0.36 0.00366 0.00003 56 0.1301 0.51 0.1308 0.0026
AAPRE 0.42 0.21

time (sec) 1.5 7.6 2.7 7.6

Table 8: The left panel of the table reports prices of European Asian put options for different coefficients K̄ for
the floating-strike option in the stochastic volatility model. The tree method (23) is compared against Monte
Carlo (MC) price estimates. The right panel reports prices of European Asian call options with fixed strike K
in the stochastic volatility model. The maximum lower bound (26) is compared against MC price estimates.
Parameters used are from Akyıldırım et al. (2014, Table 8): S0 = 50, V0 = 0.01, k = 2.0, θ = 0.01, ρ = 0.5,
η = 0.1, r = 0.05 per annum, T = 1 year and N = 300 time steps. CPU times are per option price. The times
of the Monte Carlo implementations are from Akyıldırım et al. (2014, Table 10).
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Zmeškal, Z., 2010. Generalised soft binomial American real option pricing model (fuzzy–

stochastic approach). European Journal of Operational Research 207 (2), 1096–1103.

Zvan, R., Forsyth, P. A., Vetzal, K. R., 1998. Robust numerical methods for PDE models of

Asian options. Journal of Computational Finance 1 (2), 39–78.

Appendix A. Model specifications

Appendix A.1. Model 1: the case of independent log-increments

Under this model specification, the logarithm of the asset price lnS has independent incre-

ments. We consider, for illustration, the binomial model of Cox et al. (1979) and the bivariate

tree model of Hilliard and Schwartz (2005). In the first one,

ξj :=

{
lnx1 = σ

√
∆, p1 = er∆−x2

x1−x2

lnx2 = −σ
√

∆, p2 = 1− p1

.

In the Hilliard and Schwartz (2005) model,

ξj :=

{
lnx1,ω, p1,ω = p qs+ω+1

lnx2,ω, p2,ω = (1− p) qs+ω+1

,

(A.1)

where

x1,ω := em∆+σ
√

∆+ωh,

x2,ω := em∆−σ
√

∆+ωh,

and ω = 0,±1,±2, . . . ,±s is the number of (independent) jumps under Poisson compounding

of size h, allowed up or down on each of the two nodes for the smooth (diffusion) factor. The

probability of the up state of the smooth factor is

p :=
er∆ − em∆−σ

√
∆
∑s

ω=−s e
ωhqs+ω+1(

em∆+σ
√

∆ − em∆−σ
√

∆
)∑s

ω=−s e
ωhqs+ω+1

,
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where m := r − σ2/2− λJ(eµJ+σ2
J/2 − 1), µJ and σJ are, respectively, the jump-size mean and

standard deviation, and λJ the jump intensity. The jump probabilities q are calculated as shown

in Hilliard and Schwartz (2005, equation 9).

Appendix A.2. Model 2: one-dimensional diffusion models

In this class of models, the asset price dynamics under the risk neutral measure P is generally

given by

dS(t) = µ(S(t), t) dt+ σ(S(t), t) dW (t).

This set of models includes, for example, exponential Ornstein–Uhlenbeck, Brennan–Schwartz,

Cox–Ingersoll–Ross and the CEV models. For illustration, we focus on the CEV model, with

µ(s, t) := rs and σ(s, t) := δsβ+1, δ > 0 and β ∈ R, under the measure P. As proposed by

Hilliard (2014), in order to have a computationally simple lattice with recombining nodes, the

instantaneous volatility must be constant. This can be achieved using the transformation

X(t) =
1

−β δ S(t)β
. (A.2)

In the special case of β = 0, X = lnS. Then, the binomial tree for X is given by

Xn = X0 +
n∑
j=1

κj ,

where

κj :=

{ √
∆, p = 1/

(
1 + e−2 µ̃(Xj−1)

√
∆
)

−
√

∆, 1− p
,

and

µ̃(x) = −rβx+
1

2

β + 1

β

1

x

is the drift of X. Finally, the distribution of the log-returns of S is

ξj =

 ln
(
φ(Xj−1 +

√
∆)− φ(Xj−1)

)
, p

ln
(
φ(Xj−1 −

√
∆)− φ(Xj−1)

)
, 1− p

,

which follows by inversion of the transformation (A.2), resulting in

φ(x) :=
1

(−β δ x)1/β
.

For more details, we refer the interested readers to Hilliard (2014).
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Appendix A.3. Model 3: stochastic volatility models

We consider an asset price process S defined by the following stochastic differential equations

under the measure P{
dS(t) = S(t) rdt+ S(t) σS(V (t))

(
ρ dB(t) +

√
1− ρ2dW (t)

)
dV (t) = µV (V (t))dt+ σV (V (t)) dB(t)

(A.3)

for independent Brownian motions B and W , and general functions σS(s, v), µV (v) and σV (v).

For example, in the Heston stochastic volatility model

σS(v) :=
√
v, µV (v) := k(v̄ − v), σV (v) := η

√
v. (A.4)

In Section 4, we present a two-dimensional tree construction of model (A.3) based on Akyıldırım

et al. (2014).

Appendix B. Forward start option

Occasionally, the underlying asset is monitored only during part of the lifetime of the option,

i.e., the averaging is based only on prices of the underlying during a deferred time interval

[a∆, N∆], 0 < a < N (e.g., see Reynaerts et al., 2006). It is common to call this a forward start

Asian option.

Our proposed pricing approach can be flexibly adapted to the case of delayed averaging.

First, the following modification of the process Z in (3) is relevant

Zj :=
1

N−a+1

∑j
n=a Sn −K
Sj

=
Zj−1

eξj
+

1

N − a+ 1
, a < j ≤ N,

Za :=
1

N − a+ 1
− K

Sa
.

Hence, by the tower property of expectations, the price of the option is given by

E
(
SNZ

+
N

)
= S0e

rT Ē
[
c

(
Ya,

1

N − a+ 1
− K

Sa
, a

)]
.

Then for 0 ≤ j < a the recursion (9) becomes

c

(
y,

1

N − a+ 1
− K

s
, j

)
=

d∑
i=1

p̄i(y) c

(
Yj+1,

1

N − a+ 1
− K

s xi
, j + 1

)
.

Appendix C. Discretely monitored Asian option

In the case of a discretely monitored Asian option, i.e., when the average is based on prices

of the underlying monitored at certain discrete time points during part or the entire lifetime of

the option, it is necessary to introduce another scale in the problem: b := N/Ñ , b ∈ Z+, where

Ñ is the number of averaging points and N the number of time steps. By analogy, in addition

to the time step size ∆ = T/N , define the time interval ∆̃ = b∆ between successive equidistant

averaging points.
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Consider

Sbn = S0e
∑bn
j=0 ξj = S0e

∑n
j=0 Ξb,j ,

where Ξb,0 := 0 and the random variables {Ξb,j}Ñj=1 are i.i.d. with

Ξb,j :=
∑bj

l=b(j−1)+1
ξl.

Define

Z̃j =

1
Ñ+1

∑j
n=0 Sbn −K
Sbj

=
Z̃j−1

eΞb,j
+

1

Ñ + 1
, 0 < j ≤ Ñ .

The option value function (9) is now given by

c (z̃, j) =
∑b

k=0

b!

k!(b− k)!
p̄k(1−p̄)b−kc

(
z̃

xk1x
b−k
2

+
1

Ñ + 1
, j + 1

)
for z̃ ∈ (z̃L,j , z̃U,j) , 0 < j ≤ Ñ .

Appendix D. Convergence theorems

Theorem 4 (Functional Central Limit Theorem (Billingsley, 1968, Theorem 16.1)). Suppose

that random variables xj are i.i.d. with mean 0 and finite variance σ2. Define the random

function Xn in the space D[0, 1] of càdlàg processes as

Xn(t) =
1

σ
√
n

bntc∑
j=1

xj ,

where t ∈ [0, 1]. Then,

Xn
d→W,

where the convergence is understood with respect to the Skorokhod topology on the space D[0, 1]

and W is a Wiener measure on D[0, 1].

Theorem 5 (Integral Functional Convergence Theorem (Potscher, 2004, Lemma A.1)). Suppose

that the process Xn(t) converges with respect to the Skorokhod topology on the space D[0, 1] to

a Brownian motion W (t) on [0, 1]. Also, suppose that J : R→ R is continuous. Then,

1

N

N∑
n=1

J(Xn(1))
d→
∫ 1

0
J(W (t))dt.

Theorem 6 (Continuous Mapping Theorem (Billingsley, 1995, Theorem 29.2)). Let Ω be the

unit interval [0, 1], B consist of the Borel sets in [0, 1], and P be Lebesgue measure on B, so that

(Ω,B, P ) is a probability space. Suppose that Xn and X are random variables with values in Rn

defined on (Ω,B, P ). Suppose that f : Rn → Rm is a measurable function and that the set of its

discontinuities Df ⊂ Rn is measurable. If Xn
d→ X and P (X ∈ Df ) = 0, then f(Xn)

d→ f(X).

Theorem 7 (Convergence of mean (Billingsley, 1968, Theorem 5.4)). Suppose that Xn and X

are random variables defined on (Ω,B, P ). If Xn
d→ X and Xn are uniformly integrable, then

lim
n→∞

E (Xn) = E (X) .
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Appendix E. Reference prices for Figures 1, 2 and 3

K σ Fusai K σ Fusai
90 0.4 16.49997 90 0.05 13.37821
95 0.4 13.51071 95 0.05 8.80885

100 0.4 10.92377 100 0.05 4.30824
105 0.4 8.72994 105 0.05 0.95839
110 0.4 6.90349 110 0.05 0.05214
K σ CVMC Std. err. K σ CVMC Std. err.

CV cts. MLB ×10−4 CV cts. MLB ×10−4

30
√

0.05 11.4808 2.392 30 0.05 11.3290 2.103

35
√

0.05 8.0241 2.126 35 0.05 7.7162 1.835

40
√

0.05 5.3866 2.100 40 0.05 4.9386 2.094

45
√

0.05 3.5533 2.762 45 0.05 3.1063 2.342

50
√

0.05 2.3458 2.861 50 0.05 1.9792 2.628

Table E.9: The top panel of the table reports reference prices of European, continuously monitored Asian call
options with fixed strikes K in the lognormal model computed using the double transform method of Fusai
(2004). Model parameters: σ ∈ {0.05, 0.4}; additional parameters: S0 = 100, T = 1 year, and r = 0.09 per
annum. The bottom panel reports option prices in the continuous-time (cts.) Merton jump diffusion model.
The price estimates are calculated by control variate Monte Carlo (CVMC) simulation with the maximum lower
bound of Fusai and Kyriakou (2016), corresponding to the same option specification, used as control variate (CV
cts. MLB), with standard errors (std. err.) also reported. Model parameters are from Hilliard and Schwartz
(2005): σ ∈ {

√
0.05, 0.05}, λJ = 5, σJ =

√
0.05, and µJ = −σ2

J/2; additional parameters: S0 = 40, T = 1 year,
r = 0.08 per annum, and 100 Monte Carlo time steps.
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