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Abstract  
 
Background  

Post stroke spasticity (PSS) occurs approximately in 30% of stroke survivors. Spasticity varies from 

a subtle neurological sign to a gross increase in tone causing immobility of joints. PSS is associated 

with several complications, increasing care needs and utilisation of healthcare resources. 

Botulinum toxin type A (BoNT-A) has been considered as an effective and safe treatment for focal 

spasticity in stroke survivors, with low prevalence of complications, reversibility of effect, and 

efficacy in reducing spastic hypertonia. Recent studies estimated that a significant percentage of 

patients affected by PSS could benefit from higher doses than those permitted by current country 

directives. However, at present time, there is no general consensus on the maximum dose of BoNT-

A in terms of safety and clinical interchangeability among the three commercially approved products 

(abobotulinumtoxinA, onabotulinumtoxinA, incobotulinumtoxinA).  

In light of these considerations, the aim of this thesis is to investigate the safety profile of BoNT-A 

high doses in the treatment of post stroke spasticity.  

In our research activity we investigated the clinical effect of this treatment in severely affected 

patients, focusing on both clinical and instrumental assessment of systemic effects of BoNT-A. 

  

Results  

Although systemic BoNT-A toxicity is a rare event and as such not necessarily fatal, fear of systemic 

toxicity is still the most vigorous concern against application of increased BoNT-A doses.  

Current evidence coming from published literature, considering both clinical and instrumental 

analysis of BoNT-A systemic diffusion, suggests that higher doses of BoNT-A are efficacious in 

reducing spasticity of the upper and lower limbs after stroke, with rare occurence of mild adverse 

effect.  

 

Conclusions  

The evidence coming from published studies suggests that use of doses of BoNT-A higher than those 

reported in product labels could be considered as a safe therapeutic option to reduce multifocal or 

generalized post stroke spasticity in selected patients. The clinicians have to carefully define the 

clinical goal before starting with BoNT-A treatment, considering all the factors which could affect 

the safety profile of BoNT-A. 

Further evidence is mandatory to confirm higher doses of BoNT-A as a safe and effective therapeutic 

option for the treatment of post stroke spasticity. In particular, it should be pointed out the potential 

role of higher doses of BoNT-A in order to improve the functional outcome of these patients. 
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Riassunto  
 
 
Introduzione 

La spasticità post ictus (PSS) è osservata in circa il 30% dei soggetti con esiti di stroke.  

La presentazione può variare da un lieve incremento del tono muscolare ad una immobilizzazione di 

segmenti articolari, ed è causa di significative complicanze e di incremento di costi assistenziali e 

sanitari. 

La tossina botulinica di tipo A (BoNT-A) è un trattamento sicuro ed efficace nel trattamento della 

PSS focale. Da studi recenti emerge che una significativa percentuale di pazienti potrebbe trarre 

benefici dall’utilizzo di dosi di BoNT-A superiori a quelle indicate in scheda tecnica. Tuttavia, non 

vi sono attualmente pareri unanimi in merito alla massima dose utilizzabile ed alla intercambiabilità 

fra le BoNT-A in commercio (abobotulinumtoxinA, onabotulinumtoxinA, incobotulinumtoxinA). 

Obiettivo della tesi è la valutazione del profilo di sicurezza delle alte dosi di BoNT-A nel trattamento 

della PSS. Nella nostra attività di ricerca abbiamo analizzato l’effetto clinico di questo trattamento in 

pazienti affetti da PSS severa multifocale; particolare attenzione è stata rivolta alla valutazione clinica 

e strumentale degli effetti sistemici di BoNT-A.  

 

Risultati 

La tossicità sistemica è un evento raro e non sempre fatale, ma il timore della sua insorgenza è tuttora 

la maggiore criticità legata all’applicazione di alte dosi di BoNT-A.  

Le attuali evidenze, che considerano sia una valutazione clinica che una valutazione strumentale della 

diffusione sistemica di BoNT-A, suggeriscono che alte dosi di BoNT-A sono efficaci nella riduzione 

della PSS all’arto superiore ed inferiore, con una bassa incidenza di effetti avversi.  

 

Conclusioni 

Le attuali evidenze suggeriscono che l’utilizzo di dosi di BoNT-A superiori a quelle indicate in scheda 

tecnica possono essere considerate come un’opzione terapeutica sicura ed efficace nel trattamento di 

PSS in pazienti selezionati.  I clinici devono definire con accuratezza gli obiettivi terapeutici, 

considerando tutti i fattori che possono influenzare il profilo di sicurezza del farmaco. Ulteriori 

evidenze sono necessarie per confermare il profilo di efficacia e sicurezza delle alte dosi di BoNT-A 

nel trattamento della spasticità focale post ictus. Particolare attenzione deve essere rivolta a definire 

il ruolo delle alte dosi di BoNT-A nel miglioramento dell’outcome funzionale del paziente.  
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Introduction 

 

Stroke-related disability is a significant health problem with relevant socioeconomic consequences 

for patients as well as society with long-lasting effects.  

More than two-thirds of stroke survivors develop poststroke sequelae, including impaired motor 

function and spasticity. These impairments have a significant impact on a stroke survivor’s daily life, 

such as eating, walking and self-care. In addition, these disabilities involve a significant burden on 

caregivers of these patients [Wissel et al, 2013].  

Post stroke spasticity (PSS) occurs approximately in 30% of stroke survivors. Spasticity varies from 

a subtle neurological sign to a gross increase in tone causing immobility of joints. PSS is associated 

with several complications, increasing care needs and utilisation of healthcare resources [Lundstrom 

et al 2010], and carers of patients with spasticity are more likely to experience anxiety and depression 

[Denno et al, 2013]. 

Management of spasticity requires a balanced approach, weighing the benefits of treatment against 

the side effects.  

Botulinum toxin type A (BoNT-A) has been considered as an effective and safe treatment for focal 

spasticity in stroke survivors, with low prevalence of complications, reversibility, and efficacy in 

reducing spastic hypertonia [Santamato et al, 2015], with the approval of the U.S. Food and Drug 

Administration and the European regulatory agencies for this indication. However, at present time, 

there is no general consensus on the maximum dose of BoNT-A in terms of safety and clinical 

interchangeability among the three commercially approved products (abobotulinumtoxinA, 

onabotulinumtoxinA, incobotulinumtoxinA).  

A recent survey [Picelli A, Baricich A et al, 2017] suggested that there is a need to reconsider the 

maximum dose administered per single treatment in order to improve the clinical outcome of treated 

patients. In fact, the use of high doses of BoNT-A is an established practice that, moreover, addresses 

the very real need to improve the quality of life of patients with post-stroke spasticity [Baricich et al., 

2015]. It has been reported that a high percentage of patients (up to about 62%) needs a combined 

BoNT-A treatment of upper and lower limb, while only a very low proportion (< 25% on average) 

requires treatment in the upper or lower limb alone in a single session; in addition, anecdotal, 

unpublished, 10- year follow-up observations showed that a tendency to increase BoNT-A doses over 

time was paralleled by a tendency of patients to be more satisfied [Picelli A, Baricich A et al, 2017].  

However, the most important adverse effect of BoNT-A is the systemic diffusion of the toxin and it 

has been suggested [Lange et al, 1987] a potential relationship with BoNT-A dose, causing a possible 

increase of adverse events after injection.    
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Aim of the thesis 

In light of these considerations, the aim of this thesis is to investigate the safety profile of BoNT-A 

high doses in the rehabilitation treatment of post stroke spasticity, focusing on both clinical and 

instrumental assessment of systemic effects of BoNT-A.  

Presentation of data derived from published studies will be integrated with the findings obtained by 

our group.   
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Post stroke spasticity 

 
The term spasticity as a clinical entity was proposed by J.W. Lance in the 1980s as “a motor disorder 

characterized by a velocity-dependent increase in tonic stretch reflex (muscle tone) with exaggerated 

tendon jerks, resulting from hyperexcitability of the stretch reflex as one component of the upper 

motor neuron syndrome (UMNS)”. In clinical practice, spasticity describes a combination of 

symptoms and clinical signs after lesion formation in sensorimotor brain areas and tracts in the 

Central Nervous System (CNS), resulting from impaired reflex function; In addition, spasticity 

induces changes in rheological muscle properties like stiffness, fibrosis and atrophy [Dietz and 

Sinkjaer, 2007].  

There is still no consensus for the definition of spasticity and this reflects the complexity and the 

diversity of the phenomena [Baricich et al, 2016; Picelli A, Vallies G et al, 2017]. This is especially 

true for post-stroke motor disorders, which can show a considerable variety of symptoms (e.g. clonus, 

dystonia, muscle weakness, abnormal reflex responses).  

In general, the ‘upper motor neuron syndrome’ can be defined by the presence of positive and 

negative signs [Young, 1994]. Spasticity is part of the positive signs among other motor symptoms 

which occur after lesions in the descending corticospinal system such as spastic dystonia (muscle 

constriction in the absence of any voluntary movement), spastic co-contraction (contraction of both 

the agonist and antagonist muscles resulting from an abnormal pattern of commands in the descending 

supraspinal pathway), extensor or flexor spasms, clonus, exaggerated deep tendon reflexes and 

associated reaction [McComas, 1994; Sommerfeld et al, 1994]. On the other hand, negative signs are 

muscle weakness, loss of dexterity and fatigue.  

Prevalence estimates of post stroke spasticity (PSS) were highly variable, ranging from 4% to 42.6%, 

with the prevalence of disabling spasticity ranging from 2% to 13%. Data on phases of the PSS 

continuum revealed evidence of PSS in 4% to 27% of those in the early time course (1–4 weeks post 

stroke), 19% to 26.7% of those in the postacute phase (1–3 months post stroke), and 17% to 42.6% 

of those in the chronic phase (>3 months post stroke) [Wissel et al, 2013].  

In the upper limbs, the most frequently observed pattern is internal rotation and adduction of the 

shoulder coupled with flexion at the elbow, the wrist and the fingers; in the lower limbs, adduction 

and extension of the knee with equinovarus foot [Thibaut et al, 2013].  

Spastic symptoms can induce pain, ankylosis, tendon retraction or muscle weakness in patients, which 
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can limit the success of rehabilitation. Spasticity can also affect quality of life and be highly 

detrimental to daily function [Duncan et al, 2005; Langhorne, 2011; Chae and Celnik, 2015]. 

However, there is currently a lack of specific guidelines for the stratification and individualization of 

rehabilitation programmes [Thibaut, 2013; Picelli A, Baricich A et al, 2017].  

Therapeutic interventions include physical therapy, occupational therapy, self-rehabilitation, orthoses 

equipment and assistive devices, pharmacological treatment, orthopaedic surgery and neurosurgery 

[Thibaut et al, 2013; Deltombe et al, 2017].  

 

Botulinum Toxin and post stroke spasticity  

Botulinum Toxin type A (BoNT-A) administered by intramuscular injection, is the gold standard for 

the treatment of focal spasticity, with low prevalence of complications, reversibility, and efficacy in 

reducing spastic hypertonia with the approval of the U.S. Food and Drug Administration and the 

European regulatory agencies for this indication.  

BoNT-A showed to increase patient’s ability to actively mobilize their upper and lower limbs and 

improve their autonomy (e.g. self-care, walking) [Thibaut et al, 2013; Simpson et al, 2016]. 

 

Pharmacology and immunology of Botulinum Toxin  

Botulinum neurotoxin (BoNT) is a microbial protein which exists in seven different serotypes, 

designated A through G. Although the individual serotypes are immunologically distinct, all members 

of the group present similar subunit structures, act on the same target organs, and produce similar 

functional outcomes [Lacy and Stevens, 1999; Johnson and Bradshaw, 2009]. Each molecule is 

typically released from bacteria as part of a noncovalent complex with other associated proteins. 

These auxiliary proteins do not play an active role in the therapeutic actions of the toxin, even if it 

was hypothesized a possible involvement in undesirable effects.  

BoNT is an enzyme which acts in the cytosol of nerve endings: it cleaves three polypeptides 

governing exocytosis. Serotypes A and E cleave synaptosomal-associated protein (SNAP)-25, 

serotypes B, D, F, and G cleave vesicle-associated membrane protein (VAMP), and serotype C 

cleaves both syntaxin and SNAP-25 [Simpson, 2004; Humeau et al, 2000]. 
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The block of acetylcholine release at neuro-muscular junctions is the mechanism involved in the 

therapeutic effect of BoNT to relieve dystonia, spasticity, and related disorders [Tassorelli et al, 

2006].  

BoNT showed additional therapeutic benefits, not necessarily related to neuromuscular transmission, 

including blockade of acetilcholine release at autonomic nerve endings and blockade of transmitter 

release at peripheral nerve endings that use other mediators. 

In addition to peripheral effects of BoNT, indirect effects on CNS have been observed, probably 

resulting from changes in the normal balance of efferent and afferent signals. Interestingly, both the 

direct and indirect actions of the toxin are largely or completely reversible [Simpson et al, 2008].  

At the present time, BoNT is commercially available in 2 serotypes, A and B. In United States, Food 

and Drug Administration approved four preparations of BoNT: onabotulinumtoxinA (Botox®, 

Allergan, Inc., United States), abobotulinumtoxinA (Dysport®, Ipsen, France), incobotulinumtoxinA 

(Xeomin®, Merz Pharmaceuticals GmbH, Germany), and rimabotulinumtoxinB 

(Myobloc/Neurobloc® (US WorldMeds/Solstice Neurosciences, United States). [Table 1] 

 

Table 1: Botulinum toxins and FDA-approved indications (modified from Simpson et al, 2016) 

BoNT preparation Brand name (manufacturer) FDA approved indications 

OnabotulinumtoxinA Botox (Allergan, Inc., Irvine, CA) 

Blepharospasm, cervical dystonia, 
upper extremity spasticity, lower 
extremity spasticity, chronic 
migraine, treatment of urinary 
incontinence due to detrusor 
overactivity, axillary 
hyperhidrosis, strabismus 

AbobotulinumtoxinA Dysport (Ipsen Ltd., Paris, France) Cervical dystonia, spasticity 

IncobotulinumtoxinA Xeomin (Merz Pharmaceuticals, 
Frankfurt, Germany) 

 

Blepharospasm, cervical dystonia, 
upper extremity spasticity 

 

 

RimabotulinumtoxinB 

 

Myobloc/Neurobloc (US 
WorldMeds/Solstice 
Neurosciences, Louisville, KY) 

Cervical dystonia 
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BoNT-A is approved for cervical dystonia and spasticity, whereas BoNT-B was approved for cervical 

dystonia only.  

In nature, BoNT-A is synthesized as macromolecular protein complexes [Aoki and Guyer, 2001]. 

These protein complexes are referred to as progenitor toxins and consist of nontoxic accessory 

proteins (NAPs) bonded to the 150-kD active neurotoxin.  

The BoNT-A progenitor toxins vary in molecular weight (300–900 kD) depending on the 

composition of NAPs and the manufacturing process [Dressler and Benecke, 2007]. The 150-kD 

neurotoxin must dissociate from NAPs in order to exert its pharmacologic effects. This dissociation 

occurs in physiologic pH conditions.  

Although no clear differences in effectiveness between the various formulations were demonstrated, 

their comparability is still intensely debated, focusing on several issues such as potency, dose 

equivalence, immunogenicity, spread and systemic diffusion.  

 

Potency  

Although the various BoNT-A products differ in NAP composition, the 150-kD neurotoxin is the 

active part inhibiting acetylcholine release.  

Since the toxin moiety is the same in all pharmaceutical preparations, differences in potency could 

depend of the amount of active toxin available. To become fully activated, the single chain 150-kD 

neurotoxin must be cleaved from the protein complex. All of the commercially available BoNT-A 

formulations are composed of the 150-kD neurotoxin with NAPs; the only exception is 

incobotulinumtoxinA, which contains only the 150-kD neurotoxin.  

However, also the manufacturing process may affect the amount of active toxin; for instance, 

enzymes added to increase the percentage of cleaved active toxin may denature the neurotoxic protein 

itself.  

BoNT-A formulations contain different percentages of inactive toxin which contribute to the overall 

protein load. For this reason, the potency is expressed in biological units. Potency is related to the 

quantity of toxin (in ng of protein content, i.e., 150 kD neurotoxin including NAPs) required to 

achieve a median lethal dose (LD50) unit [Sesardic et al, 2003; McLellan et al, 1996]. However, 

many factors affect the mouse LD50 bioassay including mouse strain, sex, age, volume and route of 

injection, time of examination after injection, and delivery vehicle or reconstituting buffer. Moreover, 

the LD50 units of BoNT products are not standardized across manufacturers.  

Due to the lack of LD50 bioassay harmonization, the unit potencies of BoNT formulations cannot 

easily be compared. For this reason, it is mandatory that physicians consider that, even if the active 
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molecule is botulinum neurotoxin type A, different forms of the complex can affect the therapeutic 

profiles. In fact, as prevously described, there are several BoNT-A products on the market: 

onabotulinumtoxinA (ONA), incobotulinumtoxinA (INCO) and abobotulinumtoxinA (ABO) 

[Albanese, 2011].  

However, despite the difficulties related to the biologic units, the most informative comparisons of 

BoNT-A products have been made in clinical studies.  

 

Dose equivalence 

Each BoNT-A formulation contains different amounts of the 150-kD toxin (and NAPs)/LD50 unit 

(Table 2). However, although there are some difficulties establishing the comparative potencies, the 

equivalence ratio of the dose should be established.  

There are several reasons for identifying a conversion factor: medical (i.e., patients may need to 

switch to another formulation) as well as economical (an incorrect conversion factor may negatively 

impact the real cost of treatment) [Chen and Dashtipour, 2013; Frevert, 2015].  

 

Table 2: Botulinum toxin products and protein content/100 units (Adapted from Scaglione, 2016) 

BoNT-A 
150-kD protein content 

(ng) 
Total protein content 

(150 kD and NAP) (ng) 
Dose Equivalent Units 

OnabotulinumtoxinA 0.73 5.00 1 

IncobotulinumtoxinA 0.44 0.44 1 

AbobotulinumtoxinA 0.65 0.87 2-3 

NAP: nontoxic accessory proteins  

 

INCO has been shown to be as effective as ONA with a comparable adverse event profile with a 

clinical conversion ratio of 1:1 or 1:1.2 [Benecke et al, 2005; Roggenkamper et al, 2006; Jost et al, 

2005; Park et al, 2011; Zoons et al, 2012]. Clinical results are consistent with preclinical 

comparability data [Dressler and Benecke, 2007; Dressler et al, 2012]. Thus, both clinical and 

preclinical analyses have demonstrated a clinical conversion ratio between ONA and INCO very 

close to 1:1.  

In contrast, the conversion ratio between ONA (or INCO, consequently) and ABO is highly debated. 

Even if the most commonly used conversion ratios are 1:3 or 1:4 [Aoki et al, 2006], they ranged from 

1:1 [Wohlfarth et al, 2007] to as high as 1:11 [Marchetti et al, 2005]. This wide conversion ratio range 
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reflects real-life clinical practice; the treating physician determines the number of muscles to be 

treated and the empiric dose based on each patient’s conditions, their clinical pattern, and treatment 

goals.  

Although the various BoNT products differ in NAP composition, the toxins ultimately inhibit 

acetylcholine release. Since the active toxin content is established for each product, a conversion rate 

should be defined. More precise estimation of conversion ratios should also ensure the development 

of comparable clinical data on the efficacy and safety of currently available BoNT-A formulations 

since they have qualitatively and quantitatively similar clinical efficacies and side effects at 

equipotent doses.  

A large number of studies have reported an ONA:ABO conversion factor of 1:3 with  clinical 

equivalence [Marion et al, 1995; Whurr et al, 1995; Kollewe et al, 2010; Odergren et al, 1998; Shin 

et al, 2009]. Moreover, when the conversion factor is close to 1:3, ABO showed higher efficacy 

[Wohlfarth et al, 2008; Mohammadi et l, 2009; Rystedt et al, 2012], indicating that the conversion 

factor could be rather lower than equal to 1:3. Interestingly, studies where the conversion ratio was 

higher than 1:3 showed higher efficacy and longer duration of action of ABO compared to ONA, but 

with more adverse events, supposing an overdose of ABO determined by this conversion ratio 

[Sampaio et al, 1997; Nussgens et al, 1997; Ranoux et al, 2002; Bentivoglio et al, 2012].  

These clinical data are consistent with preclinical data where a conversion ratio for ONA/ABO of 1:3 

or lower has been found [Van den Berg an Lison, 1998; Rosales et al, 2006; Wohlfarth et al, 2009; 

Keren-Capelovitch et al, 2010, Brockmann et al, 2012; Kollewe et l, 2015; Rystedt et al, 2015; Yun 

et al, 2015; Hambleton and Pickett, 1994].  

In conclusion, current data suggest that a conversion ratio ONA/ABO of 1:3—or even lower—is 

appropriate for treating spasticity, cervical dystonia, and blepharospasm or hemifacial spasm. A 

higher conversion ratio may lead to an excessive ABO dose (with the potential for an increased 

incidence of adverse events) or underdosing when switching ABO to ONA [Scaglione, 2016].  

 

Immunogenicity 

A possible reason for secondary treatment failure of any therapeutic protein is its neutralization 

[Kromminga and Schellekens, 2005]. Antibodies that block its pharmacological effects are termed 

neutralizing antibodies, addressed against the active toxin. In this case, the clinical effect may wane 

gradually, eventually leading to complete treatment failure.  

In a study of 27 patients with complete treatment failure due to neutralizing antibodies, the majority 

(81%) of patients had previously experienced partial antibody-induced treatment failure [Dressler, 

2002]. Most patients in this study developed treatment failure within 40 months of starting BoNT 
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treatment.  

However, another study reported a high mean clinical benefit similar for ABO and ONA and <2% of 

the patients developed neutralizing antibodies [Mohammadi et al, 2009].  

However, in more recent investigations, BoNT-A antibodies were not detected [Bakheit et al, 2012; 

Wissel et al, 2017].  

The debate regarding immunogenicity includes the role of the non-toxic proteins, collectively referred 

to as complexing proteins or neurotoxin-associated proteins (NAPs). Under physiological pH 

conditions, the complexing proteins dissociate from the neurotoxin after constitution with saline and 

even before injection [Eisele et al, 2011; Benecke, 2012]. Complexing proteins are not expected to 

modify clinical outcomes, and specific antibodies generated against the complexing proteins are 

termed non-neutralizing and should not affect the secondary response. However, it has been argued 

that complexing proteins may increase the bacterial protein load and could potentially increase the 

immunogenic risk of neutralizing antibody formation [Kukreja et al, 2009]. Even if several studies 

have been conducted, there are no clear demonstrations that NAPs modify the immunogenicity of the 

active toxin [Atassi, 2004; Atassi, 2006; Bigalke, 2009]. However, these studies revealed that the 

toxoid complex is more immunogenic than the purified neurotoxin. This could be relevant 

considering that cross-reactivity may occur between the toxoid and toxin. However, despite the 

considerations mentioned above, the risk of immunogenicity of BoNT-A is very low in clinical 

practice as reported by a large data review [Jankovic et al, 2004; Wissel et al, 2017].  

 

BoNT and systemic diffusion 

BoNT ability to remain relatively localized at the site of injection is largely responsible for its 

remarkable safety profile.  In general, spread and diffusion are supposed to underlie most of the local, 

distal, and systemic effects of BoNT [Ramirez-Castaneda et al, 2013]. 

BoNT spread (also called diffusion) describes the toxin’s effect on areas away from the injection site. 

The potential risk for adverse effects due to toxin spread is described in the labeling for each BoNT-

A product [Scaglione, 2016]. However, the mechanism of this phenomenon is not completely 

understood.  

Spread to contiguous areas could increase the risk of adverse effects. For example, spread from 

injections in the cervical or craniofacial musculature may induce diplopia, dysarthria, or dysphagia, 

whereas injections in extremities could induce weakness in non-treated, close muscles.  

Although uncommon, distant spread can occur, causing unintended neuromuscular blockade remote 

to the injection site. For example, systemic botulism symptoms such as dysphagia can occur when 

the toxin is injected at a distant site (e.g., lower extremities for spasticity). Even if generalized 
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weakness is a rare occurrence after BoNT injections, Bhatia and colleagues reported the case of three 

patients who developed generalized muscle weakness, drawing attention to the rare possibility of 

mild botulism after treatment with BoNT-A for dystonia [Bhatia et al, 1999]. Moreover, flu-like 

symptoms (another possible sign of distant spread or a systemic immune response) vary widely in 

different studies: 1.7% to 20% of patients treated with various preparations of BoNT-A, and 5% to 

55% of patients receiving BoNT-B, reported mild to moderate flu-like symptoms [Baizabal-Carvallo 

et al, 2011]. 

In addition, although BoNT probably does not cross the blood–brain barrier [Truong et al, 2009], 

Hristova et al reported three cases of encephalitic clinical features that occurred shortly after treatment 

of focal dystonia with BoNT-A [Hristova et al, 2012].  

It must be highlighted that any potential differences in toxin spread characteristics among the different 

BoNT would be clinically relevant.  

Differences in the potential for contiguous spread among the BoNT products have been studied, but 

at the moment there is no clear evidence that differentiates the various products. It has been 

hypothesized that diffusion of neurotoxin into adjacent tissue is slower with the high molecular 

weight complex compared with the lower molecular weight or free neurotoxin [Dressler et al, 2012]. 

Therefore, theoretically, ONA with the highest complex size of 900 kD should be less diffusible, 

whereas INCO containing only the 150-kD neurotoxin (without NAPs) should be the most diffusible, 

with a higher rate of side effects related to toxin spread. However, this has not been demonstrated.  

On the other hand, progenitor toxin size may be irrelevant with regard to toxin diffusion, because all 

BoNT progenitor complexes immediately dissociate following injection [Wagman and Bateman, 

1953]; in addition, dissociation probably occurs in the vial on reconstitution with normal saline 

[Eisele et al, 2011]. This is consistent with data from an animal model, in which there were no 

significant differences in the field of effect among ABO, INCO, and ONA [Carli et al, 2009].  

However, several factors other than the pharmaceutical preparation such as dose, dilution, injection 

technique, target site, location of injection within the muscle, level of muscle hyperactivity, depth of 

injection, and post-injection rehabilitation could influence the potential for spread [Roche et al, 2008; 

Pickett, 2009; Brodsky et al 2012; Baricich et al, 2015].  
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BoNT-A doses, spread and adverse events in Post stroke spasticity treatment 

 
As reported above, in case of focal post stroke spasticity, BoNT-A injection is the gold standard 

therapy, with low prevalence of complications, reversibility, and efficacy in reducing spastic 

hypertonia [Simpson et al, 2016], with the approval of the U.S. Food and Drug Administration and 

the European regulatory agencies for this indication.  

Current guidelines suggest the employment of a dose up to 600 units (U) of onabotulinumtoxinA 

(Botox®, Allergan, Inc., United States) and incobotulinumtoxinA (Xeomin®, Merz Pharmaceuticals 

GmbH, Germany) or up to 1500 U of abobotulinumtoxinA (Dysport®, Ipsen, France) per injection 

session to treat spasticity after stroke [Wissel et al, 2009]. However, in recent years, higher doses 

were used, especially in case of upper and lower limb severe spasticity. It is known that low doses of 

BoNT-A can be used to increase motor function in those patients affect by spasticity graded 1 or 2 as 

measured by Modified Ashworth Scale (MAS) [Bohannon and Smith, 1987], whereas in the case of 

severe spasticity elevated doses of BONT-A may be useful to improve limb posture, to apply 

splinting, to consent hygiene, to increase passive articular range of motion, to walk and stand in 

patients with spastic equino-varus foot deformities, to improve joint range of motion and muscle 

extensibility or to reduce spasticity-related pain [Aoki, 2005]. However, many clinicians suggested 

that higher doses of BoNT-A may cause generalized, adverse effects [Hesse et al, 1995; Mancini et 

al, 2005; Varghese-Kroll and Elovic, 2009; Crowner et al, 2010; Thomas and Simpson, 2012]. In 

particular, Lange and colleagues (1987) hypothesized a possible relationship between BoNT-A dose 

and systemic effects, even if a clear relationship between dose and severity of symptoms was 

observed.  

In light of these considerations, the assessment of patients treated with high doses of BoNT-A should 

include a systematic evaluation of the presence of undesired, adverse events. Moreover, in association 

with clinical assessment, a non-invasive, instrumental evaluation should be considered to detect also 

subclinical diffusion of BoNT-A, in order to better undestand the pathophysiological mechanisms 

possibly involved in systemic side effects.  

 

Clinical assessment 

Hesse and colleagues [1995] published one of the first studies focused on high doses of BoNT-A. All 

patients of the group treated with 2000 U of AbobotulinumtoxinA (n=5) completed the study. Four 

weeks after injection they reported a muscle tone reduction, improved gait velocity, stride length, 

stance- and swing-symmetry without adverse effects, whereas a patient of the other group (treated 

with 1500 U) developed a bladder paresis, requiring catheterization for 14 days. 
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In a randomised, double-blind, dose-ranging study, Mancini and colleagues [2005] treated 45 patients 

with three different doses of OnabotulinumtoxinA, on the basis of suggestions in the literature. All 

the groups showed significant improvements after treatment. Group II (mean BoNT-A total dose: 322 

U) and Group III (mean dose: 540 U) showed a greater and more prolonged response than Group I 

(mean dose: 167 U). However, Group III showed the highest rate of adverse effects 4 weeks post-

treatment (prolonged weakness of the treated limb, flu-like syndrome and oedema of the injected leg).  

Varghese-Kroll and Elovic (2009) reported the first known case of repeated, contralateral weakness 

and fatigue after high-dose BoNT-A injection. A 53-yr-old woman developed contralateral weakness 

and fatigue, without autonomic symptoms, 2 weeks after receiving an injection with 800 units of 

onabotulinumtoxinA for management of poststroke spasticity. The patient reported resolution 4 

weeks later. The patient experienced the same, contralateral symptoms more than a year later, after a 

500 U injection, which took a similar length of time to resolve. Interestingly, three previous injections 

of onabotulinumtoxinA of 700 U, 500 U, and 600 U that were spaced three months apart were well 

tolerated.  

In a case series, Crowner and colleagues (2010) described the adverse effect (difficulty getting on/off 

his bus) of a 16-year old male treated with 640 U of onabotulinumtoxinA into the left flexor carpi 

radialis, flexor carpi ulnaris, pronator teres, flexor digitorum superficialis, biceps, brachioradialis, 

and quadriceps muscles. These symptoms lasted only one month. Interestingly, also in this study the 

Authors reported a previous, well tolerated injection of 635–640 U of BoNT-A. After a re-injection 

of 650 U of onabotulinumtoxinA into the same muscles, the patient presented weakness in both upper 

and lower extremities, dysarthria, and increased falls and gait instability after the injection. Twelve 

weeks post-injection, he had continued difficulty ascending stairs but was no longer falling and had 

regained full strength in his upper extremities.  

Thomas and Simpson also described [2012] contralateral weakness following repetitive 

onabotulinumtoxinA administrations in two patients affected by post-stroke spasticity.  

In the first case report, a 43-year-old woman, treated for more than one year with 575–700 U of 

OnabotulinumtoxinA into the upper and lower limb muscles without adverse effects, developed after 

a re-injection of 700 U total dose, contralateral weakness in the shoulder girdle and distal arm; 

generalized weakness, bulbar, respiratory, sphincter, pain, sensory symptoms, or other systemic 

symptoms were not reported.  

In the second case report, a 21-year-old woman with post-stroke spasticity and dystonia did not report 

adverse effects with total doses ranging from 550 to 700 U of onabotulinumtoxinA into the proximal 

upper limb muscles. However, after a new treatment in the same muscles with a total dose of 700 U, 

she reported weakness of her non-treated right arm, starting within days after the last injection. She 
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did not report neck pain, radiating symptoms to the right upper extremity, sensory disturbances, 

diplopia, dysphagia, or shortness of breath. The same symptoms were reported after the injection of 

600 U. However, no adverse effects were described with 500 U of onabotulinumtoxinA, avoiding 

any muscles proximal to the elbow. In this case, the Authors hypothesized the development of 

contralateral limb weakness for diffusion of BoNT-A through tissue planes from proximal upper 

extremity muscles, across the midline, to contralateral muscles.  

 

On the other hand, in recent years, many experienced clinicians investigated the effects of higher 

BoNT-A doses. In fact, as evidenced in expert consensus panel reviews [Wissel et al, 2009; 

Santamato et al, 2015] the recommended doses of BoNT-A in the product label reflect older clinical 

trials, whereas the clinical management of the patients could require higher doses in order to improve 

patients’ clinical outcome and quality of life [Picelli A, Baricich A et al, 2017]. Interestingly, in a 

recent survey, Bensmail and colleagues [2014] estimated that 24.6% of the patients could benefit 

from higher doses than those permitted by current country directives.  

 

In a prospective, non-randomized, open-label study, Santamato and colleagues [2013] described the 

safety and efficacy of higher doses (ranged from 750 to 840 U) of incobotulinumtoxinA in 25 subjects 

with upper and lower limb spasticity after stroke. The patients were treated under ultrasound guide in 

several muscles of the upper and lower limbs, reporting after 30 days of follow-up, a substantial 

improvement in functional disability, spasticity-related pain, and muscle tone. Only 16% of patients 

experienced treatment-emergent, mild adverse events (injection site pain, muscular weakness), 

resolved in a few days.  

Intiso and colleagues [2014] reported the effectiveness of high doses (up to 840 U) of 

incobotulinumtoxinA to treat spasticity due to brain injury or cerebral palsy. A significant reduction 

of muscle hypertone and pain was observed, but global functionality and arm dexterity were 

unchanged. Three patients (13.6%) complained of adverse events: of these, 2 subjects had local side 

effects consisting of injection site hematoma and one subject complained of weakness and reduction 

of active motility of the injected arm lasting for 2 weeks. No generalized side effects were observed.  

Dressler and colleagues [2015] demonstrated that high doses of incobotulinumtoxinA (minimum 400 

U and maximum 1200 U), injected into fifty-four patients suffering from spasticity of several 

etiologies, did not cause any generalized effects which could be attributed to BoNT therapy or 

complete secondary therapy failure. The Authors concluded that generalised weakness, being 

bedridden, feeling of residual urine and constipation were caused by the underlying tetra- or 
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paraparesis, blurred vision by presbyopia. Neurologic examination, serum chemistry and full blood 

count did not indicate any systemic adverse effects.  

In a retrospective analysis [Baricich et al, 2015], we evaluated the efficacy and safety of high doses 

of onabotulinumtoxinA (from 600 to 800 units) in 26 patients affected by upper and/or lower limb 

post-stroke spasticity. They were assessed before, 30 and 90 days after treatment. We observed a 

significant muscle tone reduction and a significant functional improvement. No adverse events were 

reported.  

In a recent study, Wissel and colleagues [2017] evaluated safety (primary objective) and efficacy of 

increasing doses (400 U up to 800 U) of incobotulinumtoxinA for patients with limb spasticity. In 

this prospective, single-arm, dose-titration study, patients (18-80 years) with spasticity due to cerebral 

causes, who were clinically deemed to require total doses of 800 U incobotulinumtoxinA, received 3 

consecutive injection cycles with 400 U, 600 U, and 800 U incobotulinumtoxinA, respectively, each 

followed by 12-16 weeks' observation. In total, 155 patients were enrolled. IncobotulinumtoxinA 

dose escalation did not lead to an increased incidence of treatment-related AEs. No treatment-related 

serious AEs occurred. The Authors concluded that escalating incobotulinumtoxinA doses (400 U up 

to 800 U) did not compromise safety or tolerability, enabling treatment in a greater number of 

muscles/spasticity patterns with increased treatment efficacy.  

However, the available evidence mainly referred to a single set of injections evaluating the efficacy 

and safety of BoNT-A. Interestingly, in a recent prospective, non-randomized, open-label study, 

Santamato and colleagues [2017] studied the safety of repeated higher doses of incobotulinumtoxinA 

in post-stroke upper and lower limb spasticity. Two years after the first set of injections, they 

evaluated in 20 stroke survivors with upper and lower limb spasticity the long-term safety of repeated 

high doses of incobotulinumtoxinA (up to 840 U) for a total of eight sets of injections. In a two-year 

follow-up, repeated high doses of incobotulinumtoxinA, administered for eight sets of injections, 

appeared to be safe in patients with upper and lower limb spasticity after stroke without general 

adverse effects. 

 
 
Instrumental assessment  

As previously stated, the clinical manifestations of the systemic spread of BoNT-A, or remote effects, 

can be detected in various forms [Castaneda-Ramirez et al, 2013].  

 

In the past years, several studies analyzed the subclinical impairment of endplate function in non-

injected muscles by the use of neurophysiologic studies. 

Jitter measurements have been suggested as instrumental assessment to demonstrate abnormal 
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neuromuscular transmission in muscles remote from the site of BoNT injections [Sanders, 2002].  

A double-blind, placebo- controlled study of SFEMG changes in 42 patients assessed the efficacy of 

BoNT injections for cervical dystonia [Lange et al, 1991]. SFEMG was performed in a limb muscle 

before treatment and 2 weeks and 12 weeks after the injection of placebo or BoNT. Before and after 

treatment, the mean jitter was unchanged in the placebo group, whereas the mean jitter had a maximal 

increase after two weeks of BoNTA treatment and was still elevated after 12 weeks. The fiber density 

did not change in any patient during the study, and there were no remote clinical effects of BoNT.  

Girlanda and colleagues [1992] evaluated the distal effects of BoNT on neuromuscular transmission 

and on autonomic function in five patients who received BoNT-A injections for craniocervical 

dystonia and hemifacial spasm. Detection of increased neuromuscular jitter by single-fiber 

electromyography (SFEMG) on the extensor digitorum communis muscle and six tests of 

cardiovascular reflexes were performed The Authors reported that BoNT-A injections induced an 

increase in mean jitter value above normal limits in all patients as well as an increase of fiber density 

recorded six weeks after the treatment. However, the Authors conducted this study with BoNT-A 

Oculinum, which is significantly different from ONA [Borodic et al, 1996].   

Garner and colleagues [1993] analyzed repeated SFEMG in the extensor digitorum brevis muscle of 

eight patients who received a small dose of BoNT-A as therapy for focal dystonias in the head/neck 

region. They observed an increase of jitter and blocking in six of those patients. Fiber density of the 

extensor digitorum communis muscle on alternating sides showed a tendency to increase after BoNT-

A injection [Garner et al 1993] 

 

In addition to SFEMG, quantitative electromyography (EMG) has been described as a measure for 

distant effects of BoNT. A group of 27 patients with cervical dystonia was followed over an average 

of 31 months [Erdal et al, 1999]. They received repeated, unilateral BoNT-A injections of the 

sternocleidomastoid muscle (SCM), and quantitative EMG at rest and at maximal contraction were 

recorded. The study demonstrated no cumulative chemodenervation by repeated BoNT injections of 

the SCM measured by quantitative EMG. However, the contralateral, non-injected SCM showed 

significant reduction of quantitative EMG parameters, suggesting a functional weakening after long-

term treatment.  

 

Interestingly, since a frequent target of BoNT-A during botulism is the autonomic nervous system 

[Vita et al, 1987], several researchers have investigated autonomic function in patients with cervical 

dystonia receiving BoNT-A and BoNT- B, showing controversial evidence about the development of 

signs of subclinical diffusion.  
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In particular, heart rate variability (HRV), a simple and non-invasive electrocardiographic (ECG) 

derived measure, can provide detailed information about the control exerted by the autonomic 

nervous system (ANS) on cardiovascular activities including vagal and sympathetic components 

[Akselrod et al, 1981; Pomeranz et al, 1985; Kleiger et al, 1991; Tsuji et al, 1996; EuroAmerican 

Task Force, 1996]. Interest in these measures has recently increased in the light of predictive 

associations between reduced HRV and increased mortality after an acute myocardial infarction and 

between HRV and the incidence of coronary heart disease [Wichterle et al, 2004]. HRV has been 

categorised into high frequency (HF), low frequency (LF) and very low frequency (VLF) power 

ranges according to its frequency. HF is equivalent to the well-known respiratory sinus arrhythmia 

and is considered to represent vagal control of heart rate. LF is jointly contributed by both vagal and 

sympathetic nerves  [Wichterle et al, 2004]. Because of its accessibility and non-invasiveness, 

frequency domain analysis of HRV has gained its popularity with broad clinical and research 

applications as a functional indicator of the ANS activity.  

In previously published literature, there are few works investigating HRV modifications after BoNT-

A injection, with contrasting results. 

In a previously cited study, Girlanda et al [1992] observed in patients affected by cervical dystonia 

and hemifacial spasm significant differences in autonomic cardiac drive. As  descrived above, this 

study was mainly an EMG study, conducted with BoNT-A Oculinum, which is significantly different 

from onabotulinumtoxinA [Borodic et al, 1996], and methods used to monitor the autonomic effects 

at cardiac level are not clearly described.  

Nebe and colleagues [1996] showed that abobotulinumtoxinA did not modify significantly HRV in 

patients treated for cervical dystonia. 

Meichsner et al [2005] evaluated the effect of BoNT-A on HRV in a quite large sample of patients 

affected by different diseases (cervical dystonia, spasticity and hyperhidrosis). They showed a 

reduction in the very low frequency domain and in the high frequencies in those treated with 

abobotulinumtoxin A, and a very marked reduction in the low frequencies in those treated with 

rimabotulinumtoxin B.  

A short-term power spectral analysis of heart rate and systolic blood pressure variability, high-

frequency and low-frequency oscillations of heart rate variability, low frequency/high frequency 

ratio, and baroreflex sensitivity were measured in 12 patients with cervical dystonia before and 2 to 

4 weeks after onabotulinumtoxinA injection and were compared with normative data [Tiple et al, 

2008]. Their data demonstrated a dose-dependent effect on neuromuscular transmission in distal 

muscles, possibly owing to hematogenous spread of BoNT-A through the bloodstream. Overall, these 

results suggest that the effect of locally injected, intramuscular BoNT-A on autonomic cardiovascular 
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innervation cumulates over time. None of these findings, however, were noticed by the patient, nor 

were they clinically relevant.  

However, it must be pointed out that in cervical dystonia doses are largely inferior to those utilized 

in spasticity.  
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Personal contributions  
 

In the last years, our research group deeply investigated the possible effect on autonomic nervous 

system of high doses of BoNT-A. 

In a case control study [Invernizzi et al, 2015], we evaluated the changes in autonomic heart drive 

induced by high doses (higher than 600 units) of IncobotulinumtoxinA injection in patients affected 

by post stroke spasticity. Moreover, we considered the treatment safety by monitoring adverse events. 

Each patient underwent an ECG recording before injection and 10 days after treatment. Linear and 

non-linear HRV measures were derived from ECGs with a dedicated software. None of the variable 

considered showed statistically significant changes after BoNT-A injection.  

More recently, in order to confirm these results, we evaluated changes in HRV induced by high doses 

(>600 U) of IncobotulinumtoxinA or OnabotulinumtoxinA [Baricich et al, 2017]. We recruited 

patients affected by post stroke spasticity in a single blind, randomized controlled crossover study. In 

the first part of the study, patients in the first group were injected with incobotulinumtoxinA while 

patients in the second group with onabotulinumtoxinA; after 6 months, a crossover intervention was 

performed. All patients were blinded to BoNT-A type, and performed an ECG registration in the 24 

h before injection (t0) and 10 days after treatment (t1), both in the first and in the second part of the 

study. Functional status was also evaluated. In this study HRV analysis showed no significant changes 

after each BoNT-A injection in both groups at any evaluation time. Moreover, no statistically 

significant differences were found regarding each variable between the two groups. 
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Abstract  

Background. The most important adverse effect of BoNT-A is the systemic diffusion of the toxin. 

There is some evidence that the administration of high doses can increase the risk of systemic 

diffusion and the development of clinically evident adverse effects, however an international 

consensus does not exist about its maximum dose.  

Aim. The aim of this study was to evaluate changes in autonomic heart drive induced by high doses 

(higher than 600 units) of incobotulinumtoxinA injection in spastic stroke patients. Moreover, the 

treatment safe- ty by monitoring adverse events occurrence was as- sessed.  

Design. Case control study. 	

Population. Eleven stroke survivors with spastic hemiplegia. 	

Methods. Patients were treated with intramuscular focal injections of IncobotulinumtoxinA (NT 201; 

Xeomin®, Merz Pharmaceuticals GmbH, Frankfurt, Germany). Doses were below 12 units/Kg. Each 

patient underwent an ECG recording before injection and 10 days after treatment. Linear and non-

linear Heart Rate variability (HRV) measures were derived from ECGs with a dedicated software. 	



 24 

Results. None of the variable considered showed statistically significant changes after BoNT-A 

injection.  

Conclusion. The use of incobotulinumtoxinA in adult patients at doses up to 12 units/kg seems to be 

safe regarding autonomic heart drive. 	

Clinical Rehabilitation Impact. The use of IncobotulinumtoxinA up to 600 units could be a safe 

therapeutic option in spastic hemiplegic stroke survivors.  

 

Key words: Botulinum toxins, Type A, Stroke; Muscle spasticity; Heart rate.  

 

 

Introduction  

Botulinum toxin type A (BoNT-A) has been utilized from more than twenty years to treat focal 

spasticity in different pathologies such as stroke, traumatic brain injury, cerebral palsy and multiple 

sclerosis. In Europe and in the USA BoNT-A is available with three established drug names: 

abobotulinumtoxinA, incobotulinumtoxinA and onabotulinumtoxinA. Even if these three products 

are not interchangeable, the suggested dose ratio is 1:1 for ona- and incobotulinumtoxinA,1-3 while 

for the conversion ratio between ona- and incobotulinumtoxinA or abobotulinumtoxinA the reported 

ratio ranges are from 1:3 4 to 1:4 5 or 1:5.6, 7 At present time, despite it has been clinically utilized 

for several years, a clear international consensus does not exist about recommended and maximum 

BoNT-A dose. Current guidelines suggest maximal doses ranging from 360 to 400 units of 

onabotulinumtoxinA and 1000 units of abobotulinumtoxinA.8 However, in some countries, the use 

of up to 600 units of onabotulinumtoxinA or incobotulinumtoxinA is admitted,9 and the safe 

administration of even higher doses of incobotulinumtoxinA in the adult patient if medically indicated 

is reported as well.10, 11  

BoNT-A has shown to be effective,12 safe 13 and well tolerated,14, 15 but some adverse effects can 

occur, and the most important is the local and systemic diffusion of the toxin.16 There is some 

evidence that the administration of higher doses can increase the risk of systemic diffusion and the 

development of clinically evident adverse effects 17 that can resemble, to a lesser extent, those seen 

during botulism. Since a frequent target of BoNT-A during botulism is the autonomic nervous 

system,18 several researchers have investigated autonomic function in patients with cervical dystonia 

receiving BoNT-A and BoNT- B, showing controversial evidence about the development of signs of 

subclinical diffusion.19-23 However, in cervical dystonia doses are largely inferior to those utilized 

in spasticity, and, to our knowledge, nobody at present time has investigated the possible effect on 
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autonomic nervous system of high doses of BoNT-A.  

Heart rate variability (HRV), a simple and non-invasive electrocardiographic (ECG) derived measure, 

can provide detailed information about the control exerted by the autonomic nervous system (ANS) 

on cardiovascular activities including vagal and sympathetic components.24-28 Interest in these 

measures has recently increased in the light of predictive associations between reduced HRV and 

increased mortality after an acute myocardial infarction and between HRV and the incidence of 

coronary heart disease.29 HRV has been categorized into high frequency (HF), low frequency (LF), 

and very low frequency (VLF) power ranges according to its frequency. HF is equivalent to the well-

known respiratory sinus arrhythmia and is considered to represent vagal control of heart rate. LF is 

jointly contributed by both vagal and sympathetic nerves.29 Because of its accessibility and non-

invasiveness, frequency domain analysis of HRV has gained its popularity with broad clinical and 

research applications as a functional indicator of the ANS activity.  

The aim of this study was to evaluate changes in HRV induced by high doses (higher than 600 units) 

of incobotulinumtoxinA injection in spastic stroke patients. Moreover, we assessed the treatment 

safety by monitoring adverse events occurrence.  

 

Matherials and methods 

We recruited 11 stroke survivors with spastic hemiplegia (5 male and 6 female) aged from 44 to 72 

years at the Rehabilitation Unit of the Maggiore Hospital in Novara. Demographic data are resumed 

in Table 1.  

The inclusion criteria were: 1) focal spasticity graded >= 2 on Modified Ashworth Scale at upper an 

lower limb muscles, requiring at least 600 incobotulinumtoxinA units; 2) hemiplegia after ischemic 

or hemorrhagic stroke documented by CT scan and/ or available case history; 3) age >18 years. 

Exclusion criteria were: 1) heart failure with NYHA>=3; 2) previous diagnosis of cardiac arrhythmia; 

3) concomitant use of beta-blockers; 4) pace-maker implant; 5) presence of fixed contractures at 

BoNT-A target muscles.  
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After enrollment patients were injected with IncobotulinumtoxinA (NT 201; Xeomin®, Merz 

Pharmaceuticals GmbH, Frankfurt, Germany) with a dilution of 100 units/2 mL of 0.9 % sterile 

saline). All patients received doses below 12 units/Kg. The study protocol consisted in two ECG 

recordings of 30 minutes each, the first one has been performed in the 24h before 

incobotulinumtoxinA injection (Baseline) and the second one 10 days after the treatment. Each ECG 

recording was performed in a quiet room with a constant temperature of 24° C with an analogical 

ECG recorder. Participants were instructed to avoid a heavy meal, to abstain from smoking, caffeine 

beverages and alcohol and to avoid physical activity for at least two hours prior to ECG measurement. 

All examinations were performed from 11 to 15 h to limit circadian influences on cardiac rhythm. 

Treatment safety was assessed by monitoring adverse events occurrence of any degree. Lastly, the 

following functional measures were recorded at baseline: Barthel Index,30 Motricity Index (MI) for 

upper and lower limb,31 Functional ambulation category (FAC).32  

Data obtained from analogic ECG were processed with an A/D converter (micro 1401 CED© 

Cambridge Electronic Design, Cambridge, UK) and recorded on a PC by means of a data acquisition 

system (Spike2 v.5, CED) with a sampling rate of 3000 Hz. Guidelines were followed for time 

recordings, sampling rate and HRV analysis of electrocardiograms.27 Artifacts and noise regions 

were removed and in case of premature beats they have been manually corrected. Only recordings 

that contained <1% of premature beats were considered.  

 

HRV outcome measures  

ECG’s have been analyzed by means of a software called “Kubios HRV analysis”, the evolution of 

the software “HRV analysis” originally created by Niskanen et al.,33 which can perform a wide range 

of measurements of HRV.  

HRV indexes can be classi ed in two main categories: linear and non-linear variables.34  
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Linear variables  

The so called time-domain variables simply calculate the intervals and standard deviations between 

each consecutive RR interval and are the easiest and simplest among all the HRV variables.  

1. The Standard Deviation of RR intervals (SDNN) reflects the overall (both short-term and long-

term) variation within the RR interval series, whereas the standard deviation of successive RR interval 

dif-ferences (SDSD), can be used as a measure of the short-term variability. These measurements of 

short- term variation estimate high frequency variations in heart rate and thus are highly correlated.  

2. Geometrical Indexes (TINN and RR tri-index) express overall HRV measured over 24 h and are 

more influenced by the lower than by the higher frequencies. The major disadvantage is the need for 

a reasonable number of NN intervals to construct the geometric pattern. In practice, recordings of at 

least 20 min (but preferably 24 h) should be used to ensure the correct performance of the geometric 

methods.27, 33  

The other category in this group are frequency-domain variables based on spectral analysis which 

provide direct information about the vagal and sympathetic activity driven to the heart. The power 

ranges commonly suggested by guidelines and used in this study are the following: very low 

frequency (VLF, <0.04 Hz), low frequency (LF, rang- ing from 0.04 to 0.15 Hz) and high frequency 

(HF, ranging from 0.15 to 0.4 Hz).27 Frequency Domain variables are rather complex compared to 

time do- main, however they are commonly and extensively used for both clinical (Holter recordings) 

and re- search purposes.27  

 

Non-linear Variables  

In the non-linear group are included variables based on complex mathematical fractal algorithms, 

which are able to investigate the deep correlations between ANS, Central nervous system, 

hemodynamic and cardiac electrophysiology.34 However, whereas these algorithms have been 

demonstrated as powerful tools in describing and predicting the behavior of complex systems in 

different science fields, at present time their use in large cohorts of patients has not been performed, 

so the evidence of their reliability in the medicine is scarce. Notwithstanding, since they are not 

affected by non-stationarity, as it happens for linear HRV indexes, they are a promising technique in 

light of the vision of physiological processes in the human body as the result of a complex interaction 

between multiple systems. Among these variables we used the one provided by the HRV software: 

the Poincaré plot, Approximate Entropy (ApEn), Sample Entropy (SampEn), the Detrended 

fluctuation analysis (DFA) with short term and long term fluctuation slope (α1 and α2), correlation 

dimension (D2), and lastly the recurrence plot (RP) with the following variables: mean line length 

(Lmean), Maximum line length (Lmax), recurrence rate (REC), determinism (DET) and Shannon 
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Entropy (ShanEn). A more detailed description is available in the Annex I.  

 

Statistical analysis  

Statistical analysis was performed using the GraphPad 4 package, version 4.0 (GraphPad Software, 

Inc., San Diego, CA, USA). Due to the small sample size we supposed a non-gaussian distribution of 

variables. Thus, differences between single-variable measurements in each group were evaluated with 

Wilcoxon’s signed-rank test. A type I error level of 0.05 was chosen. In order to obtain comparable 

and univocal data, for frequency domain variables only the power ranges expressed in normalized 

units were statistically analysed.27  

 

Results  

Demographic data of patients enrolled, mean doses of incobotulinumtoxinA used and injection sites 

are resumed in Table I. Details of injected muscles and single doses of incobotulinumtoxinA used for 

each patient are resumed in Table II. As shown in T able III and Table IV, none of the variable con- 

sidered for time, frequency domain and non linear domain showed statistically signi cant changes 

after BoNT-A injection. Moreover, none of the patients enrolled in the study experienced adverse 

event after injection.  

 

Discussion 

Our data show that high doses of incobotulinumtoxin A do not influence the autonomic drive directed 

to the heart in stroke survivors with spasticity. Moreover, no clinical adverse events of any kind 

occurred in anyone of our patients.  

The absence of relevant effect on autonomic drive directed to the heart may have a clinical relevance 

when deciding to treat with high doses of BoNT-A stroke survivors affected by cardiovascular 

comorbidities, in which it is known that a reduction in HRV is able to increase the incidence of 

cardiovascular events29.   

Moreover, even in patients without known cardiac diseases, our results can limit the potential 

concerns about the use of incobotulinumtoxinA at a dosage greater than 600 units. 17 Actually, dose 

limitations often influence the clinician’s decision about which muscles should be injected. There are 

few previous works investigating HRV modifications after BoNT-A injection with contrasting 

results. Wissel et al. showed that BoNT-A did not modify significantly HRV;21 however, this study 

was performed on patients with cervical dystonia treated with abobotulinumtoxin A at lower dosages 

than those utilized in our study. In a more recent paper, Tiple et al.23 showed mild, subclinical 

abnormalities in autonomic cardiovascular regulation after treatment with onabotulinumtoxin A in 
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patients with cervical dystonia. However, this study was conducted with a different toxin and at doses 

far lower than in our study. Meichsner et al. 35 evaluated the effect of BoNT-A on HRV in a quite 

large sample of patients affected by different diseases (cervical dystonia, spasticity and 

hyperhidrosis). They showed a reduction in the very low frequency domain and in the high 

frequencies in those treated with abobotulinumtoxin A, and a very marked reduction in the low 

frequencies in those treated with rimabotulinumtoxin B. Again, it should be noted that the used doses 

were much lower than in our study. Lastly, Girlanda et al. 19 found in patients affected by cervical 

dystonia and hemifacial spasm significant differences in autonomic cardiac drive. This study was 

mainly an EMG study, con ducted with Oculinum, which is signi cantly different from 

onabotulinumtoxinA,36 and methods used to monitor the autonomic effects at cardiac level are not 

clearly described.  

These effects, even if inconsistent, can be explained by the diffusion of the toxin far from the injection 

side, via the blood circulation or via the retrograde transport and transcytosis to the central nervous 

system.37 These mechanisms could explain the reduction in vagal control of the heart,38 that has 

been observed also in botulism.18, 39, 40 It should be remembered that there are some evidence that, 

in both animals 41 and humans, 42, 43 BoNT-A can spread far from the injection site. However, the 

clinical relevance of these phenomena has never been clarified and they probably remain observations 

without consequences for patients.  

 

Conclusions  

In conclusion, our work, even if it has been carried out on a relatively small sample, confirms that the 

use of incobotulinumtoxin A in adult patients at doses up to 12 units/kg seems to be safe regarding 

autonomic heart drive.  
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Abstract  
We retrospectively evaluated the efficacy and safety of high doses of onabotulinumtoxinA (from 600 

to 800 units) in 26 patients affected by upper and/or lower limb post-stroke spasticity. They were 

assessed before, 30 and 90 days after treatment. We observed a significant muscle tone reduction and 

a significant functional improvement (assessed with the Disability Assessment Scale). No adverse 

events were reported. In our retro- spective analysis the treatment with high doses of 

onabotulinumtoxinA showed to be effective and safe.  

Keywords: Stroke Spasticity Botulinum toxin type A OnabotulinumtoxinA Higher doses  

 

Introduction  

Post-stroke spasticity (PSS) has been described as a relevant clinical problem in stroke survivors, as 

it can impair manual dexterity, mobility and balance, with a negative impact on independence (Martin 

et al. 2014).  

OnabotulinumtoxinA has been proposed as a part of effective integrated treatment programme for the 

management of PSS (Brashear et al. 2002a, b; Wissel et al. 2009; Baker and Pereira 2013).  

Clinical experience showed a good safety profile (Ghasemi et al. 2013) both in the short- (Naumann 

and Jankovic 2004) and in the long-term use (Naumann et al. 2006).  

The optimal dose for onabotulinumtoxinA is deter- mined by the patient’s characteristics and by the 

treatment’s goal but there is not a general consensus on maximum dose. Francisco (2004) suggested 

a dose up to 400–600 units (U) per session, whereas Wissel et al. (2009) remarked that it should not 
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exceed 600 U. However, in clinical practice doses as high as 800 U are used by some practitioners, 

even if safety and efficacy of routine use of doses higher than 500 U still await further evidence 

(Francisco 2004).  

The aim of our study was to retrospectively evaluate the efficacy and safety profile of higher doses 

of onabotulinumtoxinA (up to 800 U) in patients affected by upper and/or lower limb PSS.  

 

Materials and methods  
Patients  

We retrospectively analysed data from 119 patients affected by upper and/or lower limb PSS who 

referred to the Physical and Rehabilitative Medicine Unit of University Hospital ‘‘Maggiore della 

Carita`’’ in Novara (Italy) between July 2012 and April 2014.  

The inclusion criteria were: spasticity due to an ischemic or hemorrhagic stroke; time from stroke at 

least 6 months; total dose required of onabotulinumtoxinA >=600 U; age >18 years. The exclusion 

criteria were: previous treatment with Botulinum Toxin Type A (BoNT-A) in the last 4 months; 

spasticity due to any other cause; presence of other concomitant neurological or neuromuscular 

diseases; dementia; concomitant therapy with myorelaxants (oral or intrathecal baclofen, 

benzodiazepines, tizanidine); previous treatment of PSS with phenol, alcohol injection or local 

surgery; presence of fixed contractures or muscular fibrosis at ultrasound evaluation that could have 

negatively influenced the treatment with onabotulinumtoxinA.  

26 patients who fulfilled the inclusion criteria were included in this study; 93 patients were excluded 

due to treatment with other BoNT-A formulations (abobotulinumtoxinA, incobotulinumtoxinA) or 

doses of onabotulinumtoxinA \600 U.  

Each patient and/or caregiver gave his/her written consent before the treatment.  

Assessment  

The same physician evaluated all the patients before treatment and 1 and 3 months after injections, 

as performed in clinical routine. Before treatment the patients, together with the treating physician, 

chose their primary therapeutic target between the four domains of the Disability Assessment Scale 

(DAS), i.e. dressing, limb position, pain and hygiene (Brashear et al. 2002a, b). At baseline and 30 

and 90 days after treatment the functional impairment of the upper limb was evaluated with DAS (a 

four-point scale from 0 = no disability to 3 = severe disability), whereas changes in muscle tone were 

assessed with Modified Ashworth Scale (MAS) (a five-point scale from 0 = no increase in tone, to 4 

= affected parts rigid in flexion or extension) (Brashear et al. 2002a, b; Bohannon and Smith 1987).  

To evaluate the efficacy of the treatment, investigators, patients and their caregivers were asked to 

rate the patients’ overall treatment tolerability (Global Assessment of Effi- cacy, GAE) in a four-
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point scale (from 1 = very good to 4 = poor) after a postinjection period of 30 and 90 days (Kanovsky 

et al. 2011).  

In addition, a clinical examination was performed to evaluate the safety of the treatment and the 

presence of adverse events, which were assessed at each visit using a semi-quantitative scale (0, no 

adverse effects; 4, serious adverse effects) (Mancini et al. 2005).  

Treatment  

OnabotulinumtoxinA (Botox®, Allergan Inc., Irvine CA) was administered in 2 mL of 0.9 % dilution 

saline; the injections were performed under ultrasonographic guide by the same investigator. The 

clinicians planned target muscles, doses and number of injection sites for each muscle depending on 

spastic hypertonia grade and muscle size. After onabotulinumtoxinA injection, all patients 

participated in a 10 day-rehabilitation programme (electrical stimulation and stretching of injected 

muscles, strengthening exercise, gait training if applicable).  

Statistical analysis  

Since data were not normally distributed, according to Shapiro–Wilk test (data not shown), within-

group comparisons were made using the Friedman test for repeated measures. In addition, Dunn’s 

Multiple Comparison Test was performed to evaluate differences between single variable 

measurements (t1 vs t0, t2 vs t0 and t2 vs t1).  

For statistical purpose, a MAS score ‘‘1’’ was considered as 1, a MAS score ‘‘1+’’ as 2, and so on 

until 5 (Biering- Sørensen et al. 2006). An alpha error level of 0.05 was chosen.  

Statistical analysis was performed using GraphPad Prism 1.4 for Macintosh OS 10.6.  

 

Results  

The demographical and clinical characteristics of the 26 patients studied are represented in Table 1. 

Considering all the patients, 23 of them received the treatment at both upper and lower limb, whereas 

3 patients were treated at lower limb only. 14 patients (53.8 %) were naive to treatment with 

onabotulinumtoxinA (8 previously treated with other BoNT-A formulations, 6 naive to any BoNT-A 

formulation for spasticity).  

Muscles treated and relative doses are shown in Table 1.  
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Concerning the GAE, both 30 days (t1) and 90 days (t2) after injection patients, caregivers and 

clinicians rated the efficacy of treatment as ‘‘good’’ or ‘‘very good’’, except in one case where it was 

evaluated as ‘‘moderate’’ by clinicians. The complete results of GAE are represented in Table 2, 

together with the results of clinical evaluations with MAS and the principal target in DAS at baseline 

(t0), t1 and t2.  

Spasticity after injections showed a significant reduction (p <0.0001) considering MAS results at 

elbow/shoulder, wrist/finger, thigh and leg. We observed a significant reduction in muscle tone in all 

muscle groups both at t1 vs t0 and t2 vs t0, whereas no significant difference was seen at t2 vs t1 

(Table 2). As primary therapeutic target in DAS evaluation, 18 patients (69.2 %) chose limb position, 

4 patients (15.4 %) dressing, 3 patients (11.5 %) hygiene and 1 patient (3.9 %) chose pain. Notably, 
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a significant improvement in DAS principal target score has been observed at t1 vs t0 (p\0.001) and 

t2 vs t0 (p\0.05).  

No adverse events were reported in patients’ group (mean score 0).  

 

 
 

Discussion  

In our study, we observed a significant muscle tone reduction and clinical improvement with high 

doses of onabotulinumtoxinA, without any adverse events.  

In recently published literature, the efficacy and safety of higher doses of incobotulinumtoxinA in 

PSS treatment has been described: Santamato et al. (2013) reported no adverse events in 25 patients 

with upper and lower limb PSS, evaluated 30 and 90 days after injections with doses up to 840 U; 

moreover, Invernizzi et al. (2014) evaluated changes in autonomic heart drive potentially induced by 

doses greater than 600 U, without meaningful alterations in linear and non linear Heart Rate 

Variability measures in 11 stroke survivors.  

On the other hand, the current recommended dose of onabotulinumtoxinA is 400 U per session (Brin 

1997) and, even if clinical experience suggests a maximum dose of 600 U (Francisco 2004; Wissel 

et al. 2009), there is no evidence of safety for doses greater than 500 U except for paediatric patients 

(Francisco 2004; Goldstein 2006).  

Interestingly, Mancini et al. (2005) reported minor adverse effects (generalised weakness, weakness 
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of the treated limb, flu-like syndrome and oedema; mean score 1.2) 4 weeks after administration of 

onabotulinumtoxinA in lower limb PSS, with a mean dose of 540 U. In addition, also Varghese-Kroll 

and Elovic (2009) presented a case report about contralateral weakness and fatigue after re- peated 

high doses (800 and 500 U) of onabotulinumtoxinA for PSS.  

In our study, the mean total dose of onabotulinumtoxinA was 676.9 ± 86.3 U, but we did not report 

any adverse event. A possible explanation might be the use of ultra- sonography to identify target 

muscles; in fact, as reported by Henzel et al. (2010), ultrasound localization may improve accuracy 

of needle placement, avoiding injection into vascular structures and reducing the potential risk of 

systemic diffusion of BoNT-A. Moreover, this technique can improve clinical outcome both in upper 

and lower limb PSS (Picelli et al. 2014; Santamato et al. 2014).  

To our knowledge, this is the first study showing the safety and the efficacy of PSS treatment with 

doses of onabotulinumtoxinA up to 800 U, higher than those typically used in clinical practice for 

PSS.  

Nevertheless, we have to take into account that our paper suffers for the limitations of a retrospective 

study, as selection bias and observer bias. Besides that, the sample size is relatively small.  

Further research is required to better identify the optimal dose of onabotulinumtoxinA to optimize 

clinical outcome and safety profile.  
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Dear Sir,  

Stroke is a major cause of long-term disability. Post-stroke spasticity (PSS) has been described as a 

velocity-dependent increase in muscle tone with exaggerated tendon jerks, resulting from 

hyperexcitability of the stretch reflex and presenting as intermittent/sustained involuntary muscle 

activation (Pandyan et al., 2005). In clinical practice, accurate quantitative measures of spasticity can 

be difficult to obtain in a single examination: indeed, PSS can be modified in different conditions, 

e.g. static conditions as opposed to dynamic situations, such as walking. In addition, the impact of 

PSS on subjective sensations and activities of daily living (ADL) can be hard to describe. 

Furthermore, in order to optimize treatment procedures in patients with PSS, assessment of patient-

reported outcomes and perceptions should be reported, given that sensorimotor alterations due to PSS 

may influence “interoception”, i.e. the sense of the physiological condition of the entire body (Craig, 

2002; Franceschini et al., 2014).  

In order to improve understanding of these components of PSS, we studied 116 adults affected by 

first-ever unilateral stroke (more than 3 months from onset) with spasticity (less than 3 months from 

the last botulinum toxin treatment) in the affected arm (41 right hemiparesis and 75 left hemiparesis), 

graded ≥1 on the Modified Ashworth Scale (MAS). Spasticity was measured with the MAS in the 

affected shoulder, elbow, wrist and fingers, and associated reactions of the affected arm were 
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recorded during the sit-to-stand movement and during walking. Also the following variables were 

evaluated in the affected arm: Motricity Index (MI) sub-items for the upper limb; active range of 

motion of the shoulder, elbow, wrist and finger (percentage differences from normal values); self-

assessment of functioning of the arm during ADL, as rated on a visual analog scale (0 no use; 100 

normal use); Disability Assessment Scale; and self-estimation of pain, heaviness and rigidity in the 

shoulder, elbow, wrist and finger joints according to the Numerical Rating Scale (NRS) (0 no 

symptom; 100 worst symptom). Afterwards, we performed a principal component analysis (PCA), 

which is a variable reduction procedure, in order to obtain a smaller number of principal components 

(artificial variables), and also because the PCA would account for the variance in the observed data, 

while retaining most of the information from the sample.  

On the basis of the PCA results, we defined three classes based on the main unpleasant sensations 

reported by each patient (heaviness, rigidity and pain) as follows: Class I (29 patients; 12 right 

hemiparesis and 17 left hemiparesis; mean age 63.4 years; mean time from stroke onset 58.2 months) 

corresponded to a higher level of proximal (shoulder) heaviness and a low level of pain (NRS 23.3 

and 12.7, respectively); Class II (29 patients; 11 right hemiparesis and 18 left hemiparesis; mean age 

60.7 years; mean time from stroke onset 74.1 months) corresponded to the highest level of rigidity 

(NRS 59.5, 70.7, 77.8 and 76.4 at the shoulder, elbow, wrist and fingers, respectively) and pain (NRS 

17.1, 7.9, 11.7 and 13.1 at the shoulder, elbow, wrist and fingers, respectively); Class III (58 patients; 

18 right hemiparesis and 40 left hemiparesis; mean age 63.2 years; mean time from stroke onset 70.9 

months) corresponded to a lower level of heaviness (NRS 12.8, 2.7, 1.3 and 1.1 at the shoulder, elbow, 

wrist and fingers, respectively), the intermediate level of rigidity (NRS 21.5, 27.8, 21 and 18.1 at the 

shoulder, elbow, wrist and fingers, respectively), a greater level of functional ability and a low level 

of proximal (shoulder) pain (NRS 13.3).  

According to the non-parametric Kruskal-Wallis test (alpha level for significance p<0.05), no 

significant differences were found between Classes I, II and III in the MAS (shoulder adductors, 

elbow flexors, wrist and finger flexors) and MI (shoulder, elbow and pinch grip) scores. On the basis 

of this finding, we suggest that unpleasant sensations of pain, heaviness and rigidity may relate not 

only to muscle tone (as measured by the MAS), but also to altered proprioceptive and body ownership 

information, as well as to the individual’s self-estimated ability to achieve functional goals. This is 

in keeping with previous findings about the impact of PSS on limitations in ADL, wellbeing and life 

satisfaction, which may not be indicated by quantitative scores but are demonstrated by patient-

reported outcome measures (Sunnerhagen and Francisco, 2013). Indeed, PSS also has an afferent, 

sensory component, which might be related to some differences in the sensations described by 

patients (Craig, 2002; Franceschini et al., 2014). It is well known that proprioceptive afferent 
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information coming from mechanoreceptors in joints, muscles, tendons and stretch-sensitive 

receptors in the skin, together with efferent motor signals, can play a key role in postural schema 

understood as dynamic representations of body posture. Moreover, the sense of body ownership, too, 

is presumably developed using sensory information, as recently described by Walsh and colleagues 

(2011), who demonstrated that non-tactile proprioceptive cues might contribute to this sense. 

Another possible explanation for the current observations could be related to problems occurring in 

patient-provider communication and the role that this communication plays in PSS rehabilitation 

within the context of patient-centered health care, which addresses illness from a holistic perspective 

(Sunnerhagen and Francisco, 2013). Furthermore, treatment goals should be patient-centered and the 

rehabilitation program should be tailored to the needs of each patient, identifying what they describe 

as limitations and trying to focus on possible correlations between these and PSS.  

In conclusion, our patients with PSS described different patterns of sensations even without showing 

significant differences in their MAS and MI scores. We suggest that PSS might be considered not 

only as a modification of muscle tone, but also as a clinical condition that is specific to the single 

patient, and has a significant impact on his/her sensations and self-estimated autonomy in ADL. 

Future studies are needed to further investigate these issues.  
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Abstract 

Background: Botulinum toxin type A is a valid and safe treatment for focal spasticity, with 

documented effects on both sympathetic and parasympathetic systems. Heart rate variability can 

provide detailed information about the control of the autonomic nervous system on cardiovascular 

activities. Previous studies in literature showed no significant changes in Heart Rate Variability with 

doses >600 U of incobotulinumtoxinA in chronic post stroke spastic patients; however, at present 

time, these results have not been confirmed with doses >600 U of onabotulinumtoxinA.  

Aim: To evaluate changes in Heart Rate Variability induced by high doses (>600 U) of 

incobotulinumtoxinA or onabotulinumtoxinA in spastic stroke patients over a 1-year period. 	

Design: single blind randomized controlled crossover study design. 	

Setting: Rehabilitation Unit of the University Hospital in Novara.  

Population: 10 stroke survivors with spastic hemiplegia (Modified Ashworth Scale >=2) were 

recruited and randomly divided in two groups (A and B). 	

Methods: In the first part of the study, patients in Group A were injected with incobotulinumtoxinA 
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while patients in Group B with onabotulinumtoxinA; after 6 months, a crossover intervention was 

performed. All patients were blinded to Botulinum toxin type A type, and performed an ECG 

registration in the 24 h before injection (t0) and 10 days after treatment (t1), both in the first and in 

the second part of the study. Functional status was evaluated with Barthel Index, Motricity Index and 

Functional Ambulation Category scores.  

Results: Heart Rate Variability analysis showed no significant changes after each Botulinum toxin 

type A injection in both groups at any evaluation time. Moreover, no statistically significant 

differences were found regarding each variable between the two groups. 	

Conclusions: Our data show that high doses (>600 U) of incobotulinumtoxinA and 

onabotulinumtoxinA do not influence the cardiovascular activity of the autonomic nervous system in 

chronic hemiplegic spastic stroke survivors.  

 

 

 

1. Introduction 

Botulinum toxin type A (BoNT-A) has been considered as an effective and safe treatment for focal 

spasticity in stroke survivors (Baker and Pereira, 2013). BoNT-A can directly modify the heart 

function acting on the sympathetic (through the preganglionic sympathetic innervation) and 

parasympathetic systems (through the vagal nerve) (Girlanda et al., 1992), and at present time there 

is no general consensus on the maximum dose of BoNT-A in terms of safety and clinical 

interchangeability among the three commercially approved products (abobotulinumtoxinA, 

onabotulinumtoxinA, incobotulinumtoxinA). In clinical practice the maximum dose admitted per 

session is up to 400-600 units (U) both for onabotulinumtoxinA (Francisco, 2004; Brin, 1997) and 

for incobotulinumtoxinA (Wissel and Kempf, 2012). However, two recent open-label studies 

suggested the safety of doses up to 840 U of incobotulinumtoxinA (Santamato et al., 2013) and of 

doses up to 800 U of onabotulinumtoxinA (Baricich et al., 2015) for spasticity treatment in stroke 

survivors.  

Heart Rate Variability (HRV) is a simple and non-invasive electrocardiographic derived measure 

useful to monitor the control of the autonomic nervous system (ANS) on cardiovascular activities 

including vagal and sympathetic ones (Task Force, 1996; Akselrod et al., 1981). In consideration of 

its accessibility and low invasiveness, HRV measurement represents a functional indicator of the 

ANS activity, being a valid method to study the potential impact of high doses of BoNT-A on the 

autonomic drive directed to the heart in stroke survivors.  

Recently no relevant changes have been showed in the autonomic heart drive measured by HRV with 
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doses >600 U of incobotulinumtoxinA in patients with chronic spasticity (Invernizzi et al., 2015). 

However, at present time, instrumental data about safety of high doses (>600 U) of 

onabotulinumtoxinA in chronic stroke survivors are lacking. To our knowledge, only Dressler 

evaluated in a crossover study the safety of high doses of incobotulinumtoxinA (mean dose 450.5 ± 

177.1 U) in patients affected by spasticity and previously treated with onabotulinumtoxinA at same 

doses, showing no differences between the two products in terms of efficacy and adverse events 

occurrence, evaluated clinically, but without any functional or instrumental indicator (Dressler, 

2009). Similarly, Baricich et al. evaluated the efficacy and safety in terms of adverse events of high 

doses of onabotulinumtoxinA (up to 800 U with a mean of 676.9 ± 86.3 U) in stroke survivors through 

a clinical evaluation (Baricich et al., 2015). Lastly, Lee et al. compared the efficacy and safety of 

incobotulinumtoxinA with onabotuli- numtoxinA in treating periocular rhytides and masseteric 

hyper- trophy, showing no differences between the two molecules (Lee et al., 2014); however, the 

maximum dose used was far lower compared to those normally prescribed to treat post stroke 

spasticity.  

In light of these considerations, the aim of this study was to evaluate changes in HRV induced by 

high doses (>600 U) of incobotulinumtoxinA or onabotulinumtoxinA in spastic stroke patients over 

a 1-year period using a crossover study design. Moreover, we assessed the treatment safety by 

monitoring adverse events occurrence.  

 

2. Materials and methods  
2.1. Patients  

This work was a randomized, single blind, controlled crossover study. A total of 10 stroke survivors 

with spastic hemiplegia were consecutively enrolled at the Rehabilitation Unit of the University 

Hospital in Novara from September 2014 to January 2015. The inclusion criteria were: I) focal 

spasticity graded >=2 on Modified Ashworth Scale (Bohannon and Smith, 1987) at upper and lower 

limb muscles, requiring at least 600 incobotulinumtoxinA units; II) hemiplegia after ischaemic or 

haemorrhagic stroke documented by CT scan and/or available case history; III) age > 18 years.  

Exclusion criteria were: I) heart failure with NYHA >=3; II) previous diagnosis of cardiac arrhythmia; 

III) concomitant use of beta-blockers; IV) pace-maker implant; V) presence of fixed contractures at 

BoNT-A target muscles.  

 

2.2. Study design  

After the enrollment, patients were allocated to one of the two treatment arms by the use of a 

randomization scheme generated by software. Patients were then divided into two groups (A and B) 
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and entered the first part of the study. In this first part of the study, patients in group A were injected 

with incobotulinumtoxinA (NT 201; Xeomin®, Merz Pharmaceuticals GmbH, Frankfurt, Germany) 

with a dilution of 100 units/2 mL of 0.9% sterile saline, while group B patients were injected with 

onabotulinumtoxinA (Botox®,Allergan, Irvine, CA, USA), 100 MU in 2 ml of 0.9% sterile saline. 

Patients in both groups were blinded to BoNT-A treatment type and received doses below 12 

units/Kg.  

After 6 months, the second part of the study started, and each group received the crossover 

intervention: group A patients were treated with onabotulinumtoxinA (Botox®, Allergan, Irvine, CA, 

USA, 100 MU in 2 ml 0.9%NaCl/H2O), whereas group B patients were treated with 

incobotulinumtoxinA (NT 201; Xeomin®, Merz Pharmaceuticals GmbH, Frankfurt, Germany with a 

dilution of 100 units/2 mL of 0.9% sterile saline). The same target muscles and doses of the first part 

of the study were maintained. Study design is described in Fig. 1.  

 

 
 

Patients were blinded to BoNT-A treatment type during the whole study period. Each patient signed 

an informed consent to the treatment and the evaluations of this study. The local committee of our 

Hospital approved our protocol, which was conducted ac- cording to the principles of the Declaration 

of Helsinki.  

 

2.3. Assessment  

All patients in both groups performed a total of four ECG registrations of 30 min each. In the first 

part of the study, patients performed the ECG registration in the 24 h before BoNT-A injection 

(baseline, t0) and 10 days after the treatment (t1); similarly, in the second, crossover, part of the study, 
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they performed the ECG registration 24 h before the new BoNT-A injection and 10 days after the 

treatment. Each ECG recording was performed as described elsewhere (Invernizzi et al., 2015).  

Treatment safety was assessed by monitoring adverse events occurrence of any degree.  

Lastly, the following functional measures were recorded at baseline: Barthel Index (Shah et al., 1989), 

Motricity Index (MI) for upper and lower limbs (Collin and Wade, 1990), Functional ambulation 

category (FAC) (Collen et al., 1990).  

Data obtained from analogic ECG were processed with an A/D converter (micro 1401 CED© 

Cambridge Electronic Design, Cambridge, UK) and recorded on a PC by means of a data acquisition 

system (Spike2 v.5, CED) with a sampling rate of 3000 Hz. Guidelines were followed for time 

recordings, sampling rate and HRV analysis of electrocardiograms (Task Force, 1996). Artifacts and 

noise regions were removed, and, in case of premature beats, they have been manually corrected. 

Only the recordings that contained <1% of premature beats were considered.  

ECG's have been analysed by means of software called “Kubios HRV analysis”, originally created 

by Niskanen et al. (2004). In this study we considered both linear and non-linear HRV indexes 

(Buccelletti et al., 2012). A detailed description of all linear and non- linear HRV indexes used in this 

study can be found in the supplementary material of Invernizzi et al. (2015).  

 

2.4. Statistical analysis  

Statistical analysis was performed using the GraphPad 6 package, version 6.0 (GraphPad Software, 

Inc., San Diego, CA, USA). The patients were randomly assigned to one of the treatment arms using 

a randomization scheme generated by software with a 1:1 allocation and without blocks. Due to the 

small sample size, we supposed a non-gaussian distribution of variables.  

Differences between each variable in each group have been evaluated with Friedman's analysis of 

variance (ANOVA) and Dunn post hoc comparison was used to identify significant differences 

between mean values. Differences between single variables in different groups were evaluated with 

the Mann-Whitney U-test. A type I error (alpha) level of 0.05 was chosen.  

 

3. Results  

Demographic data of the enrolled patients, dose/kg and mean overall doses of onabotulinumtoxinA 

and incobotulinumtoxinA utilised are resumed in Table 1. As shown in Tables 2 and 3, none of the 

variables considered for time, frequency and non-linear domains showed any statistically significant 

changes after each BoNT- A injection in both Groups A and B at any evaluation time. Moreover, no 

statistically significant differences were found regarding each variable considered between the two 

groups. Lastly, one patient in each group experienced mild, self-limiting adverse events after the 
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treatment (pain at the injection site). In each case, adverse events were related to the injection 

procedure and spontaneously resolved without any intervention 15 min after treatment.  
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4. Discussion  
The results of this study show that high doses (>600 U) of incobotulinumtoxinA and 

onabotulinumtoxinA do not influence the autonomic drive directed to the heart in chronic hemiplegic 

spastic stroke survivors. These results are also confirmed if the two BoNT-A formulations are 

interchanged in a crossover design suggesting the potential absence of cumulative effects. Moreover, 

both the treatment with incobotulinumtoxinA and the treatment with onabotulinumtoxinA showed 

only one mild self-limiting adverse event in each group, related to the injective procedure and spon- 

taneously resolved.  

The results obtained in this study not only confirm the safety of incobotulinumtoxinA from a 

cardiovascular point of view, but also, for the first time, produce data about the autonomic heart 

modifications in stroke survivors with spasticity treated with high doses (>600 U) of 

onabotulinumtoxinA.  

In 2009, Dressler in a crossover prospective study converted patients previously treated with 

onabotulinumtoxinA to incobotulinumtoxinA and repeatedly injected them for 3 years, monitoring 

clinical efficacy and adverse events occurrence. The author did not find any difference in the efficacy, 

treatment duration and adverse events occurrence after changing the two drug formulations, 

suggesting a clinical equivalence of the two BoNT-A formulations (Dressler, 2009). Our results are 

somehow comparable with those obtained by Dressler, considering also the fact that all outcome 

measures related to safety in that study were obtained with an anamnestic evaluation only, without 

any instrumental objective measure. More recently, Mehnert et al. showed similar results observing 

onabotulinumtoxinA effects on cardiac function after intradetrusor injection, showing no HRV 

modifications after treatment (Mehnert et al., 2016). The absence of a relevant effect on the autonomic 
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drive directed to the heart may have a clinical relevance in the treatment decision with high doses of 

BoNT-A in stroke survivors affected by cardiovascular comorbidities, in which a reduction in HRV 

is known to be able to increase the incidence of cardiovascular events (Task Force, 1996). Moreover, 

even in patients without known cardiac diseases, our results can limit the potential concerns about 

the use of BoNT-A at a dosage greater than 600 units.  

As underlined, only few studies in literature investigated the possible autonomic cardiovascular 

modifications induced by onabotulinumtoxinA, and with doses far lower than those utilised in our 

work. Lastly, the fact that these two drugs at the same dose in the same patients at different times 

induce the same modifications on HRV can in part explain the clinical results regarding efficacy and 

safety found by Dressler (2009). However, due to the low sample size, our data should be taken 

cautiously and for this reason further experience with high dose use of BoNT-A is needed.  

As a last consideration, our data suggest also, in line with the results obtained by Dressler, that the 

treatment with high doses of BoNT-A (both onabotulinumtoxinA and incobotulinumtoxinA) does not 

seem to produce any cumulative effect on HRV modifications and adverse events occurrence. Even 

though the overall study period involved only two BoNT-A injections, these data are consistent with 

previous studies of safety in multiple spasticity treatment performed with BoNT-A and give further 

elements about overall BoNT-A safety at high doses (>600 U) in hemiplegic stroke survivors 

(Santamato et al., 2013; Baricich et al., 2015).  

This study has several limitations: the first is the low sample size; the second is the overall study 

duration (1 year) that hinders the possibility to evaluate long-term modifications induced by multiple 

BoNT-A injections.  

 

5. Conclusions  
In conclusion, this study confirms the safety of incobotulinumtoxinA at doses up to 12 units/kg 

regarding the autonomic heart drive modifications and adverse events occurrence in adult stroke 

hemiplegic spastic patients. Moreover, for the first time in literature, this study shows the same results 

in terms of safety of onabotulinumtoxinA. Lastly, multiple administrations of BoNT-A at high doses 

in adult hemiplegic patients do not seem to induce any cumulative effect. However, further experience 

with high doses of BoNT-A is needed in order to confirm these results and, in particular, for the 

clinical use of these two BoNT-A formulations in patients with cardiovascular comorbidities.  
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Discussion 
 
Current evidence coming from published literature suggests that higher doses of BoNT-A are 

efficacious in reducing spasticity of the upper and lower limbs after stroke, with rare occurence of 

mild adverse effect.  

Although systemic BoNT-A toxicity is a rare event and as such not necessarily fatal, fear of systemic 

toxicity is still the most vigorous concern against application of increased BoNT-A doses.  

Previous neurophysiological studies demonstrated that neuromuscular transmission could be 

temporally abnormal also in muscles distant from the target muscles: however, these findings were 

not related to any clinical dysfunction. In addition, cumulative data suggest that high doses (>600 U) 

of incobotulinumtoxinA and onabotulinumtoxinA do not influence the cardiovascular activity of the 

autonomic nervous system in chronic hemiplegic spastic stroke survivors, showing a satisfactory 

safety profile. On the other hand, at present time, there is no evidence with respect to doses of 

abobotulinumtoxinA higher than 1500, even if Hesse and colleagues [1995] reported good tolerability 

after administration of 2000 U.  

Moreover, as described in previous studies, it must be pointed out that generalized weakness can 

occur also for recommended doses of BoNT-A [Bakheit et al, 1997].  

 

A possible explanation is that local and systemic diffusion of BoNT could depend on several factors: 

injection technique, volume, dilution, needle size, hematogenous transport and other physical factors.  

For example, the use of ultrasonography to identify target muscles may improve accuracy of needle 

placement, avoiding injection into vascular structures and reducing the potential risk of systemic 

diffusion of BoNT-A [Henzel et al, 2010]. Moreover, this technique can improve clinical outcome 

both in upper and lower limb PSS [Picelli et al, 2014; Santamato et al, 2014].  

 

Another relevant issue related to the risk of side effects regards the dilution of BONT-A.  

Current guidelines on adult dosing of BoNT-A recommend a maximum of 1 ml per site, except in 

selected situations [Mayer and Simpson, 2010]. This raises the possibility that higher doses or 

volumes of BoNT-A could saturate local cholinergic nerve terminals, allowing unbound toxin to 

spread to the adjacent structures or the blood stream. In particular, attention is due in case of high 

doses of BoNT-A and/or high volumes injected into the proximal muscles across the midline in order 

to avoid the risk of contralateral weakness, as reporteded by Thomas and Simpson [2012].  

 

In addition, it should be pointed out that, despite the reduction of severe spasticity, there is limited 
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evidence that treating patients with elevated BoNT-A doses in the upper and lower limbs is related to 

significant functional improvement. However, this observation could be related to several 

possibilities.  

First of all, it is well known that in the case of severe spasticity the improvement in active performance 

is sometimes difficult to acquire; however, in many neurological conditions high doses should be 

considered in order to obtain a reduction of muscle tone (especially in the adductor and calf muscles) 

with significant improvement in hygiene, gait, and balance.  

In addition, these observations are reflected in the paucity of studies able to identify the true 

correlation between spasticity and disability [Ada et al, 1998. Pradon et al, 2013]. On the other hand, 

different studies demonstrated the efficacy of spasticity treatment in passive and active functional 

improvement of patients [Ward et al, 2014]. 

However, in a study examining disability in post stroke spasticity patients, treatment of spasticity that 

was only moderately severe according to the Ashworth Scale resulted in notable improvements in 

performing activities of daily living, as indicated by a patient-assessed composite disability scale 

[Bhakta BB et al, 2000]. In light of these considerations, a Delphi Panel consensus [Zorowitz et al, 

2017] recently proposed a screening tool in order to evaluate the spasticity in need of treatment.  

However, the impact of spasticity on a subject might be characterized by the degree of limitation in 

performing functional tasks and by the impact on well-being and life satisfaction, which may not be 

indicated by objective score results but are demonstrated by patient-reported outcome measures 

[Sunnerhagen and Francisco, 2013; Baricich et al, 2016]. 

A possible explanation of these controversial observations could be related to problems occurring in 

patient–provider communication, and its role in post-stroke spasticity rehabilitation.  

In a context of patient-centered health care, it could address the holistic experience of illness from 

patient’s perspective [Sunnerhagen and Francisco, 2013; Leach et al, 2010].  

In addition, it should be considered that PSS also has an afferent, sensory component, which might 

be related to some differences in the sensations described by patients [Baricich et al, 2016]. In fact, 

it is well known that proprioceptive afferent information coming from mechanoreceptors in joints, 

muscles, tendons and stretch-sensitive receptors in the skin, together with efferent motor signals, can 

play a key role in postural schema understood as dynamic representations of body posture. Moreover, 

the sense of body ownership, too, is presumably developed using sensory information, as recently 

described by Walsh and colleagues [2011] who demonstrated that non-tactile proprioceptive cues 

might contribute to this sense.  

On these bases, we hypothesized a patient-reported screening tool able to identify the functional 

impact of spasticity after stroke. This tool is potentially fit to be used in routine clinical practice in 
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order to improve an early detection of functionally relevant spasticity and ameliorate patients’ care.  

An expert panel identified a 15-items questionnaire which investigates the clinical impact of 

spasticity in activities of daily living (ADL), named SPasticity Questionnaire in Real life (SPQR) 

(see Appendix). The score ranges from 0 (no clinical impact) to 45 (very significant impact in the 

whole panel of ADL). The tool is designed on the basis of the Rasch measurement model, a 

probabilistic mathematic modelling technique, used to assess the psychometric properties of outcome 

measures; it examines wider attributes, analyzing the item’s performances in terms of relevance, 

usefulness for measuring the underlying construct, redundancy and appropriateness [Tesio, 2003].  

We preliminarly tested SPQR in a population of chronic stroke survivors affected by spasticity, 

according to the recommended guidelines (unpublished data). SPQR showed an excellent internal 

consistency (Cronbach’s alpha 0.95), and good reproducibility and validity [Pearson’s cofficient 0.76 

p<0.05; Kappa coefficient 0.76 (95% CI 0.61-0.91); Intraclass Correlation Coefficient 0.89 (95% CI 

0.71- 0.96)]. In addition, at T2 SPQR showed a significant score variation for upper and lower limb 

functional improvement, according to the changes in muscle tone evaluated by Modified Ashworth 

Scale. To the best of our knowledge, this is the first tool specifically designed to evaluate the 

functional implications of spasticity and the clinical impact of its treatment on patients’ outcome.  
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Conclusions and future perspectives 
 
The evidence coming from published studies suggests that use of doses of BoNT-A higher than those 

reported in product labels could be considered as a safe therapeutic option to reduce multifocal or 

generalized post stroke spasticity in selected patients.  

However, it must be pointed out that the clinicians have to carefully define the clinical goal before 

starting with BoNT-A treatment. In addition, based on current evidence, they must consider all the 

factors which could affect the safety profile of BoNT-A, such as injection technique, dose and 

dilution.  

Further evidence is mandatory to confirm higher doses of BoNT-A as a safe and effective therapeutic 

option for the treatment of post stroke spasticity.  

In particular, it should be pointed out the potential role of higher doses of BoNT-A in order to improve 

the functional outcome of patients affected by PSS. As previously stated, it should be noted that the 

impact of PSS on limitations in ADL, wellbeing and life satisfaction may not be indicated by 

quantitative scores but could be demonstrated by patient-reported outcome measures such as SPQR 

questionnaire.  

In light of these considerations, further research is also required in order to confirm the validity and 

reliability of these tools.  
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Appendix  
 
SPQR – SPasticity Questionnaire in Real Life 
 
 
Istruzioni: il seguente questionario riguarda le Sue capacità di eseguire alcune azioni con la parte del 
corpo colpita dall’ictus. Risponda a ogni domanda selezionando una delle quattro voci.  

La spasticità è la rigidità dei muscoli dovuta all’ictus e non la debolezza dei muscoli. Nell'ultima 
settimana quanto la sua spasticità ha influenzato le seguenti attività quotidiane?  

 

 
 
 

 

 
 


