
Egidi et al. Algorithms Mol Biol (2019) 14:6
https://doi.org/10.1186/s13015-019-0140-0

RESEARCH

External memory BWT and LCP computation
for sequence collections with applications
Lavinia Egidi1, Felipe A. Louza2*  , Giovanni Manzini1,3 and Guilherme P. Telles4

Abstract 

Background:  Sequencing technologies produce larger and larger collections of biosequences that have to be
stored in compressed indices supporting fast search operations. Many compressed indices are based on the Bur-
rows–Wheeler Transform (BWT) and the longest common prefix (LCP) array. Because of the sheer size of the input it
is important to build these data structures in external memory and time using in the best possible way the available
RAM.

Results:  We propose a space-efficient algorithm to compute the BWT and LCP array for a collection of sequences in
the external or semi-external memory setting. Our algorithm splits the input collection into subcollections sufficiently
small that it can compute their BWT in RAM using an optimal linear time algorithm. Next, it merges the partial BWTs in
external or semi-external memory and in the process it also computes the LCP values. Our algorithm can be modi-
fied to output two additional arrays that, combined with the BWT and LCP array, provide simple, scan-based, external
memory algorithms for three well known problems in bioinformatics: the computation of maximal repeats, the all
pairs suffix–prefix overlaps, and the construction of succinct de Bruijn graphs.

Conclusions:  We prove that our algorithm performs O(nmaxlcp) sequential I/Os, where n is the total length of the
collection and maxlcp is the maximum LCP value. The experimental results show that our algorithm is only slightly
slower than the state of the art for short sequences but it is up to 40 times faster for longer sequences or when the
available RAM is at least equal to the size of the input.

Keywords:  Burrows–Wheeler Transform, Longest common prefix array, Maximal repeats, All pairs suffix–prefix
overlaps, Succinct de Bruijn graph, External memory algorithms

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
A fundamental problem in bioinformatics is the ability
to efficiently search into the billions of DNA sequences
produced by NGS studies. The Burrows Wheeler trans-
form (BWT) [1] is a well known structure which is the
starting point for the construction of compressed indices
for collections of sequences [2]. The BWT is often com-
plemented with the longest common prefix (LCP) array
[3] since the latter makes it possible to efficiently emu-
late Suffix Tree algorithms [4, 5]. The construction of
such data structures is a challenging problem. Although
the final outcome is a compressed index, construction

algorithms can be memory hungry and the necessity of
developing lightweight algorithms was recognized since
the very beginning of the field [6–8]. In lightweight algo-
rithms it is assumed that the input and the output fit
in main memory but the amount of additional working
memory is sublinear with the size of the input.

When even lightweight algorithms do not fit in RAM,
one has to resort to external or semi-external memory
construction algorithms (see [9–14] and references
therein). In the external memory model [15] it is assumed
that the main memory grows at most polylogarithmically
with the size of the input. In the semi-external model the
main memory can grow linearly with the size of the input
but part of the working data has to reside on disk. In both
models the complexity of the algorithms is usually meas-
ured in terms of disk I/Os, since data transfer is much
slower than CPU operations.

Open Access

Algorithms for
Molecular Biology

*Correspondence: louza@usp.br
2 Department of Computing and Mathematics, University of São Paulo,
Av. Bandeirantes, 3900, 14040‑901 Ribeirão Preto, Brazil
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2931-1470
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0140-0&domain=pdf

Page 2 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

The space efficient computation of the BWT in main
memory for a single sequence is well studied, and
remarkable advances have been recently obtained [16,
17]. Unfortunately, for external memory computation the
situation is less satisfactory. For collections of sequences,
the first external memory algorithm is the BCR algo-
rithm described in [18] that computes the multi-string
BWT for a collection of total size n, performing a num-
ber of sequential I/Os proportional to nK, where K is
the length of the longest sequence in the collection. This
approach is clearly not competitive when the sequences
have non-homogeneous lengths, and it is far from the
theoretical optimal even for sequences of equal length.
Nevertheless, the simplicity of the algorithm makes it
very effective for collections of relatively short sequences,
and it has become the reference tool for this problem.
This approach was later extended [19] to compute also
the LCP values with the same asymptotic number of I/
Os. When computing also the LCP values, or when the
input strings have different lengths, the algorithm uses
O(m) words of RAM, where m is the number of input
sequences.

In this paper, we present a new space-efficient algo-
rithm for the computation of the BWT and LCP array
for a collection of sequences in external or semi-external
memory. Our algorithm takes the amount of available
RAM as an input parameter, and tries to make the best
use of it by splitting the input into subcollections suffi-
ciently small so that it can compute their BWT in inter-
nal memory using an optimal linear time algorithm.
Next, it merges the partial BWTs in external or semi-
external memory and in the process it also computes
the LCP values. Since the LCP values are computed in
a non-standard order, the algorithm is completed by an
external memory mergesort procedure that computes
the final LCP array. We show that our algorithm per-
forms a number of sequential I/Os between O(n avelcp)
and O(nmaxlcp) , where avelcp and maxlcp are respec-
tively the average and the maximum longest common
prefix of the input sequences. To our knowledge, the only
other known external memory algorithm for computing
the BWT and LCP arrays of a collection of sequences is
bwt-lcp-em, recently proposed in [20] that performs
O(nmaxlcp) sequential I/Os and uses O(m+ K) words
of RAM, where K is the fixed string length.

In “Related approaches” section we compare our
approach with the ideas behind these previous works, and
in “Experiments” section we compare their performance
in practice. The experimental results show that BCR is
the fastest algorithm for relatively short sequences while
our algorithm is the fastest when the average LCP of the
collection is relatively small compared to the lengths of
the sequences. Both our algorithm and BCR appear to be

faster than the available implementation of bwt-lcp-
em, which is however only a prototype implementation
with some limitations on the admissible inputs.

Another contribution of the paper, which follows from
our first result, is the design of simple external memory
algorithms for three well known problems related to
genomic sequences, namely: (i) the computation of maxi-
mal repeats [21, 22], (ii) the computation of the all pairs
suffix–prefix overlaps [23–25], and (iii) the construc-
tion of succinct de Bruijn graphs [26–28]. Our external
memory algorithms for these problems are derived from
known internal memory algorithms, but they process the
input data in a single sequential scan. In addition, for the
problem of computing the all pairs suffix–prefix, we go
beyond the recent solutions that compute all the overlaps
[24, 25, 29, 30], and we compute only the overlaps above
a certain length, still spending constant time per reported
overlap. Our algorithms take as input the BWT and LCP
array, together with two additional arrays that our BWT
construction algorithm can compute without any asymp-
totic slowdown.

Since problems on genomic sequences often involve
huge datasets, it is certainly important to provide effi-
cient external memory algorithms for the three problems
described above. To our knowledge, only for the all pairs
suffix–prefix problem there exists an external memory
algorithm, namely the algorithm [30, Algorithm 2] that
computes all the overlaps given the BWT, LCP, and Gen-
eralized Suffix Array of the input collection.

Background
Let s[1, n] denote a string of length n over an alphabet
� of constant size σ . As usual, we assume s[n] is a spe-
cial symbol (end-marker) not appearing elsewhere in s
and lexicographically smaller than any other symbol. We
write s[i, j] to denote the substring s[i]s[i + 1] · · · s[j] .
If j ≥ n we assume s[i, j] = s[i, n] . If i > j or i > n then
s[i, j] is the empty string. Given two strings s1 and s2 we
write s1 � s2 ( s1 ≺ s2 ) to denote that s1 is lexicographi-
cally (strictly) smaller than s2 . We denote by LCP(s1, s2)
the length of the longest common prefix between s1 and
s2.

The suffix array sa[1, n] associated to s is the permuta-
tion of [1, n] giving the lexicographic order of s ’s suffixes,
that is, for i = 1, . . . , n− 1 , s[sa[i], n] ≺ s[sa[i + 1], n].

The longest common prefix array lcp[1, n+ 1] is defined
for i = 2, . . . , n by

the lcp array stores the length of the longest common pre-
fix (LCP) between lexicographically consecutive suffixes.
For convenience we define lcp[1] = lcp[n+ 1] = −1.

(1)lcp[i] = LCP(s[sa[i − 1], n], s[sa[i], n]);

Page 3 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

Let s1[1, n1], . . . , sk [1, nk] denote a collection of strings
such that s1[n1] = $1, . . . , sk [nk] = $k , where $ 1 < . . . <
$ k are k symbols not appearing elsewhere in s1, . . . , sk
and smaller than any other symbol. Let sa1···k [1, n]
denote the suffix array of the concatenation s1 · · · sk of
total length n = �k

h=1nh . The multi-string BWT [19, 31]
of s1, . . . , sk , denoted by bwt1···k [1, n] , is defined as

Essentially bwt1···k is a permutation of the symbols in
s1, . . . , sk such that the position in bwt1···k of si[j] is given
by the lexicographic rank of its context si[j + 1, ni] (or
si[1, ni] if j = ni ). Figure 1 shows an example with k = 2 .

(2)bwt1···k [i] =

{

sj[nj] if sa1···k [i] = �
j−1
h=1nh + 1

sj[sa1···k [i] −�
j−1
h=1nh − 1] if �

j−1
h=1nh + 1 < sa1···k [i] ≤ �

j
h=1nh.

Notice that for k = 1 , this is the usual Burrows–Wheeler
Transform [1].

Given the suffix array sa1···k [1, n] of the concatena-
tion s1 · · · sk , we consider the corresponding LCP array
lcp1···k [1, n] defined as in (1) (see again Fig. 1). Note that,
for i = 2, . . . , n , lcp1···k [i] gives the length of the longest
common prefix between the contexts of bwt1···k [i] and

bwt1···k [i − 1] . We stress that all practical implementa-
tions use a single $ symbol as end-marker for all strings
to avoid alphabet explosion, but end-markers from

Fig. 1  LCP array and BWT for s1 = abcab$1 and s2 = aabcabc$2 , and multi-string BWT and corresponding LCP array for the same strings. Column
id shows, for each entry of bwt12 = bc$2cc$1aaaabbb whether it comes from s1 or s2

Page 4 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

different strings are then sorted as described, i.e., on
the basis of the index of the strings they belong to.

Computing multi‑string BWTs
The gSACA-K algorithm [32], based on algorithm SACA-
K [33], computes the suffix array for a string collection.
Given a collection of strings of total length n, gSACA-
K computes the suffix array for their concatenation in
O(n) time using (σ + 1) log n additional bits (in prac-
tice, only 2KB are used for ASCII alphabets). gSACA-K
is time and space optimal for alphabets of constant size
σ = O(1) . The multi-string bwt1···k of s1, . . . , sk can be
easily obtained from the suffix array as in (2). gSACA-K
can also compute the lcp array lcp1···k still in linear time
using only the additional space for the lcp values.

Merging multi‑string BWTs
The Gap algorithm [34], based on an earlier algorithm by
Holt and McMillan [35], is a simple procedure for merg-
ing multi-string BWTs. In its original formulation the
Gap algorithm can also merge LCP arrays, but in this
paper we compute LCP values using a different approach
more suitable for external memory execution. We
describe here only the main idea behind Gap and refer
the reader to [34] for further details.

For simplicity in the following we assume we are merging k
single-string BWTs bwt1 = bwt(s1), . . . , bwtk = bwt(sk) ;
the algorithm does not change in the general case where the
inputs are multi-string BWTs. Computing bwt1···k amounts
to sorting the symbols of bwt1, . . . , bwtk according to the
lexicographic order of their contexts, where the context of
symbol bwtj[i] is sj[saj[i], nj] . By construction, the symbols
in each bwtj are already sorted by context, hence to com-
pute bwt1···k we only need to merge bwt1, . . . , bwtk without
changing the relative order of the symbols within the input
sequences.

The Gap algorithm works in successive iterations. Dur-
ing the h-th iteration it computes a vector Z(h) specify-
ing how the entries of bwt1, . . . , bwtk should be merged
to have them sorted according to the first h symbols of
their context. Formally, for j = 1, . . . , k the vector Z(h)
contains |bwtj| copies of the value j arranged so that the
following property holds.

Property 1  For j1, j2 ∈ {1, . . . , k} , the i1-th occurrence
of j1 precedes the i2-th occurrence of j2 in Z(h) if and only
if the length-h context of bwtj1 [i1] is lexicographically
smaller than the length-h context of bwtj2 [i2] , or the two
contexts are equal and j1 < j2 .� �

Property 1 is equivalent to state that we can logically
partition Z(h) into b(h)+ 1 blocks

such that each block corresponds to the set of symbols
in bwt1···k , whose contexts are prefixed by the same
length-h string. The context of any symbol in block
Z(h)[ℓj + 1, ℓj+1] is lexicographically smaller than the
context of the symbols in block Z(h)[ℓk + 1, ℓk+1] with
k > j ; within each block, if j1 < j2 the symbols of bwtj1
precede those of bwtj2 . We keep explicit track of such
blocks using a bit array B[1, n+ 1] such that at the end
of iteration h it is B[i] �= 0 if and only if a block of Z(h)
starts at position i. By Property 1, when all entries in B
are nonzero, Z(h) describes how the bwtj ( j = 1, . . . , k )
should be merged to get bwt1···k.

Related approaches
The strategy used by Gap to build multi-string BWTs
follows the idea, introduced by [35, 36], of merging par-
tial BWTs, i.e. BWTs of subsets of the input collection.
Interestingly, both previous algorithms for computing
the BWT and LCP in external memory [19, 20] are also
based on a merging strategy but instead of merging par-
tial BWTs, they merge the arrays L1 , L2 , L3 , …, where Li
consists of the symbols which are at distance i from the
end of their respective strings. The symbols inside each
Li are sorted as usual by context. In the example of Fig. 1,
we would have L1 = bc (since s1 ends with b$1 and s2
ends with c$2 ), L2 = ab , (since s1 ends with ab$1 and s2
ends with bc$2 ), L3 = ca and so on. Note that in L3 c pre-
cedes a since c ’s context ab$1 is lexicographically smaller
than a ’s context bc$2 . Clearly, merging the arrays Li yields
the desired multi-string BWT and the authors of [19, 20]
show how to compute also the LCP array. The algorithms
in [19, 20] differ in how the merging is done: [19] uses
a refinement of a technique introduced in [9, 10], while
[20] uses a refinement of Holt and McMillan merging
strategy [35, 36].

The eGap algorithm
The eGap algorithm for computing the multi-string
BWT and LCP array in external memory works in three
phases. First it builds multi-string BWTs for sub-collec-
tions in internal memory, then it merges these BWTs in
external memory and generates the LCP values. Finally, it
sorts the LCP values in external memory.

Phase 1: BWT computation
Given a collection of sequences s1, s2, . . . , sk , we split it
into sub-collections sufficiently small that we can com-
pute the multi-string SA for each one of them in internal
memory using the gSACA-K algorithm. After computing

(3)
Z(h)[1, ℓ1], Z

(h)[ℓ1 + 1, ℓ2], . . . , Z
(h)[ℓb(h) + 1, n]

Page 5 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

each SA, we compute the corresponding multi-string
BWT and write it to disk in uncompressed form using
one byte per character.

Phase 2: BWT merging and LCP computation
This part is based on the Gap algorithm previously
described but suitably modified to work efficiently in
external memory (or in semi-external memory if there
are at least n bytes of RAM). In the following we assume
that the input consists of k BWTs bwt1, . . . , bwtk of total
length n over an alphabet of size σ . The input BWTs are
read from disk and never moved to internal memory.

The algorithm initially sets Z(0) = 1
n12

n2 . . . knk and
B = 10

n−1
1 . Since the context of every symbol is prefixed

by the same length-0 string (the empty string), initially
there is a single block containing all symbols. At itera-
tion h the algorithm computes Z(h) from Z(h−1) as follows
(see also Fig. 2). We define an array F [1, σ] such that F[c]
contains the number of occurrences of characters smaller
than c in bwt1···k . F partitions Z(h) into σ buckets, one for
each symbol. Using Z(h−1) we scan the partially merged
BWT, and whenever we encounter the BWT character c
coming from bwtℓ , with ℓ ∈ {1, . . . , k} , we store it in the
next free position of bucket c in Z(h) ; note that c is not
actually moved, instead we write ℓ in its corresponding
position in Z(h) . In our implementation, instead of using
distinct arrays Z(0),Z(1), . . . we only use two arrays Zold
and Znew , that are kept on disk. At the beginning of itera-
tion h it is Zold = Z(h−1) and Znew = Z(h−2) ; at the end
Znew = Z(h) and the roles of the two files are swapped.
While Zold is accessed sequentially, Znew is updated
sequentially within each bucket, that is within each set
of positions corresponding to a given character. Since the

boundary of each bucket is known in advance we logi-
cally split the Znew file in buckets and write to each one
sequentially.
eGap computes LCP values exploiting the bitvector B

used by Gap to mark the beginning of blocks (see Eq. 3)
within each Z(h) (for simplicity the computation of B is
not shown in Fig. 2). We observe that if B[i] is set to 1
during iteration h then lcp1···k [i] = h− 1 , since the algo-
rithm has determined that the contexts of bwt1···k [i] and
bwt1···k [i − 1] have a common prefix of length exactly
h− 1 . We introduce an additional bit array Bx[1, n+ 1]
such that, at the beginning of iteration h, Bx[i] = 1 iff
B[i] has been set to 1 at iteration h− 2 or earlier. During
iteration h, if B[i] = 1 we look at Bx[i] . If Bx[i] = 0 then
we know that B[i] has been set at iteration h− 1 : thus
we output to a temporary file Fh−2 the pair �i, h− 2� to
record that lcp1···k [i] = h− 2 , and we set Bx[i] = 1 so no
pair for position i will be produced in the following itera-
tions. At the end of iteration h, file Fh−2 contains all pairs
�i, lcp1···k [i]� with lcp[i] = h− 2 ; the pairs are written in
increasing order of their first component, since B and Bx
are scanned sequentially. These temporary files will be
merged in Phase 3 to produce the LCP array.

As proven in [34, Lemma 7], if at iteration h of the
Gap algorithm we set B[i] = 1 , then at any iteration
g ≥ h+ 2 processing the entry Z(g)[i] will not change
the arrays Z(g+1) and B. Since the roles of the Zold and
Znew files are swapped at each iteration, and at iteration
h we scan Zold = Z(h−1) to update Znew from Z(h−2) to
Z(h) , we can compute only the entries Z(h)[j] that are dif-
ferent from Z(h−2)[j] . In particular, any range [ℓ,m] such
that Bx[ℓ] = Bx[ℓ+ 1] = · · · = Bx[m] = 1 can be added
to a set of irrelevant ranges that the algorithm may skip

Fig. 2  Outline of Gap’s main loop computing Z(h) from Z(h−1) . Array F is initialized so that F[c] contains the number of occurrences of symbols
smaller than c in bwt1···k

Page 6 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

in successive iterations (irrelevant ranges are defined in
terms of the array Bx as opposed to the array B, since
before skipping an irrelevant range we need to update
both Zold and Znew ). We read from one file the ranges to
be skipped at the current iteration and simultaneously
write to another file the ranges to be skipped at the next
iteration (note that irrelevant ranges are created and con-
sumed sequentially). Since skipping a single irrelevant
range takes O(k + σ) time, an irrelevant range is stored
only if its size is larger than a given threshold t and we
merge consecutive irrelevant ranges whenever possible.
In our experiments we used t = max(256, k + σ) . In the
worst case the space for storing irrelevant ranges could
be O(n) but in actual experiments it was always less than
0.1n bytes.

As in the Gap algorithm, when all entries in B are
nonzero, Zold describes how the BWTs bwtj ( j = 1, . . . , k )
should be merged to get bwt1···k , and a final sequential
scan of the input BWTs along with Zold allows to write
bwt1···k to disk, in sequential order. Our implementation
can merge at most 27 = 128 BWTs at a time because we
use 7 bits to store each entry of Zold and Znew . These
arrays are maintained on disk in two separate files; the
additional bit of each byte are used to keep the current
and the next copy of B. The bit array Bx is stored sepa-
rately in a file of size n/8 bytes. To merge a set of k > 128
we split the input in subsets of cardinality 128 and merge
them in successive rounds. In practice, the algorithm
merges the multi-string BWTs produced by Phase 1. In
our experiments the maximum number of sub-collec-
tions was 21.

Semi-external version We have also implemented a
semi-external version of the merge algorithm that uses n
bytes of RAM. The i-th byte is used to store Zold[i] and
Znew[i] (3 bits each), B[i] and Bx[i] . This version can sort
at most 23 = 8 BWTs simultaneously; to sort k BWTs it
performs log8 k merging rounds. Although performing
more rounds is clearly more expensive, this version stores
in RAM all the arrays that are modified and reads from
disk only the input BWTs and is therefore significantly
faster.

Phase 3: LCP merging
At the end of Phase 2 all LCP-values have been written to
the temporary files Fh on disk as pairs �i, lcp[i]� . Each file
Fh contains all pairs with second component equal to h
in order of increasing first component. The computation
of the LCP array is completed using a standard external
memory multiway merge [37, Chap. 5.4.1] of maxlcp
sorted files, where maxlcp = maxi(lcp1···k [i]) is the larg-
est LCP value.

Analysis
During Phase 1, gSACA-K computes the suffix array for a
sub-collection of total length m using 9m bytes (8m bytes
for sa and 1m bytes for the text). If the available RAM
is M, the input is split into subcollections of size ≈ M/9 .
Since gSACA-K runs in linear time, if the input collec-
tion has total size n, Phase 1 takes O(n) time overall.

A single iteration of Phase 2 consists of a complete scan
of Z(h−1) except for the irrelevant ranges. Since the algo-
rithm requires maxlcp iterations, without skipping the
irrelevant ranges the algorithm would require maxlcp
sequential scans of O(n) items. Reasoning as in [34,
Theorem 8] we get that by skipping irrelevant ranges the
overall amount of data directly read/written by the algo-
rithm is O(n avelcp) items where avelcp is the arithmetic
average of the entries in the final LCP array. However, if
we reason in terms of disk blocks, every time we skip an
irrelevant range we discard the current block and load a
new one (unless the beginning of the new relevant range
is inside the same block; in that case or if the beginning
of the new relevant range is in the block immediately fol-
lowing the current one, skipping the irrelevant range does
not save any I/O). We can upper bound this extra cost,
with an overhead of O(1) blocks for each irrelevant range
skipped. Summing up, if the total number of skipped
ranges is Ir and each disk block consists of B words, the
I/O complexity of Phase 2 according to the theoretical
model in [15] is O(Ir + n avelcp/(B log n)) block I/Os
(under the reasonable assumptions that the alphabet is
constant, each entry in Z takes constant space, and we
need a constant number of merge rounds). Although
the experiments in “Experiments” section suggest that
in practice Ir is small, for simplicity and uniformity with
the previous literature we upper bound the cost of Phase
2 with O(nmaxlcp) sequential I/Os (corresponding to
O(nmaxlcp/(B log n)) block I/Os).

Phase 3 takes O(⌈log
�
maxlcp⌉) rounds; each round

merges � LCP files by sequentially reading and writing
O(n) bytes of data. The overall cost of Phase 3 is therefore
O(n log

�
maxlcp) sequential I/Os. In our experiments we

used � = 256 ; since in our tests maxlcp < 216 two merg-
ing rounds were always sufficient.

Experiments
In this section we report on an experimental study
comparing between the eGap algorithm and the other
known external memory tools computing the BWT
and LCP arrays of sequence collections. We imple-
mented eGap in ANSI C based on the code of Gap
[34] and gSACA-K [32]. eGap source code is freely
available at https​://githu​b.com/felip​elouz​a/egap/. All
tested algorithms were compiled with GNU GCC ver.

https://github.com/felipelouza/egap/

Page 7 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

4.6.3, with optimizing option -O3. The experi-
ments were conducted on a machine with GNU/Linux
Debian 7.0/64 bits operating system using an Intel
i7-3770 3.4 GHz processor with 8 MB cache,
32 GB of RAM and a 2.0 TB SATA hard disk with 7200
RPM and 64 MB cache. The complete set of experi-
ments took about 70 days of computing time.

Datasets We used four real DNA datasets reported in
Table 1 containing sequences of different lengths and
structure. The sequences of the first three datasets were
trimmed to make them of the same length, while the
fourth dataset contains sequences of widely different
lengths. short are Illumina reads from human genome
(ftp://ftp.sra.ebi.ac.uk/vol1/ERA01​5/ERA01​5743/srf/).
long are Illumina HiSeq 4000 paired-end RNA-seq
reads from plant Setaria viridis (https​://trace​.ncbi.nlm.
nih.gov/Trace​s/sra/?run=ERR19​42989​). pacbio.1000
and pacbio are PacBio RS II reads from Triticum aes-
tivum (wheat) genome (https​://trace​.ncbi.nlm.nih.gov/
Trace​s/sra/?run=SRR58​16161​). All datasets contain
sequences over the A, C, G, T alphabet plus a string
terminator symbol.

Memory setting To make a realistic external memory
experimental setting one has to use an amount of RAM
smaller than the size of the data. Indeed, if more RAM
is available, even if the algorithm is supposedly not
using it, the operating system will use it to temporar-
ily store disk data and the algorithm will be no longer
really working in external memory. This phenomenon
will be apparent also from our experiments. For these
reasons we reduced the available RAM to simulate
three different scenarios: (i) input data 4 times larger
than the available RAM, (ii) input data of approximately
the same size as the RAM, and (iii) input data 4 times
smaller than the RAM. We evaluated these scenarios
with the complete 8 GB datasets from Table 1 (with
2 GB, 8 GB, and 32 GB RAM), and with the datasets
trimmed to 1 GB (hence with 256 MB, 1 GB, and 4 GB
RAM). The RAM was limited at boot time to a value
equal to the amount assigned to the algorithm plus a
small extra amount for the operating system (14 MB for
the 256 MB instance and 64 MB for the others).

Comparison with the existing algorithms
We compared eGap with the algorithm BCR [19]
which is the current state of the art for BWT/LCP
computation for collections of sequences. We used
the bcr-lcp implementation from [38] since the
previous implementation mentioned in [19] did not
compute the LCP values correctly. We tested also the
recently proposed algorithm bwt-lcp-em [20] using
the code from [39]. As a reference we also tested the
algorithm eGSA [14] using the code from [40]. eGSA
computes the Suffix and LCP Arrays for collections
of sequences in external memory: the disadvantage of
this algorithm is that working with the Suffix Array
could involve transferring to/from disk a much larger
amount of data.

Limitations We tested bwt-lcp-em only on the
short 1 GB dataset since the implementation in [39]
only supports collections of at most 2 GB and with
strings of at most 253 symbols. We tested eGSA only with
memory scenario (iii) (input data 4 times smaller than
the RAM) since it was already observed in [14] that eGSA
’s running time degrades when the RAM is restricted to
the input size. Finally, we could not test bcr-lcp on the
pacbio 1 GB dataset since it stopped with an internal
error after four days of computation. This is probably due
to the presence of very long strings in the dataset since
bcr-lcp was originally conceived for collections of
short/medium length strings. The corresponding entries
are marked as “failed” in Fig. 3. For the larger 8 GB data-
sets we stopped the experiments that did not complete
after six days of CPU time, corresponding to 60 micro-
seconds per input symbol. The corresponding entries are
marked with “ > 60 ” in Fig. 3. Note that both bwt-lcp-
em and bcr-lcp are active projects, so some of the lim-
itations reported here could have been solved after our
experiments were completed.

Results: The results of our experiments are summarized
in Fig. 3. The bar plots on the left are for the 1 GB data-
sets showing the running time as function of the available
RAM; the diagrams on the right are for the 8 GB data-
sets. The results show that for memory scenarios (i) and
(ii) eGap and bcr-lcp have the better performance,
whereas for scenario (iii) eGap and eGSA are the best

Table 1  Datasets used in our experiments

Columns 4 and 5 show the maximum and average lengths of the single strings. Columns 6 and 7 show the maximum and average LCPs of the collections

Name Size GB N. of strings Max Len Ave Len Max LCP Ave LCP

short 8.0 85,899,345 100 100 99 27.90

long 8.0 28,633,115 300 300 299 90.28

pacbio.1000 8.0 8,589,934 1000 1000 876 18.05

pacbio 8.0 942,248 71,561 9116 3084 18.32

ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161

Page 8 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

options. The performance of bwt-lcp-em improves
with the RAM size, but it is still 12 times slower than
eGap for the short datasets with 4 GB of RAM.

The above results are in good accordance with the the-
oretical analysis. bcr-lcp complexity is O(nmaxlen)
sequential I/Os while eGap and bwt-lcp-em both take

a b

48
.1

8
13

.6
921

.1
8 28

.2
9

13
.8

9
14

.9

1.
75

19
.0

6
5.

64
1.

5

31
.1

1
61

.1
7

38
.0

9
38

.0
6

1.
99

15
.1

1
3.

16

10
1.

09
23

.6
8

12
0.

15
13

.2
6

1.
72

51
.6

8
1.

29

fa
ile

d
19

.0
1

fa
ile

d
11

.1
8

1.
75

fa
ile

d
1.

39

pacbio

pacbio.1000

long

short

256MB 1GB 4GB

0

10

20

30

40

50

0

20

40

60

0

25

50

75

100

125

0

5

10

15

TotalRAM

T
im

e
(m

ic
ro

se
co

nd
s/

in
pu

t
by

te
)

10
.3

319
.0

3

6.
82

3.
46

2.
08

5.
61

1.
49

21
.9

9
57

.7
1

19
.3

6
8.

18

1.
89

15
.6

9
2.

74

>
60

21
.5

2

>
60

3.
97

1.
89

>
60

1.
19

>
60

20
.6

3

>
60

12
.9

2

1.
74

>
60

1.
23

pacbio

pacbio.1000

long

short

2GB 8GB 32GB

0

5

10

15

0

20

40

60

0

20

40

60

0

20

40

60

TotalRAM

T
im

e
(m

ic
ro

se
co

nd
s/

in
pu

t
by

te
)

eGap bcr-lcp bwt-lcp-em eGSA

Fig. 3  Running time in microseconds per input byte as a function of the available memory for the 1 GB datasets (left) and the 8 GB datasets (right)

Page 9 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

O(nmaxlcp) sequential I/Os. For the short and long
datasets the maximum length and the maximum LCP
coincide and we see that when the available memory is
only one fourth of the input size bcr-lcp is clearly the
fastest option: indeed it is up to a factor 2.6 faster than
eGap. This is no longer true when the available memory
is equal or larger than the input size: in this case eGap is
the fastest, probably because of its ability to exploit all the
available memory using a semi-external strategy when-
ever possible. When the available memory is larger than
the input size or for the pacbio.1000 dataset which has a
very large maxlen then eGap is up to 40 times faster than
bcr-lcp. Note that, in accordance with our heuristic
analysis, eGap ’s running time per input byte appears to
be roughly proportional to the average LCP of the collec-
tion. If we look at the datasets pacbio and pacbio.1000
we see that they have widely different maximum LCPs,
yet their running times are very close similarly to their
average LCPs.

Note that in the scenario (iii) eGSA is often the fast-
est algorithm and its running time appears to be less
influenced by the size of the average or maximum LCP.
Another advantage is that it also computes the Suffix
Array, but it has the drawback of using a large amount
of disk working space: 340 GB for a 8 GB input vs 56 GB
used by eGap.

We conclude that, although eGap is not always the
fastest algorithm, its running time is never too far from
that of the best algorithm. In addition, eGap is the only
algorithm that was able to complete all computations in
all memory models. Although it was devised as an exter-
nal memory algorithm, its ability to switch to a semi-
external strategy if the memory is available makes it a
very flexible tool. The comparison with the other algo-
rithms in this setting is indeed not completely fair, since
none of them is designed to take the available memory as
a parameter in order to make the best use of it. Note that,
as the available memory increases, all algorithms become
faster because the operating system uses the RAM as a
buffer but the speed improvement is different for differ-
ent algorithms.

Relative performance of eGap’s building blocks
We evaluated the percentage of time spent by each phase
of eGap and their efficiency (percentage the CPU was
busy) on the 8 GB datasets in the memory scenarios con-
sidered above, thus with RAM limited to (i) 1 GB, (ii)
8 GB, and (iii) 32 GB.

The results in Fig. 4 show that Phase 2 of eGap domi-
nates the algorithm in general. The second phase took
about 95% , 85% and 50% of the total time in scenarios (i),
(ii), and (iii) respectively. If we look at the efficiency of the
single phases, we see that they all improve with the RAM

size. However, we notice that for any given memory sce-
nario the efficiency of Phases 1 and 3 was almost the
same for the different datasets, while Phase 2 has a dif-
ferent behavior. For the short and long datasets with
8 GB and 32 GB RAM, we see that Phase 2 efficiency is
very close to Phase 1’s, while there is a sharp drop when
using 2 GB RAM. For the pacbio datasets, the drop in
Phase 2 efficiency is significant already when we use 8 GB
RAM.

Applications
In this section we show that the eGap algorithm, in addi-
tion to the BWT and LCP arrays, can output additional
information useful to design efficient external memory
algorithms for three well known problems on sequence
collections: (i) the computation of maximal repeats, (ii)
the all pairs suffix–prefix overlaps, and (iii) the construc-
tion of succinct de Bruijn graphs. For these problems
we describe algorithms which are derived from known
(internal memory) algorithms suitably modified so that
they process the input data in a single sequential scan.

Our first observation is that eGap can also output the
array which provides, for each bwt entry, the id of the
sequence to which that entry belongs. In information
retrieval this is usually called the Document Array, so
in the following we will denote it by da . In Phase 1 the
gSACA-K algorithm can compute the da together with
the lcp and bwt using only additional 4n bytes of space
to store the da entries. These partial da ’s can be merged
in Phase 2 using the Znew array in the same way as the
BWT entries. In the following we use bwt , lcp , and da to
denote the multistring BWT, LCP and Document Array
of a collection of m sequences of total length n. We write
s to denote the concatenation s1 · · · sm and sa to denote
the suffix array of s . We will use s and sa to describe and
prove the correctness of our algorithms, but neither s nor
sa are used in the computations.

Computation of maximal repeats
Different notions of maximal repeats have been used in
the bioinformatics literature to model different notions of
repetitive structure (see for example [21, 22]). We use a
notion of maximal repeat from [41, Chap. 7]: we say that
a string α is a Type 1 maximal repeat if α occurs in the
collection at least twice and every extension, i.e. cα or αc
with c ∈ � , occurs fewer times. We consider also a more
restrictive notion: we say that a string α is a Type 2 maxi-
mal repeat if α occurs in the collection at least twice and
every extension of α occurs at most once.

To compute Type 1 maximal repeats the crucial obser-
vation is that there is a substring of length ℓ that prefixes
sa entries j, j + 1, . . . , i (and no others) iff lcp[k] ≥ ℓ for
k = j + 1, . . . , i , and both lcp[j] and lcp[i + 1] are smaller

Page 10 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

than ℓ . To ensure that the repeat is Type 1 maximal,
we also require that there exists h ∈ [j + 1, i] such that
lcp[h] = ℓ and that the substring bwt[j, i] contains at least
two distinct characters.

Our algorithm consists of a single sequential
scan of bwt and lcp . During the scan, we maintain
a stack containing pairs �j, lcp[h]� with j ≤ h such
that if �j′, lcp[h′]� is below �j, lcp[h]� then j′ < j and

a b

pacbio

pacbio.1000

long

short

2GB 8GB 32GB

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

TotalRAM

P
er
ce
nt
ag
eo
ft
he
ru
nn

in
gt
im

e

pacbio

pacbio.1000

long

short

2GB 8GB 32GB

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

TotalRAM

E
ffi
ci
en
cy

(C
P
U
/t
ot
al
ti
m
e)

Phase 1 Phase 2 Phase 3

Fig. 4  Running time in microseconds per input byte (left) and efficiency (right) for eGap ’s three phases

Page 11 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

lcp[h′] < lcp[h] . In addition, when the scanning reaches
position i, for every entry �j, lcp[h]� in the stack it is
lcp[h] = minj≤k<i lcp[k] , that is, lcp[h] is the smallest
value in the range lcp[j, i − 1].

We maintain the stack as follows. When we reach
position i, if the entry �j, lcp[h]� at the top of the stack
has lcp[h] < lcp[i] we push �i, lcp[i]� on the stack. If
lcp[h] = lcp[i] we do nothing. If lcp[h] > lcp[i] we pop
from the stack all entries �j, lcp[h]� with lcp[h] > lcp[i] ;
if the removal leaves at the top of the stack an entry
�j′, lcp[h′]� with lcp[h′] < lcp[i] we push on the stack a
new entry �̂ , lcp[i]� where ̂ is the first component of
the last entry just removed from the stack. Note that
in any case when we have completed the processing
of position i the entry at the top of the stack has sec-
ond component equal to lcp[i] , and for each stack entry
�j, lcp[h]� it is lcp[h] = minj≤k≤i lcp[k] as claimed.

We now prove that if �j′, lcp[h′]� is immediately below
�j, lcp[h]� then lcp[j − 1] = lcp[h′] . As we observed
above, if at step i we push �i, lcp[i]� on the stack, the
previous top entry has second component equal to
lcp[i − 1] so the property holds for the first insertion of
an entry �i, lcp[·]� . During the following steps it is pos-
sible that �i, lcp[x]� is removed and immediately rein-
serted as �i, lcp[y]� (with lcp[y] < lcp[x] ), but since the
preceding stack element does not change, is still holds
true that lcp[i − 1] is equal to the second component of
the preceding element. Note that, since lcp values on
the stack are strictly increasing, we conclude that for
each stack entry �j, lcp[h]� it is lcp[j − 1] < lcp[h].

Our algorithm outputs Type 1 maximal repeats
when elements are popped from the stack. At step
i + 1 we pop from the stack all entries �j, lcp[h]� such
that lcp[h] > lcp[i + 1] . Recall that by construction
lcp[h] = minj≤k≤i lcp[k] . In addition lcp[j − 1] < lcp[h]
and lcp[i + 1] < lcp[h] . Thus, to ensure that we have
found a Type 1 maximal repeat we only need to check
that bwt[j − 1, i] contains at least two distinct charac-
ters. To efficiently check this latter condition, for each
stack entry �j, lcp[h]� we maintain a bit vector bj of size
σ keeping track of the distinct characters in the array
bwt from position j − 1 to the next stack entry, or to the
last seen position for the entry at the top of the stack.
When �j, lcp[h]� is popped from the stack its bit vector
is or-ed to the previous stack entry in constant time;
if �j, lcp[h]� is popped from the stack and immediately
replaced with �j, lcp[i]� its bit vector survives as it is
(essentially because it is associated with an index, not
with a stack entry). Clearly, maintaining the bit vector
does not increase the asymptotic cost of the algorithm.

Since at each step we insert at most one entry on the
stack, the overall cost of our algorithm is O(n) time. The
algorithm uses a stack of size bounded by O(maxlcp)

words. For most applications maxlcp ≪ n so it should be
feasible to keep the stack in RAM. However, since a stack
can also be implemented in external memory in O(1)
amortized time per operation [42], we can state the fol-
lowing result.

Theorem 1  We can compute all Type 1 maximal
repeats in O(n) time executing a single scan of the arrays
bwt and lcp using O(1) words of RAM. � �

To find Type 2 maximal repeats, we are interested
in consecutive LCP entries lcp[j], lcp[j + 1], . . . , lcp[i],

lcp[i + 1] , such that lcp[j] < lcp[j + 1] = lcp[j + 2] =

· · · = lcp[i] > lcp[i + 1]. Indeed, this implies that for
h = j, . . . , i all suffixes s[sa[h], n] are prefixed by the same
string α of length lcp[j + 1] and every extension αc occurs
at most once. If this is the case, then α is a Type 2 maxi-
mal repeat if all characters in bwt[j, i] are distinct since
this ensures that also every extension cα occurs at most
once. In order to detect this situation, as we scan the
lcp array we maintain a candidate pair �j + 1, lcp[j + 1]�
such that j + 1 is the largest index seen so far for which
lcp[j] < lcp[j + 1] . When we establish a candidate at
j + 1 as above, we initialize to zero a bit vector b of size
σ setting to 1 only entries bwt[j] and bwt[j + 1] . As long
as the following values lcp[j + 2], lcp[j + 3], . . . are equal
to lcp[j + 1] we go on updating b and if the same posi-
tion is marked twice we discard �j + 1, lcp[j + 1]� . If we
reach an index i + 1 such that lcp[i + 1] > lcp[j + 1] , we
update the candidate to �i + 1, lcp[i + 1]� and reinitialize
b. If we reach i + 1 such that lcp[i + 1] < lcp[j + 1] and
�j + 1, lcp[j + 1]� has not been discarded, then a repeat of
Type 2 (with i − j + 1 repetitions) has been located.

Theorem 2  We can compute all Type 2 maximal
repeats in O(n) time executing a single scan of the arrays
bwt and lcp using O(1) words of RAM.� �

Note that when our algorithms discover Type 1 or Type
2 maximal repeats we know the repeat length and the
number of occurrences so one can easily filter out non-
interesting repeats (too short or too frequent). In some
applications, for example the MUMmer tool [43], one is
interested in repeats that occur in at least r distinct input
sequences, maybe exactly once for each sequence. Since
for these applications the number of input sequences is
relatively small, we can handle these requirements by
simply scanning the da array simultaneously with the lcp
and bwt arrays and keeping track of the sequences associ-
ated to a maximal repeat using a bit vector (or a union-
find structure) as we do with characters in the bwt.

Page 12 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

All pairs suffix–prefix overlaps
In this problem we want to compute, for each pair of
sequences si sj , the longest overlap between a suffix of si
and a prefix of sj . Our solution is inspired by the algo-
rithm in [24] which in turn was derived by an earlier Suf-
fix-tree based algorithm [23]. The algorithm in [24] solves
the problem using a Generalized Enhanced Suffix array
(consisting of the arrays sa , lcp , and da ) in O(n+m2)
time, which is optimal since n is the size of the input and
there are m2 longest overlaps. However, for large col-
lections it is natural to consider the problem of report-
ing only the overlaps larger than a given threshold τ still
spending O(n) time plus constant time per reported over-
lap. Our algorithm solves this more challenging problem.

In the following we say that a suffix starting at sa[i] is
special iff it is a prefix of the suffix starting at sa[i + 1] ,
not considering the end-marker. This is equivalent to
state that s[sa[i] + lcp[i + 1]] = $ . For example, in Fig. 1
(right) the special suffixes are ab$1 , abc$2 , abcab$1
b$1 , bc$2 , bcab$1 , c$2 , cab$1 . Notice that a special suf-
fix starting at sa[i] has the form v$ with |v| = lcp[i + 1] ;
clearly only if sa[i] is special then v can be a suffix–pre-
fix overlap. Note also that any suffix $ is always trivially
special.

To efficiently solve the suffix–prefix overlaps problem,
we modify Phase 2 of our algorithm so that it outputs
also the bit array xlcp such that xlcp[i] = 1 iff the suf-
fix starting at sa[i] is special. To this end, we maintain
an additional length-n bit array S such that, at the end
of iteration h, S[i] = 1 if and only if the suffix starting
at sa[i] is special and it has length less than h, again not
considering the end-marker symbol. The array S is initial-
ized at the end of iteration h = 1 as S = 1

k
0
n−k , consist-

ently with the fact that in the final suffix array the first k
contexts are strings consisting of just an end-marker, that
are special suffixes and the only suffixes of length 0.

During iteration h, we update S as follows. With ref-
erence to the code in Fig. 2, whenever we use entry
Z(h−1)[i] to compute Z(h)[j] for some j, if S[i] = 1 and
B[j + 1] = 0 then we set S[j] = 1.

Lemma 1  The above procedure correctly updates the
array S.

Proof  We prove by induction that at the end of itera-
tion h: (1) S[i] = 1 iff the suffix starting at sa[i] is special
and has length less than h, and (2) if S[i] = 1 the length-
h context currently in position i is in the correct lexico-
graphic position with respect to the final suffix array
ordering (in other words, it is a prefix for s[sa[i], n]).
For h = 1 the result is true by construction. During itera-
tion h > 1 , if we reach a position i such that S[i] = 1 ,
then by inductive hypothesis the context in position i has

the form v$ with |v| ≤ h− 2 . If c is the symbol we read at
Step 5 of Fig. 2, then the context corresponding to posi-
tion j is cv$ . Since the context contains the end-marker, j
is the correct lexicographic position of cv$ which is there-
fore the suffix corresponding to sa[j] . If B[j + 1] = 0 ,
then lcp[j + 1] ≥ h− 1 . Since lcp[j + 1] ≤ |cv| ≤ h− 1 , it
follows that |cv| = lcp[j + 1] = h− 1 and S[j] is special as
claimed.
On the other hand, if at the end of iteration h it is
S[j] = 0 , then either it was S[i] = 0 or B[j + 1] = 1 which
implies lcp[j + 1] < h− 1 . In both cases the suffix start-
ing at sa[j] cannot be special and of length less than h. �

Having established the properties of S, we can now
show how to compute xlcp . Recall that LCP values are
computed as follows. In Phase 2, during iteration h+ 1
if B[i + 1] = 1 and Bx[i + 1] = 0 we output the pair
�i + 1, h− 1� recording the fact that lcp[i + 1] = h− 1 .
Such pairs are later sorted by their first component dur-
ing Phase 3 to retrieve the LCP array. If sa[i] is special,
its corresponding suffix has length lcp[i + 1] = h− 1
so, by the properties of S, at the beginning of itera-
tion h+ 1 it is S[i] = 1 . Thus, to compute xlcp ,
instead of the pair �i + 1, h− 1� we output the triplet
�i + 1, h− 1, S[i]� = �i + 1, lcp[i + 1], xlcp[i]� . After the
merging is completed we sort the triplets by their first
component and we derive both arrays lcp and xlcp.

Our algorithm for computing the suffix–prefix over-
laps longer than a threshold τ , consists of a sequential
scan of the arrays bwt , lcp , da , and xlcp . We maintain
m distinct stacks, stack[1], . . . , stack[m] , one for each
input sequence; stack[k] stores pairs �j, lcp[j + 1]� only
if sa[j] is a special suffix belonging to sequence k such
that lcp[j + 1] > τ . During the scan we maintain the
invariant that for all stack entries �j, lcp[j + 1]� , lcp[j + 1]
is the length of the longest common prefix (longer than
τ ) between s[sa[j], n] and s[sa[i], n] , where i is the posi-
tion just scanned.

To maintain the invariant in amortized constant time
per scanned position, we use the following additional
structures:

•	 A stack lcpStack containing, in increasing order,
the values ℓ such that some stack[k] contains an
entry with LCP component equal to ℓ;

•	 An array of lists top such that top[ℓ] contains the
indexes k for which the entry at the top of stack[k]
has LCP component equal to ℓ;

•	 An array daPtr[1,m] such that daPtr[k] points to the
entry k in the list top[ℓk] containing it ( daPtr[k] is
used to remove such entry k from top[ℓk] in constant
time).

Page 13 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

We maintain the above data structures as follows.
When we reach position i + 1 we remove all entries
�j, lcp[j + 1]� such that lcp[j + 1] > lcp[i + 1] . We use
lcpStack to determine which are the values ℓ such that
some stack contains an entry 〈j, ℓ〉 with ℓ > lcp[i + 1] . For
the value ℓ at the top of lcpStack we locate through top[ℓ]
all stacks that contain an ℓ-entry at the top. For each
one of these stacks we remove the top entry 〈j, ℓ〉 so that
a new entry �j′, ℓ′� , with ℓ′ < ℓ , becomes the new top of
the stack. Then, if k is the stack that is being updated, we
add k to top[ℓ′] , and a pointer to the new entry is saved
in daPtr[k] (overwriting the previous pointer). When all
entries of top[ℓ] have been processed, top[ℓ] is emptied
and ℓ is popped from lcpStack . The whole procedure is
repeated until a value ℓ ≤ lcp[i + 1] is left at the top of
lcpStack.

Finally, if xlcp[i] = 1 and lcp[i + 1] > τ , �i, lcp[i + 1]� is
added to stack[da[i]] ; this requires removing da[i] from
the list top[ℓ] where ℓ is the previous top LCP value in
stack[da[i]] ; the position of da[i] in top[ℓ] is retrieved
through daPtr[da[i]] . Also we add da[i] to top[lcp[i + 1]] ,
and the pointer to this new element of top[lcp[i + 1]] is
written to daPtr[da[i]] . Since the algorithm performs
an amortized constant number of operations per entry
�i, lcp[i + 1]� , maintaining the above data structures takes
O(n) time overall.

The computation of the overlaps is done as in [24].
When the scan reaches position i, we check whether
bwt[i] = $ . If this is the case, then s[sa[i], n] is prefixed
by the whole sequence sda[i] , hence the longest overlap
between a prefix of sda[i] and a suffix of sk is given by the
element currently at the top of stack[k] , since by con-
struction these stacks only contain special suffixes whose
overlap with s[sa[i], n] is larger than τ . Note that using
lcpStack and top we can directly access the stacks whose
top element corresponds to an overlap with sda[i] larger
than τ , hence the time spent in this phase is proportional
to the number of reported overlaps. As in [24] some care
is required to handle the case in which the whole string
sda[i] is a suffix of another sequence, but this can be done
without increasing the overall complexity as in [24]. Since
we spend constant time for reported overlap and amor-
tized constant time for scanned position the overall cost
of the algorithm, in addition to the scanning of the bwt
/lcp/xlcp/da arrays, is O(n+ Eτ) , where Eτ is the number
of suffix–prefix overlaps greater than τ . Since all stacks
can be implemented in external memory spending amor-
tized constant time per operation, we only need to store
in RAM top and daPtr that overall take O(m+maxlcp)
words.

Theorem 3  Our algorithm computes all suffix–prefix
overlaps longer than τ in time O(n+ Eτ) , where Eτ is the

number of reported overlaps, using O(m+maxlcp) words
of RAM and executing a single scan of the arrays bwt , lcp ,
da and xlcp . � �

Construction of succinct de Bruijn graphs
A recent remarkable application of compressed data
structures is the design of efficiently navigable succinct
representations of de Bruijn graphs [26–28]. Formally, a
de Bruijn graph for a collection of strings consists of a set
of vertices representing the distinct k-mers appearing in
the collection, with a directed edge (u, v) iff there exists
a (k + 1)-mer α in the collection such that α[1, k] is the
k-mer associated to u and α[2, k + 1] is the k-mer associ-
ated to v.

The starting point of all de Bruijn graphs succinct rep-
resentation is the BOSS representation [28], so called
from the authors’ initials. For simplicity we now describe
the BOSS representation of a k-order de Bruijn graph
using the lexicographic order of k-mers, instead of the
co-lexicographic order as in [28], which means we are
building the graph with the direction of the arcs reversed.
This is not a limitation since arcs can be traversed in both
directions (or we can apply our construction to the input
sequences reversed).

Consider the N k-mers appearing in the collection
sorted in lexicographic order. For each k-mer αi con-
sider the array Ci of distinct characters c ∈ � ∪ {$} such
that cαi appears in the collection. The concatenation
W = C1C2 · · ·CN is the first component of the BOSS
representation. The second component is a binary array
last , with |last| = |W | , such that last[j] = 1 iff W [j] is the
last entry of some array Ci . Clearly, there is a bijection
between entries in W and graph edges; in the array last
each sequence 0i1 ( i ≥ 0 ) corresponds to the outgoing
edges of a single vertex with outdegree i + 1 . Finally, the
third component is a binary array W− , with |W−| = |W | ,
such that W−[j] = 1 iff W [j] comes from the array Ci ,
where αi is the lexicographically smallest k-mer prefixed
by αi[1, k − 1] and preceded by W[j] in the collection.
This means that αi is the lexicographically smallest k-mer
with an outgoing edge reaching the node associated to k-
mer W [j]αi[1, k − 1] . Note that the number of 1 ’s in last
and W− is exactly N, i.e. the number of nodes in the de
Bruijn graph.

We now show how to compute W  , last and W− by
a sequential scan of the bwt and lcp array. The crucial
observation is that the suffix array range prefixed by the
same k-mer αi is identified by a range [bi, ei] of LCP val-
ues satisfying lcp[bi] < k , lcp[ℓ] ≥ k for ℓ = bi + 1, . . . , ei
and lcp[ei + 1] < k . Since k-mers are scanned in lexi-
cographic order, by keeping track of the corresponding
characters in the array bwt[bi, ei] we can build the array Ci

Page 14 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

and consequently W and last . To compute W− we simply
need to keep track also of suffix array ranges correspond-
ing to (k − 1)-mers. Every time we set an entry W [j] = c
we set W−[j] = 1 iff this is the first occurrence of c in the
range corresponding to the current (k − 1)-mers.

Theorem 4  Our algorithm computes the BOSS repre-
sentation of a de Bruijn graph in O(n) time using O(1)
words of RAM, and executing a single scan of the arrays
bwt and lcp .� �

If, in addition to the bwt and lcp arrays, we also scan
the da array, then we can keep track of which sequences
contain any given graph edge and therefore obtain a suc-
cinct representation of the colored de Bruijn graph [44].
Finally, we observe that if our only objective is to build
the k-order de Bruijn graph, then we can stop the phase
2 of our algorithm after the k-th iteration. Indeed, we
do not need to compute the exact values of LCP entries
greater than k, and also we do not need the exact BWT
but only the BWT characters sorted by their length k
context.

Conclusions
In this paper we have described eGap, a new algorithm
for the computation of the BWT and LCP arrays of large
collection of sequences. Depending on the amount of
available memory, eGap uses an external or semi-exter-
nal strategy for computing the BWT and LCP values. An
experimental comparison of the available tools for BWT
and LCP arrays computation shows that eGap is the fast-
est tool in many scenarios and was the only tool capable
of completing the computation within a reasonable time
frame for all kind of input data.

Another important feature of eGap is that, in addition
to the BWT and LCP array, it can compute, without any
asymptotic slowdown, two additional arrays that pro-
vide important information about the substrings of the
input collection. We show how to use such information
to design efficient external memory algorithms for three
important problems for biosequences, namely the com-
putation of maximal repeats, the computation of the all
pairs suffix–prefix overlaps, and the construction of suc-
cinct de Bruijn graphs. Overall our results confirm the
importance of the BWT and LCP arrays beyond their
use for the construction of compressed full text indexes.
This is in accordance with other recent results that have
shown of they can be used directly to discover structural
information on the underlying collection (see [45–47]
and references therein).

Authors’ contributions
LE and GM devised the main algorithmic ideas. All authors contributed to
improve the algorithms and participated to their implementations. FAL and

GPT designed and performed the experiments. All authors read and approved
the final manuscript.

Author details
1 DiSIT, University of Eastern Piedmont, Viale Michel, 11, 15121 Alessandria,
Italy. 2 Department of Computing and Mathematics, University of São Paulo,
Av. Bandeirantes, 3900, 14040‑901 Ribeirão Preto, Brazil. 3 IIT CNR, Via Moruzzi,
1, 56124 Pisa, Italy. 4 Institute of Computing, University of Campinas, Av. Albert
Einstein, 1251, 13083‑852 Campinas, Brazil.

Competing interests
The authors declare that they have no competing interests.

Availability
The source code of the proposed algorithm is available at https​://githu​b.com/
felip​elouz​a/egap.

Funding
L.E. was partially supported by the University of Eastern Piedmont project
Behavioural Types for Dependability Analysis with Bayesian Networks. F.A.L. was
supported by the Grants #2017/09105-0 and #2018/21509-2 from the São
Paulo Research Foundation (FAPESP). G.M. was partially supported by PRIN
grant 201534HNXC and INdAM-GNCS Project 2019 Innovative methods for the
solution of medical and biological big data. G.P.T. acknowledges the support
of Brazilian agencies Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 6 November 2018 Accepted: 23 February 2019

References
	1.	 Burrows M, Wheeler DJ. A block-sorting lossless data compression algo-

rithm. Technical report, Digital SRC Research Report; 1994.
	2.	 Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-Scale Algorithm

Design: biological sequence analysis in the era of high-throughput
sequencing. Cambridge: Cambridge University Press; 2015.

	3.	 Manber U, Myers G. Suffix arrays: a new method for on-line string
searches. SIAM J Comput. 1993;22(5):935–48.

	4.	 Gog S, Ohlebusch E. Compressed suffix trees: efficient computation and
storage of LCP-values. ACM J Exp Algorith. 2013;18:2.

	5.	 Navarro G, Mäkinen V. Compressed full-text indexes. ACM Comput Surv.
2007;39:1.

	6.	 Burkhardt S, Kärkkäinen J. Fast lightweight suffix array construction and
checking. In: Proc. 14th symposium on combinatorial pattern matching
(CPM ’03). Springer, Morelia, Michocän, Mexico; 2003. p. 55–69.

	7.	 Manzini G. Two space saving tricks for linear time LCP computation. In:
Proc. of 9th Scandinavian workshop on algorithm theory (SWAT ’04).
Humlebæk: Springer; 2004. p. 372–83.

	8.	 Manzini G, Ferragina P. Engineering a lightweight suffix array construc-
tion algorithm. In: Proc. 10th European symposium on algorithms (ESA).
Rome: Springer; 2002. p. 698–710.

	9.	 Ferragina P, Gagie T, Manzini G. Lightweight data indexing and com-
pression in external memory. In: Proc. 9th Latin American theoretical
informatics symposium (LATIN ’10). Lecture Notes in Computer Science
vol. 6034; 2010. p. 698–711.

	10.	 Ferragina P, Gagie T, Manzini G. Lightweight data indexing and compres-
sion in external memory. Algorithmica. 2011.

	11.	 Kärkkäinen J, Kempa D. LCP array construction in external memory. ACM
J Exp Algorith. 2016;21(1):1–711722.

	12.	 Beller T, Zwerger M, Gog S, Ohlebusch E. Space-efficient construction of
the Burrows–Wheeler transform. In: SPIRE. Lecture Notes in Computer
Science, vol. 8214. Jerusalem: Springer; 2013. p. 5–16.

https://github.com/felipelouza/egap
https://github.com/felipelouza/egap

Page 15 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	13.	 Kärkkäinen J, Kempa D. Engineering a lightweight external memory suffix
array construction algorithm. Math Comput Sci. 2017;11(2):137–49.

	14.	 Louza FA, Telles GP, Hoffmann S, Ciferri CDA. Generalized Enhanced
Suffix array construction in external memory. Algorith Mol Biol.
2017;12(1):26–12616.

	15.	 Vitter J. External memory algorithms and data structures: dealing with
massive data. ACM Comput Surv. 2001;33(2):209–71.

	16.	 Belazzougui D. Linear time construction of compressed text indices in
compact space. In: STOC. New York: ACM; 2014. p. 148–93.

	17.	 Munro JI, Navarro G, Nekrich Y. Space-efficient construction of com-
pressed indexes in deterministic linear time. In: SODA. Barcelona: SIAM;
2017. p. 408–24.

	18.	 Bauer MJ, Cox AJ, Rosone G. Lightweight algorithms for construct-
ing and inverting the BWT of string collections. Theor Comput Sci.
2013;483:134–48.

	19.	 Cox AX, Garofalo F, Rosone G, Sciortino M. Lightweight LCP construction
for very large collections of strings. J Discrete Algorith. 2016;37:17–33.

	20.	 Bonizzoni P, Della Vedova G, Pirola Y, Previtali M, Rizzi R. Computing the
BWT and LCP array of a set of strings in external memory. CoRR: arXiv​
:1705.07756​. 2017.

	21.	 Külekci MO, Vitter JS, Xu B. Efficient maximal repeat finding using the Bur-
rows–Wheeler transform and wavelet tree. IEEE/ACM Trans Comput Biol
Bioinform. 2012;9(2):421–9.

	22.	 Ohlebusch E, Gog S, Kügel A. Computing matching statistics and maxi-
mal exact matches on compressed full-text indexes. In: SPIRE. Lecture
Notes in Computer Science, vol. 6393. Los Cabos: Springer; 2010. p.
347–58.

	23.	 Gusfield D, Landau GM, Schieber B. An efficient algorithm for the all pairs
suffix–prefix problem. Inform Process Lett. 1992;41(4):181–5.

	24.	 Ohlebusch E, Gog S. Efficient algorithms for the all-pairs suffix–prefix
problem and the all-pairs substring-prefix problem. Inform Process Lett.
2010;110(3):123–8.

	25.	 Tustumi WHA, Gog S, Telles GP, Louza FA. An improved algorithm for the
all-pairs suffix–prefix problem. J Discrete Algorith. 2016;37:34–43.

	26.	 Belazzougui D, Gagie T, Mäkinen V, Previtali M, Puglisi SJ. Bidirectional
variable-order de Bruijn graphs. In: LATIN. Lecture Notes in Computer
Science, vol. 9644. Ensenada: Springer; 2016. p. 164–78.

	27.	 Boucher C, Bowe A, Gagie T, Puglisi SJ, Sadakane K. Variable-order de
Bruijn graphs. In: DCC. IEEE, Snowbird, Utah, USA; 2015. p. 383–392

	28.	 Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de Bruijn graphs. In:
WABI. Lecture Notes in Computer Science, vol. 7534. Ljubljana: Springer;
2012. p. 225–35.

	29.	 Bonizzoni P, Della Vedova G, Pirola Y, Previtali M, Rizzi R. Constructing
string graphs in external memory. In: WABI. Lecture Notes in Computer
Science, vol. 8701. Berlin: Springer; 2014. p. 311–25.

	30.	 Bonizzoni P, Della Vedova G, Pirola Y, Previtali M, Rizzi R. An external-
memory algorithm for string graph construction. Algorithmica.
2017;78(2):394–424. https​://doi.org/10.1007/s0045​3-016-0165-4.

	31.	 Mantaci S, Restivo A, Rosone G, Sciortino M. An extension of the Bur-
rows–Wheeler transform. Theor Comput Sci. 2007;387(3):298–312.

	32.	 Louza FA, Gog S, Telles GP. Inducing enhanced suffix arrays for string col-
lections. Theor Comput Sci. 2017;678:22–39.

	33.	 Nong G. Practical linear-time O(1)-workspace suffix sorting for constant
alphabets. ACM Trans Inform Syst. 2013;31(3):15.

	34.	 Egidi L, Manzini G. Lightweight BWT and LCP merging via the Gap algo-
rithm. In: SPIRE. Lecture Notes in Computer Science, vol. 10508. Palermo:
Springer; 2017. p. 176–90.

	35.	 Holt J, McMillan L. Merging of multi-string BWTs with applications. Bioin-
formatics. 2014;30(24):3524–31.

	36.	 Holt J, McMillan L. Constructing Burrows–Wheeler transforms of large
string collections via merging. In: BCB. New York: ACM; 2014. p. 464–71.

	37.	 Knuth DE. Sorting and searching, 2nd edn. In: The art of computer pro-
gramming, vol. 3. Reading: Addison-Wesley; 1998. p. 780.

	38.	 Cox AJ, Garofalo F, Rosone G, Sciortino M. Multi-string eBWT/LCP/
GSA computation (commit no. 6c6a1b38bc084d35330295800f-
9d4a6882052c51). GitHub; 2018. https​://githu​b.com/giova​nnaro​sone/
BCR_LCP_GSA.

	39.	 Bonizzoni P, Della Vedova G, Nicosia S, Previtali M, Rizzi R. bwt-lcp-em
(commit no. a6f0144b203e5bda7af8480e9ea3a1d781ad7ba0). GitHub;
2018. https​://githu​b.com/AlgoL​ab/bwt-lcp-em.

	40.	 Louza FA, Telles GP, Hoffmann S, Ciferri CDA. egsa (commit no.
1790094e010040bef3be11e393a4f1d5408debb0). GitHub; 2018. https​://
githu​b.com/felip​elouz​a/egsa.

	41.	 Gusfield D. Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge: Cambridge University
Press; 1997.

	42.	 Dementiev R, Kettner L, Sanders P. STXXL: standard template library
for XXL data sets. Softw Pract Exper. 2008;38(6):589–637. https​://doi.
org/10.1002/spe.844.

	43.	 Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin AV.
Mummer4: a fast and versatile genome alignment system. PLoS Comput
Biol. 2018;14(1):e1005944.

	44.	 Muggli MD, Bowe A, Noyes NR, Morley PS, Belk KE, Raymond R, Gagie T,
Puglisi SJ, Boucher C. Succinct colored de Bruijn graphs. Bioinformatics.
2017;33(20):3181–7.

	45.	 Louza FA, Telles GP, Gog S, Zhao L. Computing Burrows–Wheeler similarity
distributions for string collections. SPIRE. Lecture Notes in Computer Sci-
ence, vol. 11147. Lima: Springer; 2018. p. 285–96.

	46.	 Prezza N, Pisanti N, Sciortino M, Rosone G. Detecting mutations by ebwt.
In: WABI. LIPIcs, vol. 113. Schloss Dagstuhl - Leibniz-Zentrum fuer Informa-
tik, Helsinki, Finland; 2018. p. 3–1315.

	47.	 Garofalo F, Rosone G, Sciortino M, Verzotto D. The colored longest com-
mon prefix array computed via sequential scans. SPIRE. Lecture Notes in
Computer Science, vol. 11147. Lima: Springer; 2018. p. 153–67.

http://arxiv.org/abs/1705.07756
http://arxiv.org/abs/1705.07756
https://doi.org/10.1007/s00453-016-0165-4
https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/AlgoLab/bwt-lcp-em
https://github.com/felipelouza/egsa
https://github.com/felipelouza/egsa
https://doi.org/10.1002/spe.844
https://doi.org/10.1002/spe.844

	External memory BWT and LCP computation for sequence collections with applications
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	Background
	Computing multi-string BWTs
	Merging multi-string BWTs
	Related approaches

	The eGap algorithm
	Phase 1: BWT computation
	Phase 2: BWT merging and LCP computation
	Phase 3: LCP merging
	Analysis

	Experiments
	Comparison with the existing algorithms
	Relative performance of eGap’s building blocks

	Applications
	Computation of maximal repeats
	All pairs suffix–prefix overlaps
	Construction of succinct de Bruijn graphs

	Conclusions
	Authors’ contributions
	References

