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of π±, K±, p + p, Λ + Λ, K0
S, and the φ-meson are measured in Pb-Pb collisions at

√
sNN = 5.02 TeV. Results obtained with the scalar product method are reported for the

rapidity range |y| < 0.5 as a function of transverse momentum, pT, at different collision

centrality intervals between 0–70%, including ultra-central (0–1%) collisions for π±, K±,

and p + p. For pT < 3 GeV/c, the flow coefficients exhibit a particle mass dependence. At

intermediate transverse momenta (3 < pT < 8–10 GeV/c), particles show an approximate

grouping according to their type (i.e., mesons and baryons). The φ-meson v2, which tests

both particle mass dependence and type scaling, follows p + p v2 at low pT and π± v2
at intermediate pT. The evolution of the shape of vn(pT) as a function of centrality and

harmonic number n is studied for the various particle species. Flow coefficients of π±,

K±, and p + p for pT < 3 GeV/c are compared to iEBE-VISHNU and MUSIC hydrody-

namical calculations coupled to a hadronic cascade model (UrQMD). The iEBE-VISHNU

calculations describe the results fairly well for pT < 2.5 GeV/c, while MUSIC calculations

reproduce the measurements for pT < 1 GeV/c. A comparison to vn coefficients measured

in Pb-Pb collisions at
√
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1 Introduction

Ultra-relativistic heavy-ion collisions are used to study the properties of the quark-gluon

plasma (QGP), a state of deconfined quarks and gluons expected at high temperatures or

baryon densities [1]. Measurements of anisotropies in particle azimuthal distributions rel-

ative to the collision symmetry planes at the Relativistic Heavy Ion Collider (RHIC) [2–5]

and the Large Hadron Collider (LHC) [6–8] have shown that the produced hot and dense

matter behaves as a strongly-interacting QGP. Comparisons to predictions from hydro-

dynamic models indicate that the QGP has a shear viscosity to entropy density ratio

(η/s) close to the theoretical lower limit from the anti-de Sitter/conformal field theory

(AdS/CFT) correspondence of 1/4π for ~ = kB = 1 [9].

Azimuthal anisotropies in particle production relative to the collision symmetry planes,

often referred to as anisotropic flow, arise from the asymmetry in the initial geometry of

the collision combined with the initial inhomogeneities of the system’s energy density [10].

Anisotropic flow depends on the equation of state and transport coefficients of the system,
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such as η/s and bulk viscosity to entropy density ratio (ζ/s). Its magnitude is quantified

via the coefficients vn in a Fourier decomposition of the particle azimuthal distribution [11]

E
d3N

dp3
=

1

2π

d2N

pTdpTdy

(
1 + 2

∞∑
n=1

vn cos[n(ϕ−Ψn)]

)
, (1.1)

where E is the energy, p the momentum, pT the transverse momentum, ϕ the azimuthal

angle, η the pseudorapidity of the particle, and Ψn the n-th harmonic symmetry plane

angle. The second order flow coefficient v2, called elliptic flow, is the largest contribution

to the asymmetry of non-central collisions because of the almond-like geometry of the

overlap region between the colliding nuclei in the plane perpendicular to the beam direction.

The third-order flow coefficient v3, named triangular flow, is generated by fluctuations in

the initial distribution of nucleons and gluons in the overlap region [12–15]. The fourth-

order flow coefficient v4, called quandrangular flow, is generated both by initial geometry,

fluctuations, and is in addition sensitive to the non-linear hydrodynamic response of the

medium [16, 17]. It has been shown that higher-order flow coefficients are more sensitive

to η/s than v2 [18, 19].

In addition to probing η/s and ζ/s, anisotropic flow constrains the initial spatial

density (e.g. energy and entropy density), freeze-out conditions of the system, and parti-

cle production mechanisms in different pT regions. Stronger constraints are achieved by

studying anisotropic flow of identified particles. To guide interpretation of the results in

the context of these processes, three kinematic ‘regions of interest’ are defined in the pT-

differential vn measurements, vn(pT). For pT . 3 GeV/c, anisotropic flow is a remnant of

the collective dynamics during the hydrodynamic expansion of the system. The interplay

between the isotropic expansion (radial flow) and anisotropic flow leads to a characteristic

mass ordering of vn(pT) [20–28], meaning that heavier particles have smaller vn(pT). At

intermediate pT (3 . pT . 8 GeV/c), the values of vn for different particles tend to separate

mesons and baryons [27–33]. The flow of baryons is larger than that of mesons in this pT
range, supporting the hypothesis of hadronization through quark coalescence [34], where it

is assumed that the invariant spectrum of produced particles is proportional to the product

of the spectra of their constituents [35, 36]. However, the scaling only holds approximately

at RHIC [32] and at the level of ±20% in Pb-Pb collisions at
√
sNN = 2.76 TeV [27, 28].

This behaviour is also qualitatively consistent with a scenario in which particle produc-

tion includes interactions of jet fragments with bulk matter [37, 38]. For pT & 8 GeV/c,

anisotropic flow is generated when hard partons that propagate through the system lose

energy via (multiple) scattering and gluon radiation [39, 40], resulting in vn that remain

non-zero up to very high pT [41–44].

Anisotropic flow of identified particles is an important observable when studying the

characteristics of the QGP. However, since particles can scatter and be regenerated in be-

tween the chemical and kinetic freeze-out of a collision (the hadronic phase), information

about the QGP phase imprinted in vn(pT) can be altered by late-stage interactions and

resonance decays, which can affect both vn and 〈pT〉 [45], leading to a deviation in mass or-

dering in vn(pT) at low pT [46]. The φ-meson has been suggested as a particularly sensitive

probe of the early collision phase as its production rate via regeneration in the hadronic
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phase is negligible [47] and it is theorized to have a low hadronic cross section [48–50],

making it insensitive to the dissipative effects of the hadronic phase of the collision (al-

though it should be noted that there is no consensus on the exact value of the cross section

between the φ-meson and nucleons in heavy-ion collisions [51–54]). Recent experimental

studies [27, 55, 56] suggest that the φ-meson may be more sensitive to the hadronic phase

than anticipated.

In this article, we present measurements of pT-differential elliptic, triangular, and

quadrangular flow coefficients of π±, K±, p+p, Λ+Λ, K0
S, and the φ-meson in Pb-Pb

collisions at
√
sNN = 5.02 TeV, extending greatly, and improving in precision upon, the

previous measurements of identified particle vn in Pb-Pb collisions at
√
sNN = 2.76 TeV as

carried out by ALICE [27, 28, 33]. The results are reported for a wide range of particle

transverse momenta within the rapidity range |y| < 0.5 at different collision centralities

between 0–70% range. To isolate the fraction of anisotropic flow that is generated by initial-

state fluctuations rather than geometry, the flow coefficients are also studied in ultra-central

collisions (0–1% collision centrality). Centrality estimates the degree of overlap between the

two colliding nuclei and is expressed as percentiles of the inelastic hadronic cross section,

with low percentage values corresponding to head-on collisions. The measurements are

performed using the scalar product method [57–59] with a (pseudo-)rapidity gap of |∆η| >
2.0 between the identified particles under study and the charged reference particles. The

flow coefficients are measured separately for particles and anti-particles and are found to

be compatible within the statistical uncertainties for most pT and centrality intervals. Any

residual differences are included in the systematic uncertainties, and vn denotes the average

between results for particles and anti-particles.

This paper is organized as follows. Analysis details, particle identification, reconstruc-

tion methods, and flow measurement techniques are outlined in section 2. The evaluation

of systematic uncertainties is discussed in section 3. The flow coefficients of π±, K±, p+p

(v2, v3, and v4), Λ+Λ, K0
S (v2 and v3), and the φ-meson (v2) are reported and compared

to model calculations in section 4. Finally, the results are summarized in section 5.

2 Experimental setup and data analysis

ALICE [60–62] is a dedicated heavy-ion experiment at the LHC optimized to study the

properties of strongly interacting matter produced in heavy-ion collisions. A full overview

of the detector layout and its performance can be found in [62, 63]. The main subsystems

used in this analysis are the Inner Tracking System (ITS) [64], Time Projection Chamber

(TPC) [65], Time Of Flight detector (TOF) [66], and V0 [67]. The ITS, TPC, and TOF

detectors cover full azimuth within pseudorapidity range |η| < 0.9 and lie within a homoge-

neous magnetic field of up to 0.5 T. The ITS consists of six layers of silicon detectors used

for tracking and vertex reconstruction. The TPC is the main tracking detector and is also

used to identify particles via specific ionization energy loss, dE/dx. The TOF in conjunc-

tion with the timing information from the T0 detector [68] provide particle identification

based on flight time. The T0 is made up of two arrays of Cherenkov counters T0C and

T0A, located at -3.3 < η < -3.0 and 4.5 < η < 4.9, respectively. Two scintillator arrays
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(V0), which cover the pseudorapidity ranges −3.7 < η < −1.7 (V0C) and 2.8 < η < 5.1

(V0A), are used for triggering, event selection, and the determination of centrality [69]

and Qn-vectors (see section 2.5). Both V0 detectors are segmented in four rings in the

radial direction with each ring divided into eight sectors in the azimuthal direction. In

addition, two tungsten-quartz neutron Zero Degree Calorimeters (ZDCs), installed 112.5

meters from the interaction point on each side, are used for event selection.

2.1 Event and track selection

The data sample recorded by ALICE during the 2015 LHC Pb-Pb run at
√
sNN = 5.02 TeV

is used for this analysis. The minimum-bias trigger requires signals in both V0A and V0C

detectors. An offline event selection is applied to remove beam-induced background (i.e.

beam-gas events) and pileup events. The former is rejected utilizing the V0 and ZDC

timing information. The remaining contribution of such interactions is found to be smaller

than 0.02% [63]. Pileup events, which constitute about 0.25% of the recorded sample, are

removed by comparing multiplicity estimates from the V0 detector to those of tracking

detectors at mid-rapidity, exploiting the difference in readout times between the systems.

The fraction of pileup events left after applying the dedicated pileup removal criteria is

found to be negligible. The primary vertex position is determined from tracks reconstructed

in the ITS and TPC as described in ref. [63]. Only events with a primary vertex position

within ±10 cm from the nominal interaction point along the beam direction are used in

the analysis. Approximately 67 × 106 Pb-Pb events in the 0–70% centrality interval pass

these selection criteria. Centrality is estimated from the energy deposition measured in the

V0 detector [69].

Charged-particle tracks, used to measure the vn of π±, K±, p+p and the φ-meson, are

reconstructed using the ITS and TPC within |η| < 0.8 and 0.5 < pT < 16.0 GeV/c with

a track-momentum resolution better than 4% for the considered range [63]. Additional

quality criteria are used to reduce the contamination from secondary charged particles (i.e.,

particles originating from weak decays, γ-conversions, and secondary hadronic interactions

in the detector material) and fake tracks (random associations of space points). Only tracks

with at least 70 space points, out of a maximum of 159, with a χ2 per degree-of-freedom

for the track fit lower than 2, are accepted. Moreover, each track is required to cross

at least 70 TPC pad rows and to be reconstructed from at least 80% of the number of

expected TPC space points, in addition to having at least one hit in the two innermost

layers of the ITS. Furthermore, tracks with a distance of closest approach (DCA) to the

reconstructed event vertex smaller than 2 cm in the longitudinal direction (z) and (0.0105

+ 0.0350 (pT c/GeV)−1.1) cm in the transverse plane (xy) are selected. Relevant selection

criteria for tracks used for the reconstruction of K0
S and Λ+Λ are given in section 2.3.

2.2 Identification of π±, K± and p+p

Particle identification is performed using the specific ionization energy loss, dE/dx, mea-

sured in the TPC and the time of flight obtained from the TOF. A truncated-mean proce-

dure is used to estimate the dE/dx (where the 40% highest-charge clusters are discarded),

which yields a dE/dx resolution around 6.5% in the 0–5% centrality class [63]. At least 70
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clusters are used for the dE/dx estimation. The TOF measures the time that a particle

needs to travel from the primary vertex to the detector itself with a time resolution of

≈ 80 ps [63]. The start time for the TOF measurement is provided by the T0 detector or

from a combinatorial algorithm which uses the particle arrival times at the TOF detector

itself [63, 66].

Expressing the difference between the expected dE/dx and the time of flight for π±,

K± and p+p, and the measured signals in both TPC and TOF, in units of the standard

deviations from the most probable value for both detectors (nσTPC, nσTOF), and applying

a selection on the number of accepted nσ, allows for particle identification on a track-by-

track basis. The TPC dE/dx of different particle species are separated by at least 4σ for

pT < 0.7 GeV/c, while in the relativistic rise region of the dE/dx (pT > 2 GeV/c) particle

identification is still possible but only on a statistical basis [63]. The TOF detector provides

3σ separation between π± and K± for pT < 2.5 GeV/c, and between K± and p+p for pT
< 4 GeV/c [63].

The information from the TPC and TOF is combined using a quadratic sum

nσPID =
√

nσ2TPC + nσ2TOF for 0.5 < pT ≤ 4 GeV/c. Particles are selected by requir-

ing nσPID < 3 for each species. The smallest nσPID is used to assign the identity when the

selection criterion is fulfilled by more than one species. When measuring p+p vn(pT), only

p are considered for pT < 2 GeV/c to exclude secondary protons from detector material. At

high transverse momenta (pT > 4 GeV/c), K± cannot reliably be identified. Identification

of π± and p+p for pT > 4 GeV/c is done utilizing the TPC dE/dx signal only. Pions

(protons) are selected from the upper (lower) part of the expected pion (proton) dE/dx

distribution. For example, proton selection typically varies in the range from 0 to −3σTPC

or from −1.5σTPC to −4.5σTPC depending on the momentum.

Secondary contamination from weak decays, studied using the procedure outlined

in [70], decreases from about 30% to 5% for p+p in the pT range 0.7–4.0 GeV/c and

from about 5% to 0.5% for π± in the pT range 0.5–4.0 GeV/c, while it is negligible for

K±. The vn coefficients are not corrected for these contaminations; their effect on vn is

at maximum ≈ 8%, for p + p v2 at pT < 1 GeV/c for central collisions, and negligible for

K±, π± vn. The contamination from other particle species is below 3% and 20% at pT
> 4.0 GeV/c for π± and p+p, respectively, and contamination from fake tracks is negligi-

ble. The vn results are reported for 0.5 < pT < 16.0(12.0, 6.0) GeV/c for π± v2 (v3, v4),

0.7 < pT < 16.0(12.0, 6.0) GeV/c for p+p v2 (v3, v4), and 0.5 < pT < 4.0 GeV/c for K± vn,

all within |y| < 0.5.

2.3 Reconstruction of K0
S and Λ + Λ

The K0
S and Λ+Λ are reconstructed in the K0

S → π+ + π− and Λ → p + π− (Λ→ p +π+)

channels with branching ratios of 69.2% [71] and 63.9% [71] respectively. Reconstruction of

K0
S and Λ+Λ is based on identifying secondary vertices from which two oppositely-charged

particles originate, called V0s. Topological selection criteria pertaining to the shape of

the V0 decay can be imposed, as well as requirements on the species identity of the decay

products (called daughter particles).
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The V0 candidates are selected to have an invariant mass between 0.4 and 0.6 GeV/c2

and 1.07 and 1.17 GeV/c2 for K0
S and Λ+Λ, respectively. The invariant mass of the V0 is

calculated based on the assumption that the daughter particles are either a π+π− pair, or a

pπ− (pπ+) pair. The daughter particles have been identified over the entire pT range using

the TPC following the nσ approach detailed in section 2.2 (|nσTPC| < 3). The daughter

tracks were reconstructed within |η| < 0.8, while the criteria on the number of TPC space

points, the χ2 per TPC space point per degree-of-freedom, the number of crossed TPC

pad rows, and the percentage of the expected TPC space points used to reconstruct a

track are identical to those applied for primary particles. In addition, the minimum DCA

of daughter tracks to the primary vertex is 0.1 cm. Furthermore, the maximum DCA of

daughter tracks to the secondary vertex is 0.5 cm to ensure that they are products of the

same decay.

To reject secondary vertices arising from decays into more than two particles, the

cosine of the pointing angle θp is required to be larger than 0.998. This angle is defined as

the angle between the momentum-vector of the V0 assessed at its decay position and the

line connecting the V0 decay vertex to the primary vertex and has to be close to 0 as a

result of momentum conservation. In addition, the V0 candidates are only accepted when

they are produced at a distance between 5 and 100 cm from the nominal primary vertex

in the radial direction. The lower value is chosen to avoid any bias from the efficiency loss

when secondary tracks are being wrongly matched to clusters in the first layer of the ITS.

To assess the systematic uncertainty related to contaminations from Λ+Λ and electron-

positron pairs coming from γ-conversions to the K0
S sample, a selection in the Armenteros-

Podolanski variables [72] is applied for the K0
S candidates, rejecting ones with q ≤ |α|/5.

Here q is the momentum projection of the positively charged daughter track in the plane

perpendicular to the V0 momentum and α = (p+L − p
−
L )/(p+L + p−L ), with p±L the projection

of the positive or negative daughter tracks’ momentum onto the momentum of the V0.

To obtain the pT-differential yield of K0
S and Λ+Λ (which, together with background

yields, are used for the vn extraction cf. eq. (2.3)), invariant mass distributions at var-

ious pT intervals are parametrized as a sum of a Gaussian distribution and a second-

order polynomial function. The latter is introduced to account for residual contaminations

(background yield) that are present in the K0
S and Λ+Λ signals after the topological and

daughter track selections. The K0
S and Λ+Λ yields are extracted by integration of the Gaus-

sian distribution. Obtained yields have not been corrected for feed-down from higher mass

baryons (Ξ±, Ω±) as earlier studies have shown that these have a negligible effect on the

measured vn [27]. The vn(pT) results are reported within |y| < 0.5 and 0.5 < pT < 10 GeV/c

for K0
S and 0.8 < pT < 10 GeV/c for Λ+Λ.

2.4 Reconstruction of φ-mesons

The φ-meson is reconstructed in the φ → K++K− channel with a branching ratio of

48.9% [71]. Its reconstruction proceeds by first identifying all primary K± tracks in an

event, following the procedure for primary charged K± outlined in section 2.2. The K±

identification criterion nσPID < 3 is chosen as it improves the significance of the φ-meson

yield, while retaining a sufficient reconstruction efficiency. The vector sums of all pos-
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sible K± pairs are called φ-meson candidates, the yield of which is obtained as function

of invariant mass MK+K− in various pT intervals. The pT-differential φ-meson yield is

obtained by first subtracting a background yield from the candidate yield. This back-

ground yield is estimated using an event-mixing technique [73], in which K± from different

collisions are paired into background tracks, and is normalized to the candidate yield

for 1.04 < MK+K− < 1.09 GeV/c2. Collisions with similar characteristics (vertex position,

centrality) are used for this mixing. To obtain the pT-differential yield of φ-mesons, the

invariant mass distributions of the candidate yield is, after the aforementioned subtrac-

tion, parametrized as a sum of a Breit-Wigner distribution and a second-order polynomial

function, the latter introduced to account for residual contaminations. The φ-meson yields

are extracted by integration of the Breit-Wigner distribution and, together with back-

ground yields, used for the vn extraction (see eq. (2.3)). The v2(pT) results are reported

for 0.9 < pT < 6.5 GeV/c within |y| < 0.5.

2.5 Flow analysis techniques

The flow coefficients vn are measured using the scalar product method [57–59], written as

vn{SP} = 〈〈un,kQ
∗
n〉〉

/√
〈QnQA∗

n 〉〈QnQB∗
n 〉

〈QA
n QB∗

n 〉
, (2.1)

where un,k = exp(inϕk) is the unit flow vector of the particle of interest k with azimuthal

angle ϕk, Qn is the event flow vector, and n is the harmonic number. Brackets 〈· · · 〉 denote

an average over all events, the double brackets 〈〈· · · 〉〉 an average over all particles in all

events, and ∗ the complex conjugate.

The vector Qn is calculated from the azimuthal distribution of the energy deposition

measured in the V0A. Its x and y components are given by

Qn,x =
∑
j

wj cos(nϕj), Qn,y =
∑
j

wj sin(nϕj), (2.2)

where the sum runs over the 32 channels j of the V0A detector, ϕj is the azimuthal angle

of channel j defined by the geometric center, and wj is the amplitude measured in channel

j. The vectors QA
n and QB

n are determined from the azimuthal distribution of the energy

deposition measured in the V0C and the azimuthal distribution of the tracks reconstructed

in the ITS and TPC, respectively. The amplitude measured in each channel of the V0C

(32 channels as for the V0A) is used as weight in the case of QA
n , while unity weights

are applied for QB
n . Tracks used for QB

n are selected following the procedure for primary

charged tracks outlined in section 2.1 for 0.2 < pT < 5.0 GeV/c. In order to account for a

non-uniform detector response, the components of the Qn and QA
n vectors are recalibrated

using a recentering procedure (i.e. subtraction of the Qn-vector averaged over many events

from the Qn-vector of each event) [74]. The large gap in pseudorapidity between un,k and

Qn (|∆η| > 2.0) greatly suppresses short-range correlations unrelated to the azimuthal

asymmetry in the initial geometry, commonly referred to as ‘non-flow’. These correlations

largely come from the inter-jet correlations and resonance decays.
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Figure 1. (Colour online) Illustration of reconstruction and v2 measurement for the φ-meson. The

reconstruction of the φ-meson and extraction of N sig and Nbg are shown in the upper panel. A fit

of eq. (2.3) to data is presented in the lower panel.

The vn of the K0
S, Λ+Λ, and φ-meson cannot directly be measured using eq. (2.1) as

K0
S, Λ+Λ and the φ-meson cannot be identified on a particle-by-particle basis. Therefore,

the vtotn of V0s and φ-meson candidates is measured as function of both invariant mass,

Md+d− , and candidate pT. This vtotn can be written [75] as the weighted sum of vn(pT) of

the particle of interest, vsign , and that of background tracks, vbgn (Md+d−), as

vtotn (Md+d−) = vsign

N sig

N sig +Nbg
(Md+d−) + vbgn (Md+d−)

Nbg

N sig +Nbg
(Md+d−), (2.3)

where signal and background yields N sig and Nbg are obtained for each pT interval from

the K0
S, Λ+Λ and φ-meson reconstruction procedures outlined in sections 2.3 and 2.4. The

formalism of eq. (2.1) is used to measure vtotn (Md+d−), vsign is obtained by parametrizing

vbgn (Md+d−) as a second-order polynomial function and fitting eq. (2.3) to the data. Figure 1

illustrates this procedure for the φ-meson, showing the invariant mass spectrum of the φ-

meson in the upper panel, and a fit of eq. (2.3) to vtot2 (Md+d−) data in the lower panel.

3 Systematic uncertainties

The systematic uncertainties on vn fall into the following categories: those arising from

event selection, those arising from charged particle tracking, uncertainties in particle iden-

tification, uncertainties in V0 finding, and those coming from the extraction of vn(pT).

For pT ≤ 4 GeV/c, a pT-dependent systematic uncertainty is assigned to v2, v3, and v4
of π±, K±, p+p, Λ+Λ, K0

S and the φ-meson. Per measured point, the difference between

the nominal measurement and a variation on the nominal measurement is calculated. If

this difference between the nominal data point and the systematic variation is significant

(where significance is evaluated based on the recommendations in [76]), it is considered to

– 8 –



J
H
E
P
0
9
(
2
0
1
8
)
0
0
6

be a systematic uncertainty. When various checks are performed to quantify the effect of

one systematic uncertainty (e.g. using three different centrality estimators to estimate the

uncertainty in centrality determination), the maximum significant deviation that is found

between the nominal measurement and the systematic variations is assigned as a systematic

uncertainty. For each particle species, a pT-independent average uncertainty is reported for

pT > 4 GeV/c in order to suppress sensitivity to statistical fluctuations. The uncertainty

is obtained by fitting a zeroth-order polynomial to the significant pT-dependent relative

uncertainties.

The systematic uncertainties are evaluated (if applicable) for each particle species,

vn(pT) and centrality intervals. A quadratic sum of the systematic uncertainties from the

independent sources is reported as final systematic uncertainty on the measurements. An

overview of the magnitude of the relative systematic uncertainties per particle species is

given in tables 1, 2, and 3 for v2, v3, and v4, respectively.

Event selection. The nominal event selection criteria and centrality determination are

discussed in section 2.1. Event selection criteria are varied by (i) changing the default

centrality estimator from energy deposition in the V0 scintillator to either an estimate based

on the number of hits in the first or second layer of the ITS; (ii) performing the vn analysis of

π±, K±, and p+p in 1% wide centrality intervals to test the effect of multiplicity fluctuations

(a test not possible for K0
S, Λ+Λ v3); (iii) not rejecting events with tracks caused by pileup or

imposing a stricter than default pileup rejection by requiring a tighter correlation between

the V0 and central barrel multiplicities; (iv) requiring the reconstructed primary vertex of

a collision to lie alternatively within ±12 cm and ±5 cm from the nominal interaction point

along the beam axis; (v) analyzing events recorded under different magnetic field polarities

independently; (v) analyzing events recorded at different collision rates independently.

Charged particle tracking. The nominal charged particle track selection criteria are

outlined in section 2.1. Charged particle track selection criteria are varied by (i) requiring

the third layer of the ITS to be part of the track reconstruction rather than the first two

layers only; (ii) using only tracks that have at least three hits per track in the ITS, comple-

mented by tracks without hits in the first two layers of the ITS (in which case the primary

interaction vertex is used as an additional constraint for the momentum determination);

(iii) changing the requirement on the minimum number of TPC space points that are used

in the reconstruction from 70 to 60, 80, and 90; (iv) an additional systematic uncertainty

is evaluated combining the following checks of the track quality: rejecting tracks that are

reconstructed close to the sector boundaries of the TPC to which the sensitive pad rows do

not extend, varying the minimum number of crossed TPC pad rows from 70 to 120, and

requesting at least 90% instead of 80% of the expected TPC space points to reconstruct a

track. Variations (i) and (ii) are referred to as tracking mode in tables 1, 2, and 3.

Particle identification. The nominal particle identification approach for π±, K±, and

p+p is outlined in section 2.2. Particle identification criteria are varied by (i) changing

the minimum number of clusters in the TPC that are used to estimate the dE/dx from 70

to 60, 80, and 90; (ii) rejecting tracks that satisfy the particle identification criterion for
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Error source π± K± p+p K0
S Λ+Λ φ

Vertex position 0–1% 0–1% 0–2% 0–2% 0–4% 1–6%

1% wide centrality intervals 0–3% 0–4% 0–4%

Centrality estimator 0–3% 0–2% 0–3% 0–4% 0–5% 1–5%

Magnetic field polarity 0–2% 0–1% 0–2% 0–3% 0–3% 1–3%

Interaction rate 0–2% 0–1% 1–2% negl negl negl

Pileup rejection 0–1% 0–1% 0–2% 0–1% 0–2% 0–1%

Tracking mode 0–4% 0–8% 0–10% 0–5%

Number of TPC space points 0–2% 0–2% 0–2% 0–4% 0–2% negl

Track quality 0–3% 0–2% 0–3% 0–4% 0–3% negl

Particle identification purity 0–5% 0–7% 0–5% 0–3% 0–8% 0–6%

Number of TPC clusters used for dE/dx 0–6% 0–5% 0–5% 0–5% 0% negl

Exclusive particle identification 0–2% 0–3% 0–3%

Decay vertex (radial position) 0–10% 0–11%

Armenteros-Podolanski variables 0–2%

DCA decay products to primary vertex 0–3% 0–5%

DCA between decay products 0–2% 0–7%

Pointing angle cos θp 0–4% 0–9%

Minimum pT of daughter tracks 0–4% 0–5%

Peak shape negl negl negl

Residual background in yield negl negl negl

Event mixing 1–3%

Positive and negative rapidities 0–3% 0–2% 0–2% 0–4% 0–7% negl

Opposite charges 0–2% 0–2% 0–2%

Channel removal from V0A 0–5% 0–5% 0–8% 0–3% 0–5% 0–4%

vn from V0A or V0C 0–2% 0–2% 0–2% negl negl negl

vbgn parametrization negl negl negl

vtotn fit ranges 0–1% 0–2% 0–1%

Table 1. Summary of systematic uncertainties for the v2 of π±, K±, p+p, Λ+Λ, K0
S, and the

φ-meson. The uncertainties depend on pT and centrality range; minimum and maximum values are

listed here. Empty fields indicate that a given check does not apply to the particle of interest. If an

uncertainty has been tested but cannot be resolved within statistical precision, the field is marked

negl for negligible. Horizontal lines are used to separate the different categories of systematic

uncertainties as explained in section 3.

more than one particle species simultaneously for pT < 4 GeV/c; (iii) varying the particle

identification criterion from nσPID < 3 to nσPID < 1, nσPID < 2, and nσPID < 4; (iv)

varying the nσTPC ranges that are used for particle identification for pT > 4 GeV/c.

The V0 finding and φ-meson reconstruction. The nominal V0 finding strategy is

described in section 2.3. The V0 finding criteria fall into two categories: topological re-

quirements on the V0s themselves, and selection imposed on their daughter tracks. These

criteria are varied by (i) requiring a minimum pT of the V0 daughter tracks of 0.2 GeV/c;
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Error source π± K± p+p K0
S Λ+Λ

Vertex position 0–2% 0–1% 0–2% 0–3% 0–9%

1% wide centrality intervals 0–2% 0–2% 0–2%

Centrality estimator 0–2% 0–2% 0–2% 0–4% 0–9%

Magnetic field polarity 0–2% 0–1% 0–3% 0–3% 0–3%

Interaction rate 1–2% 1–2% 1–3% negl negl

Pileup rejection 0–2% 0–1% 0–3% 0–1% 0–2%

Tracking mode 0–3% 1–5% 0–10%

Number of TPC space points 0–1% 0–2% 0–5% 0–3% 0–6%

Track quality 1–3% 1–2% 1–3% 0–3% 0–6%

Particle identification purity 0–4% 1–3% 0–10% 0–4% 0–4%

Number of TPC clusters used for dE/dx 0–5% 0–5% 0–5%

Exclusive particle identification 0–1% 0–2% 0–1%

Decay vertex (radial position) 0–9% 0–11%

Armenteros-Podolanski variables 0–4%

DCA decay products to primary vertex 0–3% 0–5%

DCA between decay products 0–5% 0–8%

Pointing angle cos θp 0–5% 0–1%

Minimum pT of daughter tracks 0–4% negl

Peak shape negl negl

Residual background in yield negl negl

Positive and negative rapidities 0–2% 0–1% 0–3% 0–5% 0–4%

Opposite charges 0–2% 0–2% 0–2%

vn from V0A or V0C 0–2% 0–1% 0–2% 0–4% 0–3%

Channel removal from V0A 0–8% 1–8% 1–8% 0–4% 0–5%

vbgn parametrization negl negl

vtotn fit ranges 0–2% 0–2%

Table 2. Summary of systematic uncertainties for the v3 of π±, K±, p+p, Λ+Λ, and K0
S. The

uncertainties depend on pT and centrality range; minimum and maximum values are listed here.

Empty fields indicate that a given check does not apply to the particle of interest. If an uncertainty

has been tested but cannot be resolved within statistical precision, the field is marked negl for

negligible. Horizontal lines are used to separate the different categories of systematic uncertainties

as explained in section 3.

(ii) changing the requirement on the minimum number of TPC space points that are used

in the reconstruction of the V0 daughter tracks form 70 to 60 and 80; (iii) varying the

minimum number of TPC padrows crossed by the V0 daughter tracks from 70 to 60 and

80; (iv) requesting at least 90% or 70% instead of 80% of the expected TPC space points

to reconstruct the V0 daughter tracks; (v) changing the maximum DCA of the V0 daugh-

ter tracks to the secondary vertex from 0.5 cm to 0.3 cm and 0.7 cm; (vi) changing the

minimum DCA of the V0 daughter tracks to the primary vertex from 0.1 cm to 0.05 cm
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Error source π± K± p+p

Vertex position 1–3% 1–3% 1–3%

1% wide centrality intervals 0–1% 0–1% 0–1%

Centrality estimator 1–3% 1–3% 2–3%

Magnetic field polarity 1–2% 1–3% 1–3%

Interaction rate 1–2% 2–3% 2–3%

Pileup rejection 0–2% 1–2% 2–3%

Tracking mode 0–2% 1–5% 1–10%

Number of TPC space points 0–1% 0–1% 0–1%

Track quality 3–4% 2–3% 3–4%

Particle identification purity 1–4% 2–4% 2–5%

Number of TPC clusters used for dE/dx 0–2% 0–1% 0–1%

Exclusive particle identification 0–1% 0–2% 0–1%

Positive and negative rapidities 1–3% 1–2% 2–3%

Opposite charges 2–3% 2–3% 2–3%

vn from V0A or V0C 1–3% 2–4% 2–4%

Channel removal from V0A 6–14% 6–14% 5–15%

Table 3. Summary of systematic uncertainties for the v4 of π±, K±, and p+p. The uncertainties

depend on pT and centrality range; minimum and maximum values are listed here. Horizontal lines

are used to separate the different categories of systematic uncertainties as explained in section 3.

and 0.3 cm; (vii) varying the number of clusters in the TPC that are used to estimate the

dE/dx of the V0 daughter tracks from 70 to 60 and 90; (viii) varying the particle identifica-

tion criterion of the V0 daughter tracks from |nσTPC| < 3 to |nσTPC| < 1 and |nσTPC| < 4;

(ix) changing the minimum value of the cos θp from 0.998 to 0.98; (x) varying the minimum

radial distance to the primary vertex at which the V0 can be produced from 5 cm to 1 cm

and 15 cm; (xi) varying the maximum radial distance to the beam pipe at which the V0 can

be produced from 100 cm to 50 cm and 150 cm; (xii) the contamination from Λ+Λ decays

and γ-conversions to the K0
S sample is checked by only selecting V0 daughter tracks with

a dE/dx value 2σ away from the expected electron dE/dx, effectively excluding electrons,

and limiting the value of the Armenteros-Podolanski variables α and q.

The yield extraction, as explained in section 2.3 for the K0
S and Λ+Λ, and section 2.4 for

the φ-meson, is varied by: (i) using a third-order polynomial as parametrization of residual

background in the invariant mass spectra; (ii) using for the φ-meson a Voigtian distribution

(a convolution of a Gaussian distribution and Breit-Wigner distribution, where the width

of the Breit-Wigner distribution is set to the natural width of the φ-meson, allowing for the

Gaussian distribution to describe the smearing of the φ-meson width due to the detector

resolution) for the parametrization of the φ-meson invariant mass yield; using for the K0
S

and Λ+Λ a sum of two Gaussian distributions with the same mean for the parametrization

of the K0
S, Λ+Λ invariant mass yield; (iii, for the φ-meson only) using the yield of like-

sign kaon pairs, in which two kaons with equal charge from the same event are used as

candidate, for background yield description instead of event mixing.
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Figure 2. (Colour online) Centrality dependence of v2(pT) for π±, K±, p+p, Λ+Λ, K0
S, and the

φ-meson. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

Extraction of the vn(pT). The nominal approach of measuring vn(pT) is outlined in

section 2.5, and is varied by: (i) performing flow analysis for π±, K±, and p+p for positive

and negative charges independently; (ii) performing flow analysis for positive and negative

rapidities independently; (iii) performing flow analysis for π±, K±, and p+p in 1% centrality

intervals and merging the result rather than measuring in wider centrality intervals directly;

(iv) suppressing the signal from a specific V0A channel in the evaluation of the Qn-vector

(see eq. (2.2)), which, on average, measures a lower energy deposition with respect to the

ones reported by the other channels from the same ring; (v) performing flow analysis with

the Qn-vector calculated from the V0A or V0C separately; (vi) testing various Md+d− inter-

vals over which vbgn (Md+d−) is fitted; (vii) testing the assumption made on vbgn by changing

the parametrization from a second-order polynomial to a first-order polynomial function.

4 Results and discussion

The flow coefficients v2, v3, and v4 of identified particles are presented for various centrality

classes in section 4.1; scaling properties are discussed in section 4.2. Comparisons to

various model calculations, studies on the shape evolution of vn(pT) with centrality, and

comparisons to vn measured at
√
sNN = 2.76 TeV are shown in sections 4.3, 4.4, and 4.5,

respectively.

4.1 Centrality and pT dependence of flow coefficients

Figure 2 shows the v2(pT) of π±, K±, p+p, Λ+Λ, K0
S, and the φ-meson for various centrality

classes in the range 0–70%. For the π±, K± and p+p, measurements performed in ultra-

central collisions (0–1%) are also presented. For the φ-meson, the results are reported in

the 5–60% centrality range, where v2 can be measured accurately. The magnitude of v2
increases strongly with decreasing centrality up to the 40–50% centrality interval for all

particle species. This evolution is expected, since the eccentricity of the overlap zone of the
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Figure 3. (Colour online) Centrality dependence of v3(pT) for π±, K±, p+p, Λ+Λ, and K0
S.

Statistical and systematic uncertainties are shown as bars and boxes, respectively.
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colliding nuclei increases for peripheral collisions and v2 scales approximately linearly with

eccentricity [77]. For more peripheral collisions (i.e. 50–60% and 60–70%), the value of v2 is

smaller than in the previous centrality intervals for all particle species except the φ-meson.

This suggests that the system has a shorter lifetime in more peripheral collisions, which

does not allow for the generation of large v2 [78]. Furthermore, the reduced contribution

of eccentricity fluctuations and hadronic interactions might play an important role in these

centrality ranges [79]. A non-zero, positive v2 is found in the 0–1% centrality interval for

pT < 6 GeV/c for π±, K±, and p+p, which mostly reflects the contribution from event-by-

event fluctuations in the initial nucleon and gluon density as the system shape is almost

spherical at vanishing impact parameter.

The third-order flow coefficent v3 is generated by inhomogeneities in the initial nu-

cleon and gluon density and not by the collision geometry [12–15], while v4 arises from

initial collision geometry, fluctuations, and the non-linear hydrodynamic response of the

medium [16, 17]. Higher-order flow harmonics are more sensitive to transport coefficients

than v2 [15], as the dampening effect of η/s leads to a stronger decrease of these coeffi-

cients [18, 19]. Figures 3 and 4 present the v3(pT) of π±, K±, p+p, Λ+Λ, and K0
S and
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v4(pT) of π±, K±, and p+p for various centrality classes in the 0–50% range. Statistical

precision limits extending the v4 measurement to more peripheral collisions or carrying it

out for Λ+Λ, K0
S, and the φ-meson. Non-zero, positive v3 and v4 are observed for particle

species throughout the entire pT ranges up to ≈ 8 GeV/c. Unlike v2, the coefficients v3 and

v4 increase weakly from ultra-central to peripheral collisions. This observation illustrates

that higher-order flow coefficients are mainly generated by event-by-event fluctuations in

the initial nucleon and gluon density.

All flow coefficients increase monotonically with increasing pT up to 3–4 GeV/c where

a maximum is reached. The position of this maximum depends on centrality and particle

species as it takes place at higher pT for heavier particles for various centrality classes. This

behaviour can be explained by the centrality dependence of radial flow combined with the

parton density, which will be detailed in section 4.4.

Figure 5 presents the evolution of vn(pT) of different particle species for various central-

ity classes. In the most central collisions, initial nucleon-density fluctuations are expected

to be the main contributor to the generation of vn. For the 0–1% centrality interval, v3
is the dominant flow coefficient for 1.5 < pT < 6.0 GeV/c, 2.0 < pT < 4 GeV/c, and

2.5 < pT < 6 GeV/c for π±, K±, and p+p, respectively. Furthermore, v4 becomes equal

to v2 at pT ≈ 2.0 GeV/c (2.2, 2.5) for π± (K±, p+p), after which it increases gradually

and reaches a magnitude similar to v3 at around 3.5 GeV/c. A similar trend is observed

in the 0–5% centrality class for all particle species. However, the crossing between flow

coefficients (the pT value at which they reach a similar magnitude), which also depends on

the particle mass, takes place at different pT values than for the 0–1% centrality interval.

This dependence of the crossing between different flow coefficients can be attributed to

the interplay of elliptic, triangular, and quadrangular flow with radial flow. Upwards of

5% collision centrality, v2 is larger than v3 and v4, confirming the hypothesis that collision

geometry dominates the generation of flow coefficients.

Figure 6 shows the v2(pT) of π±, K±, p+p, Λ+Λ, K0
S, and the φ-meson in a given

centrality interval arranged into panels of various centrality classes, which allows for fur-

ther illustration of the interplay between elliptic and radial flow. For pT < 2–3 GeV/c,

v2 of the different particle species is mass-ordered, meaning that lighter particles have a

larger v2 than heavier particles at the same pT. This behaviour is indicative of strong

radial flow which imposes an equal, isotropic velocity boost to all particles in addition to

the anisotropic expansion of the medium [20–22]. For 3 < pT < 8–10 GeV/c, particles are

grouped according to their number of constituent quarks, which supports the hypothesis

of particle production via quark coalescence [34]. Particle type scaling and mass order-

ing are most directly tested by the φ-meson v2, as its mass is close to the proton mass.

Figure 6 demonstrates that the φ-meson v2 follows proton v2 at low pT, but pion v2 at

intermediate pT in all centrality classes. The crossing between meson and baryon v2, which

depends on the particle species, happens at higher pT values for central than peripheral

collisions as a result of the larger radial flow in the former. Lastly, it is seen that the v2
of baryons is higher than that of mesons up to pT ≈ 10 GeV/c, indicating that particle

type dependence of v2 persists up to high pT. For pT > 10 GeV/c, where v2 depends only

weakly on transverse momentum, the magnitude of p+p v2 is compatible with that for
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Figure 6. (Colour online) The pT-differential v2 of π±, K±, p+p, Λ+Λ, K0
S, and the φ-meson for

various centrality classes. Statistical and systematic uncertainties are shown as bars and boxes,

respectively.

π± within statistical and systematic uncertainties. Furthermore, the nuclear modification

factor in this high pT region is found to be the same for the two particle species within

uncertainties [80].

Figures 7 and 8 present the v3(pT) and v4(pT) for different particle species in a given

centrality interval. Both v3 and v4 show a clear mass ordering at pT < 2–3 GeV/c, con-

firming the interplay between triangular and quadrangular flow and radial flow. For

3 < pT < 8 GeV/c, particles are grouped into mesons and baryons and, analogous to

the trend of v2 in this pT region, the flow of baryons is larger than that of mesons. The

crossing between meson and baryon v3 and v4 also exhibits a centrality and particle mass

dependence.

Figures 6 and 7 also show a comparison between K± and K0
S v2 and v3 as a function

of pT for various centrality classes. A difference in vn(pT) is found between the K± and K0
S

measurements: the magnitude of K0
S vn is systematically smaller than the magnitude of

K± vn. This difference in vn exhibits no pT dependence, but changes with centrality for v2.

For 0.8 < pT < 4.0 GeV/c, the difference in v2 ranges from 7% ± 3.5%(syst) ± 0.7%(stat)

in the most central collisions to 1.5%± 1.5%(syst)± 0.4%(stat) in peripheral collisions. In

the same kinematic range, a deviation in v3 of 6.5% ± 5%(syst) ± 1.7%(stat) is found in

the most central collisions and of 6%± 4.5%(syst)± 1%(stat) in peripheral collisions. This

difference is similar in magnitude and centrality dependence as the one reported by ALICE

in Pb-Pb collisions at
√
sNN = 2.76 TeV in [27].
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Figure 7. (Colour online) The pT-differential v3 of π±, K±, p+p, Λ+Λ, and K0
S for various

centrality classes. Statistical and systematic uncertainties are shown as bars and boxes, respectively.
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Figure 8. (Colour online) The pT-differential v4 of π±, K±, and p+p for various centrality classes.

Statistical and systematic uncertainties are shown as bars and boxes, respectively.

4.2 Scaling properties

To test the hypothesis of particle production via quark coalescence [34], which would lead to

a grouping of vn of mesons and baryons at intermediate pT, both vn and pT are divided by

the number of constituent quarks (nq) independently for each particle species. The v2/nq,

v3/nq, and v4/nq of π±, K±, p+p, Λ+Λ, K0
S, and the φ-meson, plotted as a function of

pT/nq, are reported in figures 9, 10, and 11 for various centrality classes.

For pT/nq > 1 GeV/c, the scaling is only approximate. To quantify the degree to

which the measurements deviate from the nq scaling, the pT/nq dependence of vn/nq has

been divided by a cubic spline fit to the p+p vn/nq. In the region where quark coalescence

is hypothesized to be the dominant process (≈ 1 < pT/nq < 3 GeV/c) [34, 81], a deviation

from the exact scaling of ± 20% is found for v2 for central collisions, which decreases to

±15% for the most peripheral collisions. For higher harmonics, a ±20% deviation is found

for all centrality classes. This deviation is in agreement with earlier observations [27, 28, 32].
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Figure 9. (Colour online) The pT/nq dependence of v2/nq of π±, K±, p+p, Λ+Λ, K0
S, and the

φ-meson for various centrality classes. Statistical and systematic uncertainties are shown as bars

and boxes, respectively.
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S for

various centrality classes. Statistical and systematic uncertainties are shown as bars and boxes,

respectively.
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Figure 11. (Colour online) The pT/nq dependence of v4/nq of π±, K±, and p+p for various

centrality classes. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

4.3 Comparison with model calculations

To test the validity of the hydrodynamic description of the QGP evolution, the vn measure-

ments in the 0–5%, 10–20% and 40–50% centrality intervals are compared to hydrodynam-

ical calculations in figures 12, 13, and 14 for π±, K±, and p+p, respectively. Predictions

from MUSIC [82] and iEBE-VISHNU [83] simulations are depicted by the different coloured

curves. The first calculation is based on MUSIC [84], an event-by-event 3+1 dimensional

viscous hydrodynamic model, coupled to a hadronic cascade model (UrQMD) [85, 86],

which allows the influence of the hadronic phase on the anisotropic flow to be studied for

different particle species. The IP-Glasma model [87, 88] is used to simulate the initial

conditions of the collision. MUSIC uses a starting time for the hydrodynamic evolution of

τ0 = 0.4 fm/c, a switching temperature between the macroscopic hydrodynamic description

and the microscopic transport evolution of Tsw = 145 MeV, a value of η/s = 0.095, and

a temperature dependent ζ/s. The second calculation employs the iEBE-VISHNU hybrid

model [89], which is an event-by-event version of the VISHNU hybrid model [90], and cou-

ples 2+1 dimensional viscous hydrodynamics VISH2+1 [78] to UrQMD. The TRENTo [91]

and AMPT [92] models are used to describe the initial conditions. For both configura-

tions, τ0 = 0.6 fm/c and Tsw = 148 MeV are set from [93], where these values have been

obtained utilizing Bayesian statistics from a simultaneous fit of final charged-particle den-

sity, mean transverse momentum, and integrated flow coefficients vn in Pb-Pb collisions at
√
sNN = 2.76 TeV. The temperature-dependent η/s and ζ/s extracted in [93] are used for

TRENTo initial conditions, while η/s = 0.08 and ζ/s = 0 are taken for AMPT.

Figures 12, 13, and 14 show that the hydrodynamical calculations qualitatively re-

produce the vn measurements. The differences between the data points and models are

visualized in figures 12, 13, and 14 as the ratios of the measured vn to a fit to the theoretical

calculations. The iEBE-VISHNU calculations using AMPT initial conditions describe the

pT-differential vn of π±, K±, and p+p more accurately than TRENTo based and MUSIC

calculations for pT > 1 GeV/c. Using AMPT initial conditions, there is good agreement
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Figure 12. (Colour online) The pT-differential v2 (top), v3 (middle), and v4 (bottom) of π± for

the 0–5%, 10–20%, and 40–50% centrality classes compared to hydrodynamical calculations from

MUSIC model using IP-Glasma initial conditions (magenta) [82] and the iEBE-VISHNU hybrid

model using AMPT (orange) or TRENTo (cyan) initial conditions [83]. Statistical and systematic

uncertainties of the data points are shown as bars and boxes, respectively. The uncertainties of the

hydrodynamical calculations are depicted by the thickness of the curves. The ratios of the measured

vn to a fit to the hydrodynamical calculations are also presented for clarity.

between π± and K± vn and iEBE-VISHNU calculations for pT < 2 GeV/c, while p+p vn
is described fairly well up to pT = 3 GeV/c. The TRENTo based predictions follow π±

and K± vn up to slightly lower transverse momenta (pT <1–2 GeV/c) and to pT < 3 GeV/c

for p+p, depending on the considered centrality interval. The MUSIC calculations are

in agreement with the measured vn for pT < 1 GeV/c in central collisions, however they

overestimate v2 at lower pT in more peripheral collisions.

4.4 Shape evolution of vn(pT) as function of centrality

The evolution of the shape of vn(pT) as function of centrality is quantified by taking the

ratio of vn(pT) in a given centrality interval to the vn(pT) measured in the 20–30% centrality

interval

vn(pT)ratio to 20−30% =
vn(pT)

vn(pT)|20−30%
vn|20−30%

vn
, (4.1)

where the second fraction on the right-hand side of the equation serves as a normalization

factor which is constructed from the pT-integrated vn values obtained in the 20–30% cen-

trality interval (vn|20−30%) and the centrality interval of interest (vn). Centrality-dependent
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Figure 13. (Colour online) The pT-differential v2 (top), v3 (middle), and v4 (bottom) of K± for

the 0–5%, 10–20%, and 40–50% centrality classes compared to hydrodynamical calculations from

MUSIC model using IP-Glasma initial conditions (magenta) [82] and the iEBE-VISHNU hybrid

model using AMPT (orange) or TRENTo (cyan) initial conditions [83]. Statistical and systematic

uncertainties of the data points are shown as bars and boxes, respectively. The uncertainties of the

hydrodynamical calculations are depicted by the thickness of the curves. The ratios of the measured

vn to a fit to the hydrodynamical calculations are also presented for clarity.

variations in the shape of vn(pT) will present themselves as deviations from unity of the

observed vn(pT)ratio to 20−30%.

The shape evolution of elliptic and triangular flow is shown in figures 15 and 16 for π±,

K±, p+p, and inclusive charged particles (the latter taken from [44]). For inclusive charged

particles, variations in shape of about 10% are observed for pT < 3 GeV/c, which increase

to about 30% for pT < 6 GeV/c. The shape evolution of v2(pT) shows different trends

for π±, K±, and p+p. While π± v2(pT)ratio to 20−30% follows inclusive charged particle

over the considered pT range, the elliptic flow of p+p (K±) varies between 20% (10%)

to 250% (55%) at low pT from most central to peripheral collisions. The variations are

more pronounced for v3(pT), in particular for central collisions. The mass dependence

found in the shape evolution of both v2 and v3 for pT < 4 GeV/c can be attributed to

variations of the magnitude of radial flow and quark density, both being larger for central

than peripheral collisions. Radial flow has a stronger effect on the vn of heavier particles

than that of lighter particles at low pT, while the quark density influences the peak value of

vn(pT) in the coalescence model picture [35, 36, 94]. For pT > 4 GeV/c, the shape evolution

shows little (if any) particle type dependence.
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Figure 14. (Colour online) The pT-differential v2 (top), v3 (middle), and v4 (bottom) of p+p for

the 0–5%, 10–20%, and 40–50% centrality classes compared to hydrodynamical calculations from

MUSIC model using IP-Glasma initial conditions (magenta) [82] and the iEBE-VISHNU hybrid

model using AMPT (orange) or TRENTo (cyan) initial conditions [83]. Statistical and systematic

uncertainties of the data points are shown as bars and boxes, respectively. The uncertainties of the

hydrodynamical calculations are depicted by the thickness of the curves. The ratios of the measured

vn to a fit to the hydrodynamical calculations are also presented for clarity.

The shape evolution of v2(pT) for π±, K±, and p+p is compared to calculations from

the MUSIC and iEBE-VISHNU hybrid models in figure 17. Both models describe the

shape evolution for p+p over the pT range 0.7 < pT < 3 GeV/c. The iEBE-VISHNU model

reproduces the shape evolution for π± and K± for pT < 1.5 GeV/c. Calculations from

the MUSIC model deviate strongly from the observed shape evolution for π± and K± in

peripheral collisions.

As quark density depends on centrality, the maximum vn is expected to be found at

higher pT in more central collisions. To further quantify this aspect of the shape evo-

lution of vn(pT), the pT of π±, p+p, Λ+Λ, and K0
S where v2(pT) and v3(pT) reach a

maximum, divided by number of constituent quarks nq, is reported in figure 18 as a func-

tion of centrality. The φ-meson and K± are not included since the kinematic range and

granularity of the measurements do not allow for a reliable extraction of a maximum.

The left panel of figure 18 shows that the pT/nq at which v2(pT) reaches a maximum,

denoted as pT|vmax
2

/nq, decreases with increasing centrality percentile for collision central-

ities larger than 5–10%, following the expectations from the hypothesis of hadronization
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Figure 15. (Colour online) Centrality dependence of v2(pT)ratio to 20−30% for π±, K±, p+p, and

inclusive charged particles [44]. Statistical and systematic uncertainties are shown as bars and

boxes, respectively.
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Figure 16. (Colour online) Centrality dependence of v3(pT)ratio to 20−30% for π±, K±, p+p, and

inclusive charged particles [44]. Statistical and systematic uncertainties are shown as bars and

boxes, respectively.

through coalescence. The systematic uncertainties as presented in figure 18 have been

evaluated directly on pT|vmax
n

/nq to accurately take into account that some systematic un-

certainties can be point-by-point correlated in pT. In the 0–5% centrality interval, there

is a hint of a lower pT|vmax
2

/nq than in the 5–10% centrality class for all particle species.

The observed pT|vmax
2

/nq is compatible among all particle species with the exception of the
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Figure 17. (Colour online) Centrality dependence of v2(pT)ratio to 20−30% for π± (upper pan-

els), K± (middle panels), and p+p (lower panels) compared to hydrodynamical calculations from

the MUSIC model using IP-Glasma initial conditions (magenta) [82], the iEBE-VISHNU hybrid

model using AMPT (orange) or TRENTo (cyan) initial conditions [83]. Statistical and systematic

uncertainties of the data points are shown as bars and boxes, respectively.
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Figure 18. (Colour online) Centrality dependence of pT|vmax
2

/nq (left) and pT|vmax
3

/nq (right)

divided by number of constituent quarks, nq, for π±, p+p, Λ+Λ, and K0
S. Points are slightly

shifted along the horizontal axis for better visibility in both panels. Statistical and systematic

uncertainties are shown as bars and boxes, respectively.

p+p pT|vmax
2

/nq, which is slightly lower in the 0–20% centrality range. The right panel of

figure 18 presents pT|vmax
3

/nq, which shows, within the large uncertainties, a weak (if any)

centrality dependence for π± and K0
S and no centrality dependence for p+p and Λ+Λ. The

pT|vmax
3

/nq is the same for the different particle species within uncertainties.
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Figure 19. (Colour online) Centrality dependence of |vn|1/n/pT of inclusive charged particles [44],

π±, K±, p+p, Λ+Λ, K0
S, and the φ-meson for n = 2 (upper panels) and n = 3 (lower panels).

Statistical and systematic uncertainties are shown as bars and boxes, respectively.

In the scenario of ideal hydrodynamics, vn is a power law function of the radial ex-

pansion velocity of the medium [95, 96] so that vn ∝ pT
n up to pT ∼M for particles with

mass M . Figure 19 shows |vn|1/n/pT as function of pT for n = 2 and n = 3 in various

centrality intervals for inclusive charged particles [44], π±, K±, p+p, Λ+Λ, K0
S, and the

φ-meson (n = 2 only). When vn ∝ pT
n, the observable |vn|1/n/pT should be a constant.

For π± and the inclusive charged particles, the vn ∝ pTn scaling is broken both for v2 and

v3 for all centrality intervals, as is also hypothesized in [97]. It should be noted however

that the kinematic constraints imposed on the measurement preclude testing the scaling

hypothesis in the full relevant momentum region. The scaling holds up to pT ≈ 1 GeV/c

for K± and K0
S, and up to pT ≈ 2 GeV/c for p+p, Λ+Λ, and the φ-meson for the 0–5%

and 10–20% centrality intervals. Similar qualitative observations are found in the three

hydrodynamical calculations [82, 83].

If vn indeed exhibits a power law dependence on pT
n, ratios of the form of v

1/n
n /v

1/m
m

are pT-independent. Previous measurements at RHIC [98, 99] and the LHC [100, 101] have

shown that the ratios v
1/n
n /v

1/m
m show little to no pT dependence up to about 6 GeV/c

independent of the harmonic n and m for peripheral and semi-central collisions. However,

a pT dependence is observed for central collisions, which might be due to fluctuations in

the initial geometry [99]. The ratios v3/|v2|3/2, v4/|v2|4/2, and v4/|v3|4/3, which probe

the same scaling but are in practice more sensitive, are shown in figures 20, 21, and 22,

respectively. For each figure, vn/|vm|n/m is shown for inclusive charged particles [44], π±,

K± and p+p in various centrality intervals. For v3/|v2|3/2 and v4/|v2|4/2, no obvious pT
dependence is found for inclusive charged particles between 5–50% collision centrality. For

the 0–5% centrality class, the ratios are flat for pT < 3 GeV/c and rise monotonically for

higher momenta. No particle type dependence of the ratios is found for pT > 1.5 GeV/c,

below which the ratios for p+p vn rise. This rise of the p+p vn ratios can be attributed to

an increase of radial flow which affects the independent harmonics differently. For the ratio
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Figure 20. (Colour online) Centrality dependence of v3/|v2|3/2 for inclusive charged particles [44],

π±, K±, and p+p. Statistical and systematic uncertainties are shown as bars and boxes, respectively.
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Figure 21. (Colour online) Centrality dependence of v4/|v2|4/2 for inclusive charged particles [44],

π±, K±, and p+p. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

v4/|v3|4/3, no pT dependence is observed over the full centrality range. Large statistical

uncertainties do not allow conclusions to be drawn on the behaviour of p+p vn in the

v4/|v3|4/3 ratio.

4.5 Comparison with vn of identified particles at
√
sNN = 2.76 TeV

The transport properties and initial condition models can be further constrained by

studying the energy dependence of anisotropic flow. Figure 23 presents the v2(pT),

v3(pT), and v4(pT) of π±, K±, and p+p compared to ALICE measurements performed

at
√
sNN = 2.76 TeV [28].

The vn coefficients at
√
sNN = 2.76 TeV have been measured using the scalar product

method, taking the particle of interest under study and the charged reference particles

from different, non-overlapping pseudorapidity regions between |η| < 0.8. Assuming no
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Figure 22. (Colour online) Centrality dependence of v4/|v3|4/3 for inclusive charged particles [44],

π±, K±, and p+p. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

anisotropic flow in minimum bias pp collisions at the same collision energy, the non-flow

contributions are estimated from minimum bias pp collisions and subtracted from the mea-

sured vn coefficients. Ratios of the measurements presented in this paper to a cubic spline

fit to the ones performed at
√
sNN = 2.76 TeV are given in the figure for each presented

centrality interval and flow coefficient. The uncertainties in these ratios are obtained by

summing the statistical and systematic uncertainties on the independent measurements in

quadrature, and propagating the obtained uncertainties as uncorrelated.

An increase of radial flow with increasing collision energy is expected to lead to a

suppression of vn at low pT, an effect which would be most pronounced for heavier particles.

Although a possible suppression of p+p vn at
√
sNN = 5.02 TeV can be seen between

1 . pT . 3 GeV/c in central collisions and additionally for v2(pT) of π± and K± at the same

centrality interval, the precision of the results does not allow for conclusions to be drawn

as the measurements at different collision energies are compatible within uncertainties.

Figure 24 shows the v2(pT) of Λ+Λ, K0
S, and the φ-meson compared to ALICE measure-

ments performed at
√
sNN = 2.76 TeV [27], where the v2 coefficients at

√
sNN = 2.76 TeV

have been measured using the scalar product method with an |∆η| > 0.9 gap to suppress

non-flow. No differences are observed between the K0
S and Λ+Λ v2(pT) measured at two

different collision energies. The strongly improved precision of the φ-meson measurement

at
√
sNN = 5.02 TeV, both in terms of statistical uncertainty and granularity in pT, shows

that the v2(pT) follows a mass ordering at low pT and groups with mesons after pT≈ 3

GeV/c for all centrality intervals.

5 Summary

In summary, the elliptic, triangular, and quadrangular flow coefficients of π±, K±, p+p,

Λ+Λ, K0
S, and the φ-meson have been measured in Pb-Pb collisions at

√
sNN = 5.02 TeV

over a broad range of transverse momentum and in various centrality ranges. The preci-
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Figure 23. (Colour online) The pT-differential v2 (top), v3 (middle), and v4 (bottom) of π±, K±,

and p+p compared to ALICE measurements performed in Pb-Pb collisions at
√
sNN = 2.76 TeV

(coloured bands) [28] for the 0–5%, 10–20%, and 40–50% centrality classes. For the measurements at√
sNN = 5.02 TeV, statistical and systematic uncertainties are shown as bars and boxes, respectively.

For the measurements at
√
sNN = 2.76 TeV, the thickness of the bands corresponds to the quadratic

sum of statistical and systematic uncertainties. The ratios of measurements at
√
sNN = 5.02 TeV

to a cubic spline fit to the measurements at
√
sNN = 2.76 TeV are also presented for clarity.

sion of these measurements provide constraints for initial-state fluctuations and transport

coefficients of the medium. The magnitude of vn increases with decreasing centrality up

to the 40–50% centrality interval for all particle species. This increase is stronger for v2
than for v3 and v4, which indicates that collision geometry dominates the generation of

elliptic flow while higher flow coefficients are mainly generated by event-by-event fluctua-

tions in the initial nucleon and gluon densities. This interpretation is also supported by

the non-zero, positive vn found in the 0–1% centrality interval. In most central collisions

(i.e. 0–1% and 0–5%), v3 and v4 reach a similar magnitude as v2 at different pT values

depending on particle mass, after which they increase gradually. For pT < 3 GeV/c, the

vn coefficients show a mass ordering consistent with an interplay between anisotropic flow

and the isotropic expansion (radial flow) of the collision system. In this transverse mo-

mentum range, the iEBE-VISHNU hydrodynamical calculations describe the measured vn
of π±, K±, and p+p fairly well for pT < 2.5 GeV/c, while MUSIC reproduces the measure-

ments for pT < 1 GeV/c. It should be noted that neither of the presented hydrodynamical

models is able to fully describe the measurements. At intermediate transverse momenta
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Figure 24. (Colour online) The pT-differential v2 of Λ+Λ, K0
S, and the φ-meson compared to AL-

ICE measurements performed in Pb-Pb collisions at
√
sNN = 2.76 TeV (coloured bands) [27] for the

0–5%, 10–20%, and 40–50% centrality classes. For the measurements at
√
sNN = 5.02 TeV, statisti-

cal and systematic uncertainties are shown as bars and boxes, respectively. For the measurements

at
√
sNN = 2.76 TeV, the thickness of the bands corresponds to the quadratic sum of statistical and

systematic uncertainties. The ratios of measurements at
√
sNN = 5.02 TeV to a cubic spline fit to

the measurements at
√
sNN = 2.76 TeV are also presented for clarity.

(3 < pT < 8–10 GeV/c), particles show an approximate grouping by the number of con-

stituent quarks at the level of ±20% for all flow coefficients in the 0–50% centrality range.

The φ-meson v2, which tests both particle mass dependence and type scaling, follows p+p

v2 at low pT and π± v2 at intermediate pT. The baryon vn has a magnitude larger than

that of mesons for pT < 8–10 GeV/c, indicating that the particle type dependence persists

up to high pT. For pT > 10 GeV/c, the v2 of p+p is compatible with that of π± within

uncertainties. The shape evolution of v2(pT) as function of centrality shows different trends

for π±, K±, and p+p and varies between 20% (10%) to 250% (55%) for p+p (K±) at low

pT from most central to peripheral collisions; variations are more pronounced for v3(pT), in

particular for central collisions. Ratios v3/|v2|3/2 and v4/|v2|4/2 are flat for pT < 3 GeV/c

and rise monotonically for higher momenta for the 0–5% centrality class. No particle type

dependence of the ratios is found for pT > 1.5 GeV/c, below which the ratios for p+p

vn rise, which can be attributed to an increase of radial flow which affects the indepen-

dent harmonics differently. For the ratio v4/|v3|4/3, no pT dependence is observed over the

full centrality range. The measurements are compatible with those performed in Pb-Pb

collisions at
√
sNN = 2.76 TeV within uncertainties.
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of Science and Higher Education and National Science Centre, Poland; Korea Institute of

Science and Technology Information and National Research Foundation of Korea (NRF),

Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic

Physics and Romanian National Agency for Science, Technology and Innovation, Roma-

nia; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of

the Russian Federation and National Research Centre Kurchatov Institute, Russia; Min-

istry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National

Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas
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72 Instituto de F́ısica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
73 Instituto de F́ısica, Universidad Nacional Autónoma de México, Mexico City, Mexico
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115 Technische Universität München, Excellence Cluster ‘Universe’, Munich, Germany
116 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow,

Poland
117 The University of Texas at Austin, Austin, Texas, United States
118 Universidad Autónoma de Sinaloa, Culiacán, Mexico
119 Universidade de São Paulo (USP), São Paulo, Brazil
120 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
121 Universidade Federal do ABC, Santo Andre, Brazil
122 University College of Southeast Norway, Tonsberg, Norway
123 University of Cape Town, Cape Town, South Africa
124 University of Houston, Houston, Texas, United States
125 University of Jyväskylä, Jyväskylä, Finland
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134 Université Paris-Saclay Centre d’Études de Saclay (CEA), IRFU, Department de Physique
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