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Abstract 

Background:  Sequencing technologies produce larger and larger collections of biosequences that have to be 
stored in compressed indices supporting fast search operations. Many compressed indices are based on the Bur-
rows–Wheeler Transform (BWT) and the longest common prefix (LCP) array. Because of the sheer size of the input it 
is important to build these data structures in external memory and time using in the best possible way the available 
RAM.

Results:  We propose a space-efficient algorithm to compute the BWT and LCP array for a collection of sequences in 
the external or semi-external memory setting. Our algorithm splits the input collection into subcollections sufficiently 
small that it can compute their BWT in RAM using an optimal linear time algorithm. Next, it merges the partial BWTs in 
external or semi-external memory and in the process it also computes the LCP values. Our algorithm can be modi-
fied to output two additional arrays that, combined with the BWT and LCP array, provide simple, scan-based, external 
memory algorithms for three well known problems in bioinformatics: the computation of maximal repeats, the all 
pairs suffix–prefix overlaps, and the construction of succinct de Bruijn graphs.

Conclusions:  We prove that our algorithm performs O(nmaxlcp) sequential I/Os, where n is the total length of the 
collection and maxlcp is the maximum LCP value. The experimental results show that our algorithm is only slightly 
slower than the state of the art for short sequences but it is up to 40 times faster for longer sequences or when the 
available RAM is at least equal to the size of the input.

Keywords:  Burrows–Wheeler Transform, Longest common prefix array, Maximal repeats, All pairs suffix–prefix 
overlaps, Succinct de Bruijn graph, External memory algorithms
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Introduction
A fundamental problem in bioinformatics is the ability 
to efficiently search into the billions of DNA sequences 
produced by NGS studies. The Burrows Wheeler trans-
form (BWT) [1] is a well known structure which is the 
starting point for the construction of compressed indices 
for collections of sequences [2]. The BWT is often com-
plemented with the longest common prefix (LCP) array 
[3] since the latter makes it possible to efficiently emu-
late Suffix Tree algorithms [4, 5]. The construction of 
such data structures is a challenging problem. Although 
the final outcome is a compressed index, construction 

algorithms can be memory hungry and the necessity of 
developing lightweight algorithms was recognized since 
the very beginning of the field [6–8]. In lightweight algo-
rithms it is assumed that the input and the output fit 
in main memory but the amount of additional working 
memory is sublinear with the size of the input.

When even lightweight algorithms do not fit in RAM, 
one has to resort to external or semi-external memory 
construction algorithms (see [9–14] and references 
therein). In the external memory model [15] it is assumed 
that the main memory grows at most polylogarithmically 
with the size of the input. In the semi-external model the 
main memory can grow linearly with the size of the input 
but part of the working data has to reside on disk. In both 
models the complexity of the algorithms is usually meas-
ured in terms of disk I/Os, since data transfer is much 
slower than CPU operations.
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The space efficient computation of the BWT in main 
memory for a single sequence is well studied, and 
remarkable advances have been recently obtained [16, 
17]. Unfortunately, for external memory computation the 
situation is less satisfactory. For collections of sequences, 
the first external memory algorithm is the BCR algo-
rithm described in [18] that computes the multi-string 
BWT for a collection of total size n, performing a num-
ber of sequential I/Os proportional to nK, where K is 
the length of the longest sequence in the collection. This 
approach is clearly not competitive when the sequences 
have non-homogeneous lengths, and it is far from the 
theoretical optimal even for sequences of equal length. 
Nevertheless, the simplicity of the algorithm makes it 
very effective for collections of relatively short sequences, 
and it has become the reference tool for this problem. 
This approach was later extended [19] to compute also 
the LCP values with the same asymptotic number of I/
Os. When computing also the LCP values, or when the 
input strings have different lengths, the algorithm uses 
O(m) words of RAM, where m is the number of input 
sequences.

In this paper, we present a new space-efficient algo-
rithm for the computation of the BWT and LCP array 
for a collection of sequences in external or semi-external 
memory. Our algorithm takes the amount of available 
RAM as an input parameter, and tries to make the best 
use of it by splitting the input into subcollections suffi-
ciently small so that it can compute their BWT in inter-
nal memory using an optimal linear time algorithm. 
Next, it merges the partial BWTs in external or semi-
external memory and in the process it also computes 
the LCP values. Since the LCP values are computed in 
a non-standard order, the algorithm is completed by an 
external memory mergesort procedure that computes 
the final LCP array. We show that our algorithm per-
forms a number of sequential I/Os between O(n avelcp) 
and O(nmaxlcp) , where avelcp and maxlcp are respec-
tively the average and the maximum longest common 
prefix of the input sequences. To our knowledge, the only 
other known external memory algorithm for computing 
the BWT and LCP arrays of a collection of sequences is 
bwt-lcp-em, recently proposed in [20] that performs 
O(nmaxlcp) sequential I/Os and uses O(m+ K ) words 
of RAM, where K is the fixed string length.

In “Related approaches” section we compare our 
approach with the ideas behind these previous works, and 
in “Experiments” section we compare their performance 
in practice. The experimental results show that BCR is 
the fastest algorithm for relatively short sequences while 
our algorithm is the fastest when the average LCP of the 
collection is relatively small compared to the lengths of 
the sequences. Both our algorithm and BCR appear to be 

faster than the available implementation of bwt-lcp-
em, which is however only a prototype implementation 
with some limitations on the admissible inputs.

Another contribution of the paper, which follows from 
our first result, is the design of simple external memory 
algorithms for three well known problems related to 
genomic sequences, namely: (i) the computation of maxi-
mal repeats [21, 22], (ii) the computation of the all pairs 
suffix–prefix overlaps [23–25], and (iii) the construc-
tion of succinct de Bruijn graphs [26–28]. Our external 
memory algorithms for these problems are derived from 
known internal memory algorithms, but they process the 
input data in a single sequential scan. In addition, for the 
problem of computing the all pairs suffix–prefix, we go 
beyond the recent solutions that compute all the overlaps 
[24, 25, 29, 30], and we compute only the overlaps above 
a certain length, still spending constant time per reported 
overlap. Our algorithms take as input the BWT and LCP 
array, together with two additional arrays that our BWT 
construction algorithm can compute without any asymp-
totic slowdown.

Since problems on genomic sequences often involve 
huge datasets, it is certainly important to provide effi-
cient external memory algorithms for the three problems 
described above. To our knowledge, only for the all pairs 
suffix–prefix problem there exists an external memory 
algorithm, namely the algorithm [30, Algorithm  2] that 
computes all the overlaps given the BWT, LCP, and Gen-
eralized Suffix Array of the input collection.

Background
Let s[1, n] denote a string of length n over an alphabet 
� of constant size σ . As usual, we assume s[n] is a spe-
cial symbol (end-marker) not appearing elsewhere in s 
and lexicographically smaller than any other symbol. We 
write s[i, j] to denote the substring s[i]s[i + 1] · · · s[j] . 
If j ≥ n we assume s[i, j] = s[i, n] . If i > j or i > n then 
s[i, j] is the empty string. Given two strings s1 and s2 we 
write s1 � s2 ( s1 ≺ s2 ) to denote that s1 is lexicographi-
cally (strictly) smaller than s2 . We denote by LCP(s1, s2) 
the length of the longest common prefix between s1 and 
s2.

The suffix array sa[1, n] associated to s is the permuta-
tion of [1, n] giving the lexicographic order of s ’s suffixes, 
that is, for i = 1, . . . , n− 1 , s[sa[i], n] ≺ s[sa[i + 1], n].

The longest common prefix array lcp[1, n+ 1] is defined 
for i = 2, . . . , n by

the lcp array stores the length of the longest common pre-
fix (LCP) between lexicographically consecutive suffixes. 
For convenience we define lcp[1] = lcp[n+ 1] = −1.

(1)lcp[i] = LCP(s[sa[i − 1], n], s[sa[i], n]);
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Let s1[1, n1], . . . , sk [1, nk ] denote a collection of strings 
such that s1[n1] = $1, . . . , sk [nk ] = $k , where $ 1 < . . . < 
$ k are k symbols not appearing elsewhere in s1, . . . , sk 
and smaller than any other symbol. Let sa1···k [1, n] 
denote the suffix array of the concatenation s1 · · · sk of 
total length n = �k

h=1nh . The multi-string BWT [19, 31] 
of s1, . . . , sk , denoted by bwt1···k [1, n] , is defined as

Essentially bwt1···k is a permutation of the symbols in 
s1, . . . , sk such that the position in bwt1···k of si[j] is given 
by the lexicographic rank of its context si[j + 1, ni] (or 
si[1, ni] if j = ni ). Figure 1 shows an example with k = 2 . 

(2)bwt1···k [i] =

{

sj[nj] if sa1···k [i] = �
j−1
h=1nh + 1

sj[sa1···k [i] −�
j−1
h=1nh − 1] if �

j−1
h=1nh + 1 < sa1···k [i] ≤ �

j
h=1nh.

Notice that for k = 1 , this is the usual Burrows–Wheeler 
Transform [1].

Given the suffix array sa1···k [1, n] of the concatena-
tion s1 · · · sk , we consider the corresponding LCP array 
lcp1···k [1, n] defined as in (1) (see again Fig. 1). Note that, 
for i = 2, . . . , n , lcp1···k [i] gives the length of the longest 
common prefix between the contexts of bwt1···k [i] and 

bwt1···k [i − 1] . We stress that all practical implementa-
tions use a single $ symbol as end-marker for all strings 
to avoid alphabet explosion, but end-markers from 

Fig. 1  LCP array and BWT for s1 = abcab$1 and s2 = aabcabc$2 , and multi-string BWT and corresponding LCP array for the same strings. Column 
id shows, for each entry of bwt12 = bc$2cc$1aaaabbb whether it comes from s1 or s2
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different strings are then sorted as described, i.e., on 
the basis of the index of the strings they belong to.

Computing multi‑string BWTs
The gSACA-K algorithm [32], based on algorithm SACA-
K [33], computes the suffix array for a string collection. 
Given a collection of strings of total length n, gSACA-
K computes the suffix array for their concatenation in 
O(n)  time using (σ + 1) log n additional bits (in prac-
tice, only 2KB are used for ASCII alphabets). gSACA-K 
is time and space optimal for alphabets of constant size 
σ = O(1) . The multi-string bwt1···k of s1, . . . , sk can be 
easily obtained from the suffix array as in (2). gSACA-K 
can also compute the lcp array lcp1···k still in linear time 
using only the additional space for the lcp values.

Merging multi‑string BWTs
The Gap algorithm [34], based on an earlier algorithm by 
Holt and McMillan [35], is a simple procedure for merg-
ing multi-string BWTs. In its original formulation the 
Gap algorithm can also merge LCP arrays, but in this 
paper we compute LCP values using a different approach 
more suitable for external memory execution. We 
describe here only the main idea behind Gap and refer 
the reader to [34] for further details.

For simplicity in the following we assume we are merging k 
single-string BWTs bwt1 = bwt(s1), . . . , bwtk = bwt(sk) ; 
the algorithm does not change in the general case where the 
inputs are multi-string BWTs. Computing bwt1···k amounts 
to sorting the symbols of bwt1, . . . , bwtk according to the 
lexicographic order of their contexts, where the context of 
symbol bwtj[i] is sj[saj[i], nj] . By construction, the symbols 
in each bwtj are already sorted by context, hence to com-
pute bwt1···k we only need to merge bwt1, . . . , bwtk without 
changing the relative order of the symbols within the input 
sequences.

The Gap algorithm works in successive iterations. Dur-
ing the h-th iteration it computes a vector Z(h) specify-
ing how the entries of bwt1, . . . , bwtk should be merged 
to have them sorted according to the first h symbols of 
their context. Formally, for j = 1, . . . , k the vector Z(h) 
contains |bwtj| copies of the value j arranged so that the 
following property holds.

Property 1  For j1, j2 ∈ {1, . . . , k} , the i1-th occurrence 
of j1 precedes the i2-th occurrence of j2 in Z(h) if and only 
if the length-h context of bwtj1 [i1] is lexicographically 
smaller than the length-h context of bwtj2 [i2] , or the two 
contexts are equal and j1 < j2 .�  �

Property  1 is equivalent to state that we can logically 
partition Z(h) into b(h)+ 1 blocks

such that each block corresponds to the set of symbols 
in bwt1···k , whose contexts are prefixed by the same 
length-h string. The context of any symbol in block 
Z(h)[ℓj + 1, ℓj+1] is lexicographically smaller than the 
context of the symbols in block Z(h)[ℓk + 1, ℓk+1] with 
k > j ; within each block, if j1 < j2 the symbols of bwtj1 
precede those of bwtj2 . We keep explicit track of such 
blocks using a bit array B[1, n+ 1] such that at the end 
of iteration h it is B[i] �= 0 if and only if a block of Z(h) 
starts at position  i. By Property 1, when all entries in B 
are nonzero, Z(h) describes how the bwtj ( j = 1, . . . , k ) 
should be merged to get bwt1···k.

Related approaches
The strategy used by Gap to build multi-string BWTs 
follows the idea, introduced by [35, 36], of merging par-
tial BWTs, i.e. BWTs of subsets of the input collection. 
Interestingly, both previous algorithms for computing 
the BWT and LCP in external memory [19, 20] are also 
based on a merging strategy but instead of merging par-
tial BWTs, they merge the arrays L1 , L2 , L3 , …, where Li 
consists of the symbols which are at distance i from the 
end of their respective strings. The symbols inside each 
Li are sorted as usual by context. In the example of Fig. 1, 
we would have L1 = bc (since s1 ends with b$1 and s2 
ends with c$2 ), L2 = ab , (since s1 ends with ab$1 and s2 
ends with bc$2 ), L3 = ca and so on. Note that in L3 c pre-
cedes a since c ’s context ab$1 is lexicographically smaller 
than a ’s context bc$2 . Clearly, merging the arrays Li yields 
the desired multi-string BWT and the authors of [19, 20] 
show how to compute also the LCP array. The algorithms 
in [19, 20] differ in how the merging is done: [19] uses 
a refinement of a technique introduced in [9, 10], while 
[20] uses a refinement of Holt and McMillan merging 
strategy [35, 36].

The eGap algorithm
The eGap algorithm for computing the multi-string 
BWT and LCP array in external memory works in three 
phases. First it builds multi-string BWTs for sub-collec-
tions in internal memory, then it merges these BWTs in 
external memory and generates the LCP values. Finally, it 
sorts the LCP values in external memory.

Phase 1: BWT computation
Given a collection of sequences s1, s2, . . . , sk , we split it 
into sub-collections sufficiently small that we can com-
pute the multi-string SA for each one of them in internal 
memory using the gSACA-K algorithm. After computing 

(3)
Z(h)[1, ℓ1], Z

(h)[ℓ1 + 1, ℓ2], . . . , Z
(h)[ℓb(h) + 1, n]
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each SA, we compute the corresponding multi-string 
BWT and write it to disk in uncompressed form using 
one byte per character.

Phase 2: BWT merging and LCP computation
This part is based on the Gap algorithm previously 
described but suitably modified to work efficiently in 
external memory (or in semi-external memory if there 
are at least n bytes of RAM). In the following we assume 
that the input consists of k BWTs bwt1, . . . , bwtk of total 
length n over an alphabet of size σ . The input BWTs are 
read from disk and never moved to internal memory.

The algorithm initially sets Z(0) = 1
n12

n2 . . . knk and 
B = 10

n−1
1 . Since the context of every symbol is prefixed 

by the same length-0 string (the empty string), initially 
there is a single block containing all symbols. At itera-
tion h the algorithm computes Z(h) from Z(h−1) as follows 
(see also Fig. 2). We define an array F [1, σ ] such that F[c] 
contains the number of occurrences of characters smaller 
than c in bwt1···k . F partitions Z(h) into σ buckets, one for 
each symbol. Using Z(h−1) we scan the partially merged 
BWT, and whenever we encounter the BWT character c 
coming from bwtℓ , with ℓ ∈ {1, . . . , k} , we store it in the 
next free position of bucket  c in Z(h) ; note that c is not 
actually moved, instead we write ℓ in its corresponding 
position in Z(h) . In our implementation, instead of using 
distinct arrays Z(0),Z(1), . . . we only use two arrays Zold 
and Znew , that are kept on disk. At the beginning of itera-
tion h it is Zold = Z(h−1) and Znew = Z(h−2) ; at the end 
Znew = Z(h) and the roles of the two files are swapped. 
While Zold is accessed sequentially, Znew is updated 
sequentially within each bucket, that is within each set 
of positions corresponding to a given character. Since the 

boundary of each bucket is known in advance we logi-
cally split the Znew file in buckets and write to each one 
sequentially.
eGap computes LCP values exploiting the bitvector B 

used by Gap to mark the beginning of blocks (see Eq. 3) 
within each Z(h) (for simplicity the computation of B is 
not shown in Fig.  2). We observe that if B[i] is set to 1 
during iteration h then lcp1···k [i] = h− 1 , since the algo-
rithm has determined that the contexts of bwt1···k [i] and 
bwt1···k [i − 1] have a common prefix of length exactly 
h− 1 . We introduce an additional bit array Bx[1, n+ 1] 
such that, at the beginning of iteration h, Bx[i] = 1 iff 
B[i] has been set to 1 at iteration h− 2 or earlier. During 
iteration h, if B[i] = 1 we look at Bx[i] . If Bx[i] = 0 then 
we know that B[i] has been set at iteration h− 1 : thus 
we output to a temporary file Fh−2 the pair �i, h− 2� to 
record that lcp1···k [i] = h− 2 , and we set Bx[i] = 1 so no 
pair for position i will be produced in the following itera-
tions. At the end of iteration h, file Fh−2 contains all pairs 
�i, lcp1···k [i]� with lcp[i] = h− 2 ; the pairs are written in 
increasing order of their first component, since B and Bx 
are scanned sequentially. These temporary files will be 
merged in Phase 3 to produce the LCP array.

As proven in [34, Lemma  7], if at iteration h of the 
Gap algorithm we set B[i] = 1 , then at any iteration 
g ≥ h+ 2 processing the entry Z(g)[i] will not change 
the arrays Z(g+1) and B. Since the roles of the Zold and 
Znew files are swapped at each iteration, and at iteration 
h we scan Zold = Z(h−1) to update Znew from Z(h−2) to 
Z(h) , we can compute only the entries Z(h)[j] that are dif-
ferent from Z(h−2)[j] . In particular, any range [ℓ,m] such 
that Bx[ℓ] = Bx[ℓ+ 1] = · · · = Bx[m] = 1 can be added 
to a set of irrelevant ranges that the algorithm may skip 

Fig. 2  Outline of Gap’s main loop computing Z(h) from Z(h−1) . Array F is initialized so that F[c] contains the number of occurrences of symbols 
smaller than c in bwt1···k
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in successive iterations (irrelevant ranges are defined in 
terms of the array Bx as opposed to the array B, since 
before skipping an irrelevant range we need to update 
both Zold and Znew ). We read from one file the ranges to 
be skipped at the current iteration and simultaneously 
write to another file the ranges to be skipped at the next 
iteration (note that irrelevant ranges are created and con-
sumed sequentially). Since skipping a single irrelevant 
range takes O(k + σ) time, an irrelevant range is stored 
only if its size is larger than a given threshold t and we 
merge consecutive irrelevant ranges whenever possible. 
In our experiments we used t = max(256, k + σ) . In the 
worst case the space for storing irrelevant ranges could 
be O(n) but in actual experiments it was always less than 
0.1n bytes.

As in the Gap algorithm, when all entries in B are 
nonzero, Zold describes how the BWTs bwtj ( j = 1, . . . , k ) 
should be merged to get bwt1···k , and a final sequential 
scan of the input BWTs along with Zold allows to write 
bwt1···k to disk, in sequential order. Our implementation 
can merge at most 27 = 128 BWTs at a time because we 
use 7 bits to store each entry of Zold and Znew . These 
arrays are maintained on disk in two separate files; the 
additional bit of each byte are used to keep the current 
and the next copy of B. The bit array Bx is stored sepa-
rately in a file of size n/8 bytes. To merge a set of k > 128 
we split the input in subsets of cardinality 128 and merge 
them in successive rounds. In practice, the algorithm 
merges the multi-string BWTs produced by Phase 1. In 
our experiments the maximum number of sub-collec-
tions was 21.

Semi-external version We have also implemented a 
semi-external version of the merge algorithm that uses n 
bytes of RAM. The i-th byte is used to store Zold[i] and 
Znew[i] (3 bits each), B[i] and Bx[i] . This version can sort 
at most 23 = 8 BWTs simultaneously; to sort k BWTs it 
performs log8 k merging rounds. Although performing 
more rounds is clearly more expensive, this version stores 
in RAM all the arrays that are modified and reads from 
disk only the input BWTs and is therefore significantly 
faster.

Phase 3: LCP merging
At the end of Phase 2 all LCP-values have been written to 
the temporary files Fh on disk as pairs �i, lcp[i]� . Each file 
Fh contains all pairs with second component equal to h 
in order of increasing first component. The computation 
of the LCP array is completed using a standard external 
memory multiway merge [37, Chap.  5.4.1] of maxlcp 
sorted files, where maxlcp = maxi(lcp1···k [i]) is the larg-
est LCP value.

Analysis
During Phase 1, gSACA-K computes the suffix array for a 
sub-collection of total length m using 9m bytes (8m bytes 
for sa and 1m bytes for the text). If the available RAM 
is M, the input is split into subcollections of size ≈ M/9 . 
Since gSACA-K runs in linear time, if the input collec-
tion has total size n, Phase 1 takes O(n) time overall.

A single iteration of Phase 2 consists of a complete scan 
of Z(h−1) except for the irrelevant ranges. Since the algo-
rithm requires maxlcp iterations, without skipping the 
irrelevant ranges the algorithm would require maxlcp 
sequential scans of O(n) items. Reasoning as in [34, 
Theorem 8] we get that by skipping irrelevant ranges the 
overall amount of data directly read/written by the algo-
rithm is O(n avelcp) items where avelcp is the arithmetic 
average of the entries in the final LCP array. However, if 
we reason in terms of disk blocks, every time we skip an 
irrelevant range we discard the current block and load a 
new one (unless the beginning of the new relevant range 
is inside the same block; in that case or if the beginning 
of the new relevant range is in the block immediately fol-
lowing the current one, skipping the irrelevant range does 
not save any I/O). We can upper bound this extra cost, 
with an overhead of O(1) blocks for each irrelevant range 
skipped. Summing up, if the total number of skipped 
ranges is Ir and each disk block consists of B words, the 
I/O complexity of Phase 2 according to the theoretical 
model in [15] is O(Ir + n avelcp/(B log n)) block I/Os 
(under the reasonable assumptions that the alphabet is 
constant, each entry in Z takes constant space, and we 
need a constant number of merge rounds). Although 
the experiments in “Experiments” section suggest that 
in practice Ir is small, for simplicity and uniformity with 
the previous literature we upper bound the cost of Phase 
2 with O(nmaxlcp) sequential I/Os (corresponding to 
O(nmaxlcp/(B log n)) block I/Os).

Phase 3 takes O(⌈log
�
maxlcp⌉) rounds; each round 

merges � LCP files by sequentially reading and writing 
O(n) bytes of data. The overall cost of Phase 3 is therefore 
O(n log

�
maxlcp) sequential I/Os. In our experiments we 

used � = 256 ; since in our tests maxlcp < 216 two merg-
ing rounds were always sufficient.

Experiments
In this section we report on an experimental study 
comparing between the eGap algorithm and the other 
known external memory tools computing the BWT 
and LCP arrays of sequence collections. We imple-
mented eGap in ANSI C based on the code of Gap 
[34] and gSACA-K [32]. eGap source code is freely 
available at https​://githu​b.com/felip​elouz​a/egap/. All 
tested algorithms were compiled with GNU GCC ver. 

https://github.com/felipelouza/egap/
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4.6.3, with optimizing option -O3. The experi-
ments were conducted on a machine with GNU/Linux 
Debian 7.0/64 bits operating system using an Intel 
i7-3770 3.4 GHz processor with 8 MB cache, 
32 GB of RAM and a 2.0 TB SATA hard disk with 7200 
RPM and 64 MB cache. The complete set of experi-
ments took about 70 days of computing time.

Datasets We used four real DNA datasets reported in 
Table  1 containing sequences of different lengths and 
structure. The sequences of the first three datasets were 
trimmed to make them of the same length, while the 
fourth dataset contains sequences of widely different 
lengths. short are Illumina reads from human genome 
(ftp://ftp.sra.ebi.ac.uk/vol1/ERA01​5/ERA01​5743/srf/). 
long are Illumina HiSeq 4000 paired-end RNA-seq 
reads from plant Setaria viridis (https​://trace​.ncbi.nlm.
nih.gov/Trace​s/sra/?run=ERR19​42989​). pacbio.1000 
and pacbio are PacBio RS II reads from Triticum aes-
tivum (wheat) genome (https​://trace​.ncbi.nlm.nih.gov/
Trace​s/sra/?run=SRR58​16161​). All datasets contain 
sequences over the A, C, G, T alphabet plus a string 
terminator symbol.

Memory setting To make a realistic external memory 
experimental setting one has to use an amount of RAM 
smaller than the size of the data. Indeed, if more RAM 
is available, even if the algorithm is supposedly not 
using it, the operating system will use it to temporar-
ily store disk data and the algorithm will be no longer 
really working in external memory. This phenomenon 
will be apparent also from our experiments. For these 
reasons we reduced the available RAM to simulate 
three different scenarios: (i) input data 4 times larger 
than the available RAM, (ii) input data of approximately 
the same size as the RAM, and (iii) input data 4 times 
smaller than the RAM. We evaluated these scenarios 
with the complete 8  GB datasets from Table  1 (with 
2  GB, 8  GB, and 32  GB RAM), and with the datasets 
trimmed to 1 GB (hence with 256 MB, 1 GB, and 4 GB 
RAM). The RAM was limited at boot time to a value 
equal to the amount assigned to the algorithm plus a 
small extra amount for the operating system (14 MB for 
the 256 MB instance and 64 MB for the others).

Comparison with the existing algorithms
We compared eGap with the algorithm BCR [19] 
which is the current state of the art for BWT/LCP 
computation for collections of sequences. We used 
the bcr-lcp implementation from [38] since the 
previous implementation mentioned in [19] did not 
compute the LCP values correctly. We tested also the 
recently proposed algorithm bwt-lcp-em [20] using 
the code from [39]. As a reference we also tested the 
algorithm eGSA [14] using the code from [40]. eGSA 
computes the Suffix and LCP Arrays for collections 
of sequences in external memory: the disadvantage of 
this algorithm is that working with the Suffix Array 
could involve transferring to/from disk a much larger 
amount of data.

Limitations We tested bwt-lcp-em only on the 
short 1 GB dataset since the implementation in [39] 
only supports collections of at most 2 GB and with 
strings of at most 253 symbols. We tested eGSA only with 
memory scenario (iii) (input data 4 times smaller than 
the RAM) since it was already observed in [14] that eGSA 
’s running time degrades when the RAM is restricted to 
the input size. Finally, we could not test bcr-lcp on the 
pacbio 1 GB dataset since it stopped with an internal 
error after four days of computation. This is probably due 
to the presence of very long strings in the dataset since 
bcr-lcp was originally conceived for collections of 
short/medium length strings. The corresponding entries 
are marked as “failed” in Fig. 3. For the larger 8 GB data-
sets we stopped the experiments that did not complete 
after six days of CPU time, corresponding to 60 micro-
seconds per input symbol. The corresponding entries are 
marked with “ > 60 ” in Fig. 3. Note that both bwt-lcp-
em and bcr-lcp are active projects, so some of the lim-
itations reported here could have been solved after our 
experiments were completed.

Results: The results of our experiments are summarized 
in Fig. 3. The bar plots on the left are for the 1 GB data-
sets showing the running time as function of the available 
RAM; the diagrams on the right are for the 8 GB data-
sets. The results show that for memory scenarios (i) and 
(ii) eGap and bcr-lcp have the better performance, 
whereas for scenario (iii) eGap and eGSA are the best 

Table 1  Datasets used in our experiments

Columns 4 and 5 show the maximum and average lengths of the single strings. Columns 6 and 7 show the maximum and average LCPs of the collections

Name Size GB N. of strings Max Len Ave Len Max LCP Ave LCP

short 8.0 85,899,345 100 100 99 27.90

long 8.0 28,633,115 300 300 299 90.28

pacbio.1000 8.0 8,589,934 1000 1000 876 18.05

pacbio 8.0 942,248 71,561 9116 3084 18.32

ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
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options. The performance of bwt-lcp-em improves 
with the RAM size, but it is still 12 times slower than 
eGap for the short datasets with 4 GB of RAM.

The above results are in good accordance with the the-
oretical analysis. bcr-lcp complexity is O(nmaxlen) 
sequential I/Os while eGap and bwt-lcp-em both take 
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Fig. 3  Running time in microseconds per input byte as a function of the available memory for the 1 GB datasets (left) and the 8 GB datasets (right)
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O(nmaxlcp) sequential I/Os. For the short and long 
datasets the maximum length and the maximum LCP 
coincide and we see that when the available memory is 
only one fourth of the input size bcr-lcp is clearly the 
fastest option: indeed it is up to a factor 2.6 faster than 
eGap. This is no longer true when the available memory 
is equal or larger than the input size: in this case eGap is 
the fastest, probably because of its ability to exploit all the 
available memory using a semi-external strategy when-
ever possible. When the available memory is larger than 
the input size or for the pacbio.1000 dataset which has a 
very large maxlen then eGap is up to 40 times faster than 
bcr-lcp. Note that, in accordance with our heuristic 
analysis, eGap ’s running time per input byte appears to 
be roughly proportional to the average LCP of the collec-
tion. If we look at the datasets pacbio and pacbio.1000 
we see that they have widely different maximum LCPs, 
yet their running times are very close similarly to their 
average LCPs.

Note that in the scenario (iii) eGSA is often the fast-
est algorithm and its running time appears to be less 
influenced by the size of the average or maximum LCP. 
Another advantage is that it also computes the Suffix 
Array, but it has the drawback of using a large amount 
of disk working space: 340 GB for a 8 GB input vs 56 GB 
used by eGap.

We conclude that, although eGap is not always the 
fastest algorithm, its running time is never too far from 
that of the best algorithm. In addition, eGap is the only 
algorithm that was able to complete all computations in 
all memory models. Although it was devised as an exter-
nal memory algorithm, its ability to switch to a semi-
external strategy if the memory is available makes it a 
very flexible tool. The comparison with the other algo-
rithms in this setting is indeed not completely fair, since 
none of them is designed to take the available memory as 
a parameter in order to make the best use of it. Note that, 
as the available memory increases, all algorithms become 
faster because the operating system uses the RAM as a 
buffer but the speed improvement is different for differ-
ent algorithms.

Relative performance of eGap’s building blocks
We evaluated the percentage of time spent by each phase 
of eGap and their efficiency (percentage the CPU was 
busy) on the 8 GB datasets in the memory scenarios con-
sidered above, thus with RAM limited to (i) 1  GB, (ii) 
8 GB, and (iii) 32 GB.

The results in Fig. 4 show that Phase 2 of eGap domi-
nates the algorithm in general. The second phase took 
about 95% , 85% and 50% of the total time in scenarios (i), 
(ii), and (iii) respectively. If we look at the efficiency of the 
single phases, we see that they all improve with the RAM 

size. However, we notice that for any given memory sce-
nario the efficiency of Phases 1 and 3 was almost the 
same for the different datasets, while Phase 2 has a dif-
ferent behavior. For the short and long datasets with 
8 GB and 32 GB RAM, we see that Phase 2 efficiency is 
very close to Phase 1’s, while there is a sharp drop when 
using 2 GB RAM. For the pacbio datasets, the drop in 
Phase 2 efficiency is significant already when we use 8 GB 
RAM.

Applications
In this section we show that the eGap algorithm, in addi-
tion to the BWT and LCP arrays, can output additional 
information useful to design efficient external memory 
algorithms for three well known problems on sequence 
collections: (i) the computation of maximal repeats, (ii) 
the all pairs suffix–prefix overlaps, and (iii) the construc-
tion of succinct de Bruijn graphs. For these problems 
we describe algorithms which are derived from known 
(internal memory) algorithms suitably modified so that 
they process the input data in a single sequential scan.

Our first observation is that eGap can also output the 
array which provides, for each bwt entry, the id of the 
sequence to which that entry belongs. In information 
retrieval this is usually called the Document Array, so 
in the following we will denote it by da . In Phase 1 the 
gSACA-K algorithm can compute the da together with 
the lcp and bwt using only additional 4n bytes of space 
to store the da entries. These partial da ’s can be merged 
in Phase 2 using the Znew array in the same way as the 
BWT entries. In the following we use bwt , lcp , and da to 
denote the multistring BWT, LCP and Document Array 
of a collection of m sequences of total length n. We write 
s to denote the concatenation s1 · · · sm and sa to denote 
the suffix array of s . We will use s and sa to describe and 
prove the correctness of our algorithms, but neither s nor 
sa are used in the computations.

Computation of maximal repeats
Different notions of maximal repeats have been used in 
the bioinformatics literature to model different notions of 
repetitive structure (see for example [21, 22]). We use a 
notion of maximal repeat from [41, Chap. 7]: we say that 
a string α is a Type 1 maximal repeat if α occurs in the 
collection at least twice and every extension, i.e. cα or αc 
with c ∈ � , occurs fewer times. We consider also a more 
restrictive notion: we say that a string α is a Type 2 maxi-
mal repeat if α occurs in the collection at least twice and 
every extension of α occurs at most once.

To compute Type 1 maximal repeats the crucial obser-
vation is that there is a substring of length ℓ that prefixes 
sa entries j, j + 1, . . . , i (and no others) iff lcp[k] ≥ ℓ for 
k = j + 1, . . . , i , and both lcp[j] and lcp[i + 1] are smaller 
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than ℓ . To ensure that the repeat is Type 1 maximal, 
we also require that there exists h ∈ [j + 1, i] such that 
lcp[h] = ℓ and that the substring bwt[j, i] contains at least 
two distinct characters.

Our algorithm consists of a single sequential 
scan of bwt and lcp . During the scan, we maintain 
a stack containing pairs �j, lcp[h]� with j ≤ h such 
that if �j′, lcp[h′]� is below �j, lcp[h]� then j′ < j and 
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lcp[h′] < lcp[h] . In addition, when the scanning reaches 
position i, for every entry �j, lcp[h]� in the stack it is 
lcp[h] = minj≤k<i lcp[k] , that is, lcp[h] is the smallest 
value in the range lcp[j, i − 1].

We maintain the stack as follows. When we reach 
position i, if the entry �j, lcp[h]� at the top of the stack 
has lcp[h] < lcp[i] we push �i, lcp[i]� on the stack. If 
lcp[h] = lcp[i] we do nothing. If lcp[h] > lcp[i] we pop 
from the stack all entries �j, lcp[h]� with lcp[h] > lcp[i] ; 
if the removal leaves at the top of the stack an entry 
�j′, lcp[h′]� with lcp[h′] < lcp[i] we push on the stack a 
new entry �̂ , lcp[i]� where ̂  is the first component of 
the last entry just removed from the stack. Note that 
in any case when we have completed the processing 
of position i the entry at the top of the stack has sec-
ond component equal to lcp[i] , and for each stack entry 
�j, lcp[h]� it is lcp[h] = minj≤k≤i lcp[k] as claimed.

We now prove that if �j′, lcp[h′]� is immediately below 
�j, lcp[h]� then lcp[j − 1] = lcp[h′] . As we observed 
above, if at step i we push �i, lcp[i]� on the stack, the 
previous top entry has second component equal to 
lcp[i − 1] so the property holds for the first insertion of 
an entry �i, lcp[·]� . During the following steps it is pos-
sible that �i, lcp[x]� is removed and immediately rein-
serted as �i, lcp[y]� (with lcp[y] < lcp[x] ), but since the 
preceding stack element does not change, is still holds 
true that lcp[i − 1] is equal to the second component of 
the preceding element. Note that, since lcp values on 
the stack are strictly increasing, we conclude that for 
each stack entry �j, lcp[h]� it is lcp[j − 1] < lcp[h].

Our algorithm outputs Type 1 maximal repeats 
when elements are popped from the stack. At step 
i + 1 we pop from the stack all entries �j, lcp[h]� such 
that lcp[h] > lcp[i + 1] . Recall that by construction 
lcp[h] = minj≤k≤i lcp[k] . In addition lcp[j − 1] < lcp[h] 
and lcp[i + 1] < lcp[h] . Thus, to ensure that we have 
found a Type 1 maximal repeat we only need to check 
that bwt[j − 1, i] contains at least two distinct charac-
ters. To efficiently check this latter condition, for each 
stack entry �j, lcp[h]� we maintain a bit vector bj of size 
σ keeping track of the distinct characters in the array 
bwt from position j − 1 to the next stack entry, or to the 
last seen position for the entry at the top of the stack. 
When �j, lcp[h]� is popped from the stack its bit vector 
is or-ed to the previous stack entry in constant time; 
if �j, lcp[h]� is popped from the stack and immediately 
replaced with �j, lcp[i]� its bit vector survives as it is 
(essentially because it is associated with an index, not 
with a stack entry). Clearly, maintaining the bit vector 
does not increase the asymptotic cost of the algorithm.

Since at each step we insert at most one entry on the 
stack, the overall cost of our algorithm is O(n) time. The 
algorithm uses a stack of size bounded by O(maxlcp) 

words. For most applications maxlcp ≪ n so it should be 
feasible to keep the stack in RAM. However, since a stack 
can also be implemented in external memory in O(1) 
amortized time per operation [42], we can state the fol-
lowing result.

Theorem  1  We can compute all Type 1 maximal 
repeats in O(n) time executing a single scan of the arrays 
bwt and lcp using O(1) words of RAM. � �

To find Type 2 maximal repeats, we are interested 
in consecutive LCP entries lcp[j], lcp[j + 1], . . . , lcp[i],

lcp[i + 1] , such that lcp[j] < lcp[j + 1] = lcp[j + 2] =

· · · = lcp[i] > lcp[i + 1]. Indeed, this implies that for 
h = j, . . . , i all suffixes s[sa[h], n] are prefixed by the same 
string α of length lcp[j + 1] and every extension αc occurs 
at most once. If this is the case, then α is a Type 2 maxi-
mal repeat if all characters in bwt[j, i] are distinct since 
this ensures that also every extension cα occurs at most 
once. In order to detect this situation, as we scan the 
lcp array we maintain a candidate pair �j + 1, lcp[j + 1]� 
such that j + 1 is the largest index seen so far for which 
lcp[j] < lcp[j + 1] . When we establish a candidate at 
j + 1 as above, we initialize to zero a bit vector b of size 
σ setting to 1 only entries bwt[j] and bwt[j + 1] . As long 
as the following values lcp[j + 2], lcp[j + 3], . . . are equal 
to lcp[j + 1] we go on updating b and if the same posi-
tion is marked twice we discard �j + 1, lcp[j + 1]� . If we 
reach an index i + 1 such that lcp[i + 1] > lcp[j + 1] , we 
update the candidate to �i + 1, lcp[i + 1]� and reinitialize 
b. If we reach i + 1 such that lcp[i + 1] < lcp[j + 1] and 
�j + 1, lcp[j + 1]� has not been discarded, then a repeat of 
Type 2 (with i − j + 1 repetitions) has been located.

Theorem  2  We can compute all Type 2 maximal 
repeats in O(n) time executing a single scan of the arrays  
bwt and lcp using O(1) words of RAM.�  �

Note that when our algorithms discover Type 1 or Type 
2 maximal repeats we know the repeat length and the 
number of occurrences so one can easily filter out non-
interesting repeats (too short or too frequent). In some 
applications, for example the MUMmer tool [43], one is 
interested in repeats that occur in at least r distinct input 
sequences, maybe exactly once for each sequence. Since 
for these applications the number of input sequences is 
relatively small, we can handle these requirements by 
simply scanning the da array simultaneously with the lcp 
and bwt arrays and keeping track of the sequences associ-
ated to a maximal repeat using a bit vector (or a union-
find structure) as we do with characters in the bwt.
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All pairs suffix–prefix overlaps
In this problem we want to compute, for each pair of 
sequences si sj , the longest overlap between a suffix of si 
and a prefix of sj . Our solution is inspired by the algo-
rithm in [24] which in turn was derived by an earlier Suf-
fix-tree based algorithm [23]. The algorithm in [24] solves 
the problem using a Generalized Enhanced Suffix array 
(consisting of the arrays sa , lcp , and da ) in O(n+m2) 
time, which is optimal since n is the size of the input and 
there are m2 longest overlaps. However, for large col-
lections it is natural to consider the problem of report-
ing only the overlaps larger than a given threshold τ still 
spending O(n) time plus constant time per reported over-
lap. Our algorithm solves this more challenging problem.

In the following we say that a suffix starting at sa[i] is 
special iff it is a prefix of the suffix starting at sa[i + 1] , 
not considering the end-marker. This is equivalent to 
state that s[sa[i] + lcp[i + 1]] = $ . For example, in Fig. 1 
(right) the special suffixes are ab$1 , abc$2 , abcab$1 
b$1 , bc$2 , bcab$1 , c$2 , cab$1 . Notice that a special suf-
fix starting at sa[i] has the form v$ with |v| = lcp[i + 1] ; 
clearly only if sa[i] is special then v can be a suffix–pre-
fix overlap. Note also that any suffix $ is always trivially 
special.

To efficiently solve the suffix–prefix overlaps problem, 
we modify Phase  2 of our algorithm so that it outputs 
also the bit array xlcp such that xlcp[i] = 1 iff the suf-
fix starting at sa[i] is special. To this end, we maintain 
an additional length-n bit array S such that, at the end 
of iteration h, S[i] = 1 if and only if the suffix starting 
at sa[i] is special and it has length less than h, again not 
considering the end-marker symbol. The array S is initial-
ized at the end of iteration h = 1 as S = 1

k
0
n−k , consist-

ently with the fact that in the final suffix array the first k 
contexts are strings consisting of just an end-marker, that 
are special suffixes and the only suffixes of length 0.

During iteration h, we update S as follows. With ref-
erence to the code in Fig.  2, whenever we use entry 
Z(h−1)[i] to compute Z(h)[j] for some j, if S[i] = 1 and 
B[j + 1] = 0 then we set S[j] = 1.

Lemma 1  The above procedure correctly updates the 
array S.

Proof  We prove by induction that at the end of itera-
tion h: (1) S[i] = 1 iff the suffix starting at sa[i] is special 
and has length less than h, and (2) if S[i] = 1 the length-
h context currently in position i is in the correct lexico-
graphic position with respect to the final suffix array 
ordering (in other words, it is a prefix for s[sa[i], n]).
For h = 1 the result is true by construction. During itera-
tion h > 1 , if we reach a position i such that S[i] = 1 , 
then by inductive hypothesis the context in position i has 

the form v$ with |v| ≤ h− 2 . If c is the symbol we read at 
Step 5 of Fig. 2, then the context corresponding to posi-
tion j is cv$ . Since the context contains the end-marker, j 
is the correct lexicographic position of cv$ which is there-
fore the suffix corresponding to sa[j] . If B[j + 1] = 0 , 
then lcp[j + 1] ≥ h− 1 . Since lcp[j + 1] ≤ |cv| ≤ h− 1 , it 
follows that |cv| = lcp[j + 1] = h− 1 and S[j] is special as 
claimed.
On the other hand, if at the end of iteration h it is 
S[j] = 0 , then either it was S[i] = 0 or B[j + 1] = 1 which 
implies lcp[j + 1] < h− 1 . In both cases the suffix start-
ing at sa[j] cannot be special and of length less than h. �

Having established the properties of S, we can now 
show how to compute xlcp . Recall that LCP values are 
computed as follows. In Phase 2, during iteration h+ 1 
if B[i + 1] = 1 and Bx[i + 1] = 0 we output the pair 
�i + 1, h− 1� recording the fact that lcp[i + 1] = h− 1 . 
Such pairs are later sorted by their first component dur-
ing Phase 3 to retrieve the LCP array. If sa[i] is special, 
its corresponding suffix has length lcp[i + 1] = h− 1 
so, by the properties of S, at the beginning of itera-
tion h+ 1 it is S[i] = 1 . Thus, to compute xlcp , 
instead of the pair �i + 1, h− 1� we output the triplet 
�i + 1, h− 1, S[i]� = �i + 1, lcp[i + 1], xlcp[i]� . After the 
merging is completed we sort the triplets by their first 
component and we derive both arrays lcp and xlcp.

Our algorithm for computing the suffix–prefix over-
laps longer than a threshold τ , consists of a sequential 
scan of the arrays bwt , lcp , da , and xlcp . We maintain 
m distinct stacks, stack[1], . . . , stack[m] , one for each 
input sequence; stack[k] stores pairs �j, lcp[j + 1]� only 
if sa[j] is a special suffix belonging to sequence k such 
that lcp[j + 1] > τ . During the scan we maintain the 
invariant that for all stack entries �j, lcp[j + 1]� , lcp[j + 1] 
is the length of the longest common prefix (longer than 
τ ) between s[sa[j], n] and s[sa[i], n] , where i is the posi-
tion just scanned.

To maintain the invariant in amortized constant time 
per scanned position, we use the following additional 
structures:

•	 A stack lcpStack containing, in increasing order, 
the values ℓ such that some stack[k] contains an 
entry with LCP component equal to ℓ;

•	 An array of lists top such that top[ℓ] contains the 
indexes k for which the entry at the top of stack[k] 
has LCP component equal to ℓ;

•	 An array daPtr[1,m] such that daPtr[k] points to the 
entry k in the list top[ℓk ] containing it ( daPtr[k] is 
used to remove such entry k from top[ℓk ] in constant 
time).
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We maintain the above data structures as follows. 
When we reach position i + 1 we remove all entries 
�j, lcp[j + 1]� such that lcp[j + 1] > lcp[i + 1] . We use 
lcpStack to determine which are the values ℓ such that 
some stack contains an entry 〈j, ℓ〉 with ℓ > lcp[i + 1] . For 
the value ℓ at the top of lcpStack we locate through top[ℓ] 
all stacks that contain an ℓ-entry at the top. For each 
one of these stacks we remove the top entry 〈j, ℓ〉 so that 
a new entry �j′, ℓ′� , with ℓ′ < ℓ , becomes the new top of 
the stack. Then, if k is the stack that is being updated, we 
add k to top[ℓ′] , and a pointer to the new entry is saved 
in daPtr[k] (overwriting the previous pointer). When all 
entries of top[ℓ] have been processed, top[ℓ] is emptied 
and ℓ is popped from lcpStack . The whole procedure is 
repeated until a value ℓ ≤ lcp[i + 1] is left at the top of 
lcpStack.

Finally, if xlcp[i] = 1 and lcp[i + 1] > τ , �i, lcp[i + 1]� is 
added to stack[da[i]] ; this requires removing da[i] from 
the list top[ℓ] where ℓ is the previous top LCP value in 
stack[da[i]] ; the position of da[i] in top[ℓ] is retrieved 
through daPtr[da[i]] . Also we add da[i] to top[lcp[i + 1]] , 
and the pointer to this new element of top[lcp[i + 1]] is 
written to daPtr[da[i]] . Since the algorithm performs 
an amortized constant number of operations per entry 
�i, lcp[i + 1]� , maintaining the above data structures takes 
O(n) time overall.

The computation of the overlaps is done as in [24]. 
When the scan reaches position  i, we check whether 
bwt[i] = $ . If this is the case, then s[sa[i], n] is prefixed 
by the whole sequence sda[i] , hence the longest overlap 
between a prefix of sda[i] and a suffix of sk is given by the 
element currently at the top of stack[k] , since by con-
struction these stacks only contain special suffixes whose 
overlap with s[sa[i], n] is larger than τ . Note that using 
lcpStack and top we can directly access the stacks whose 
top element corresponds to an overlap with sda[i] larger 
than τ , hence the time spent in this phase is proportional 
to the number of reported overlaps. As in [24] some care 
is required to handle the case in which the whole string 
sda[i] is a suffix of another sequence, but this can be done 
without increasing the overall complexity as in [24]. Since 
we spend constant time for reported overlap and amor-
tized constant time for scanned position the overall cost 
of the algorithm, in addition to the scanning of the bwt
/lcp/xlcp/da arrays, is O(n+ Eτ ) , where Eτ is the number 
of suffix–prefix overlaps greater than τ . Since all stacks 
can be implemented in external memory spending amor-
tized constant time per operation, we only need to store 
in RAM top and daPtr that overall take O(m+maxlcp) 
words.

Theorem  3  Our algorithm computes all suffix–prefix 
overlaps longer than τ in time O(n+ Eτ ) , where Eτ is the 

number of reported overlaps, using O(m+maxlcp) words 
of RAM and executing a single scan of the arrays bwt , lcp , 
da and xlcp . � �

Construction of succinct de Bruijn graphs
A recent remarkable application of compressed data 
structures is the design of efficiently navigable succinct 
representations of de Bruijn graphs [26–28]. Formally, a 
de Bruijn graph for a collection of strings consists of a set 
of vertices representing the distinct k-mers appearing in 
the collection, with a directed edge (u, v) iff there exists 
a (k + 1)-mer α in the collection such that α[1, k] is the 
k-mer associated to u and α[2, k + 1] is the k-mer associ-
ated to v.

The starting point of all de Bruijn graphs succinct rep-
resentation is the BOSS representation [28], so called 
from the authors’ initials. For simplicity we now describe 
the BOSS representation of a k-order de Bruijn graph 
using the lexicographic order of k-mers, instead of the 
co-lexicographic order as in [28], which means we are 
building the graph with the direction of the arcs reversed. 
This is not a limitation since arcs can be traversed in both 
directions (or we can apply our construction to the input 
sequences reversed).

Consider the N k-mers appearing in the collection 
sorted in lexicographic order. For each k-mer αi con-
sider the array Ci of distinct characters c ∈ � ∪ {$} such 
that cαi appears in the collection. The concatenation 
W = C1C2 · · ·CN is the first component of the BOSS 
representation. The second component is a binary array 
last , with |last| = |W | , such that last[j] = 1 iff W [j] is the 
last entry of some array Ci . Clearly, there is a bijection 
between entries in W  and graph edges; in the array last 
each sequence 0i1 ( i ≥ 0 ) corresponds to the outgoing 
edges of a single vertex with outdegree i + 1 . Finally, the 
third component is a binary array W− , with |W−| = |W | , 
such that W−[j] = 1 iff W [j] comes from the array Ci , 
where αi is the lexicographically smallest k-mer prefixed 
by αi[1, k − 1] and preceded by W[j] in the collection. 
This means that αi is the lexicographically smallest k-mer 
with an outgoing edge reaching the node associated to k-
mer W [j]αi[1, k − 1] . Note that the number of 1 ’s in last 
and W− is exactly N, i.e. the number of nodes in the de 
Bruijn graph.

We now show how to compute W  , last and W− by 
a sequential scan of the bwt and lcp array. The crucial 
observation is that the suffix array range prefixed by the 
same k-mer αi is identified by a range [bi, ei] of LCP val-
ues satisfying lcp[bi] < k , lcp[ℓ] ≥ k for ℓ = bi + 1, . . . , ei 
and lcp[ei + 1] < k . Since k-mers are scanned in lexi-
cographic order, by keeping track of the corresponding 
characters in the array bwt[bi, ei] we can build the array Ci 
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and consequently W  and last . To compute W− we simply 
need to keep track also of suffix array ranges correspond-
ing to (k − 1)-mers. Every time we set an entry W [j] = c 
we set W−[j] = 1 iff this is the first occurrence of c in the 
range corresponding to the current (k − 1)-mers.

Theorem  4  Our algorithm computes the BOSS repre-
sentation of a de Bruijn graph in O(n) time using O(1) 
words of RAM, and executing a single scan of the arrays 
bwt and lcp .�  �

If, in addition to the bwt and lcp arrays, we also scan 
the da array, then we can keep track of which sequences 
contain any given graph edge and therefore obtain a suc-
cinct representation of the colored de Bruijn graph [44]. 
Finally, we observe that if our only objective is to build 
the k-order de Bruijn graph, then we can stop the phase 
2 of our algorithm after the k-th iteration. Indeed, we 
do not need to compute the exact values of LCP entries 
greater than k, and also we do not need the exact BWT 
but only the BWT characters sorted by their length  k 
context.

Conclusions
In this paper we have described eGap, a new algorithm 
for the computation of the BWT and LCP arrays of large 
collection of sequences. Depending on the amount of 
available memory, eGap uses an external or semi-exter-
nal strategy for computing the BWT and LCP values. An 
experimental comparison of the available tools for BWT 
and LCP arrays computation shows that eGap is the fast-
est tool in many scenarios and was the only tool capable 
of completing the computation within a reasonable time 
frame for all kind of input data.

Another important feature of eGap is that, in addition 
to the BWT and LCP array, it can compute, without any 
asymptotic slowdown, two additional arrays that pro-
vide important information about the substrings of the 
input collection. We show how to use such information 
to design efficient external memory algorithms for three 
important problems for biosequences, namely the com-
putation of maximal repeats, the computation of the all 
pairs suffix–prefix overlaps, and the construction of suc-
cinct de Bruijn graphs. Overall our results confirm the 
importance of the BWT and LCP arrays beyond their 
use for the construction of compressed full text indexes. 
This is in accordance with other recent results that have 
shown of they can be used directly to discover structural 
information on the underlying collection (see [45–47] 
and references therein).
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