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1. SUMMARY ( Italian) 

Il mesotelioma pleurico maligno (MPM) è un tumore aggressivo di origine mesoteliale che viene spesso 

diagnosticato in uno stadio avanzato. Anche per questo motivo il mesotelioma spesso presenta resistenza 

alla maggior parte dei trattamenti terapeutici e una prognosi infausta, esiste pertanto la necessità di 

sviluppare nuovi biomarcatori per la diagnosi precoce e di identificare nuovi target per trattamenti 

preventivi e terapeutici. Studi recenti dimostrano che la proteina High-mobility group box-1  (HMGB1) 

svolge un ruolo fondamentale nella carcinogenesi dell'MPM. HMGB1 è una proteina strutturale della 

cromatina, espressa ubiquitariamente nei nuclei delle cellule dei mammiferi. Quando trasportata nello 

spazio extracellulare, tra le altre funzioni, può agire sia come oncosoppressore che come proteina 

oncogena. Nel mesotelioma pleurico maligno, livelli sierici elevati di HMGB1 sono stati correlati a una 

prognosi infausta. Al contrario, il significato dell'espressione di HMGB1 nei tessuti di mesotelioma pleurico 

maligno deve ancora essere definito. 

La discrepanza tra l'incidenza crescente di MPM e la mancanza di successo di nuove strategie terapeutiche 

più efficaci può essere in parte correlata a sistemi in vitro e in vivo inadeguati che imitano la tumorigenesi 

del MPM. Recenti scoperte hanno dimostrato che il mesotelioma maligno è un tumore policlonale e la sua 

formazione e crescita è influenzata dal microambiente infiammatorio. Valutare il mesotelioma come un 

organo completo risulta cruciale per comprenderne la biologia e sviluppare nuove strategie terapeutiche. Il 

nostro obiettivo è sviluppare modelli tridimensionali di mesotelioma in vitro. Gli organoidi umani derivati 

da paziente potranno rivelarsi di grande utilità per esaminare la sensibilità ai trattamenti farmacologici e 

per studiare la diafonia tra tumore e cellule immunitarie. In quest’ottica, sferoidi ottenuti da mesotelioma 

murino e xenotrapianti derivati da paziente (PDX) rappresentano modelli alternativi e utili per conseguire il 

medesimo obiettivo. 

Campioni di tessuto neoplastico ottenuti mediante biopsia da 170 pazienti con MPM sono stati valutati 

mediante immunoistochimica e Reverse Transcription-Polymerase Chain Reaction (RT-PCR) per valutare la 

proteina HMGB1 e l'espressione genica. Il livello di espressione della proteina HMGB1 è stato valutato 

utilizzando un metodo semi-quantitativo, che somma l'intensità (0-3) e la percentuale (da 0 a 4) delle 

cellule con colorazione positiva, nei nuclei, nel citoplasma e in entrambi. Il punteggio finale è stato 

classificato come alta (> 3) o bassa (< 3) espressione proteica. I livelli di espressione genica sono stati 

calcolati con il metodo ΔΔCt. Livelli di espressione elevati di HMGB1 totale (p = 0,0011) e citoplasmatico (p 

= 0,0462), correlavano con una peggiore sopravvivenza malattia specifica (DSS) nell'intera coorte e nei 

sottogruppi clinico-patologici. Non è stata tuttavia osservata nessuna correlazione significativa tra 

espressione del gene HMGB1 e DSS. 

Nella seconda parte del nostro studio, biopsie di mesotelioma umano sono state utilizzate per la 

generazione di organoidi seguendo procedure sperimentali precedentemente pubblicate. Gli stessi 
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frammenti tumorali sono stati trapiantati in topi immunodeficienti (NOD scid gamma, NSG). Gli organoidi 

ottenuti da biopsie umane presentano dimensioni ridotte (200 μm di diametro) e possono essere propagati 

fino a tre passaggi in vitro. La caratterizzazione morfologica degli organoidi mostrava una struttura definita 

con polarità interno-esterno. Gli organoidi erano inoltre positivi per i marcatori tipici del mesotelioma. 

Abbiamo ottenuto tre PDX; l'immunofenotipizzazione ha mostrato come i tumori propagati nei topi siano 

simili al tumore originale. 

Questi risultati indicano che HMGB1 può essere utile come biomarcatore prognostico nel mesotelioma 

pleurico quando valutato mediante colorazione immunoistochimica nel tessuto neoplastico. Tuttavia, 

poiché è espresso anche in cellule mesoteliali normali e reattive, la valutazione dell’espressione di HMGB1 

in campioni istologici di mesotelioma sembra non presentare utilità a fini diagnostici. 

Siamo inoltre riusciti a generare e caratterizzare organoidi e modelli PDX di mesotelioma, ci aspettiamo che 

questi modelli ci aiutino a capire meglio la patogenesi del mesotelioma. 

 

SUMMARY (English) 

Malignant pleural mesothelioma (MPM) is an aggressive tumour of mesothelial origin, often diagnosed in 

an advanced stage, which contributes to its very poor prognosis and resistance to most of the therapeutic 

treatments. Therefore, the development of new biomarkers for early diagnosis and of novel targets for 

preventive and therapeutic treatments are needed. Recent studies show that High Mobility Group Box 1 

protein (HMGB1) plays a critical role in the carcinogenesis of MPM. High-mobility group box-1 (HMGB1) is a 

chromatin structural protein, ubiquitously expressed in the nuclei of mammalian cells.  When transported 

extracellularly, it, among other functions, could act as tumor suppressor and oncogenic protein. In 

malignant pleural mesothelioma (MPM), high serum levels of High-mobility group box-1 (HMGB1) have 

been related to a poor prognosis. Conversely the significance of HMGB1 expression in malignant pleural 

mesothelioma (MPM) tissues is still unclear. 

The discrepancy between the rising incidence of MPM and the lack of success of new more effective 

therapeutic strategies may be related in part to inadequate in vitro and in vivo systems that mimic MPM 

tumorigenesis. Recent findings showed that malignant mesothelioma is a polyclonal tumor and its 

formation and outgrowth is determined by the inflammatory microenvironment. Evaluating mesothelioma 

as a complete organ becomes crucial to understand its biology and to develop new therapies. Our aim is to 

develop 3D in vitro models of mesothelioma. Patient-derived human organoids are useful to screen for 

drug sensitivity and to study the crosstalk between tumor and immune cells. Murine mesothelioma 

spheroids and patient derived xenografts (PDX) are alternative models that help us to pursue the same 

goal.  
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Biopsy samples from 170 patients with MPM were assessed by immunohistochemistry and Reverse 

Transcription-Polymerase Chain Reaction (RT-PCR) to evaluate HMGB1 protein and gene expression. The 

expression level of HMGB1 protein was scored using a semi-quantitative system, that sums the intensity (0-

3) and the percentage (from 0-4) of positively stained cells, in nuclei, cytoplasm and in both. The final score 

was considered as high (>3) or low (<3) expression. Gene expression levels were calculated with ΔΔCt 

method. High expression levels of HMGB1 as total (P = 0,0011) and cytoplasmic score (P = 0,0462), were 

related with a worse disease-specific survival (DSS) in the entire cohort and in the clinicopathologic 

subgroups. No significant correlation was found between HMGB1 gene expression and DSS. 

Human mesothelioma biopsies were used for organoid generation following published protocols. The same 

tumor fragments were transplanted in immune deficient mice (NOD scid gamma, NSG mice). Organoids 

obtained from human biopsies are small in size (200 µm in diameter) and can be propagated up to three 

generations. The morphological characterization of organoids showed a defined structure with inside-

outside polarity; organoids were positive for mesothelioma markers. We obtained three PDX; 

immunophenotyping showed that the tumors propagated in mice are similar to the original tumor.  

These findings indicate that HMGB1 may be a useful prognostic biomarker in MPM when detected by 

immunohistochemistry. Conversely, since it is expressed also in normal and reactive mesothelial cells, 

HMGB1 cannot be considered a diagnostic biomarker, in histologic samples of mesothelioma. 

We have the ability to generate and characterize organoids and PDX models of mesothelioma. We expect 

these models will help us to better understand the mesothelioma pathogenesis. 
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2. INTRODUCTION 
 

An overview of Malignant Pleural Mesothelioma 

Malignant mesothelioma (MM) is a slow-growing solid tumor originating from the mesothelial cells lining 

the pleural and peritoneal cavities, or less commonly the pericardium, tunica vaginalis testis and ovarian 

epithelium1. It is uncommon for MM cases to suffer metastasis in its early stage.2 

The most frequent site of the disease presentation is the pleural surface (>70%),3 since asbestos, after 

inhalation in the lungs, reaches the pleura via the lymphatic system. The occurrence of MPM is related 

mainly with asbestos exposure; 4 when the exposure is high, further dissemination of asbestos to the 

peritoneum may occur. 5 Moreover, other potential carcinogenic agents, including infection by Simian Virus 

40, radiation exposure, 6 germline BRCA1-associated protein 1 (BAP1) mutations 7 as well as exposure to 

other fibers with similar physical properties to asbestos should be considered. In the asbestos-associated 

MPM cases, the disease develops after a long latency period, interval between the first exposure to 

carcinogens and the development of the pathology, which ranges on average 30–60 years.8 The prognosis 

of malignant pleural mesothelioma is very poor with a median survival in no treated patients of 6–12 

months. 1 Unfortunately, MPM is resistant to chemotherapy, and the efficacy of the most commonly used 

chemotherapy is very limited: the combination of pemetrexed and cisplatin led to an overall survival 

benefit of about 11 weeks.9  

The incidence of MPM has a growing tendency worldwide, mainly due to the lag time after exposure to 

asbestos and the banning of handling and importing this product in the late twentieth century (Table 1). 10 

Several studies recently conducted demonstrated that the disease incidence is likely to peak between 2015 

and 2030.11, 12 In US the incidence of mesothelioma reached 3,200 cases/year in 2003 and it has remained 

stable since, despite the stringent regulations introduced between 1970s and 1980 to limit asbestos 

exposure. 12 

in Italy its incidence is 2,94/100.000 for men and 1,06/100.000 for women. In the areas in which asbestos 

production factories are frequent like Casale Monferrato in Piedmont region, the incidence is estimated to 

be about 43.7/100.000 for men and 27/100.000 for woman (Centro di Riferimento per l’Epidemiologia e la 

Prevenzione Oncologica in Piemonte). 

According to the predominance of the histomorphologic growth pattern, MPM is divided into four 

histologic subtypes: epithelial (50-70%), sarcomatoid (10-15%), biphasic (30%) and desmoplastic, a quite 

rare variant of the tumour 11, 13 associated with different prognosis (Figure 1). The epithelioid subtype is the 

less aggressive and most responsive to treatments, with a better prognosis than the non-epithelioid.14 The 

sarcomatoid subtype is associated with the worst prognosis. 15 The epithelioid MPM presented a 

proliferation of oval or polygonal tumor cells, often lacking nuclear scission, being lined by vascular 

structures formed by cuboidal cells. Whereas, the sarcomatoid subtype is characterized by the proliferation 
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of spindle cells which presents oval prominent nuclei and small amount of double-staining cytoplasm. In 

some others mesothelioma cases the morphology is fibrosarcoma-like. The biphasic subtype is the 

combination of both characteristics as stated above. In all of the histotypes, the malignant cells are 

frequently bi- or multi- nucleated, organized in clumps. MPM occurs in any part of the parietal pleura and 

the visceral pleura, while about 80% occurs in the visceral pleura and 20% occurs in the parietal pleura. 16 

 

 

Table 1: Current incidence and predicted peak for malignant mesothelioma in various countries. 259 

 

 

Figure 1. Example of histologic subtypes of MPM cases obtained from Pathologic Anatomy of Novara Hospital: A) 

Sarcomatoid, B) Epithelioid. Magnification 200X  

 

 

Etiology and pathogenesis 

Mesothelioma is officially recognized as an occupational cancer and as a signal disease for occupational 

asbestos exposure. 11 The rare cases of MPM in children and young adults suggest that other factors 

different from asbestos exposure may be involved in the etiology of this tumor. 17 Furthermore, it has been 

reported that some individuals develop mesothelioma following exposure to small amounts of asbestos, 
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whereas others exposed to heavy amounts do not. Additional well-established risk factors for MM include 

exposure to the naturally occurring asbestos-like mineral fibers, such as germline BRCA1-associated protein 

1 (BAP1) mutations, erionite, SV40 exposure and chest irradiation.18 

 

Asbestos  

Before 1950, malignant mesotheliomas were extremely rare neoplasms.19 So, the first mesothelioma case 

was reported in 1947 and its diagnosis relied on the current diagnostic criteria. However, the increasing use 

of asbestos after the second world war led to the description of a causal relationship between asbestos 

exposure and MPM development.4 In the 1980s, when people became aware to the risks of asbestos 

exposure, its use was widely abandoned in the western world. But the long latency period between 

exposure to asbestos and mesothelioma development,20 meant that the mortality rates from mesothelioma 

have continued to rise.  

Asbestos, from Greek means “inextinguishable”, is a natural silicate mineral with different 

carcinogenicities.1,21 Asbestos refers to a family of six mineral fibers that were used commercially in the 

‘70s, and are classified into two major subgroups: the serpentine group, consisting of chrysotile (white 

asbestos), and the amphiboles. The amphibole is a group of rod-like fibers, and includes crocidolite (blue 

asbestos), the most oncogenic type of asbestos, amosite (brown asbestos), anthophyllite, actinolite and 

tremolite.17 The most common and economically important form of asbestos in the Western World is 

represented by chrysotile.  

The main asbestos mineral groups differ from each other also for their structure: the serpentine fibers are 

long and curly, whereas the amphibole fibers are straight, needle-like and friable.  This distinction is 

important as the serpentine shape is more easily cleared from the respiratory tract. Furthermore, 

epidemiologic data suggests that the amphiboles are associated with the highest risk of mesothelioma,22 

and that the serpentine fibers has the lowest. WHO confirmed that the different shapes of asbestos fibers 

seem to have different abilities to induce mesothelioma.23 

The mechanisms at the basis of asbestos carcinogenesis are being clarified. Long and thin asbestos fibers 

are inhaled deeply into the lung, penetrate the pleural space and induce a chronic inflammatory response 

at sites of fiber deposition in the pleura that over time may lead to malignant cell transformation (Figure 2). 

Three main contributing mechanisms have been proposed.  

1- Different studies reported that asbestos fibers are able to generate reactive oxygen species (ROS) 

and reactive nitrogen species, which subsequently can cause DNA damage and strand breaks into 

the normal mesothelial cells and macrophages at the sites of fibers deposition. Furthermore, 

macrophages phagocytose asbestos fibers but are unable to digest them, and produce also 

abundant reactive oxygen species.24,25 At the other hand, asbestos fibers are also engulfed by 

mesothelial cells, and into the cells can physically interfere with the mitotic process of the cell cycle 
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by disrupting mitotic spindles. This can produce abnormalities into chromosomal structures and 

aneuploidy of the mesothelial cells.  

2- Asbestos fibers absorb a variety of proteins and chemicals, which could lead to the accumulation of 

harmful molecules including carcinogens. 26 Furthermore, asbestos fibers bind important cellular 

and functional proteins and their functional and structural deficiency may also be damaging for 

normal mesothelial cells. 

3- Lastly, asbestos-exposed mesothelial cells and macrophages release a variety of cytokines and 

growth factors able to induce inflammation and tumor promotion. Those include tumor necrosis 

factor-α, interleukin-1β, high-mobility group box 1 (HMGB1). 27, 28 The mechanisms that describes 

this malignant transformation process was revealed by Yang et al.27 Asbestos caused the necrotic 

death of primary human mesothelial cells (HM) exposed to it, and release HMGB-1 in the extra 

cellular space, which cause a chronic inflammatory response. This event elicits macrophage 

accumulation and the secretion of TNF-alpha, which activates the NF-κB pathway. This lead to 

increased survival of asbestos-damaged mesothelial cells.  Thus, the aberrantly activated signaling 

network among mesothelial cells, inflammatory cells, fibroblasts and other stromal cells may create 

a pool of mesothelial cells, which harbor asbestos-induced genetic damages potentially developing 

into cancer cells and together forming a tumor microenvironment that supports and nourishes 

them.1 
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Figure 2: Schematic model showing mechanisms of asbestos-induced carcinogenesis and genomic/epigenetic 

changes found in mesothelioma cells, carcinogenic activities of asbestos fibers, and the relationship of the 

immunological effects of asbestos in regard to chronic inflammation and reduced tumor immunity.199  

. 

Erionite 

Erionite is a fibrous form of the zeolite group of minerals, which is less widespread, but several times more 

carcinogenic than asbestos in causing mesothelioma.29 Wagner and colleagues showed that mice injected 

with erionite develop MM in almost all cases, instead mice injected with asbestos fibers has MM in a lower 

percentage of cases (48%). 

Urban development may disturb natural outcrops of asbestos and erionite, thus leading to more 

occurrences of exposure. 1,29,30 One example, during the past 2 decades, was the case of erionite exposure 

in North Dakota where over 300 miles of roads, playgrounds and driveways have been paved, mostly with 

gravel-containing erionite. More erionite-exposure is also suspected in nearby States. Furthermore, in a 

recent work Carbone linked erionite with endemic cases of mesothelioma. The mortality rate was 6,5% in 

some Turkish villages of Cappadocia where erionite is natural component of the stones of this region.30 In 

the North and South Dakota roads, the air concentrations of erionite were equal or exceeded of those 

found in the Cappadocia villages indicating that here erionite remains a serious environment pollution. 

Similar problems occurred in New Caledonia, where the use of antigorite (a type of serpentine) as road 

gravel led to mesothelioma epidemy. 31 

 

Genetic predisposition and BAP-1 gene 
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In 2001, in a study conducted in some Turkish villages was reported that the development of mesothelioma 

has been correlated with genetic susceptibility transmitted in an autosomal dominant manner. 32 Another 

study has found that family members genetically susceptible to MM, when raised outside the villages, not 

exposed to carcinogenic minerals did not develop MM; in addition, when high-risk MM family members 

married into families with no history of MM, MM appeared in the descendants. 33   

Initially, these findings were received with skepticism. 34 Only recently, a study conducted by Carbone et al, 

which was focused on two American families with high incidence of developing mesothelioma and without 

previous asbestos exposure, identified germline mutations in BAP1 (BRCA-1 associated protein 1) gene. 35 

BAP-1 is a tumor suppressor gene located on chromosome 3p21.3 and causes the “BAP1 cancer syndrome”, 

characterized by the presence of benign atypical melanocytic lesions, known as melanocytic BAP1-mutated 

atypical intradermal tumors (MBAITs) a very high incidence of both pleural and peritoneal MMs as well as 

uveal melanomas (UVMs). 35 Individuals that carried germline BAP1 mutations also have an elevated risk of 

developing several other malignancies, such as cutaneous melanoma, clear cell renal cell carcinoma, 

intrahepatic cholangiocarcinoma, basal cell carcinoma, etc.  

 

SV40 and mesothelioma 

Simian virus 40 (SV40) is a DNA monkey virus that was found in contaminated polio vaccines produced from 

1955 to 1978. 36 The most likely route of SV40 transmission into humans were correlated with the 

contaminated forms of polio vaccines injected in millions of people worldwide in this period. SV40 is a 

double circle DNA virus and its oncogenic activity rests on the production of 2 proteins; the large T antigen 

(TAG) and small t antigen (tag), encodes respectively by early and late coding regions.  The ability to induce 

tumor transformation in the host cells is linked to the large T antigen able to inactivate essential tumor 

suppressor genes, like p53 and pRb. These genes encode key proteins to the cell cycle checkpoints, and the 

loss of these proteins leads to uncontrolled cell proliferation. 37 However, its ability to cause tumor in 

humans is not clear since several conflicting data have been reported. Different preclinical studies reported 

that animals injected with SV40 in the pleural tissue developed MM within 6 months in 100 % of cases 

sustaining its probable carcinogenic role, 38 at least in animal studies. Another study conducted in hamsters 

indicates that SV40 alone was not able to cause mesothelioma, but infected animals exposed to lower 

amounts of asbestos can develop tumors in 90% of cases.36 At the other hand, it was recently shown that T 

antigen participates in generation of TAG-p53-pRb-p300 complex, which regulates the transcription of the 

insulin-like growth factor I (IGF-1) gene. An increase of IGF-1 production leads to enhanced cell growth.39 It 

is still not completely clear the direct carcinogenic effects of SV40 in MM in humans; however, it the role of 

SV40 as a co-carcinogenic player in association with asbestos in the development of MM is widely 

accepted. 40 

Radiation 
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The pathogenesis of MPM is also linked with radiation exposure, even though these cases are rarely 

observed. 41 Ionizing radiation is recognized as a carcinogen and is at the basis of development of different 

tumors including hematologic malignancies and solid tumors. Different evidences were reported from case 

reports studies and indicates the development of MM in humans previously treated with therapeutic 

radiation. 41 Several large-scale retrospective cohort studies investigated the occurrence of MM after 

exposure to therapeutic radiation for treatment of several different types of cancer. De Bruin et al found 

that among patients survived by Hodgkin lymphoma, the risk for developing malignant mesothelioma was 

almost 30-fold for patients treated with irradiation, as compared to the general population. 42 Moreover, 

studies in rats demonstrate that radiation is a causative co-factor of MM in combination with asbestos 

exposure. 

In summary, the association between asbestos, erionite, SV40 infection, genetic predisposition and 

radiation exposure suggests a multifactorial origin for malignant mesothelioma and each factor 

plays a crucial role in necrosis, inflammation and genetic damage. 

 

Diagnosis 

Diagnosis of malignant mesothelioma requires the combination of careful evaluation of clinical features, 

examination, radiology, acquisition of pathology and accurate history of asbestos exposure. 43 Patients 

typically presents symptoms as shortness of breath, pain and weight loss that occur over a period of many 

years.  It is also of great importance to be informed about the patient occupational history in a detailed way. 

During physical examination, unilateral effusions are often observed. 

The diagnostic standard work-up includes the following steps: 

• Chest X-ray 

• Computed tomography (CT) scan of chest and upper abdomen 

• Thoracentesis, with examination of the pleural effusion 

• General laboratory blood tests 

Radiology 

Radiological imaging is essential to determine the diagnosis, staging and management of mesothelioma. 

The main imaging diagnostic techniques used to evaluate the disease are based on: X-ray, CT, magnetic 

resonance imaging (MRI) and the positron tomography (PET). 43  

X-ray, is the most practical method able to detect pleural thickening, pleural nodules or pleural effusion. 

Because of the lack of specificity, the X-ray can’t provide a complete diagnosis for MPM.  

Computer Tomography (TAC) TAC is commonly used in the preferred examination, which allow the 

visualization of whole pleural surface, the diaphragm and the status of lymph nodes. 44 This method can 

detect different degrees of pleural effusion, a nodular or thickening of the pleura, calcification, and 
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potential thoracic invasion.  However, TAC cannot determine the tumor staging and distinguish between 

diffuse pleural thickening from MPM. This method presents difficulty in detecting the tumor staging. The 

TAC scanning may help fine needle aspiration/biopsy of pleural mass. 

Magnetic resonance Imaging (MRI) MRI is not used as a routine examination of malignant mesothelioma 

but can do a better assessment of the individual for surgical treatment. So, MRI could allow the 

preoperative evaluation of the mediastinal structures, chest wall and diaphragm involvement. MRI 

scanning determines tumour size, the tumor area and distinguish the normal part. The imaging features 

and the sensitivity of MRI are similar to the chest CT. MRI also is the imaging modality of choice in those in 

whom intravenous iodinated contrast is contraindicated. 45 

Positron emission tomography (PET) PET/CT imaging has been used for MPM diagnosis by 18F-

fluorodeoxyglucose (18FDG). PET/CT have the ability to monitor the concentration of 18F-

fluorodeoxyglucose (18FDG) at different levels in lesions by a semiquantitative measure (standardized 

uptake value, SUV) of the metabolic activity of a lesion. It was observed that SUV is higher in mesothelioma 

than in other benign pleural diseases, 45 underlying its role at distinguishing benign from malignant disease.  

PET could be also an adjunctive tool to determine the MPM staging, and play an important role in curative 

evaluation, and estimating of prognosis. 46 So, there are evidences that changes in the fluorodeoxyglucose 

(FDG) uptake within the tumour might indicate response to treatment suggesting its role in monitoring the 

tumor response to different treatment alternatives. Despite the unique features of PET/CT, there are still 

some deficiencies such as the high expense and the false positive. 47 

 

Thoracoscopy to obtain adequate tissue biopsy 

When the occupational data of patient indicates a significant asbestos exposure, or the radiology is 

suggestive of mesothelioma, we need to determine a definitive diagnosis of MPM. In those patients with a 

pleural effusion, sampling of the fluid for cytological examination is the first step in confirming the 

diagnosis. But unfortunately, pleural fluid cytology is positive for malignant cells in about a third of cases. 

Furthermore, many pleural effusions present cytologic atypia, papillary structures, cells with frequent 

cytoplasmic vacuoles and focal necrosis; features which are shared between reactive mesothelial 

hyperplasia and malignant mesothelioma. 48, 49, 50 Thus, if we are able to determine a definitive diagnosis of 

mesothelioma by clinical, radiological and cytological results then this could be accepted. However, it is 

uncommon for the definitive diagnosis to be made on pleural fluid cytology alone. Therefore, the 

thoracoscopic pleural biopsy for tissue diagnosis are recommended. Thoracoscopy, as a real-time imaging 

technique, has become the most reliable method for obtaining of tissue specimens and the diagnosis of 

MPM for its comprehensive observation. This method also enables clinicians to improve tumor staging, 

particularly in the mediastinal region, and allow pleural fluid evacuation (pleurodesis). 50 This can be 

performed as a pleuroscopy or as video-assisted thoracic surgery (VATS). 51 However Kao et al found that it 



15 
 

is difficult to make a definite diagnosis through the pleural biopsy alone. 52 And the accuracy of diagnosis 

could be improved when immunohistochemical examination is considered. In the vast majority of cases, it 

is necessary to have adequate tissue biopsies and to investigate a panel of tumoral markers by the mean of 

immunohistochemistry.  

Cytokeratin (CK) has important significance in the diagnosis of mesothelioma, and a study has also shown 

that 92% of sarcomatoid mesothelioma is positive for CK. 53, 54 The related immunohistochemical 

markers of MPM also include calretinin (CR), D2-40, CK5/6, WT-1, VIM, CD105 and so on. The sensitivity 

of CR in the diagnosis of epithelioid mesothelioma is 94-100%, making it a screening index of MPM.  

CK5/6 is located on the plasmalemma, and mostly expressed in epithelioid mesothelioma. Vimentin (VIM) is 

mainly expressed in stromal cells and tumor derived cells; it also can be expressed in MPM, especially in the 

sarcomatoid mesothelioma and the poorly mixed mesothelioma, which can be used for differential 

diagnosis with metastatic adenocarcinoma of lung. 53, 54 Thus, according to the embryologic histogenesis of 

mesothelial tissue, MPM shows epithelial and mesothelial markers such as cytocheratin 5/6, calretinin, 

thrombomodulin, mesothelin and the Wilms Tumor 1 (WT-1).  The presence of at least two of positive 

markers in the context of a clinical and histological suspicion, is sufficient to confirm the diagnosis of 

MPM.55 A combination of the imaging techniques may be necessary for determining the best approach to 

the patient.  

 

Staging system 

Most of these staging systems had limitations, being based on small numbers of patients. The most recent 

system was developed in 1995; it was presented by the International Mesothelioma Interest Group (IMIG) 

and is approved by the Union for International Cancer Control (UICC) (Table 2). 56 
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Table 2. TNM staging according to the International Mesothelioma Interest Group (IMIG)/Union for International 

Cancer Control (UICC). 56 

 

 

Prognostic factors and survival time 

Patients with malignant pleural mesothelioma have a poor prognosis, with estimated median survival 

ranging between 4 to 12 months. 57 The Cancer and Leukaemia Group B, and the European Organization for 

Research and Treatment of Cancer have analyzed a large number of patients enrolled in treatment trials for 

mesothelioma and have established the main prognostic factors. According to this analysis, the non-

epithelioid subtype, chest pain, poor performance status at the time of diagnosis (PS), male gender, age 

older than 75 and high tumor stage are the main predictors of a negative prognosis. 58 Most of the patients 

who survive more than 2 years have epithelioid histology and death from mesothelioma could be 

consequence of respiratory failure.  

Other prognostic factors which are mainly used for purposes of clinical research are high leucocytes counts, 

platelets greater than 400 000 per μL, low hemoglobin content, thrombocytosis and high LDH level. 

Potential serum markers, such as soluble mesothelin or osteopontin, are now being studied but cannot 

currently be used for valid prognostication. 57 



17 
 

 

Therapy/Treatment 

MPM is highly aggressive and if left untreated the median survival time of the patients is very poor. 59 So, 

treating MPM patients remains a challenge. Current approaches consist in treating the MPM cases by 

chemotherapy, or multimodal treatment. The most promising strategy up to date is the multimodality 

therapy including resection of visible tumor as much as possible, combined with radiotherapy, 

chemotherapy and immunotherapy. 60 This strategy has been adopted because also the most complete 

surgical resection is associated with residual microscopic malignant tumor, and the subsequent local 

adjuvant treatment is able to kill residual tumor cells. Unfortunately, the treatment efficacy is very limited 

because of the late diagnosis. All of the current established therapies improve only the quality of life and 

prolong survival time of the patients. 61 The treatment options depend on the performance status, 

pulmonary function, stage, and age of the patient.  

 

Surgery/Surgical treatment 

The potential aims of surgery in MPM patients is to remove tumor with therapeutic intent and to relieve 

symptoms. 62 So far, the most commonly used operation approaches are extrapleural pneumonectomy 

(EPP) and pleurectomy/decortication (P/D). 63 EPP performs the complete resection of the affected visceral 

pleura and parietal pleura, the lungs, the diaphragm, and even part of the pericardium. The trauma caused 

by EPP is quite large, and the perioperative mortality is used to be as high as 32%. But, the recent 

developments of the surgical methods and screening techniques reduce the mortality in perioperative 

period to about 4%. P/D requires the complete resection of the visceral and parietal pleura, and the 

retention of the lung. The trauma caused by P/D is relatively small, and the perioperative mortality rate is 

about 1.5-5.4%. This method has some limitations: the complete eradication of tumor by P/D has not been 

performed, especially when the tumor invaded other parts. 64 EPP is not able to extend the patients survival 

compared with P/D and increase the postoperative complications for the MPM patients at the early stage. 

65 Nowdays, pleurectomy P/D is the preferred surgery and the most frequent because extrapleural 

pneumectomy (EPP) has higher morbidity without showing significant survival advantages.  

 If progressive disease is observed after neoadjuvant chemotherapy, surgery is not recommended. EEP is 

only recommended in the context of controlled clinical trials performed by specialized teams of 

investigators. 66 So, for staging procedures, large biopsies samples can be obtained using VATS or 

thoracoscopy. In this way, the subsequent pathological, molecular and immunohistochemistry 

assessment/evaluation will follow. During this methodology, the pleural effusions can be drained and, if 

required, a decortication or pleurodesis can be carried out.  

 

Radiotherapy  
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Mesothelioma is resistant to radiotherapy, so its effect is unsatisfactory. It is also difficult to prepare the 

effective radiation dose, due to the ability of MPM to spread along the pleura, surrounding the lungs and 

other vital organs adjacent to the site of primary tumor, which may represent one of the reasons for its 

unsatisfactory therapeutic effect. 67 Some of the severe adverse effects of radiation therapy include 

pneumonitis, myocarditis, and myelopathy due to spinal cord toxicity.  Nowadays, it seems that the 

development of three-dimensional imaging techniques has solved this problem to some extent. 67 

Radiotherapy has a certain effect in relieving the symptoms, especially easing the pain. 68 Therefore, the 

radiation therapy is mostly used for palliative purposes or in combination with surgery. Further clinical 

researches at large-scale are needed, because there is still no sufficient evidence about the radiation 

therapy of MPM.  

 

Chemotherapy  

Chemotherapy aims at killing the tumor cells in uncontrolled proliferation, in order to extend patient 

survival and improve the quality of life. 69 The chemotherapeutic treatment can be used alone or in 

combination with surgical treatment. Chemotherapy is the preferred treatment because of the late stage 

diagnosis of MPM cases. A study conducted by Vogelzang et al, 2003, reported the research results from a 

phase III clinical trial in a large cohort (456 patients) of MPM patients comparing the pemetrexed and 

cisplatin treatment with cisplatin alone. Response rates were significantly better in the 

pemetrexed/cisplatin arm than in the cisplatin alone arm (41.3% vs. 16.7%), and median survival time was 

significantly increased as well (median survival 12.1 months versus 9.3 months. 70 Afterwards, in 2004, 

pemetrexed (PEM) was approved by the US Food and Drug Administration (FDA) and the European Union 

(EU) to be used for MPM treatment. Thus, the combination of cisplatin (CDDP) and PEM become the first-

line chemotherapeutic treatment for MPM. 71 Chemotherapy for MPM can be used alone or combined with 

surgical treatment. Treatment with vitamin B12 and folic acid could also reduce toxicity without altering 

survival benefit.  

Recently some experts proposed in a phase II clinical study the combination of PEM and carboplatin plus 

bevacizumab as the first-line chemotherapeutic regimen of MPM, but further validation about the role of 

bevacizumab is needed. 72 Thus, the main treatment for pleural effusion remains intrathoracic 

chemotherapy.   

 

Molecular genetics and molecular therapies 

Germline and somatic BAP1 mutations 

Recently, mounting evidence has shown that germline mutations in BAP1, a tumor suppressor gene located 

on chromosome 3p21.3, are the cause of the “BAP1 cancer syndrome” (Figure 3.a). 73 This cancer syndrome 

is accompanied by the presence of benign atypical melanocytic lesions, 74, 75 known as melanocytic BAP1-
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mutated atypical intradermal tumors (MBAITs), 73 a very high incidence of both pleural and peritoneal MMs 

as well as uveal melanomas (UVMs). Furthermore, it has been recently shown that the all carriers of BAP1 

germline mutations have developed one or more malignancy by age 55.76 In addition to germline 

mutations, the majority (63.6%) of sporadic MMs contain somatic BAP1 mutations/inactivation. 77 Recent 

next generation sequencing (NGS) studies of the MPM genome revealed that in MPM biopsies various 

inactivating mutations occur rarely and randomly, with the exception of BAP1 that was found mutated in a 

high percentage (about 58%) of MPMs. 78 These data pointing at BAP1 as the putative driver mutation for a 

significant number of MMs.  

BAP1 is a member of the ubiquitin C-terminal hydrolase (UCH) subfamily of deubiquitinating enzymes 

(DUBs).79 BAP1 functions as a tumor suppressor because has the ability to perform the deubiquitination of 

histone H2A, and to remodel the chromatin, leading to transcriptional activation of genes that regulate cell 

growth. 80 Epigenetic regulation of tumor suppressor genes through chromatin condensation and 

decondensation has emerged as an important mechanism that leads to tumorigenesis. The balance 

between the acetylated and deacetylated forms of histone proteins is regulated by histone 

acetyltransferases (HATs) and histone deacetylases (HDACs). HATs increase acetylation promoting greater 

chromatin accessibility for gene expression, whereas HDAC inhibitors alter the packaging of the DNA 

around histones, impacting the expression of various genes. Different preclinical studies were conducted by 

testing in vitro- effect of various HDAC inhibitors, such as valproic acid, trichostatin A, LBH-589, and 

suberoylanilide hydroxamic acid (vorinostat). In vitro data studying the role of HDAC inhibitors in MM 

showed increased apoptosis in MM cell lines after treatment with inhibitors, either alone or in combination 

with conventional chemotherapy. 81- 86 Furthermore, the combination of valproic acid and chemotherapy 

completely suppress the tumor generated in a mouse xenograft model of MM. 86 

Vorinostat has been approved by FDA for the treatment of cutaneous T-cell lymphoma. But a Phase III trial 

(VANTAGE 014) study including 660 pre-treated advanced MPM patients used Vorinostat as a second-line 

or third-line therapy and reported that this treatment modality did not improve overall survival. Therefore, 

Vorinostat was not recommended as a therapy in MPM patients. 87 

 

Loss of the tumor suppressor gene NF2, encoding Merlin 

 Mounting evidence has shown that NF2 plays an important role in MM pathogenesis (Figure 3.a). Recent 

data indicates that asbestos-treated NF2+/− mice accelerate MM tumor formation compared to the wild-

types. 88 The NF2 gene is located on chromosome 22q12 and encodes merlin, a tumor suppressor protein. 

89 Merlin can interact with various proteins, and in this way modulates multiple signal transduction 

cascades, including mTOR, focal adhesion kinase (FAK) and Hippo signaling pathways (Figure 3). In MM 

cells, loss of merlin causes activation of mTOR signaling, 90 therefore in merlin-silenced tumors there is an 

upregulation of mitogenic signaling and increased cell proliferation. As expected, merlin-negative MM cells 
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were more sensitive to the mTOR inhibitor rapamycin, compared to merlin-positive cells. 90 Therefore, in 

the large fraction of MMs that carry NF2 mutations, mTOR could be a therapeutic target and provide the 

rationale for testing mTOR inhibitors in MM. Unfortunately, the oral mTOR inhibitor everolimus (RAD001) 

had limited clinical activity when tested in a phase II trial S0722 (NCT 00770120) as second- and third-line 

treatment agent in unselected pre-treated MPM patients. 91 It was concluded that additional studies of 

single-agent everolimus in advanced MPM were not warranted. 91 The inhibition of mTOR can generate a 

compensatory mechanism of resistance, that consist in upregulation of PI3KCA and the restoration of the 

downstream AKT signaling pathway. 92 To address this mechanism of mTOR resistance, a selective dual 

inhibitor (GDC-0980) of class I PI3K and mTOR was tested. This inhibitor demonstrated broad activity in 

various xenograft cancer models, including MPM, 93 but also pulmonary toxicity. However, despite these 

disappointing results, the role of PI3K/AKT/mTOR survival pathway in MM is being further evaluated in 

clinical trials (NCT01655225, NCT01991938). 

 

Deficiency in the CDKN2A /ARF locus 

Previous genetic analysis performed into MM biopsies has revealed that cyclin-dependent kinase inhibitor 

2A (CDKN2A)/alternative reading frame (ARF) and neurofibromatosis type 2 (NF2) were the most 

commonly mutated tumor suppressor genes in MM. 94, 95 The CDKN2A/ARF is a tumor suppressor gene 

located at chromosome 9p21.3. 96 CDKN2A encodes p16INK4a, whereas ARF encodes p14ARF. p16INK4a 

inhibits the cyclin-dependent kinase (CDK)-mediate hyperphosphorylation that leads to retinoblastoma 

protein (pRb) inactivation. So, loss of p16INK4a results in inactivation of pRb and, consequently, failure of 

cell cycle arrest. The p14ARF protein promotes degradation of the human ortholog of mouse double 

minute 2 (MDM2), leading to stabilization of p53. A particularly high frequency of homozygous deletion of 

CDKN2A/ARF has been detected in mesothelioma samples, causing loss of function of both p53 and pRb 

tumor suppressors, with a consequent breakdown of cell cycle control mechanisms (Figure 3.a). Otherwise, 

only a limited number of MM biopsies contain TP53 mutations, the tumor suppressor gene that encodes 

p53. Different in vivo studies indicate that the inactivation of both CDKN2A and ARF gene cooperates to 

accelerate asbestos-induced tumorigenesis in mice. 97 However, since genetic defects in p16INK4a/p14ARF 

are very common, and lead to loss of function of both p53 and Rb, the defective p53 pathways is a 

potential target for MM gene therapy. 98 Direct restoration of p16INK4a using gene therapy has also been 

tested and it has shown some promising activity in preclinical models but is still far from clinical 

development. 99, 100 

 

Receptor Tyrosine Kinase Inhibitors 

In MM was often observed an activation/upregulation of several receptor tyrosine kinases that constitute a 

large family of receptors and regulate the cell cycle (Figure 3.b). 101 Activation of these receptors lead to the 
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transduction of abnormal cell growth signaling pathways, which is at the basis of cancer initiation and 

progression. Inhibition of RTKs or of their ligands with specific antibodies or small molecules has been 

proven to be an effective and safe targeted approach in several malignancies. 102 

Inhibition of angiogenesis was shown to produce antitumor responses and decrease pleural effusion. 103 

Mesothelioma secretes pro-angiogenic factors, platelet-derived growth factor (PDGF) and vascular 

endothelial growth factor (VEGF), both of which are also associated with cell proliferation and pleural 

effusion. In pleural effusions of MPM patients were detected high levels of VEGF, associated with a worse 

patient survival. 104 Bevacizumab is an anti-VEGF humanized monoclonal antibody approved for use in 

several cancers. 105 Results obtained from three independent phase II clinical trials showed that addition of 

bevacizumab to the standard of care failed to increase survival of MM patients. 106–108 

However, recently, results from a randomized phase III trial (IFCT-GFPC-0701 MAPS) indicate that patients 

treated with bevacizumab and the standard of care (pemetrexed + cisplatin) experienced a significant 

longer median survival (18.82 months vs. 16.07 months, p = 0.0127) (2015 ASCO Meeting, Abstract #7500).  

These results might translate into addition of bevacizumab as part of the first line treatment for MPM.  

There are different studies that reported the high expression of EGFR into MM specimens, thus several 

inhibitors of this pathway were tested in clinical trials. The results obtained by using erlotinib and gefitinib, 

inhibitors of EGFR were very disappointing. 109, 110 Negative results were obtained also using erlotinib in 

combination with bevacizumab after platinum-based chemotherapy. 111 In MM tissue and cell lines an 

overexpression of several fibroblast growth factors (FGFs) and FGF receptors (FGFRs) were observed. 

Furthermore, a correlation between high expression of these factors and tumor aggressiveness was also 

detected. 112, 113 Moreover, inhibition of FGFR1 represses MM cell growth and migration in vitro and in vivo 

and potentiates the effect of chemotherapeutic drug or ionizing irradiation.114 Thus, inhibition of FGF 

signals seems to be promising and may permit further evaluation of FGFR targeting strategies. 

Other activated pathways in MM are also hepatocyte growth factor (HGF) and the receptor c-Met which 

are important for tumor invasion and metastasis. It has been demonstrated that inhibition of this pathway 

suppresses tumor infiltration into neighboring tissues. 115 So, an inhibitor of c-Met kinase is under 

investigation for clinical efficacy. Other preclinical studies that inhibit HGF/c-Met pathways were conducted 

for MM. 116 It is worthwhile to note that in several of the mentioned clinical trials, a small percentage of 

patients (usually ~1–5%), did experience partial benefits from the therapy with RTK inhibitors, highlighting 

the need to identify predictive biomarkers to select likely responders (Figure 3.b).  
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Figure 3: Key genetic alterations in MPM and potential strategies for therapeutic intervention. 10 

 

Immunotherapy and immune checkpoint inhibitors 

It is known that an immune response is induced by mesothelioma, but it is weak (Robinson et al, 

2000). 117 This knowledge has prompted a number of investigators to study different ways to consolidate 

that response. The intrapleural instillation of cytokines is limited by the short half-life of most cytokines, 
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necessitating repeated injections or continuous infusion via a pleural catheter. Intrapleural interferon-

gamma twice weekly for 2 months was reported to induce response rate of 56% in early stage disease. 118 A 

continuous intrapleural infusion of interleukin-2 induced a partial response in four of 21 patients and an 

overall survival of 16 months. 119 In both cases, side effects were minimal and consisted primarily of fever 

and constitutional symptoms. Studies in animals suggest that interferons have an antiproliferative effect on 

mesothelioma cells and enhance the cytotoxic effect of cisplatin. The results from these studies led to the 

development of a Phase II trial of cisplatin-doxorubicin and interferon alpha-2 in advanced malignant 

mesothelioma. The overall response rate was 29% and the median survival was 9.3 months with one year 

survival of 45% and two year of 34%. 120 However, severe myelosuppression was seen in 60% of patients 

limiting the application of this treatment. One of the newest hallmark of cancer proposed recently was 

among others, the evasion of immune destruction, 121 by expressing endogenous immune checkpoints that 

normally terminate immune responses after antigen activation. This state of tumor-induced immunological 

anergy is associated to up-regulation in tumor-infiltrating T cells of immune checkpoint molecules, such as 

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and programmed cell death protein 1 (PD-1). 122 

Alternatively tumors can block immune activation by upregulating PD-1 ligands. Like many other tumors, 

MM express high levels of the immunosuppressive PD-1 ligand 1 (PD-L1). 123, 124 Monoclonal antibodies 

against CTLA4 (tremelimumab, ipilimumab), PD-1 (nivolumab, pembrolizumab), and PD-L1 (avelumab, 

MPDL3280A) can reactivate the immune response against cancer cells, and have shown promising clinical 

results in melanoma and some other cancer types. 122 The CTLA4 inhibitor, tremelimumab, at a dose of 15 

mg/kg once every 12 weeks, showed clinical activity in 38% of advanced MM patients in a phase II study. 125 

An intensified regiment showed a good safety profile, and clinical and immunological activity in patients 

with advanced MM, with more than 40% of the patients achieving disease control with a median duration 

of response of almost 11 months. 126 Other clinical trials with PD-1 inhibitor pembrolizumab (NCT02399371) 

and PD-L1 inhibitor avelumab (NCT01772004) are currently ongoing.  

 

HMGB1 

High-mobility group box 1 protein (HMGB1) is a chromatin-binding factor that bends DNA and promotes 

access to transcriptional protein assemblies on specific DNA targets.127, 128 This protein was isolated and 

characterized in calf thymus in 1973, and its name derives from its electrophoretic mobility on 

polyacrylamide gels.  HMGB1 has two HMG-box domains (N-terminal A and central B) able to bind DNA and 

an acidic C terminal tail (Figure 4.a). HMGB1 is a highly conserved nuclear protein, present in almost all 

metazoans and plants. 129 In most cells, HMGB1 acts as a DNA chaperone to help maintain nuclear 

homeostasis. Later, it was discovered that HMGB1 is also expressed on cell surface membranes, cytosol, 

and mitochondria, and could be released into the extracellular space. So, in addition to its nuclear function, 
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HMGB1 has also many biological functions outside the cell playing a significant role as extracellular 

signaling molecule during inflammation, cell differentiation, cell migration, and tumor metastasis. 127 

HMGB1 is passively released from necrotic cells and is actively secreted by inflammatory cells, binding to 

several receptors such as the receptor for advanced glycation end products (RAGE), Toll-like receptors 

(TLR)-2, TLR-4, TLR-9, and, as a negative signaling molecule, CD24. The interaction between HMGB1 and its 

functional receptors mediates the response to infection and injury, thereby promoting inflammation 

(Figure 4.b). 127, 128, 129, 130, 131, 132. As such HMGB1 is the prototypic Damage Associated Molecular Pattern 

Molecule, or DAMP, associated with both acute inflammatory responses and driving much of the biology of 

chronic inflammation and wound repair.133, 134 HMGB1 plays a significant role in many diseases, especially 

inflammatory diseases and cancer. 135-139 Recent evidences indicate that HMGB1 dysfunction is associated 

with each of the central hallmarks of cancer and contributes to cancer development and therapy.  

 

Nuclear Function of HMGB1 

HMGB1 proteins are constitutively expressed in the nucleus of cells due to the presence of two lysine-rich 

nuclear localization sequences (NLSs) located in the A box and in the B box (Figure 4.a). Hyperacetylation of 

NLSs endorses the translocation of HMGB1 from the nucleus to the cytosol, and its consequent release. The 

studies, which have measured the affinity of HMGB1 with different DNA structures, indicated that HMGB1 

is able to binds preferentially different DNA structures such as supercoiled, single-stranded, B- and Z-DNA, 

DNA mini-circles, and triplex DNA. 139, 140 This ability is promoted from its HMG boxes that allow HMGB1 to 

bind DNA without sequence-specificity and to act as a DNA chaperone. Thus, HMGB1 is the structural 

protein of chromatin which regulates nuclear homeostasis and genome stability in several ways (Figure 4). 

1) Nucleosome structure and dynamics. Chromatin contains nucleosome units which consist in a short 

length of DNA wrapped around a core of histone proteins. HMGB1 binds to nucleosomes at the dyad axis, 

induces the sliding of nucleosome, relaxes nucleosome structure, and due to its ability of DNA-bending, 

makes chromatin more accessible. 141 

2) Gene transcription. HMGB1 has been found to interact with and enhance the binding affinity of many 

sequence- specific transcriptional factors to their cognate DNA, such as p53, 142 p73, 143 the retinoblastoma 

protein, 144 members of the Rel/NF-κB family 145 and estrogen receptors. This could increase their activity as 

transcriptional factors implicated in cancer development. Mounting evidence has shown that HMGB1 

interacts with p53 and provides the optimal DNA structure for p53 binding through its bending/binding 

effects. 146 p53 family members are important because participate in the regulation of cell cycle progression 

functioning as tumor suppressors. 

3) DNA repair. HMGB1 also plays a critical role in DNA repair by being part of a nuclear protein complex 

involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. In 

addition, loss of HMGB1 increases DNA damage and decreases DNA repair efficiency in response to 



25 
 

chemotherapy, irradiation, and oxidative stress. HMGB1 directly binds to a variety of bulky DNA lesions and 

allows it to participate in DNA repair pathways including nucleotide excision repair, base excision repair, 

mismatch repair, and double strand break repair via nonhomologous end-joining. 147  

 

Cytosolic HMGB1 

Different studies have investigated the levels and distribution of HMGB1 between the nucleus and 

cytoplasm in different cells and tissues. Localization of HMGB1 in the cytoplasm has been confirmed in 

living fibroblasts, thymocytes and several different tissues (e.g., liver, kidney, brain, heart, and lung). 148, 149 

Currently, we know that HMGB1 normally is located in the nucleus and translocate from the nucleus to the 

cytosol, including mitochondria and lysosome, following various stressors (e.g., cytokine, chemokine, heat, 

hypoxia, H2O2, and oncogene). Although the function of cytosolic HMGB1 still remains poorly studied, we 

demonstrated that the main function of HMGB1 in cytoplasm is to function as a positive regulator of 

autophagy. Autophagic stimuli promote the translocation of HMGB1 to the cytosol. Cytosolic HMGB1 binds 

to Beclin-1 inducing autophagy for degrading damaged organelles and unused proteins. 150   HMGB1 also 

interacts with many apparently unrelated proteins by recognizing short amino acid sequence motifs. 151 For 

example, the motifs PXXPXP and WXXW (where X can be any amino acid) can interact with box A and box B 

of HMGB1, respectively. 151 Thus, HMGB1 may be involved in many cell processes by promoting protein 

protein interactions.  

Another potential function for cytosolic HMGB1 is involvement in the unconventional secretory pathway, 

found based on mass spectrometry-mediated binding partner analysis in 2010. 152 

 

HMGB1 release 

In addition to its role inside the cell, HMGB1 also functions as a damage-associated molecular pattern 

(DAMP) when passively released from dead, dying, or injured cells. It is also actively secreted from immune 

cells or cancer cells in response to exogenous and endogenous stimuli such as endotoxin, CpG DNA, double-

stranded RNA (dsRNA), tumor necrosis factor (TNF)-α, interleukin (IL)-1, interferons (IFN)-γ, hydrogen 

peroxide, adenosine triphosphate (ATP), and hypoxia. In addition, macrophage engulfment of 

apoptotic cells may induce significant active HMGB1 release, suggesting a direct interplay between dying 

cells and immune cells, which also induces HMGB1 release. 153 Depending on the inducing stimulus, the 

mechanism of HMGB1 secretion and release could be different.  

 

Extracellular HMGB1 

 
Besides its nuclear and cytosolic function, HMGB1 performs a significant extracellular role in inflammation, 

immunity, cell growth, cell proliferation, and cell death. HMGB1 can be actively secreted by immune cells or 
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passively released by dead, dying, or injured cells. Once released, extracellular HMGB1 binds to several cell 

surface receptors to activate the downstream signaling pathway (e.g., NF-κB, IFN regulatory factor-3 (IRF3), 

and phosphatidylinositol 3-kinase [PI3K]) to produce a functional response, such as activation of innate 

immune cells, induction of proinflammatory cytokines and type I IFNs, stimulation of cell adhesion and 

migration, inhibition of phagocytosis, promotion of cell proliferation and angiogenesis, and induction of 

autophagy. 154, 155 In addition, extracellular HMGB1 functions as an immune adjuvant to trigger a robust 

response to activation or suppression of T cells, dendritic cells, and endothelial cells. Activated immune 

cells (e.g., macrophages, monocytes, and dendritic cells) and endothelial cells also secrete HMGB1, which in 

turn generates a positive feedback loop that causes the release of supplemental cytokines and chemokines 

following engagement of multiple receptors. Thus, HMGB1 has the ability to sustain a long-term 

inflammatory state under stress. Interestingly, extracellular HMGB1 has antibacterial, cell growth, and 

mitotic activity. These extracellular HMGB1 activities are not only mediated by receptors, but also by its 

redox state and structure.156 

Native HMGB1 proteins from eukaryotic sources have the same (though less pronounced) biological activity 

in vitro compared to recombinant HMGB1 proteins from prokaryotic sources. 157 The extracellular HMGB1 

plays its function by binding to several receptors such as the receptor for advanced glycation end products 

(RAGE), Toll-like receptors (TLRs, such as TLR2, TLR4, and TLR9), Mac-1, syndecan-1 (CD138), phosphacan 

protein-tyrosine phosphatase (PPTP)- ζ/β, CD24, chemokine (C-X-C motif) ligand 4 (CXCL4), T cell 

immunoglobulin mucin-3 (TIM-3), and possibly others. Of these receptors, CD24 and TIM-3 act as negative 

receptors and inhibit immune activity of HMGB1 in macrophages and tumor-associated dendritic cells 

(TADCs), respectively. 158, 159 Apart from a direct receptor interaction, HMGB1 may form heterocomplexes 

with other immune co-activators such as IL-1, CXCL12, DNA, nucleosome, or LPS that generate synergistic 

responses in inflammation and immunity. The first receptor demonstrated to bind HMGB1 was RAGE.160 

Later, it was discovered that HMGB1 signaling through RAGE mediates chemotaxis and migration, 

proliferation and differentiation of immune and cancer cells, and upregulation of cell surface receptors. In 

addition, RAGE provides a functional platform for crosstalk with other HMGB1 receptors. For example, 

interplay between RAGE and TLR9 is important for critical for HMGB1-DNA complex, which activates the 

immune responses in dendritic cells (DCs). 161 The interplay between Mac-1 and RAGE is required for 

HMGB1-mediated adhesive and migratory neutrophil functions. 162 whereas, the interplay between 

syndecan-1, PPTP-ζ/β, and RAGE is required for neurite outgrowth mediated by HMGB1. 

Apart from RAGE, HMGB1 binding of TLR2 and TLR4 also results in NF-κB activation. TLR4 may be more 

important for HMGB1-induced macrophage activation and proinflammatory cytokine release. 163 

Experimental data obtained by using TLR4-deficient animals suggest that TLR4 plays a critical role in sterile 

inflammation. 164 These animal models are significantly protected from ischemia-reperfusion injury to the 

liver, kidney, and heart.  
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Figure 4. Structure and function of HMGB1 

(A) HMGB1 is structurally composed of three different domains: two homologous DNA binding domains (box A and 

box B) and a negatively charged C-terminal domain. Two nuclear localization signals (NLS1 and NLS2) control nuclear 

transport of HMGB1. In addition, HMGB1 contains three redox-sensitive cysteine residues (C23, C45 and C106), which 

are important for HMGB1 activity. (B) HMGB1 has multiple roles inside and outside the cell. 266 

 

HMGB1 Redox States 

Recent studies underline the importance of redox modification in the regulation of HMGB1 translocation, 

release, and activity in disease.164 Three cysteines are encoded within the HMGB1, two vicinal cysteines in 
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box A (C23 and C45) and a single one in box B (C106). Replacement of Cys23 and/or 45 with serine did not 

affect the nuclear distribution of the mutant proteins. Whereas, C106S and triple cysteine mutations 

impaired the nuclear localization of HMGB1, allowing entry of some of the protein into the cytosol. 

Moreover, increased endogenous and exogenous ROS promotes HMGB1 translocation and release. 165 The 

redox status of HMGB1 promotes to distinguish between its cytokine and chemokine activity.166 Initial 

studies suggest that reduced C106 is necessary for the binding of HMGB1 to TLR4 and promotes cytokine 

release and inflammation. A recent study suggests that a disulfide bond between C23 and C45 is also 

required for HMGB1 cytokine activity. Mutations of C45 or C23 abolish the cytokine activity of HMGB1. In 

contrast, all-cysteine-reduced HMGB1 does not have TLR4-dependent cytokine activity, but binds to CXCL4 

to induce inflammatory cell recruitment and chemotaxis by the CXCL12 receptor. 167 ROS oxidizes the 

HMGB1 at C106 released from apoptotic cells, thereby neutralizing its cytokine-inducing activity and 

promoting tolerance in DCs. Finally, all-cysteine oxidized HMGB1 impairs HMGB1’s cytokine or chemotactic 

activity.168 Thus, redox modifications are crucial for HMGB1 functionality as a mediator during infection and 

sterile inflammation. 

 

 

 

 
Figure 5: The redox status of 

HMGB1 regulates its cytokine-

inducing and chemokine 

activities.200 

 

 

 

 

 

 

 

HMGB1’s Roles in Tumorigenesis 

Mounting evidences has shown that disfunction of HMGB1 is associated with tumorigenesis and contributes 

to cancer development and therapy (Figure 6).169 For this purpose, it will be important to understand HMGB1 

regulation and its function in the mechanism of cancer biology. Furthermore, the understanding of its role in 

tumorigenesis will influences the strategies of a HMGB1 targeted therapy for prevention and treatment.  

The inflammatory tumor microenvironment (TME) is able to support the neoplastic transformation, tumor 

growth, invasion, and metastasis. The development of the inflammatory tumor microenvironment is 

associated with the tumor-infiltrating leukocytes and the cytokine-related signaling pathways. Infiltrating 
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leucocytes, as well as the cancer cells themselves, have the ability to secrete HMGB1 under hypoxia, injury, 

inflammatory stimuli, or environmental factors.170 In turn, extracellular HMGB1 can activate proinflammatory 

signaling pathways, such as the NF-κB and inflammasome pathways, to induce proinflammatory cytokine 

release. This loop will accelerate inflammatory responses and induce tumor formation, and metastasis.  

Another of the most common cancer phenotypes is a high energy request by cancer cells to allow a rapid, 

invasive and metastatic growth of tumor. While normal cells produce ATP through a combination of 

oxidative and glycolytic metabolism, cancer cells effectively stimulate and reprogram their metabolism to 

better fit the energy demand. HMGB1 has been implicated in tumor energy metabolism. 171,172,173 

Recombinant exogenous HMGB1 or endogenous HMGB1 derived from necrotic tumor cell lysates are likely 

to rise ATP production and pancreatic tumor cell proliferation, providing a direct link between inflammation 

and energy metabolism with the TME. 171 Recently it was shown that extracellular HMGB1 increases 

mitochondrial RAGE expression and translocation, which in turn increases mitochondrial complex I activity 

and ATP production. 174 Most cancer deaths are caused by tumor invasion and metastasis rather than the 

primary tumor itself. In the clinic, expression of RAGE is strictly associated with cancer invasiveness and 

metastasis activity such as gastric cancer 175 and colorectal cancer.176 Different in vivo and in vitro studies 

showed that impairment of RAGE–HMGB1 interaction inhibit tumor growth and metastasis by activation of 

mitogen-activated protein kinases and the NF-kB pathway. The NF-kB activation results in the expression of 

matrix metalloproteinases (MMP), such as MMP2 and MMP9,177, 178 which degrade extracellular matrix 

proteins and play an important role in tumor invasion and metastasis.177 Thus, HMGB1–RAGE signaling 

pathway plays a major role in tumor invasion and metastasis.  

The immunity surveillance of cancer is considered to be an important defense process against carcinogenesis. 

HMGB1, as a multifunctional cytokine, has been characterized with both immunosuppressive and immune-

activation properties, which depends on receptors, targeted cells, and redox state. 179 So, HMGB1 has the 

ability to induce apoptosis in macrophage-derived DCs, which diminish host anti-cancer immunity. 180 In 

addition, HMGB1, derived from tumor cells, suppresses naturally-acquired CD8+ T cell-dependent antitumor 

immunity, partly by enhancing tumor-associated Treg to produce IL-10.181 Recent findings suggest that 

endogenous intracellular HMGB1, as a RB- associated protein, suppresses breast tumorigenesis, acting as a 

tumor suppressor gene (Figure 6).182 RB is a well-known tumor suppressor protein that is dysfunctional in 

many cancers.  HMGB1 enhances RB-mediated transcription repression such as E2F and cyclin A1, and causes 

RB-dependent G1 arrest and apoptosis induction. In addition, overexpression of HMGB1 inhibits RB positive 

breast cancer growth in vitro and prevents tumorigenicity in subcutaneous tumor models in vivo. 182 In 

addition, HMGB1 is also an important regulator of autophagy and its lost inhibits autophagy and increases 

apoptosis. Several studies have indicated that defective autophagy-associated genes (e.g., Beclin1, ATG5, 

UVRAG, Bif-1) in mice increase genome instability, inflammation, oxidative stress, and mitochondrial injury, 

which contribute to tumorigenesis. 183-185 So, these findings underscore that HMGB1 inhibition lead to 
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autophagy deficiency, cause genomic instability, inflammation and induce tumorigenesis. Thus, suppression 

of autophagy promotes tumorigenesis and increases the effectiveness of anticancer therapy.  

 

HMGB1’s Protective Roles in Anticancer Therapy 

Immunogenic cell death (ICD), contributes to immune-mediated elimination of tumors during 

chemotherapy (e.g., anthracyclines) or radiotherapy. 186-189 ICD is characterized by the release of dying 

cancer cells or cell surface exposure of DAMPs (e.g., calreticulin, heat shock proteins, ATP, and HMGB1). 

These events are useful for the maturation, antigen uptake, and presentation of DCs and works as high-

powered immunological adjuvants to active cytotoxic T lymphocyte response. Several in vivo and in vitro 

studies indicate that blocking the HMGB1- TLR4 pathway inhibits ICD and the anticancer immune responses 

upon chemotherapy. 189 (Figure 6). However, HMGB1 released from necrotic cancer cells treated with 

chemotherapy amplifies regrowth and metastasis of residual cancer cells in a RAGE-dependent way. 190 

Thus, blocking HMGB1-RAGE signaling rise the effectiveness of chemotherapy.191 These studies suggest that 

TLR4 in DC is important for HMGB1-mediated ICD and tumor clearance, whereas RAGE in cancer cells is 

critical for HMGB1-mediated survival after chemotherapy. Although both apoptotic and necrotic cells have 

the ability to release HMGB1, only the HMGB1 released from apoptotic cells is tolerogenic. 190 Thus, 

determining the role of extracellular HMGB1 in a context specific way in chemotherapy and 

immunotherapy, including ICD, and the mechanisms involved will be important to optimize the therapeutic 

outcomes.  

 

The negative roles of HMGB1 in Anticancer Therapy 

It has been demonstrated that suppression of HMGB1 expression by RNAi increased the anticancer activity 

of cytotoxic agents, whereas overexpression of HMGB1 expression by gene transfection increased drug 

resistance. 192, 193 HMGB1 expression regulates chemotherapeutic response and resistance by interfering 

with autophagy and the apoptotic pathway (Figure 6). HMGB1 has the ability to increase the pro-survival 

autophagy in a Beclin 1- dependent way in chemotherapy, whereas HMGB1 inhibits both intrinsic and 

extrinsic programmed cell death/apoptosis in a caspase-dependent way in cancer cells.  The crosstalk 

between apoptosis and autophagy regulates cell death and determines cell fate in anticancer therapy. 

Upregulation of apoptosis inhibits autophagy, whereas upregulation of autophagy inhibits apoptosis during 

chemotherapy. HMGB1 and p53 are capable of physical interaction (Figure 6), 194 and the interplay 

between HMGB1 and p53 regulates apoptosis and autophagy in clone cancer cells after treatment with 

DNA-damaging anticancer drugs.193 DNA damage promotes interactions between p53 and HMGB1 in the 

nucleus and cytoplasm. Loss of p53 increases cytosolic HMGB1, leading to increased binding to Beclin 1, 

thereby promoting autophagy and decreasing apoptosis; In contrast, loss of HMGB1 increases cytosolic p53 
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and apoptosis and decreases autophagy. 193 These findings provide new insights into the HMGB1-p53 

signaling and cancer cell response to DNA damage. 

 

HMGB1-Targeting Therapeutic Agents 

Apart from genetic inhibition or overexpression of HMGB1 expression in cancer cells, several HMGB1-

targeting agents have been used in experimental cancer research. These agents including sRAGE, HMGB1 

neutralizing antibody, A box protein, platinating agent, ethyl pyruvate, quercetin, and glycyrrhizin. sRAGE 

acts as a decoy to prevent RAGE signaling and has been used successfully in blocking the HMGB1-RAGE 

signaling pathway in animal tumor models. HMGB1 neutralizing antibody and A box protein can block 

activity of extracellular HMGB1 in tumor therapy.195 Interestingly, platinating agents such as cisplatin and 

oxaliplatin have the ability to retain HMGB1 within the nucleus by conformational changes in the double 

helix to which HMGB1 binds quite stably. 196 Ethyl pyruvate, the first HMGB1 inhibitor used in animal 

models of sepsis by inhibition of NF-κB pathway, inhibits liver tumor growth. 197 In addition, glycyrrhizin and 

quercetin, potential HMGB1 inhibitors by directly binding to HMGB1 or inhibition of PI3K, improve the 

effectiveness of anticancer agents in several different tumor models. 195 Further investigation is needed to 

evaluate these therapies and their possible role in clinical practice. 
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Figure 6. The dual roles of HMGB1 in cancer 

(A) The hallmarks of cancer comprise ten biological capabilities acquired during the multistep development of 

human tumors. Deregulation of HMGB1 is associated with the hallmarks of cancer. Figure modified from 

Hanahan and Weinberg (4). (B) HMGB1 acts as an anti- or pro-tumor protein in tumor development and 

therapy. 266 

 

HMGB1 and Malignant mesothelioma 
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The deposition of asbestos in tissue induce inflammation and contributes to asbestos carcinogenesis. 198 

The inflammatory infiltrate into tissue areas containing asbestos deposits consists largely of phagocytic 

macrophages that internalize asbestos and release numerous cytokines and mutagenic ROS.  

A key mechanism by which asbestos causes the transformation of mesothelial cells has recently been 

elucidated: working with primary human mesothelial (HM) cells, Yang et al discovered that asbestos 

induces necrotic cell death with resultant release of HMGB-1 in the extra cellular space. 27 Extracellular 

HMGB1 binds several pro-inflammatory molecules and triggers the inflammatory responses that distinguish 

this type of cell death from apoptosis. These findings provide mechanistic links between asbestos-induced 

cell death, chronic inflammation, and mesothelioma. Secreted HMGB1 stimulates RAGE, TLR2 and TLR4 

(the three main HMGB1 receptors) expressed on neighboring macrophages and induces the release of 

several inflammatory cytokines, including TNF-α and IL-1β. In addition, HMGB1 enhances the activity of NF-

κB, leading to the survival of HM cells that have accumulated genetic damage because of asbestos exposure 

(Figure 7). 27 This process promotes tumor formation, progression, and metastasis. Thus, as shown in figure 

7 it has been hypothesized that HMGB1 functions as a “master switch” initiating a series of inflammatory 

responses leading to malignant transformation of asbestos- or erionite damaged HM. Furthermore, another 

study unveils that HMGB1 is highly expressed and secreted by malignant mesothelioma cells, establishing 

an autocrine circuit that supports their malignant phenotype.170 These findings suggest an important role of 

HMGB1 in development and progression of mesothelioma, at least in preclinical studies. In addition, 

patients with peritoneal and pleural mesothelioma showed higher serum levels of HMGB1 compared with 

the controls, suggesting that this protein may be a useful diagnostic and prognostic biomarker of malignant 

mesothelioma. 277, 278 
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Figure 7.  Working hypothesis for mesothelioma carcinogenesis. Asbestos causes necrotic HMC death, leading to the 

release of HMGB1 into the extracellular space. As a typical DAMP and a key mediator of inflammation, HMGB can 

induce activation of Nalp3 inflammasome and subsequent IL-1β secretion, as well as eliciting macrophage 

accumulation and triggering the inflammatory response and TNF-α secretion, which increases the survival of asbestos-

damaged HMCs. This allows key genetic alterations to accumulate within HMCs that sustain asbestos-induced DNA 

damage, leading to the initiation of mesothelioma. 198 

 

 

Targeting asbestos induced inflammation to prevent or treat mesothelioma 

Chronic inflammation has been associated with an increased risk of developing numerous cancers. 

Accordingly, daily treatment with aspirin for 5 or more years reduced tumor burden in several common 

malignancies. 201 Animal experiments support a beneficial role for anti-inflammatory therapies in 

mesothelioma; 202 thus, prolonged aspirin treatment might help reduce the incidence of mesothelioma and 

other asbestos-related malignancies among high-risk cohorts that have either a lengthy history of exposure 

and/or genetic predisposition. Based on recent findings, it is tempting to speculate that HMGB1 and the 

Nalp3 inflammasome act as critical initiators of chronic inflammation in asbestos- and erionite exposed 
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individuals, with the secretion of IL-1β and TNF-α acting as the key downstream driving force. HMGB1, 

Nalp3, TNF-α and IL-1β can therefore all serve as potential targets for inhibitors of asbestos-induced 

inflammation leading to mesothelioma.  As several solid tumors in addition to mesothelioma display 

elevated levels of HMGB1, including melanoma, prostate, pancreatic, breast and gastrointestinal cancers, 

therapies that seek to block HMGB1 signaling would likely prove effective in other cancer types in addition 

to mesothelioma.  Treatment with an IL-1 receptor antagonist can protect mice from developing fibrosis 

upon exposure to silica; 203 and in murine models of silica- induced pulmonary fibrosis, infusion with the 

human recombinant soluble TNF receptor rsTNFR-β or TNF- α antibodies 204 was effective not only in 

preventing the development of pulmonary fibrosis but also in the treatment of established fibrosis. There 

are specific-FDA approved reagents that inhibits these molecules which are at the basis of chronic 

inflammation.  Anakinra, an IL-1 receptor antagonist, is used in therapies for patients with autoimmune 

diseases and gout. Remicade (Infliximab), a chimeric human-mouse anti-TNF- α, and Enbrel (Etanercept), a 

soluble TNF receptor fusion protein, have both been used to treat patients with rheumatoid arthritis. 

Glyburide, the most widely used sulfonylurea drug for type 2 diabetes in the US, inhibits the Nalp3 

inflammasome. 205 Specific molecules that target the activity of HMGB1 are anti-HMGB1 and anti-RAGE 

antibodies, recombinant HMG Box A, and ethyl pyruvate, an inhibitor of HMGB1 secretion (Figure 8).  
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Figure 8. Targeting asbestos induce inflammation to prevent or treat mesothelioma. 10 

 

In vivo and in vitro cancer models for studying mesothelioma 

MM is resistant to the conventional forms of treatment, and adequate scientific and clinical 

assessment of this disease has been severely limited by the lack of representative cell lines and 

animal models and by the limited number of patients treated in a single institution. Thus, the 

establishment of representative in vitro cell lines and animal models is important for the 

development of potentially effective forms of diagnosis and therapy and for the study of basic 

biology.  

In vivo cancer models 

Syngeneic tumor models 

Syngeneic studies use immunocompetent wild type mice or rats, typically inbred strains, for engraftment of 

a tumor cell from the same strain (Figure 9). Allograft mouse tumor systems, otherwise known as syngeneic 

models, are tumor models whose genetic background is similar, if not identical, to the host animal.206 Because 
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they retain complete immune systems, these models can be particularly appropriate for studies of interplay 

between the tumor and immunity, and for immunologically-based targeted therapies. Lack of rejection of 

the transplant by the host’s immune system allows researchers to monitor the tissues for changes, such as 

growth or shrinkage, metastasis, and survival rate. Therapeutic interventions can be performed and the 

results are assessed to understand the treatment potentials. A mouse tumor growing in mice of the strain in 

which the tumor originated, offer several advantages 207 that includes:  

a. Relatively low cost and high reproducibility. 

b. Grow in immunocompetent hosts. 

c. Wide variety of tumor types. 

d. Generally non-immunogenic. 

e. Long history of use and strong baseline of drug response data. 

f. Hosts are readily available. 

g. Studies are easily conducted with statistically meaningful numbers of mice per group. 

Whereas, the main disadvantages of syngeneic tumor models are that the tumor cells are of rodent species, 

and therefore express the mouse/rat homologues of the desired molecular targets. Another limit is that the 

tumors tend to grow fast.  

In spite of this, syngeneic models are proving to be an excellent model to test compound focusing on 

immuno-oncology targets for the treatment of cancer. 

 

Syngeneic models and Immuno-oncology 

The immune system has the greatest potential for the specific destruction of tumors with no toxicity to 

normal tissue and for long-term memory that can prevent cancer recurrence. The immuno-oncology research 

has provided solid evidence that tumors are recognized by the immune system and their development can 

be stopped or controlled in long term through a process known as immuno-surveillance. 208 

In many cancers, malignant progression is accompanied by profound immune suppression that interferes 

with an effective anti-tumor response and tumor elimination. Initially, most of the escape from immuno-

surveillance was ascribed to changes in the tumor cells themselves (loss of tumor antigens, loss of human 

leukocyte antigen molecules, loss of sensitivity to complement, or T-cell or natural killer (NK) cell lysis), 

making them a poor target of an immune attack. However, it has become clear that the suppression comes 

from the ability of tumors to subvert normal immune regulation to their advantage. The tumor 

microenvironment can prevent the expansion of tumor antigen-specific helper and cytotoxic T-cells and 

instead promote the production of pro-inflammatory cytokines and other factors, leading to the 

accumulation of suppressive cell populations that inhibit instead of promote immunity.209  

Studies of the tumor microenvironment are providing information about immuno-surveillance of tumors 

from early premalignant lesions to more advanced dysplastic lesions to cancer. At each step, tumor-derived 
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and immune system-derived components have a unique composition that will have distinct effects on 

immunotherapy. Because these premalignant microenvironments are less developed and 

immunosuppressant is less entrenched, it should be easier to modulate towards the elimination of abnormal 

cells.209 

 

Figure 9: Syngeneic mouse model 

 

Syngeneic model of mesothelioma 

Malignant mesothelioma (MM) is an aggressive tumor of the serosal cavities which is associated with 

previous asbestos exposure and is generally found to be resistant to conventional forms of therapy. 

Adequate scientific and clinical assessment of this disease has been severely limited by the relatively low 

incidence of mesothelioma and the lack of representative cell lines and animal models. For this reason, as 

also in other cancer models, it is necessary to develop adequate in vitro and in vivo models of 

tumorigenesis and cancer. Previously, by Davis et al, 1991 were developed an asbestos-induced murine 

model of MM both as an in vivo-passaged malignancy and as in vitro-established cell lines. 210 Such a model 

system would be invaluable for use in the study of various cellular, molecular and genetic aspects of the 

disease, and for the pre-clinical evaluation of potential therapeutic agents. BALB/c and CBA mice were 

injected intraperitoneally with crocidolite asbestos. Months after exposure, 35% of the mice developed 

mesothelioma (5 BALB/c, 9 CBA), as determined by standard cytological and histological parameters. From 

these primary tumors, 12 continuously growing cell lines (5 BALB/c, 7 CBA) were established in culture. 

These cell lines have been confirmed as mesothelioma by cytological and ultrastructural (electron 

microscopy) analyses. They have been in culture for 7 to 24 months and all cell lines produced tumors when 

injected into syngeneic mice. 

 

Xenograft cancer models 
 
One of the most widely used models is the human tumor xenograft. Here, human tumor cells are 

transplanted, either under the skin or into the organ type in which the tumor originated, into 
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immunocompromised mice that do not reject human cells. For example, the xenograft will be readily 

accepted by athymic nude mice, severely compromised immuno-deficient (SCID) mice, or other immuno-

compromised mice. 211 The development of human tumor xenograft models was a big step in moving toward 

more clinically relevant tumor models.212, 213 

The advantages of using human tumor xenografts are: 

I. Malignant cells are human. 

II. Reproducibility of many of the models. 

III. Long history and a strong baseline of drug response data. 

IV. Readily available hosts. 

V. Statistically valid numbers of mice can be used in studies. 

VI. Availability of a wide variety of tumor lines. 

Some disadvantages of using these models: 

i. Syngeneic models are less costly to run. 

ii. Stromal component of the tumors is rodent. 

iii. Most of the tumor lines were developed using early technology. 

iv. Tumors are regularly grown in a non-natural site (subcutaneous). 

 

However, the major disadvantage is the lack of immune response inherent in these models. Because tumors 

can promote anti-tumor responses, such as tumor infiltrating lymphocytes, macrophages and myeloid-

derived immuno-suppressor cells (MDSCs), these models may not accurately represent disease progression 

and therapeutic response observed in otherwise immune-competent individuals. 214, 215 As a result of these 

inherent weaknesses, alternative models have been utilized, emphasizing a need for improvements to 

current models. 

Patient Derived Xenograft (PDX) models 

Another option, in addition to traditional cell line-derived xenograft models, involves the direct transfer of 

tumor fragments from individual patients at the time of surgical resection into immunodeficient mice. Tumor 

graft models (otherwise referred to as patient-derived xenografts, PDX) are based on the transfer of primary 

tumors directly from the patient into an immuno-deficient mouse (Figure 10). 216 Models resulting from this 

approach utilize human tumor and recapitulate many tumor/ microenvironment interactions, retain 

important genetic features and heterogeneity, and often develop distant metastases.   

Because PDX mice are derived from human tumors, they offer a tool for developing anticancer therapies and 

personalized medicine and can also be used to study metastasis and tumor genetic evolution. In spite of 

these advantages, several factors have contributed to hinder the use of PDX mice. The first is cost, tumor 

grafts can only be maintained in mice, and their passage requires a more specialized skill set than does the 

simple maintenance of cultured cell lines. Moreover, PDX models can suffer from long latency periods after 
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engraftment and variable engraftment rates. Tumor graft latency, measured as the time between 

implantation and the development of a progressively growing xenograft tumor, can range from 2 to 12 

months. 217 Engraftment rates typically vary depending on the tumor type. Higher engraftment rates are 

associated with more clinically aggressive tumors.218 Correlations between poor prognosis and engraftment 

rate were so marked that it has been suggested to be predictive of the disease course. Finally, there is the 

problem of broad availability and the number of PDX models that have been reported. Newer strategies to 

build orthotopic models include implanting human bone marrow–derived mesenchymal stem cells resulting 

in greater vascularity and maintenance of hormonal status.  

Several classes of immunodeficient mice have been utilized as biologic platforms upon which to grow 

xenograft tumors. Athymic nude mice (T-cell deficient) have proven useful for the establishment of tumors 

both from patients’ tumor samples and from established from human cancer cell lines. Reduced cost, 

widespread availability, and the absence of fur have offered investigators convenient access to these useful 

in vivo tumor model systems of human cancers. However, a relatively intact humoral immunity in nude 

mice likely results in reduced efficiency of tumor formation relative to mice with severe combined 

immunodeficiencies (SCID mice-lack functional T- and B-cells), particularly in cases of low cell inoculum.279 

Further still, NOD/SCID mice harboring additional deficiencies in natural killer cells (NOD/SCID Il2rg−/−) 

have permitted tumor establishment from even fewer numbers of tumor cells than previously seen in 

NOD/SCID and nude mice.218, 220 Additional cell selection almost certainly occurs against xenografts in nude 

mice relative to SCID mice, further reducing tumor heterogeneity and the biologic complexity present in 

original human tumor. Nevertheless, both athymic nude and NOD/SCID mice continue to be used widely for 

molecular and translational studies of human cancers. 
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Figure 10: Diagram showing the development of Patient derived Xenograft model. 219 

 

In vitro cancer models 

Primary tumor cell lines 

Multidrug resistant tumors relapse frequently despite different therapeutic strategies. After investment of 

billions of dollars for drug development and clinical trials every year due to lack of objective clinical response 

or toxicities, only few drugs have so far been approved by FDA for clinical use. 221,222 Though cancer 

therapeutics has undergone considerable development, we need a robust platform for pre-clinical testing so 

that efficacy identified in the pre-clinical studies can be translated to clinical trials and beyond. Preclinical 

studies with cancer cell lines have played an important role in our understanding of tumor biology and high 

throughput screening for drug development. However, accumulation of genetic aberrations of cancer cell 

lines that occurs with increasing passage numbers has limited their clinical correlation. 223, 224 Genetically 

altered cancer cell lines under in vitro condition do not truly represent clinical scenarios. 225 Moreover, there 

is a wide range of variability in patient response towards the same drugs used on tumors that are identical in 

their genetic aberration. Thus, it may be difficult to comprehend the genetic and epigenetic diversities of 

millions of patients from small number of cancer cell lines.226, 227 These disparities in clinical responses and 

patient dependent tumor variability are the driving force behind personalized medicine and provide the 
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impetus to develop methods of generating and culturing primary tumor cells from patients that will enable 

effective bench to bed side translation. 228-230 

Isolation and culture of solid tumor cells under in vitro environment similar to the microenvironment of the 

original tumor is a challenge and requires specialized techniques.231, 232 Successful isolation of tumor cells 

with suitable technologies is critically dependent upon an appropriate method to disrupt the extracellular 

matrix, which consists of a complex mixture of cohesive factors among constitutive proteins. 233, 234 Generally, 

these cohesive materials contain various compositions of connective tissues, glycoproteins, and tissue 

specific proteins. Additional cell culture complications include i) non-tumor cells contaminating the culture 

and disrupting tumor cell growth, ii) few viable cells due to resection from a necrotic area, and iii) normal 

stromal cells outcompeting sluggish cancer cells in long term-cultures. Cultured tumor cells need to be 

supplemented with various factors found in vivo. Essential supplements such as mitogenic and comitogenic 

growth factors are important to sustain cell viability, genotype and phenotype of the tumor cells in vitro. 233-

235 Various pre-coated culture dishes are very effective at providing physiological environment for tumor cell 

growth by pursuing various biochemical studies.236, 237 Technological advancements, sorting of tumor cells 

from heterogeneous mixtures, clonal propagation and validation of tumorgenicity have provided essential 

tools for primary tumor cell line development. In the era of personalized therapy, researchers need a 

repertoire of patient derived primary tumor cells that can generate high-fidelity data for translating in vitro 

findings to in vivo models and ultimately to clinical settings. This will provide more refined database 

compared to tissue bank.  

 

In vitro 3D tumor spheroids 

Conventional 2D cell cultures are not capable of mimicking the complexity and heterogeneity of 

clinical tumors as in vivo tumors grow in a three-dimensional (3D) conformation with a specific 

organization and architecture that a 2D monolayer cell culture cannot reproduce. Consequently, 

numerous signals that govern different cellular processes are lost when cells are grown in 2D plastic 

substrata. 238 Three-dimensional (3D) growth of immortalized established cell lines or primary cell 

cultures is regarded as a more stringent and representative model on which to perform in vitro drug 

screening. 239 As reported in detail by Kimlin et al, 240 3D cell cultures possess several in vivo features 

of tumors such as cell-cell interaction, 241 hypoxia,242 drug penetration, response and resistance,242 and 

production/deposition of extracellular matrix. 240 All of these factors shift growth dependence away from the 

phenotype of unrestrained proliferation which is dominant in standard 2D cultures. Furthermore, the study 

of cancer cell dynamics in a 3D context allows us to recapitulate the architecture of living tissue and to better 

investigate the pathobiology of human cancers. 243, 244 It is now common opinion that in vitro 3D cultures 

could fill the gap between conventional 2D in vitro testing and animal models, 245 and many researchers 
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recommend the use of 3D cell cultures in drug screening programs as support for conventional 2D monolayer 

studies and before activating animal protocols. 246, 247 

Several types of 3D culture models have been developed. These are generally subdivided into liquid-based 

and scaffold-based 3D-models.239 Scaffold platforms for 3D culture are made of synthetic or naturally-derived 

polymers that provide a support for cell growth and mimic extracellular matrix conditions. Currently available 

scaffolds often show difficulties in obtaining a controlled matrix that can support the cellular physiologic 

growth and interaction profile found in vivo. Tumor spheroids are one of the most common and versatile 

scaffold-free methods for 3D cell culture. Spheroids are either self-assembling or are forced to grow as cell 

clusters starting from single cell suspensions. Compared to cells cultured on a flat surface, they more closely 

mimic the complex scenario of tissues and organs where each cell interacts with nearby cells through the 

formation of desmosomes and dermal junctions. Depending on the researcher’s needs and on the method 

used, it is possible to obtain spheroids of any dimension. In particular, large spheroids (starting from about 

500 μ m in diameter) are characterized by an external proliferating zone, an internal quiescent zone caused 

by limited distribution of oxygen, nutrients and metabolites, and a necrotic core resembling the cellular 

heterogeneity of solid in vivo tumors. 

 

Organoids  

Costs of new anti-cancer drugs have surged over the past years due to, among others, the increasing 

complexity of clinical trials and regulatory requirements. 248 Meanwhile, the likelihood that a drug will reach 

market approval after entering phase 1 clinical testing has remained the same, and is significantly lower for 

anti-cancer drugs compared with drugs in other disease areas (Figure 11). 248 

While there are several factors that contribute to the low success rate from bench to bedside, one stands 

out: the translatability of pre-clinical cancer models to the patient. The difficulties of using model systems 

to predict drug efficacy in patients hamper not only general drug development pipelines, but also the 

advancement of companion diagnostics that can select subgroups of patients for treatment with 

molecularly targeted agents.  3D tumor organoid cultures are a novel pre-clinical model system in oncology 

that allows ex vivo propagation of tumors from individual patients and could facilitate the drug discovery 

process. Ex vivo culture of tumor cells from patients has been hampered in the past by low culture success 

and a limited proliferative capacity. The ability to perform long-term culture of primary colorectal 

cancer (CRC) cells came from the fundamental discovery that healthy mouse intestinal stem cells could be 

propagated in vitro long term using Wnt, R-spondin1, epidermal growth factor (EGF), and Noggin. 249, 250, 251 

Healthy intestinal stem cells formed crypt-villus-like structures in Matrigel and were able to generate all cell 

lineages of the gut upon withdrawal of particular medium components. Importantly, these cultures 

retained their normal genome over time. Irrespective of its previous use to describe organogenesis 

experiments, the term ‘‘organoids’’ was used, mainly because of the crypt-like architecture in vitro, and the 
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distinct resemblance to the in vivo situation. 249, 250, 251 Matrigel and a cocktail of essential stem cell growth 

factors, which were used to culture healthy mouse intestinal tissue, supplemented with a transforming 

growth factor b receptor inhibitor (A83-01) and p38MAPK inhibitor (SB202190), served as the basis for 

growth medium of healthy human intestine/colon, and eventually also for CRC organoids.251 Subsequently, 

similar culture protocols were developed for healthy and malignant tissue of the pancreas, stomach, 

prostate, and liver. The ability to culture patient-derived healthy and diseased cells was immediately 

recognized as a major breakthrough and holds potential for the transformation of biomedical research into 

more patient-focused approaches. Since the development of organoid culture protocols, several key papers 

have been published in which organoids have been used as a tool to broaden our basic understanding of 

cancer. 252, 253 These and subsequent studies help to determine whether organoid cultures have the 

potential to improve drug development and clinical practice.  

Van de Wetering et al 254 were the first to describe a collection of well-characterized patient-derived 

organoids. They report the successful culture of 20 matched healthy and tumor organoids derived from 

treatment-naive surgical resections with a 90% success rate. 254 In summary, organoid cultures can be 

established from a range of different tumor types, which paves the way for more successful drug 

development and precision medicine. 

Figure 11: Schematic of the Various Regions of the Body that Can Be Cultured as Patient Derived 

Organoids.249 
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3. AIMS OF THE STUDY 

Aim 1:  

Patients with MPM have poor prognosis, with a median survival ranging from 8 to 12 months. The European 

Organization for Research and Treatment of Cancer has established that the main predictors of a negative 

prognosis. However, unlike other solid tumors, there are not yet specific tissue biomarkers with a prognostic 

significance useful in clinical practice.  

High Mobility Group Box 1 (HMGB1) is a highly conserved nuclear protein, which has been implicated into 

several important biological processes and has an important role into tumor progression and prognosis of 

several cancers. Well-powered studies evaluating the prognostic significance of HMGB1 in tissue samples of 

MPM are, to the best of our knowledge, still lacking. In this work, we evaluate both protein expression and 

mRNA levels of HMGB1 by means of immunohistochemistry and RT-PCR from a large series of histologic 

samples of MPM, to investigate its potential role as a novel prognostic biomarker. We have also collected 

patients clinicopathological data from Oncology Unit of Novara Hospital in order to perform statistical 

analysis which assess the potential correlation between HMGB1 expression and clinicopathological 

patients’ data. 

Aim 2:  

MM is resistant to the conventional forms of treatment, and adequate scientific and clinical assessment of 

this disease has been severely limited by the lack of representative cell lines and animal models and by the 

limited number of patients treated in a single institution. Thus, the establishment of representative in vitro 

cell lines and animal models is important for the development of potentially effective forms of diagnosis and 

therapy and for the study of basic biology.  

So, in this study, we set up representative in vitro and in vivo models of mesothelioma as valid experimental 

study systems.  

  Aim 2a: We will use murine mesothelioma cell lines (AB1, AB12 and AB22) obtained by tumor masses 

which were developed into BALB/c mice induced by asbestos intraperitoneally injection and were 

previously showed to be tumorigenic and retain the mesothelioma features. To complete their 

characterization, we provide the elucidating of phenotypical and molecular features of AB cell lines and 

tumor masses derived thereof in BALB/c mice. Furthermore, we use these murine cell lines to set up a 

syngeneic model system of mesothelioma providing a full immunological tumor response and an 

experimental system for preclinical studies. However, this system limit us to better understand  the  

spectrum of genetic, epigenetic changes and the role of tumor microenvironment in tumorigenesis of 

mesothelioma. Recently, xenografts and 3D in vitro systems using human tumor fragments/biopsy  have 

become popular because they accurately  recapitulate the features of original patient tumors and the 

complex factors that promote tumor progression and metastasis.   
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Aim 2b: In the present study, we will obtain primary mesothelioma cells; we will develop 3D in vitro models 

of mesothelioma in order to create a collection of patient-derived human organoids, to screen for drug 

sensitivity and to study the crosstalk between tumor and immune cells. Human Mesothelioma spheroids and 

patient derived xenograft (PDX) are alternative models that help us to pursue the same goal. More 

importantly, generation of these patient-derived 3D models can serve as a platform to test the role of BoxA 

(antagonist of HMGB1) in tumour shrinkage, providing highly translational results.  
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4. MATERIALS AND METHODS 

MPM samples for clinical studies 

In this study we used two different clusters of MPM tumor samples:  

Firstly, we collected Formalin-Fixed Paraffin Embedded MPM samples from the Thoracic Unit and 

Pathological Anatomy of the University Hospital of Novara on which we performed the evaluation of HMGB1 

protein and gene expression (Novara samples).   

In the second case, 16 biopsies or tumor fragments were obtained from Thoracic Surgery Units of Novara 

Hospital, and San Raffaele Hospital and were collected for translational medicine studies. We used fresh 

patient-derived tumors in order to generate in vitro and in vivo mesothelioma models in accordance with 

protocols approved by the Institutional Review Board of each center and upon patients informed consent. 

Samples collection and preparation  

In this study we included biopsy samples from 170 patients with definite diagnosis of MPM admitted to the 

Hospital of Novara between April 2005 and December 2014.  All the samples were collected by means of 

video-assisted thoracoscopy performed at the Thoracic Unit of Novara Hospital. The patients with adequate 

biopsy tissue and available clinical data were included. Moreover, for comparison, 8 biopsies of normal 

mesothelium sampled at the time of bullectomy in patients with pneumothorax, and 6 of reactive 

mesothelium (pleura samples from patients with pleuritis) were also considered for examination. Informed 

consent was obtained from all patients before surgery, and this investigation was approved by the Research 

Ethics Committee of ‘Maggiore della Carità’ Hospital of Novara. The assessment of the clinical records of each 

patient permit us to collect the following data:   

Demographic data of the patient; MPM diagnosis date; surgery or biopsy date; therapy; status (Dead/Alive); 

follow up: from the date of diagnosis to April 2017 for alive patients, and from the date of diagnosis to the 

date of death for dead patients.   

 All the tumor samples were classified according to the WHO classification of pleural tumors,255 clinically and 

pathologically staged based on the TNM staging system.256 The patients’ performance status (PS) at the time 

of diagnosis was graded using the Eastern Cooperative Oncology Group (ECOG) scale, and the patients with 

a PS of 0–2 underwent therapeutic protocols indicated by the referring oncologist. All tumour samples from 

MPM patients were collected before treatment.  

Following the collection, tumor and control samples were immediately fixed in neutral buffered formalin for 

24 h; once fixed tissue is processed using gentle agitation usually on a tissue processor at Pathologic Anatomy 

Unit, and embedded in paraffin. From each Formalin Fixed Paraffin-Embedded block we prepared H&E 

stained slides for histological evaluation and immunohistochemistry staining of diagnostic markers. The 

diagnosis of MPM was based on standard histologic and immunohistochemistry criteria, including positivity 
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to calretinin, vimentin, cytokeratin 5 and 6, Wilms Tumor 1 and negativity to carcinoembryonic antigen, 

thyroid transcription factor 1, and BerEP4. 

Looking through the ARMONIA database of the Pathology Department of “Maggiore della Carità” Hospital 

we got these data: 

• haematoxylin/eosin-stained slides of the pleural biopsies and corresponding formalin fixed, 

paraffin-embedded blocks for each patient case 

• histotype: epithelioid, sarcomatoid and biphasic. 

• the immunophenotyping of each sample for the routine diagnostic markers  

Hematoxylin/eosin-stained slides of the pleural biopsies/tumor fragments of each case were reviewed by a 

pathologist (RB) in order to: 

• confirm the diagnosis and the histotype; 

• to select the area with 50% of tumour cells (minimum required for gene expression analysis); 

• identify the best sample, in term of cellularity, in case we have more than one biopsy or 

surgery piece. 

Immunohistochemistry 

Immunohistochemistry analysis was performed in 170 FFPE MPM biopsies, using standard protocols. Each 

specimen was sliced with microtome in 3-µm-thick sections and placed on a microscope polarized slide. The 

sections were baked for 1 h at 65 °C and were deparaffinized with xylene and rehydrated using washes of 

graded ethanol to water. Antigen retrieval was performed in heated citrate buffer for 30 minutes at 650 Watt 

in microwave. HMGB1 immunostaining process was carried out on a DAKO Autostainer (Dako, Carpinteria, 

CA). The endogenous peroxidase activity of tissue sections was blocked by incubation with 3% H2O2 for 5 

minutes. The incubation with primary antibody was performed for 60 minutes at room temperature, using a 

rabbit polyclonal HMGB1 antibody (diluted at 1:500, clone ab18256, Abcam, Cambridge, UK). Subsequently, 

the reaction was revealed with Envision Dual Rabbit/mouse detection system purchased by Dako 

(Carpinteria, CA). The slides were counterstained with hematoxylin. Normal liver parenchyma and reactive 

lymph nodes were selected as positive controls.  

Evaluation of staining 

The expression of HMGB1 in MPMs was scored using the semi-quantitative system derived from Soumaoro 

et al257 for both the percentage of positive cells and the intensity of staining. The extent of staining was scored 

as 0 (<1%), 1 (1-25%), 2 (26%-50%), 3 (51%-74%), and 4 (≥75%), according to the percentage of the positive 

staining. Then we evaluated the intensity of the staining and grouped them into the following four categories: 

no staining (score = 0), weak staining detectable above background (score = 1), moderate staining (score = 

2), and intense staining (score = 3). The final index was obtained by the sum of the intensity and percentage 

scores for each subgroup ranging from 0 to 7. 
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The localization of HMGB1 immunostaining was evaluated according to the system proposed by Koo e 

collaborators258 for the evaluation of p16 immunohistochemistry expression. In particular, we considered the 

nuclear (N), the cytoplasmic staining (C) and the total staining (mean N+C) of the tumor cells, and then we 

applied the semi-quantitative scoring system described above. For the purpose of statistical evaluation, 

samples with a final staining score >3 were considered as high expression of HMGB1, whereas samples with 

a final score 0-3 were considered as low expression. Each sample was independently scored by two 

pathologists (RB, LB). If an inconsistency occurred, slides were reviewed jointly by two pathologists to reach 

a consensus.  

HMGB1 expression analysis 

RNA extraction and reverse transcription 

The tumor area, previously selected by an expert pathologist, was manually macrodissected from FFPE 

tissue blocks, and 5-µm-thick sections were collected in a 1,5mL tube for the RNA extraction process. After 

deparaffinization with xylene, RNA was isolated by using the RecoverAll Total Nucleic Acid Isolation Kit (Life 

Technologies, USA) following the manufacturer instructions, and resuspended in 30 μl of elution buffer. 

RNA yields were checked by mean of a Nanodrop.  

A total of 100 ng of mRNA per sample were reverse transcribed to cDNA by TaKaRa PrimeScript™ RT 

reagent Kit (Takara Bio, USA) using 200 pmol of random examers for each reaction.  

 

Quantitative Real-time PCR 

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed in triplicate with 2 µl of cDNA, 

1x TaqMan® Gene Expression Master Mix and 1x of TaqMan® Gene Expression assay HMGB1, ID: 

Hs01037385_s1 (Applied Biosystems, USA) in a final reaction volume of 10 µl. 

Samples were amplified by the ABI 7500 real-time PCR machine (Applied Biosystems, USA) under the 

following thermal profile: initial incubation at 95°C for 20 seconds, 40 cycles of denaturation at 95°C for 15 

seconds followed by annealing and extension at 60 °C for 30 seconds. Assay results were normalized to rRNA 

Eucaryotic 18S rRNA Endogenous Control (Life Technologies, USA) and gene expression quantification was 

performed by ΔΔCt method31 using the Sequence Detection System 7500 (Applied Biosystems; software 

v2.0.4), comparing tumor samples with a pool of normal pleura obtained from pneumothorax samples.  

Statistical analysis 

Patients characteristics were described in terms of number and percentage, median and range. Disease-

specific survival (DSS) was defined as the time from diagnosis to death or until April 2017, date of last follow-

up for alive patients. Survival analyses were undertaken using the Kaplan-Meier method and curves were 

compared by the log-rank test. The association between IHC staining score or mRNA levels and the 

clinicopathologic characteristics of the patients was analyzed respectively by chi-square test. The correlation 
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between HMGB1 gene expression and HMGB1 protein expression by IHC was analyzed by Pearson test. All 

the statistical analysis were performed using STATA 11 (Stata Corp LLC, Texas, USA) and software Prism 

(GraphPad, version 7.03, La Jolla, CA). The level of significance was set at P=0.05.  

 

Cell lines, culture conditions and manipulations. Murine malignant mesothelioma (MM) AB1, AB12 

and AB22 cells were obtained from Cell Bank Australia, and their establishment and partially 

characterization were performed by Davis MR et al.  These cell lines were obtained following this 

experimental protocol:  intraperitoneal injections of about 2,5 mg of crocidolite asbestos suspended in 500 

µl RPMI in female Balb/c mice were performed for generation of tumor masses. When ascites became 

evident, animals were killed. Samples of ascites and solid tumors were used for cytological/histological 

examination, and remaining ascites were processed for culturing primary murine cells.  These lines have 

been shown to be mesothelial in origin, to be tumorigenic in syngeneic mice and to have many features in 

parallel with human MM cell lines.   

The AB cell lines are cultured in RPMI 1640 (Life Technologies) supplemented with 5% (AB1 and AB12) or 

10% (AB22) v/v fetal bovine serum (Life Technologies), 2 mM L-glutamine and 100 U/ml 

penicillin/streptomycin. We injected intraperitoneally each cell line in BALB/c mice to obtain tumors. The 

masses were explanted and mechanically disaggregated; the obtaining cells were cultured as above. The 

established cells were named AB1-B/c, AB12-B/c and AB22-B/c. 

MM cells were infected with a 3rd generation lentiviral vector expressing the luciferase gene (pLenti PGK 

V5-LUC Neo (w623-2) Addgene) (Figure 12). The selection of cells with geneticin were performed and 

maintained in culture as above. The murine luciferase-expressing cells, derived directly from the original 

strains AB1, AB12, and AB12 were named respectively: AB1-LUC, AB12-LUC and AB22-LUC. Cells generated 

from the masses in BALB/c mice were named AB1-B/c-LUC, AB12-B/c-LUC and AB22-B/c-LUC. (Figure 12) 

Mice. Animal experiments have been revised and approved by the Animal Care and Use Committees 

(IACUC) of both Ospedale S. Raffaele and Istituto di Ricerche Farmacologiche “Mario Negri”. All 

experiments were done in conformity with the approved guidelines.  

The Animal Care Facilities of the Institutes, which meet international standards, were used for animal 

housing. In both institutions, certified veterinarians monitor and supervise the animal welfare and health, 

the experimental protocols and revised regularly the procedures.  

 

In vivo BioLuminescence optical Imaging (BLI) 

We injected intraperitoneally 7 x 104 AB1-B/c-LUC cells on mice and monitored tumour growth using an 

IVIS SpectrumCT System (Perkin Elmer).The system is equipped with a low noise, back-thinned, back-

illuminated CCD camera cooled at -90 C (quantum efficiency in the visible range above 85%). The mices 

received intraperitoneally injections of 6 g of luciferin/kg body weight about 20 minutes before image 
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acquisition. During image acquisition, the animals were kept at 37 oC and under gaseous anesthesia (2–3% 

isoflurane and 1 lt/min O2). After luciferin injection, dynamic BLI was performed from 0 to 30 minutes by 

acquiring an image every 2 minutes (exposure time = auto, binning = 8, f = 1 and a field of view equal to 13 

cm (field C)) in order to detect the highest BLI signal. BLI image analysis was performed by measuring the 

total light flux (photons/seconds) in a Region of Interest (ROI) placed over the animal abdomen. Images 

were acquired and analyzed using Living Image 4.4 (Perkin Elmer).  

Ultrasound scans 

First we anesthetized the  mices by gaseous isoflurane. We use a Vevo 2100 equipment (FUJIFILM 

VisualSonics Inc.) especially designed for the examination throught ultrasound of small experimental 

animals to examine the tumor masses. Ultrasound images in B-mode (Brightness mode) were performed 

using a Vevo 2100 linear array transducer with a center frequency of 40 MHz (MicroScan MS 550D; 22–55 

MHz; FUJIFILM VisualSonics Inc).  

Clear field microscopy 

The Cell lines maintained in culture (AB1, AB12 and AB22) in cell dishes were visualized with a Zeiss 

Observer Z1 microscope. 

Electron microscopy 

Cells were grown on coverslips and previously prepared to be mounted on a Leica Ultracut UCT 

ultramicrotome. Ultrathin (70-90nm) sections were collected on copper grids and stained with uranyl 

acetate and Sato's lead citrate before imaging with a ZEISS Leo AB 912 Omega transmission microscope. 

Images were acquired by a 2k x 2k bottom-mounted slowscan Proscan camera controlled by the 

EsivisionPro 3.2 software.  

Histopathology and Immunohistochemistry 

The samples that will be processed for histopathological examination were fixed in formalin at 10% for at 

least 24-48 hours and paraffin embedded (Embedding Center Leica EG1160).  4-µm-sections were routinely 

stained with Hematoxylin-Eosin (HE) and evaluated under a light microscope (Leica DM 2500). The images 

were captured with a digital camera (Leica DFC310 FX). For immunohistochemistry 4-µm serial sections 

from each sample were immunostained with the primary antibody anti-CD31, specific for endothelial cells 

to monitor the vascularization into the tumor masses. After the incubation with appropriate biotinylated 

secondary antibody (goat antirabbit VC-BA-1000-MM15 or rabbit anti-goat VC-BA-5000-MM15, Vector 

Laboratories, USA) will occur. Sections were labelled by the avidin-biotin-peroxidase (ABC) procedure using 

the VECTASTAIN® Elite ABC-Peroxidase Kit Standard, VC-PK-6100-KI01 kit (Vector Laboratories). The 

immunoreaction was visualized with 3,3’-diaminobenzidine (Peroxidase DAB Substrate Kit, VC-SK-4100-

KI01, Vector Laboratories) substrate and sections were counterstained with Mayer’s haematoxylin.  

Generation of primary human mesothelioma cells. MPM tumor specimen (sample ID: MN11) was obtained 

by means of extrapleural pneumectomy at Unit of Thoracic Surgery, Novara Hospital.  The tumor fragments 
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were manipulated in a sterile, ventilated hood according to primary cell establishment protocol.24 One 

fragment of original tumor sample was processed for Hematoxylin and eosin stain and 

Immunohistochemistry in order to obtain a definitive diagnosis and histologic classification at Pathologic 

Anatomy Unit; whereas another fragment was stored in culture medium at 4°C for a few hours (2-5 hours 

after resection) for further in vitro manipulation. The tumor specimens were placed into a cell culture plate 

to be processed into a sterile, ventilated hood. Additional non-tumor tissue may be removed at this time 

and sections of tumor were excised. Tumor specimen was cut into small pieces using sterile sharp bladdes 

and curved forceps until we obtained 1–2 mm³ tumor fragments. Then, the fragments were mashed 

through a 100 μm cell strainer with the plunger of a syringe, taking care to thoroughly rinse the strainer 

with culture medium to minimize cell loss. The cell suspension was collected into 50 ml- sterile falcon, and 

the further cell disaggregation is stimulated by pipetting cell suspension up and down different times using 

a 10 ml pipette. The disaggregated cells of ‘MN11’ were cultured in RPMI-1640 medium supplemented with 

10% fetal bovine serum and 1 × penicillin/Streptomycin (Gibco BRL Life Technologies), hydrocortisone 400 

μg/l, 20 mM HEPES, and 10–5 M 2-mercaptoethanol (10 micromolar, 0.35 microliter in 500 ml). The cells 

were incubated at 37°C in 5% CO₂ with a balance of air at 37°C. After 5-6 days, the medium was replaced to 

remove nonadherent cells; thereafter the medium was replaced twice weekly and cells were passaged 

when they reached confluency in a monolayer (21 days after).   The established cell line was subcultured for 

over 50 passages, approximately more than one year from initial culturing. The cell cultures were routinely 

checked for mycoplasma using detection kit, and resulted mycoplasma-free.  

Furthermore, we collected MN11 cell pellets, fixed in formalin and embedded in agar/paraffin; and cut 

specimens slides. The H&E and IHC characterization was performed comparing their immunophenotype 

with the original tumor.   

In vitro tumor-sphere formation. The primary mesothelioma cells ‘MN11’, previously established, and 

maintained in culture in culture dish were harvested using trypsin 1x. The resulting pellet were therefore 

washed with PBS and resuspended in tumorsphere medium. The cell suspension was mixed vigorously, to 

have an homogeneous cell-suspension and were counted into the Bukner chamber. Afterwards, the cells 

were seeded in petri dish (non-adherent conditions) at about 10⁴ cells/mL of medium. The culture was 

incubated to 37 °C, 5% CO2 for one week.  At the 4°day post-seeding we can observe the generation of 

nonadherent spheres into a phase-contrast microscope. The medium is not changed or added until the 

detection of tumorspheres, so as to not disturb them.   

Generation of Patient Derived Xenograft from mesothelioma biopsies 

13 resected biopsies/tumor fragments of Malignant Pleural mesothelioma were collected after extrapleural 

pneuctomeny at the Unit of Thoracic Surgery at Hospital of Novara for the period 2014-2015. Fragments for 

each tumor samples was processed for the standards pathologic evaluation in order to obtain a definitive 

diagnosis. The samples were frozen in 10% DMSO/90% FCS and stored at -135 °C for future use. These 
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stocks should maintain their capacity to grow both in vitro and in vivo. The human MPM samples from 

surgical specimens should be acquired under the strict supervision of staff pathologist(s) to maintain 

patient care and to ensure adequate tissue diagnosis. The MPM specimens were used for performing direct 

xenograft establishment into Immunodeficient mice NSG (NOD/SCID Il2rg − / −). Immunodeficient mice 

NSG aged 6 to 8 weeks should be housed under specific pathogen-free conditions to prevent sickness and 

infectious outbreak. Tumor fragments (0.7-1.0 cm) were implanted subcutaneously, in the flank of mouse, 

in a heterotopic site that permit us to monitor accurately and measure the tumor size. The tumor 

implantation will be performed as described into the protocol. 279 After tumor implantation, mice should be 

monitored daily for signs of illness and surgical wounds assessed for infection. To maintain and expand 

tumor derived from a specific xenograft ‘line’, we routinely propagate heterotopic tumors.  

Direct transfer of human tumours into immunodeficient mice requires institutional review board as well as 

Institutional Animal Care and Use Committee (IACUC) approval and must be conducted in accordance with 

institutional and national regulations. 

 

Generation of Mesothelioma Organoids  

MPM biopsies were processed for organoid generation into very clean conditions following the protocol 

(Figure 13) below based on the protocol previously developed by Drost et al: 280 

Tumour samples (biopsy or tumour fragments) are kept moist in the 150 cm2 petri dish by the addition of 

small quantities of medium or HBSS (250-500 μl). Try to add enough medium to keep the tumor moist, but 

not so much that it floats- with too much medium, the tumor can slide around when you are trying to cut it.  

The tumor is diced /minced using scalpels and disposable blades into small pieces (1-5 mm3). The small 

tissue fragments were collected and mashed into a cell strainer of 100 µm or 70 µm; the cell strainer was 

rinsed different times with PBS and culture medium. We use this type of cell strainer in order to separate 

the cell aggregate from the fibrotic material. Monitor the cell suspension and cell aggregates every 20 

minutes during the mechanical disaggregation, by observing a drop of cell suspension on a sterile plate by 

microscope. After the mechanical disaggregation process, the cell suspension was centrifuged at 2000 rpm 

for 3 minutes. Hemolysis can be performed if lots of red blood cells are visible in the cellular pellet by 

incubating the pellet in hemolysis solution. The supernatant was aspirated and the pellet were 

resuspended in 10 ml of adDMEM/F12 +/+/+ 1% FBS. Then the tube was centrifuged at 1500 rpm for 3-5 

min. The cell pellet was washed once in medium and antibiotics. For culturing organoids, we always use 

Costar 24-well ultra-low attachment bottom plate (Corning 3473) and Matrigel (Corning® Matrigel® Growth 

Factor Reduced (GFR) Basement Membrane Matrix, Phenol Red-Free, 10mL (Product #356231)). Matrigel is 

stored at -20°C as frozen 1-mL aliquots. When needed, we thawed Matrigel aliquots at 4°C usually 

overnight (it takes 4-5 hours to melt completely). Once thawed, store Matrigel at 4°C. During this 
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procedure, we work in sterile conditions, under the hood and we transport the Matrigel bottle with an ice 

box, because it will be further used for cell embedding. We put the tube (15 ml Falcon Tube) with the 

cellular pellet, which were previously collected and isolated from patient biopsy, in the ice box to avoid 

solidification of Matrigel in the tube before plating.   

After washing/filtering, cells must be embedded in Matrigel. The cell density is an important factor:  Highly 

dense cells tend to suffer, but also a very low number of cells do not support efficient organoid growth 

according to our experience. Unfortunately, counting is impossible because in the precipitate you will 

always have single cells, clumps and/or bigger structures. So, we tried to plate the same amount of cells per 

well.  

We use 200 μl of matrigel to enclose organoids and plates them into one well of a 24 well plate, paying 

attention not to accumulate cells on the border of the well because our bright images will be compromised 

by the shadow of the wall of the well. On average, one mesothelioma biopsy will yield 1-2 well of a 24-well 

culture plate. Work quickly and on ice (4°C conditions) to ensure that the Matrigel does not solidify before 

plating. To ensure efficient plating, do not dilute the Matrigel too much. The average final percentage of 

matrigel should be ~75%. The culture plate with just-seeded cell aggregates enclosed in matrigel were 

placed in the incubator (5% CO2, at 37 °C) for 30 min – 1h to allow the solidification of the Matrigel.   

 The Organoids culture medium was prewarmed in a 37 °C water bath for ~10 min before adding it to the 

organoids. After the solidification of Matrigel, at about 500-800 ul of Medium per well was added on top of 

the Matrigel, for each well. Avoid pipetting the medium directly on Matrigel as this might damage the 

cushion/layer of Matrigel. Instead, place the tip on the wall of the well and slowly deposit the medium. The 

plate was placed into the CO2 incubator (5% CO2, 37 °C).  

We refresh the medium with 10 μM Y-27632 dihydrochloride every 2–3 days. From 7 d after initial plating, 

medium without Y-27632 dihydrochloride should be used. When removing the exhausted culture medium, 

we should pay attention to Matrigel: if Matrigel is a compact gel, we just have to aspirate and add new 

medium slowly; otherwise we should be very careful not to aspirate the floating pieces of Matrigel 

containing potentially precious organoids. We monitor the organoid growth daily and acquire photo by 

inverted microscope every 2 days post-seeding. Usually, it takes 2-3 weeks for organoids to reach good 

sizes and to be passaged. In any case, every 3 weeks Matrigel should be changed as it started to collapse or 

dissolve. Depending on the original tissue material, the first passage of organoid- seeding could be critical 

for the purification of Organoids from the cellular debris and contamination with fibroblasts.  

Passaging of organoids  

If we need to split organoids for subculture/expand them or to recover/collect organoids for RNA 

extraction, fixation/inclusion for histology, immunoprecipitation, etc, an adequate method for harvesting 

them should be chosen. In our experience, we used Harvesting solution of Trevigen Culturex and followed 

the manufacturer protocol, described as follow: 
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1. Gently remove 250-300 μl of Organoids culture medium from each well without disturbing the 

matrigel. Add 1ml of cold HBSS and collect organoids (~16-21 d after starting the culture) by 

scraping the matrigel and pipetting up and down using cold 1000μl tips. Transfer organoids from 

the same sample into one 15-ml tube.  

2. 2- Pipette up and down 15-20 times and add 5-7 ml of ice-cold HBSS by topping up to 12-13 ml of 

final volume.  

3. Incubate in 4 °C for 1 h in order to dissolve any residual matrigel.  

4. Centrifuge the tube at 1500 rpm for 5 min at 4 °C.  

5. Aspirate and discard the supernatant.  

6. Add cold-ice HBSS.  

7. Dissociate the organoids mechanically by pipetting up and down with P1000 cold tips for at least 10 

times.  

8. Repeat once the washing passage.  

9. Remove the supernatant without disturbing the pellet and resuspend the pellet in matrigel; replate 

the matrigel and cell suspension in 2-4 wells. Resuspend the pellet in 400- 800 μl of Matrigel and 

place 200 μl of Matrigel into one well of a 24-well plate, thus splitting each organoid culture at a 

1:2 – 1:4 ratio (the variability of ratio splitting is due to the quantity of organoids obtained and 

growth after day 0 of plating).  

10. Place the plate into the CO2 incubator (5% CO2, 37 °C) for 15 min to allow the Matrigel to solidify.  

11. Gently pipette 500 μl of prewarmed (37 °C) organoid culture medium into each well and place into 

a CO2 incubator (5% CO2, 37 °C).  

12. Replace the medium every 2–3 d. It is not necessary to add Y-27632 dihydrochloride to the medium 

at this stage of the culture. Y-27632 dihydrochloride is only required in the culture medium when 

organoids have been recently passaged using enzymatic dissociation like treatment with trypsine or 

tryple.  

 

Collection of Formalin-fixed and embedding of tumour organoids in agar/paraffin for IHC  

1. Gently remove 250-300 μl of Organoids culture medium from each well without disturbing the matrigel. 

Add 1ml of cold HBSS and collect organoids (~16-21 d after starting the culture) by scraping the matrigel 

and pipetting up and down using cold 1000μl tips. Transfer organoids from the same sample into one 15-ml 

tube.  

2. Pipette up and down 15-20 times and add 5-7 ml of ice-cold HBSS by topping up to 12-13 ml of final 

volume.  

3. Incubate in 4 °C for 1 h in order to dissolve any residual matrigel.  

4. Centrifuge the tube at 1500 rpm for 5 min at 4 °C.  
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5. Aspirate and discard the supernatant.  

6. Add cold-ice HBSS.  

7. Repeat once the washing passage.  

8. Remove the supernatant and add 6-7 ml of formalin. Resuspend the pellet in formalin. Incubate for 90 

minutes at room temperature.  

9. Centrifuge the tube at 2000 rpm for 5 minutes and wash once with PBS.  

10. Remove the supernatant and add 10 ml of 80% ethanol with eosin. The eosin (red dye) is added in order 

to allow the detection of pellet during the embedding process and when cutting the blocks. Resuspend the 

pellet in ethanol and store at 4 °C indefinitely but we prefer to embed them in paraffin within a month.  

11. Prepare the agar solution for embedding process. The 3 % agarose solution in PBS is prepared and kept 

warm in microwave.  

12. Then, centrifuge the tube at 2000 rpm for 10 minutes. Remove the supernatant. We add 200-300 μl of 

warm agarose solution and gently flick the bottom of the tube to resuspend the organoids fully in agarose 

solution. The tube is vigorously tapped on the bench surface to bring all the material to the bottom. We can 

centrifuge rapidly for 1-2 minutes at 2000 rpm in order to collect all the solution to the bottom of the tube.  

13. Incubate the tube for 15-20 minutes at -20°C to harden. The pellet is removed and placed in an IHC 

cassette. The cassettes are then placed in 80% ethanol overnight.  

14. The Unit of Pathology of Novara Hospital do the regular processing of pellets and their embedding 

process in paraffin.  

15. We cut 3- μm slices for processing in immunohistochemistry for mesothelioma markers staining and 5 

μm slices for hematoxylin and eosin staining.  
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Figure 12: Generation of a syngeneic experimental system of mesothelioma. 
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Figure 13: Representation of the protocol for Patient derived organoids generation.200 
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5. RESULTS 

Patients and clinicopathologic findings 

The main demographic and clinicopathologic findings of the patients included in the study are summarized 

in Table 3: 118 patients were male (69,4%) and patients’ mean age at diagnosis was 68,5 ± 10 years (range 

27 - 91, median 70). Follow-up data after surgery were obtained from all the patients. At the end of the study, 

6 patients (3,53%) were alive with a median follow-up of 56 months (range 27-94 months). The mean DSS of 

the cohort was 16 months (range 1-94 months).  

 

Table 3. Clinical and pathologic findings 

Characteristic Total (%) 

Total number 170 

Age (mean) 

<68 68 (40%) 

≥68 102 (60%) 

Gender   

male 118 (69.4%) 

female 52 (30.6%) 

Asbestos Exposure   

no 80 (47.1%) 

yes 86 (50.6%) 

not available data 4 (2.4%) 

Histologic Subtypes 

Epithelioid 125 (73.53%) 

Biphasic 23 (13.53%) 

Sarcomatoid 22 (12.94%) 

ECOG score   

0-2 146 (85.9%) 

>2 23 (13.53%) 

not available 1 (0.57%) 

Clinical Stage   

I-II 104 (61.2%) 

III-IV 66 (38.8%) 

Treatment type    

None 40 (23.5%) 

Platinum 25 (14.7%) 

Platinum + Pemetrexed 105 (61.8%) 

Smoking status    

Smoker 86 (50.6%) 

Non Smoker 65 (38.22 %) 

not available data 19 (11.18%) 
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%, percentage; ECOG, Eastern Cooperative 
Oncology Group; NA, not available data. 
 
 
 
 

HMGB1 protein expression by immunohistochemistry  

HMGB1 immunostaining was found in 158 cases (93%) of MPM. In all the positive samples there were tumor 

cells stained in the nucleus or in the cytoplasm only, mixed with tumor cells stained in both nuclei and 

cytoplasms (Figure 14). Conversely, HMGB1 immunostaining was found in the nuclei of the normal pleura 

(Fig. 9 A), and in both nuclei and cytoplasms in mesothelial cells of the reactive pleura (Fig. 9 B). The score of 

HMGB1 immunostaining in the cytoplasm of tumor cells was low in 88 cases (51,76%) (Fig. 9 C, D), and high 

in 82 (48,24%) (Fig. 9 E, H). The score of nuclear staining was low in 43 cases (25,29%) (Fig. 9 C, D), and high 

in 127 (74,71%) (Fig. 9 E, F, G, H), whereas the total HMGB1 score, was low in 69 cases (40,59%) (Fig. 9 C, D) 

and high in 101 (59,41%) (Fig. 9 E, F, G, H).  
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Figure 14. Representative IHC staining for HMGB1 in normal pleura (A), reactive pleura (B) and MPM 

samples (C, D, E, F, G, H) (original magnification 200X).286 

 

Correlation between HMGB1 score by immunohistochemistry and clinicopathologic variables 

The correlation between nuclear, cytoplasmic and total score of HMGB1 expression and clinicopathologic 

variables of MPM was examined by chi-square test. As shown in Table 2, nuclear HMGB1 expression was 

significantly correlated with asbestos exposure (P= 0,0001), whereas cytoplasmic HMGB1 expression 

showed a significant correlation only with DSS (P= 0,0295). Interestingly, total HMGB1 expression was 

significantly correlated with gender (P < 0,0001), tumor clinical stage (P = 0,0049), ECOG score (P = 0,0342), 

and DSS (P = 0,0036) (Table 4).  No significant correlation between total HMGB1 expression and age, 

asbestos exposure, other previous malignancies, smoking status, histologic subtype and treatment was 

found. 

 

Correlation between HMGB1 gene expression and clinicopathologic variables 

The HMGB1 gene expression analysis was successfully achieved in 110 cases (67,4%); tumor tissue was 

exhausted in the remaining cases due to the use for standard diagnostic and immunohistochemistry 

procedures. The median of the relative expression level of the HMGB1 gene (RQ value= 1,7) was used as 

cut off value to discriminate the patients into high-expression (RQ ≥1,7; score= 1; 55 patients; 32,35%) and 

low-expression groups (RQ<1,7; score= 0; 55 patients, 32,35%). Furthermore, the correlation between the 

gene expression levels of HMGB1 and the clinicopathologic variables of patients was investigated. As shown 

in Table 4, high expression levels of HMGB1 were positively correlated with ECOG score, and treatment.  
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Table 4. Correlation between clinicopathologic variables and expression of HMGB1 

Characteristic HMGB1 expression 

  
Total 

HMGB1, 
low 

Total 
HMGB1, 

high  
p value 

 low RQ 
(<1,7) 

 high RQ 
(≥1,7) 

p value 

Age             

<68 32 36 0,16 22 23 0,8462 

≥68 37 65   33 32   

Gender             

male 102 68 <0,0001 38 37 0,8378 

female 137 33   17 18   

Histologic Subtypes             

Epithelioid 47 78 0,186 43 41 0,6535 

Non epithelioid 22 23   12 14   

ECOG score             

0-2 65 81 0,0342 72 42 0,0489 

>2 4 19   8 13   

NA  0 1   0 1   

Clinical Stage             

I-II 51 53 0,0049 32 32 >0,999 

III-IV 18 48   23 23   

Treatment type              

Untreated 15 25 0,6492 12 18 0,0016 

Treated  54 76   89 37   

Smoking status              

Smoker 36 50 0,6764 27 31 0,1662 

Non Smoker 24 41   26 17   

NA  9 10   2 7   

DSS             

DSS (<16)  34 72 0,0036 36 38 0,6844 

DSS (≥16) 35 29   19 17   
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HMGB1, High-Mobility Group Box-1; Total HMGB1, Total IHC score of HMGB1 staining; Low/High 
RQ, low/high HMGB1 gene expression evaluated by RT-PCR; ECOG, Eastern Cooperative 
Oncology Group; NA, Not available data; DSS, Disease-specific survival.  

 

Correlation between HMGB1 score by immunohistochemistry and DSS  

We investigated the relationship between the total score of HMGB1 and the DSS by means of Kaplan-Meier 

analysis. Patients with high total score had significantly worse DSS than patients with low total score (P = 

0,0011) (Fig. 15 A). Then, we analyzed the relationship between the cytoplasmic HMGB1 score and DSS: 

patients with high score had worse DSS than patients with low HMGB1 score (P = 0,0462) (Fig. 15 B). 

Conversely, the expression levels of nuclear HMGB1 score did not show any statistically significant 

correlation with DSS (P = 0,5167) (Fig. 15 C). Moreover, we investigated the prognostic value of HMGB1 

expression in clinicopathologic subgroups of patients with MPM, divided by age (≤68 versus >68), clinical 

stage (I-II versus III-IV), previous history of other malignancies (not versus yes), histologic subtype 

(epithelioid versus non-epithelioid), ECOG score (0-2 versus >2), and treatment (untreated versus treated 

with chemotherapy). High levels of total score of HMGB1 expression was correlated with worse DSS in the 

subgroups of patients treated by chemotherapy (P = 0,0097) (Fig. 15 D) and untreated (P = 0,0006) (Fig. 15 

E), in the subgroups of patients with epithelioid (P = 0,0039) (Fig. 15F) and non-epithelioid subtypes (P = 

0,0035) (Fig. 15 G), in patients older than 68 years (P = 0,0014) (data not shown), and in patients with no 

previous history of other malignancies (P = 0,0008).  

Interestingly, high levels of cytoplasmic HMGB1 expression were associated with worse DSS in untreated 

patients (P = 0,0167) (data not shown) and in the subgroup of patients with non-epithelioid (P = 0,0058) 

mesothelioma, whereas nuclear score of HMGB1 did not show any correlation with DSS in any of the 

subgroups analyzed. The correlation between HMGB1 gene expression and DSS was also investigated. The 

Kaplan-Meier survival curves generated for the low-expression and high-expression groups of patients 

indicated that there was no significant difference (P = 0,77) in terms of DSS between the 2 groups (Fig. 15 

H).  



65 
 

 



66 
 

Figure 15. Kaplan-Meier curves of Disease-Specific survival (DSS) for MPM patients. Patients with high total score had 

significantly worse DSS than patients with low total score (P = 0,0011) (A); patients with high cytoplasmic score had 

worse DSS than patients with low cytoplasmic score (P = 0,0462) (B), whereas the expression analysis of nuclear score 

did not show any statistically significant correlation with DSS (P = 0,5167) (C). Patients with high total score of HMGB1 

had a significant worse DSS in the subgroups of patients treated with chemotherapy (P = 0,0097) (D) and untreated (P 

= 0,0006) (E) with epithelioid subtype (P = 0,0039) (F) and non-epithelioid subtypes (P = 0,0035) (G). In patients 

evaluated for HMGB1 gene expression, no differences in terms of DSS were identified in low-expression versus high-

expression groups (P = 0,718) (H). 286 

 

 

Correlation between HMGB1 gene expression and HMGB1 scoring by immunohistochemistry 

Finally, we analyzed the statistical correlation between the HMGB1 gene expression and IHC scoring into 

the cohort of 110 MPM cases, by means of Pearson test, which correlates the log fold-change values for 

mRNA and IHC score. No statistically significant correlation was found between the HMGB1 gene 

expression and IHC scoring, evaluated in terms of total score (Fig. 16 C), nuclear score (Fig. 16 B), 

cytoplasmic score (Fig. 16 A), percentage of nuclear positivity (Fig. 16 D), intensity of nuclear positivity (Fig. 

16 F), percentage of cytoplasmic positivity (Fig. 16 E) and intensity of cytoplasmic positivity (Fig. 16 G).  
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Figure 16. Pearson correlation between HMGB1 expression gene and IHC score. No statistically significant correlation 

was found between gene expression and IHC score, evaluated in terms of cytoplasmic score (A), nuclear score (B), total 

score (C), percentage of nuclear positivity (D), intensity of nuclear positivity (F), percentage of cytoplasmic positivity (E) 

and intensity of cytoplasmic positivity (G). 286 

 

 

 

 

 

 

 

Univariate and multivariate analysis  

The variables putatively associated with Disease-specific survival were individually analyzed with a 

univariate Cox proportional hazards regression model (Table 5). Significant variables in the univariate 

analysis were added to a multivariate model. As shown in Table 5, clinical stage (I-II versus III-IV), histologic 

subtype (epithelioid versus non-epithelioid), treatment type (treated versus untreated) and interestingly, 

total HMGB1 score continued as significant prognostic factors.  
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Table 5. Univariate and multivariate analysis of Disease-Specific Survival.  

Factor 
Disease-Specific Survival 

HR (95% CI) P 

Univariate analysis      

Age, mean (<68 versus ≥68) 1,02 (1,004-1,037)  0,016* 

Histologic subtype (epithelioid versus 
non-epithelioid) 

1,82 (1,28-2,59) 0,00068* 

ECOG score (0-2 versus >2) 6,42 (3,85-10,69) 0,000* 

Clinical Stage (I-II versus III-IV) 5,12 (3,63-7,23) 0,000* 

Treatment type (treated versus 
untreated)  

0,34 (0,234-0,496) 0,000* 

HMGB1 gene expression (low versus 
high) 

0,94 (0,65-1,38) 0,766 

HMGB1 Total IHC score (low versus 
high) 

1,69 (1,23-2,32) 0,001* 

HMGB1 Cytoplasmic IHC score (low 
versus high) 

1,37 (1,01-1,86) 0,044* 

HMGB1 Nuclear IHC Score (low versus 
high) 

1,124 (0,787-1,604) 0,519 

Multivariate analysis      

Age (<68 versus ≥68) 0,97 (0,703-1,343) 0,864 

Histological subtype (epithelioid versus 
non-epithelioid) 

1,91 (1,3-2,79) 0,0009* 

Clinical Stage (I-II versus III-IV) 5,42 (3,68-7,984) 0,000* 

Treatment type (treated versus 
untreated)  

0,42 (0,275-0,63) 0,00003* 

HMGB1 Total IHC score (low versus 
high) 

2,262 (1,384-3,697) 0,0011* 

HMGB1 Cytoplasmic IHC score (low 
versus high) 

0,806 (0,504-1,287) 0,366 

Abbreviations: ECOG, Eastern Cooperative Oncology Group; CI, confidence interval; 
HR, hazard ratio; *, significant variable.  
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Murine mesothelioma cell lines and generation of a syngeneic system.  

Characterization of murine MM cell lines.  

The MM murine cell line (AB1, AB12 and AB22) were obtained from the tumor masses generated by the 

intraperitoneal injection of BALB/c mice with asbestos fibers and we cultured them in vitro.14 We observed 

the aspect of AB1, AB12 and AB22 in microscope and detected that they have similar phenotypes to the 

sarcomatoid, biphasic and epithelioid cells of human mesothelioma, respectively (Figure 17a-f).  

The detection of microvilli on the surface of such cells by electron microscopy (Figure 17 g-i), indicate 

similarities with the electron micrograph of cultured MM cells with a microvillous-rich surface; an 

important feature of mesothelial cells23. 

The original cell lines were re-injected into the peritoneum of BALB/c mice and the tumor masses explanted 

from the mice were used for isolating cell lines named AB1-B/c; AB12-B/c; AB22-B/c. Next, the cell lines 

were infected with a lentiviral vector in order to constitutively express the luciferase gene and were named 

AB1-LUC; AB12-LUC; AB22-LUC. Subsequently, the murine cell lines underwent both manipulations 

sequentially and were named AB1-B/c-LUC; AB12-B/c-LUC; AB22-B/c-LUC. The manipulated cell lines 

displayed the same features of the original strains. Therefore, they were interchangeably used in the 

experiments.  

It has been revealed that HMGB1 is very important for MM pathogenesis and development 10,11.  Thus, we 

sought to determine by immunostaining the expression of HMGB1 in the murine MM cell lines and into the 

tumors derived from them.  Interestingly, we found that HMGB1 is localized in the nucleus, but also in the 

cytoplasm, as expected if the protein is actively secreted (Fig. 18 a–c). In agreement with this, ELISA assays 

detect 20–30 fold higher levels of secreted HMGB1 in the culture medium of murine MM cells compared to 

that of primary mesothelial cells (Table 6). In addition, we found that HMGB1 chemoattracts all AB cell lines 

and promotes invasion of AB1- and AB12-B/c-LUC cells, but not of AB22-B/c-LUC cells (Fig. 19 a, b). Hence, 

murine MM cell lines recapitulate the features of human MM cell lines, including their response to HMGB1, 

supporting their migration and invasion.  

 

Characterization of tumor masses generated by murine MM cell lines.  

IP injection of murine AB cells, whether manipulated (Luciferase-expressing cells) or not, in BALB/c mice 

generated sizable tumour masses in approximately 2–3 weeks after injection. The tumor growth at its early 

stages of development (0–12 days) was followed by the increase in BLI signal only detected by IVIS. At these 

stages tumor masses and, for instance, lymph nodes have similar sizes and ultrasound (US) scans cannot tell 

them apart. However, the differences between strong vs weak BLI signals of larger tumor masses can be 

clarified by the parallel use of US scans with the detection of bioluminescence (IVIS) coupling BLI with US 

scans. The combination of the two techniques allows the evaluation of important parameters: the size and 

the location of masses, and reveal their relationship with other organs of the abdomen (Fig. 20).  In 
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particular, time-wise increases of the bioluminescence signal allow following the growth of masses and 

assign a rough abdominal location. Strong vs. weak IVIS signals can be due to the location of tumors in the 

abdomen (superficial vs. deep) or to their size (large vs. small). Such quandaries can be clarified by the use 

of ultrasound scans that yield more precise measurements of tumor size, pinpoint their spatial location and 

reveal their relationship with other organs of the abdominal cavity. 

Another important feature of tumour development is the neo-angiogenesis and its ability to support tumour 

invasiveness and growth. Figure 21.a,b shows hematoxylin-eosin staining of explanted and 

paraformaldehyde-fixed tumors obtained from AB1 cells. Although vascularization can be clearly observed 

only at the periphery of the masses, and their inner portions do not show identifiable vessels, there was no 

evidence of necrosis. It was shown that indeed small ectopic vases are present inside the masses (Figure 21), 

providing a sufficient vascularization to support tumour growth and prevent necrosis.  Immunostaining with 

anti-CD31 antibody (which recognizes endothelial cells) showed that indeed a meshwork of capillaries is 

present inside the masses (Fig. 21), providing sufficient vascularization to support tumor growth. In the figure 

8b we can observe the vascularization into a human MM samples stained with CD-31. The results indicate 

that AB cells establish aggressive tumors that display similarity of vascularization to human MM. 

The H&E stain of explanted masses showed morphologic similarities with human MPM samples. Thus, murine 

MM cell lines accurately recapitulate the morphologic features of human MM cell lines. 

 

 

Histopathological characterization of tumor masses generated by murine MM cell lines. 

 We report the first IHC characterization of AB murine MM lines and tumors, since none was performed 

either on the original asbestos-generated lesions or on the AB cell lines derived from them. 

Explanted AB-derived sarcomatoid, biphasic and epithelioid tumors bear morphological similarities with 

samples of human biopsies of the same histological subtype (Fig. 22).  

The murine MM cells and the corresponding tumors generated by them were immunostained by a panel of 

antibodies routinely used for the diagnosis of human malignant mesothelioma. The IHC analysis revealed 

that only vimentin yielded a positive signal on all cells and tumors, whereas only few AB1 cells were positive 

for wide spectrum cytokeratin (WSCK) and AB22 cells were positive for Wilm’s Tumor antigen (WT1). Both 

AB cells and tumors were positive for other epithelial markers, such as E-cadherin and βcatenin, and also 

yielded a signal for smooth muscle actin (SMA) (Fig. 23; Table 7), whereas WSCK was expressed only in rare 

cells within all tumors. Interestingly, cytopellets of cultured cells and tumors derived from the same cell line 

display discrepancies in the expression of surface markers, as previously reported for human MM cell lines 

and tumors. IHC characterization of MM is still ambiguous: a high variability of diagnostic markers has been 

observed due to reasons pertaining to the cells or to their manipulations. Moreover, little consensus has 

been reached on which and how many markers should be considerate for a positive identification. These 
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data are the first IHC characterization of these murine MM cell lines and tumors generated from them. These 

results collectively indicate that murine MM tumors express a variable set of histological markers.  

 

 

  

 

 

  

Figure 17. Morphology of murine MM cell lines. Cultured AB1, AB12 and AB22 cells, showing morphological 

features corresponding to sarcomatoid (AB1; (a,d)), biphasic (AB12; (b,e)) and stellate/epithelioid (AB22; 

(c,f)) phenotypes. Boxed areas in a, b and c are enlarged in (d–f), respectively, to better appreciate cell 

morphology. Transmission electron microscopy reveals the presence of microvilli (g–i), a hallmark of 

mesothelial cells; Bars in g and h = 2 μm; bar in i = 4 μm. 287 
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Figure 18. Murine MM cells and tumors show both nuclear and cytoplasmic localization of HMGB1. 

Nuclear and cytoplasmic localization of HMGB1 in cultured cells and tumor tissues. A polyclonal anti-

HMGB1 antibody was used to immunostain (a) a cytopellet of cultured AB1-B/c-LUC cells, (b) a section of a 

tumor derived from them and (c) a section of a human MM. Bars = 100 μm. 287 

 

 

 

 

 

 

 

 

 

 

Table 6. HMGB1 is secreted by murine primary mesothelial and AB cells. HMGB1 secreted over 16 hours 

was measured in the culture medium by ELISA. Values are expressed as ng of HMGB1 secreted by 106 cells. 

PMC: Primary Mesothelial Cells. 
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Figure 19. AB cells respond to extracellular HMGB1. (a) HMGB1 (30 ng/ml) acts as a chemoattractant for 

AB cell lines in Boyden chamber assays. The bars represent standard deviation (n = 3). (b) HMGB1 (30 ng/ml) 

increases the invasive potential of AB1-B/c-LUC and AB12-B/c-LUC cells, but not of AB22-B/c-LUC cells, 

in Boyden chamber invasion assays. The bars represent standard deviation (n = 3); p < 0.0001 (***). All 

experiments were repeated at least twice with similar results. 287 

 

 

 

Figure 20. Tumor detection in vivo by BLI and US imaging. 15–20 days following injection of 7 × 104 AB1-

B/c-LUC cells, mice developed tumor masses that were detected by BLI and US. The mass identified by US 

and shown in the panels on the right was estimated to measure 3.5 × 5.4 mm and yielded a higher BLI 
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signal, whereas the one shown in the panels on the left was estimated to measure 2.5 × 2.5 mm and had a 

lower BLI signal. In both cases the BLI signal is sufficiently strong, allowing their detection as individual 

masses. 287 

 

 

 

 

 

 

 

Figure 21 a: vascularization of mice tumor masses generated after IP injection of AB1 cell lines;  

Figure 21 b: vascularization of human MPM  
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Figure 22: Murine and human tumors have similar phenotypes – Slices of explanted tumor masses 

generated by injection of AB1, AB12 and AB22 cells in BALB/c mice were stained with hematoxylin and 

eosin (H&E), as were slices from human sarcomatoid, biphasic and epithelioid mesotheliomas. The 

architecture of murine tumors appears similar to that of the corresponding (sarcomatoid, biphasic, 

epithelioid) human masses. 287 
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Figure 23. Immunohistochemical characterization of MM cell lines and tumors derived from them. 

Following detachment from culture dishes, cells were fixed and centrifuged; the pellets were then sectioned and 

stained with the indicated antibodies (cytopellet). Explanted tumor masses were fixed, sectioned and stained 

with the same antibodies as in cytopellets. Arrows indicate positive cells. All pictures were taken with the same 

magnification (10X). Bars in top left panels of H&E stain of cytopellets and tumors = 50 μm. 287 
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Table 7. Immunohistochemical characterization of MM cells. (− ) = absence of staining; (+ /− ) = weak 

staining; (+ ) = positive staining; (*) = some cells do not express the protein; (?) = uncertain. 

 

 

Establishment of primary mesothelioma cell lines and cell spheres. The human MPM cell line, called 

‘MN11’ was established, cultured in vitro and were subcultured for over 30 passages. Phase-contrast 

microscopy demonstrated epithelioid subtypes as shown in Figure 24; this cell line grew as adherent layers 

with no floating cells at confluence in the culture media. Phase- contrast microscopy pictures indicated that 

MN11 cells grew with a polygonal morphology, as shown in Figure 24. a. Following detachment from 

culture dishes, cells were fixed and centrifuged; the pellets were sectioned and stained by IHC with the 

following antibodies: Vimentin, WT-1, Calretinin, Mesothelin. IHC analysis of MN11 cytopellets indicates 

positivity for the diagnostic panel of mesothelioma markers such as Vimentin, WT-1 confirming their 

mesothelial origin (Fig.24).  

The cell line has the ability to grow in non-adherent conditions (petri dish) generating floating spherical 

structures in approximately 4 days after seeding. Phase contrast microscopy demonstrated the morphology 

of mesothelioma spheroids. Following the collection of tumor spheroids from culture dish, spheres were 

fixed and centrifuged; their pellets were sectioned and characterized by H&E staining and IHC with the 

panel of mesothelioma antibodies. The MN11 spheres express positivity of staining for Vimentin, and WT-1, 

as shown in figure 25. 
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Figure 24. Phase-contrast micrographs of MPM cells in tissue culture. (A) MN11 mesothelioma cells mainly 

composed of polygonal epithelioid cell types can be seen. (B) Scale bar =100 µm; Representative IHC 

staining results of the MPM cell pellets that were formalin-fixed and paraffin-embedded. MPM1 cells 

stained positively for vimentin (C) and Wilms Tumor-1 (D) Scale bar= 200 µm. 

 

 

 

Figure 25. Phase-contrast micrographs of MPM spheres in culture. (A) MN11 mesothelioma spheres seems 

to be rounded, compact, but also irregular. (B) Scale bar =100 µm; Representative IHC staining results of 
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the MPM cell pellets that were formalin-fixed and paraffin-embedded. MPM1 cells stained positively for 

vimentin (D) and Wilms Tumor-1 (E). Scale bar= 200 µm. 

 

Patient derived xenograft.  

Our experience indicates that upon the tumor implantation subcutaneously in mice flanks, the formation of 

palpable masses (˜1 cm) takes at about from 12 to 16 weeks. We were able to obtain successfully three 

Patient-derived xenografts (3/10 = 33%) from the human biopsies collected and used for xenograft. A 

pathologist confirmed that the explanted mass retains the same morphology and immuno-phenotype of 

original tumor (Fig.26): both are positive for Calretinin, CK5/6 and WT-1.  
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Figure 26. Schematic presentation of Patient Derived Xenograft model of MPM. Immunohistochemical 

characterization of the original tumor fragment/patient biopsy and of explanted tumor mass from NSG 

mouse.  

 

Establishment of human mesothelioma organoids.  

Organoid formation from human epithelioid mesothelioma was observed after two days post-seeding. 

Organoids are small in size (Fig. 27, 28) (starting at around 100 µm diameter and growing to 700 µm) and can 

be processed to form second-, third- and fourth generation organoids. Hematoxylin and eosin staining 

showed that human mesothelioma organoids have inside-outside polarity, and an internal matrix (Fig. 28); 

organoids were positive for mesothelioma markers such as Vimentin, WT-1 and mesothelin (Fig. 29). Next, 

we monitored the organoids growth by Axiovision, measuring their area day by day. The growth curves of 

tertiary organoids indicated that human organoids grow very slow (Fig.30).  

In addition, we generated non-tumoral human organoids from pleural phlogosis and monitored their growth 

(Figure 31). Interestingly, we observed that non-tumoral organoids grow faster than the tumoral one, in the 

same culture conditions.  

 

 

Figure 27. Phase-contrast micrograph by inverted microscope following the Organoids growth. Primary 

organoid generated from patient MN9.  
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Figure 28. Organoids presentation by phase-contrast micrograph and H&E staining.  

 

 

 

Figure 29. IHC characterization of Human Organoids, which express positivity for Vimentin, WT-1, and 

mesothelin.  
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Figure 30. Monitoring the growth of tertiary organoids derived from MOSR3 patient.  
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Figure 31. Monitoring NOSR1 non tumoral organoids growth. Pictures of Non-tumoral Organoids from NOSR1 

(pleural phlogosis) fragment. 
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6. DISCUSSION 

Overall, our findings indicate that expression levels of HMGB1, evaluated by immunohistochemistry, in 

clinical samples of MPM are significantly correlated with patients’ prognosis. Malignant pleural 

mesothelioma (MPM), is a very aggressive tumor: the average disease-specific survival after histologic 

diagnosis is currently 8-12 months.1, 260 Several prognostic factors were identified according to the Cancer 

and Leukaemia Group, and the European Organization for Research and Treatment of cancer. 261 However, 

unlike other malignant tumors, tissue biomarkers detectable by immunohistochemistry or by molecular 

biology techniques able to predict the prognosis of MPM are still lacking. A recent meta-analysis by Wu et 

al,265 indicated that the overexpression of HMGB1, when detected by immunohistochemistry, is significantly 

associated with poor overall survival and progression-free survival in several types of malignant tumors. 264 

In addition, Tabata et al,277, 278 also reported that high serum levels of high mobility group box 1 (HMGB1) 

were related to poor prognosis, suggesting its use in clinical management of MPM. The main goals of our 

study were: a) to assess if the expression levels of HMGB1, evaluated by immunohistochemistry and RT-PCR 

in tissue samples from a large series of MPM, were related to the patients’ survival and b) to evaluate if 

HMGB1 could be useful as a prognostic biomarker in clinical practice.  

We demonstrated that high expression levels of HMGB1, evaluated by immunohistochemistry, in cancer cells 

of clinical samples of MPM were significantly correlated to a worse DSS. This result was obtained either when 

the score was calculated as total score (nuclear plus cytoplasmic) and cytoplasmic score alone, in the entire 

cohort and in the clinical and pathologic subgroups of patients. Conversely, the expression levels of nuclear 

HMGB1 score alone did not show any statistically significant correlation with DSS. HMGB1, is a nuclear 

protein constitutively expressed in both cancer and normal cells and acts as chromatin-binding factor that 

bends DNA, promoting access to several transcriptional proteins.266 Some studies have demonstrated that 

HMGB1 could be actively shuttled between the nucleus and the cytoplasm of tumor cells.267 Following various 

stressors (e.g., cytokine, chemokine, heat, hypoxia, H2O2), HMGB1 translocate from the nucleus to the 

cytoplasm, where it functions as a positive regulator of autophagy.268 At the extracellular level, HMGB1 

functions as a cytokine during inflammation, cell differentiation, cell migration, and seems also to play a role 

in tumor metastasis development.269, 270  Since in our study the cytoplasmic but not nuclear overexpression 

of HMGB1 was significantly associated with poor prognosis, we can speculate that in malignant 

mesothelioma cells, under stress environmental stimuli, HMGB1 migrates from the nucleus to the cytoplasm 

of the tumor cells and after secretion into the extracellular matrix, it enhances tumor cell survival and 

proliferation through several cancerogenic mechanisms. 271 Furthermore, Jube et al, 170 demonstrated, by 

means of in vivo and in vitro experiments, that MPM cells strongly expressed HMGB1 and secreted it at high 

levels, establishing an autocrine circuit that promotes the HMGB1-secreting MPM cells proliferation and 

survival.  
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Our study did not show any statistically significant correlation with DSS when the detection method of RT-

PCR was used. Moreover, no statistically significant correlation was found between the HMGB1 gene 

expression and HMGB1 immunohistochemistry scoring. These results were similar to the findings reported 

by Ueda et al272 in colorectal cancers, and could be tentatively explained by the presence of inflammatory 

cells, also expressing HMGB1, mixed with cancer cells in tissues used for the evaluation of HMGB1 gene 

expression. Alternatively, post-transcriptional regulation of HMGB1 mRNA or post-translational 

modifications of the protein itself could contribute to explain this discrepancy.273, 274, 275 Indeed, Napolitano 

et al reported that the different isoforms of HMGB1 (hyperacetylated and nonacetylated) are responsible for 

the protein release from mesothelioma cells into the extracellular compartment and therefore not 

detectable by immunohistochemistry.276  

In conclusion, we have demonstrated that the expression levels of HMGB1 are inversely correlated with DSS 

in MPM cases, when assessed by immunohistochemistry. To the best of our knowledge, this study represents 

the most significant analysis in terms of the number of patients studied, and suggests the possible use of 

HMGB1 as new prognostic tissue biomarker in the clinical management of patients with MPM. However, 

since HMGB1 is expressed also in normal and reactive mesothelial cells, it cannot be used as a diagnostic 

biomarker, in MPM. 

 

In our study, we have also described the generation and characterization of the in vitro and in vivo models of 

mesothelioma. MPM is resistant to the conventional forms of treatment, and adequate scientific and clinical 

assessment of this disease has been severely limited by the lack of representative cell lines and animal models 

and by the limited number of patients treated in a single institution. Thus, the establishment of 

representative in vitro cell lines and animal models is important for the development of potentially effective 

forms of diagnosis and therapy and for the study of basic biology. In this study, we completed the 

characterization of murine cell lines of mesothelioma, in order to elucidate their molecular and phenotypical 

features and tumor masses derived thereof in BALB/c mice. AB cell lines have been obtained by tumor masses 

which were developed into BALB/c mice induced by asbestos intraperitoneally injection.210 The AB1, AB12 

and AB22 cell lines are used as model systems for various in vitro and in vivo studies of mesothelioma biology. 

They also offer the opportunity to set up a syngeneic model system providing a full immunological tumor 

response. Syngeneic studies use immunocompetent wild type mice, typically inbred strains, for engraftment 

of a tumor cell from the same strain. Because they retain complete immune systems, these models can be 

particularly appropriate for studies of interplay between the tumor and immunity, and for immunologically-

based targeted therapies.   

Our results indicate that the MM cell lines (AB1, AB12) generated by Davis M.R. et al 210 exhibit some of the 

main features at the morphological level, functional and phenotypical of human MM in vitro and in vivo; 

whereas AB22 cells do not fully summarize epithelioid mesotheliomas. Such a model study would be used 
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for the pre-clinical evaluation of potential therapeutic agents because it ‘mimic’ the phenotypic 

characteristics of mesothelioma. However, this system does not allow to consider the heterogeneity of real 

human mesothelioma. Recently, xenografts using well-established human tumor have become popular 

because they accurately recapitulate the features of patient tumors and the complex factors that promote 

tumor progression and metastasis.  Our group developed a Patient Derived Xenograft model by using 

tumor samples of MPM patients and directly implanted them in heterotopic sites (subcutaneously) of NSG 

(NOD scid gamma) mice. The direct engraftment takes approximately 2 hours and growth of palpable 

tumor requires an average of 14 weeks. Our experimental results indicate that we were able to establish 

patient derived xenograft from mesothelioma biopsies, with a success rate of 30%. Establishing a PDX 

Patient derived xenograft model would allow us to significantly broaden the studies on MM, ranging from 

sequencing to drug testing. More importantly, these studies can be carried out on the same “lesion” 

originally transplanted in mice (and expanded in other mice of the same strain), thus maintaining a high 

degree of homogeneity. Furthermore, we performed the hematoxylin and eosin staining and  

immunohistochemical characterization of tumor masses explanted by xenografted mice. The explanted 

tumor maintain the same histologic morphology and immune-phenotype of the original patient biopsy 

recapitulating the original tumor biology. Thus, this system results “less different” from the original lesion 

and therefore provides highly translational results.  Different studies reported that direct xenograft tumors 

grow with considerable stromal elements and recapitulate the histological appearance of the original 

patient tumor over multiple passages in mice. 166  

In this study, the tumor take and growth were analyzed by immunohistochemistry and molecular biology 

experiments. Grown tumors will be then transplanted in recipient NSG mice for further studies, such as, for 

instance, treatment with HMGB1 inhibitors. Recent published results sustain that inhibition of HMGB1 

impaired in vitro tumorigenesis of malignant mesothelioma (MM) cells and reduce tumour growth in 

xenografted SCID mice.170 The treatment with BoxA (HMGB1 antagonist) will allow to determine how many 

and which patients are potentially responsive, providing both quantitative and qualitative pre-clinical 

results. The value of such a program is reflected in its inherent versatility; direct xenograft models may be 

used to study diverse aspects of cancer biology including drug resistance, angiogenesis, tumor 

microenvironment, cancer stem cells and experimental therapeutics. 

Moreover, PDX models can suffer from long latency periods after engraftment and variable engraftment 

rates.  

Recently, a new powerful model system has emerged to expand and investigate normal and cancer stem 

cells, i.e. three-dimensional “organoid” cultures. Organoids represent miniature tissues that recapitulate 

the architecture and growth pattern of the tissue from which they originate. 250, 251 Organoids can be 

derived from healthy or diseased tissue of each individual, propagated in vitro at will, and preserved as 
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frozen stocks. A number of laboratories have successfully generated various organoids. 281-285 Most recently, 

cancer- derived organoid models from prostate, lung and pancreatic cancers have also been established as 

an in vitro system to model an in vivo tumor pathophysiological state, such as tumor-associated signaling 

pathways and chemoresistance. 281,282 However, no reliable mesothelioma organoid models are available at 

the present time. In this study, we focused our attention into Patient derived organoids generation.  We 

established a protocol to generate organoids from mesothelioma biopsies and we followed their in vitro 

growth. Our data indicated that we are able to generate primary, secondary and tertiary organoids. 

However, after the first generation, organoid growth is very slow. So far, we can go on for 3 generations, 

but we are not able to generate mesothelioma "organoid lines”. Furthermore, we performed their 

morphologic and immunophenotyped characterization. The H&E staining indicated that mesothelioma 

organoids have a defined structure with inside/outside polarity, and an internal matrix. Maybe that is why 

we cannot propagate them easily. Whereas, the IHC evaluation showed positivity for Vimentin, Mesothelin 

and WT-1, maintaining the phenotype of a mesothelioma. In contrast to any mesothelioma cell line grown 

in 2D, mesothelioma derived organoids recapitulate the histological architecture and IHC expression 

profiles of the corresponding original tumor. Different studies also reported that tumor-organoids capture 

the essential uniqueness of each individual tumor –integrating its genetic, epigenetic and cellular 

heterogeneity– yet making it experimentally tractable in a manner that has been so far impossible to 

attain. 281-285 This represents a clear breakthrough compared to the use of established cancer cell lines, or to 

more laborious, costly and inefficient in vivo approaches, such as tumor xenografts. Several experiments 

are currently ongoing in order to perform transcriptomic analysis of organoids and their correspondent 

original biopsy. This type of analysis could permit us to comprehend better if the organoids recapitulate the 

tumor biology, molecular profile and heterogeneity. 

Of critical relevance in a therapeutic perspective, tumor-organoids may represent an essential compendium 

to complement sequence-based therapies, as patient-derived organoids can be directly interrogated as in 

vitro proxy of the patient’s tumor for sensitivity to specific drugs or combinations of drugs, to then advice 

the oncologist on what drug(s) to use for that specific patient.  

In conclusion, our work indicates that HMGB1 detected by immunohistochemistry, may represent a useful 

prognostic biomarker in MPM. Moreover, we have generated and described in vitro and in vivo 

mesothelioma models that recapitulates the disease pathogenesis. These models could be also important 

to effectively treat MPM patients with a personalized medicine approach.  
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