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1. NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE (NAMPT): 
A PLEIOTROPIC ENZYME 

 

Nicotinamide phosphoribosyltransferase (NAMPT) is a pleiotropic protein that 

exists in two distinct forms: (i) an intracellular form (iNAMPT) and (ii) an 

extracellular form (eNAMPT) 1.  

	

	

Figure 1. The role of sub-cellularly localized NAMPT in NAD synthesis. QAPRT, 
quinolinic acid phosphoribosyltransferase; NAPRT, nicotinic acid phosphoribosyltransferase; 
NRK, nicotinamide riboside kinase; NMNAT, NMN adenylyltransferase. NAD metabolites or 
substrates: Trp, tryptophan; NA, nicotinic acid; NAR, nicotinic acid riboside; NR, 
nicotinamide riboside; Nam, nicotinamide; QA, quinolinic acid2. 
	

1.1 iNAMPT: role in NAD metabolism 
 

NAD is one of the most important cofactors in cellular metabolism and its main 

role is in redox reactions, transferring electrons from a reaction to another.  The 

NAD synthesis starts from different precursors: L-triptophan (Trp), 

nicotinamide (NAM, vitamin B3), nicotinic acid (NA, vitamin B3), 

nicotinamide riboside (NR) and the recently described nicotinic acid riboside 

(NAR) (Figure 1). While lower eukaryotes and prokaryotes use the nicotinic 

acid pathway as a major source of NAD synthesis, in humans the main source 
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of cellular NAD is the uptake of NA, NAM, and NR from the diet or the reuse 

of NAM released intracellularly after consumption by NAD-utilizing enzymes, 

in the so-called NAD salvage pathway.  

The intracellular form of NAMPT is a homodimeric class type II 

phosphoribosyltransferase, which represents the rate-limiting enzyme in this 

pathway. In detail, iNAMPT catalyzes the production of nicotinamide 

mononucleotide (NMN) through the condensation of nicotinamide (NAM) 

with 5-phophoribosyl-1-pirophosphate (PRPP) and ATP; afterwards, NMN is 

converted to NAD by nicotinamide mononucleotide adenylyltransferase 

(NMNAT).  

Since NAD covers an important role in cells and iNAMPT regulates the 

production of NAD, it is clear that iNAMPT is a key enzyme in cellular 

energetics and cellular survival. Moreover, iNAMPT, affecting the 

intracellular levels of NAD, indirectly modulates the action of many NAD-

dependent enzymes, such as Poly (ADP-ribose) polymerases (PARPs) and 

sirtuins (SIRTs), which explicate some of their functions in DNA damage and 

in the regulation of gene transcription3, 4. It is therefore not surprising that 

iNAMPT has been shown to be up-regulated in several disorders and has been 

considered a druggable target. 

Structurally, NAMPT is a protein consisting of 491 amino acids with a 

molecular weight of 55 kDa. From the crystallographic structure, iNAMPT 

results in a dimeric form, and the interface of the two monomers serves as a 

pocket that accommodates NMN5. Different selective inhibitors have been 

designed, such as FK866 and CHS828, which compete with NMN for the 

catalytic site. These inhibitors entered into phase I/II clinical trials for non-

solid and solid tumours; unfortunately, up to date there is no information about 

their efficacy in vivo. Recently, preclinical characterization of second-

generation inhibitors have unmasked retinopathy and cardio-toxicity as 

potential side effects of these class of compounds6.  
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1.2 eNAMPT: role as cytokine 
 

NAMPT is not only an enzyme involved in metabolism, but it has been shown 

that this protein may be secreted through a non-classical pathway. For 

simplicity, I will refer to this form as extracellular NAMPT (eNAMPT) 

throughout my thesis.  

Samal et al. described for the first time eNAMPT as an active cytokine in the 

extracellular space in 19947. They reported its secretion from pre-B cells and 

its ability to synergize with stem cell factor and IL-7 to promote colony 

formation7. At the time, given that the identity with iNAMPT had not been 

recognized yet, eNAMPT was referred to as pre-B-cell colony-enhancing 

factor 1 (PBEF1).  

This paved the way to its classification as a cytokine. Since then, a number of 

reports have strengthened its biological potential as a paracrine and autocrine 

factor. In 2005, once again its name was modified to “visfatin” because it was 

thought to be secreted preferentially by visceral adipose tissue in obese 

patients8, 9. Now, it is clear that eNAMPT is not only produced by pre-B cells 

and adipocytes but also readily detectable in conditioned media from cultures 

of most cell types (Table 1)2. Immune cells, such as macrophages and 

leucocytes, neurons and glia cells, cardiomyocytes, melanocytes and 

fibroblasts have been demonstrated to release eNAMPT in the extracellular 

space under basal conditions or under stimulation.  

Few studies have focused the attention on the type of stimuli that might induce 

eNAMPT release from cells. First, it is clear that eNAMPT release occurs in 

the absence of cell death and therefore appears to be a true and specific 

phenomenon. Stress conditions, including ischaemia10 and oxygen–glucose 

deprivation (OGD), strongly increase eNAMPT release in neurons and glial 

cells11, and hypoxia has been shown to be a triggering stimulus in melanoma 

cells12.  
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All these stress conditions appear to be highly relevant in cancer as nutrient 

deprivation, hypoxia and oxidative stress are all features of the tumour micro-

environment.  

 
Table 1. Summary of cell types that release eNAMPT2. 

 

Only recently, it has been demonstrated that eNAMPT can be released by most 

if not all cancer cell lines. Interestingly, conditioned media from tumoural cells 

appears to contain substantially more eNAMPT when compared with non-

tumoural cultures. However, this parallels with the over-expression of 

intracellular NAMPT reported in the majority of cancer cell lines and tumour 

tissues13, 14.  
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Nutritional changes have also been shown to promote eNAMPT release. 

Indeed, other than the first evidence which linked increased eNAMPT levels 

to obesity-linked diabetes8, secretion of eNAMPT promoted by glucose or high 

insulin has been reproduced by others15, 16. Last, eNAMPT, like many other 

cytokines, is also secreted in response to inflammatory stimuli, such as LPS 

and ATP in monocytes17.  

Overall, a wide range of stimuli has been used to modulate eNAMPT release 

and this may indicate that eNAMPT secretion is recruited to function under 

specific circumstances.  

 

2. eNAMPT and disease: autocrine and paracrine effects 

The secretion of eNAMPT by different cell types suggests that this cytokine 

has pleiotropic roles in physiology and pathology and it is not surprising that 

circulating eNAMPT levels are frequently increased/deregulated in patients 

affected by different metabolic and inflammatory disorders, including cancer.  

In Figure 2 the main findings on the roles of eNAMPT in cells are summarized.  

 
Figure 2. Autocrine and paracrine effects of eNAMPT2. 
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2.1 eNAMPT: metabolic disorders  
 

As described previously, Fukuhara et al. described for the first time that 

eNAMPT has an insulin-mimetic activity. Indeed, they demonstrated that 

eNAMPT exerted insulin-mimetic effects in cultured cells and lowered plasma 

glucose levels in mice. Furthermore, the administration of recombinant 

eNAMPT on adipocytes and β cells induces their proliferation and protects 

them from apoptosis8, 18. They suggested that these effects are mediated by the 

binding of eNAMPT to the insulin receptor, this article was retracted, since 

other groups were unable to demonstrate the binding of eNAMPT to the insulin 

receptor 19. 

Since then, numerous reports have analysed the correlation between plasma 

eNAMPT levels and metabolic disorders. For example, Revollo et al. 

demonstrated that eNAMPT, partially thought NAD biosynthesis, plays a 

critical role in the regulation of glucose-stimulated insulin secretion (GSIS) in 

pancreatic β cells, but it does not possess insulin-like activity19. Indeed, they 

demonstrated that NAMPT through NAD biosynthesis regulates insulin 

secretion, but they failed to reproduce the insulin-mimetic effects using 

different recombinant eNAMPT obtained from different species (prokaryotic 

and eukaryotic). 

On the contrary, Xie H et al., reported in osteoblasts an insulin-like action of 

eNAMPT20, indeed after eNAMPT treatment they observe an increased 

glucose uptake, proliferation and type I collagenase production. Similarly, 

Song HK et al. showed that eNAMPT treatment of kidney mesangial cells 

increases the uptake of glucose, GLUT-1 protein expression, and synthesis of 

pro-fibrotic molecules. In addition, they observed that eNAMPT is able to 

reduce the plasma glucose levels in mice21. 

Importantly, correlates to human diseases have also been found. Many research 

groups observed a possible correlation with circulating eNAMPT levels and 

the anthropometric and metabolic parameters in patients affected by diabetes 
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type II.  Moreover, Berndt et al., found a correlation between circulating 

eNAMPT levels and obesity, BMI (Body Mass Index) and body fat, but not 

with the size of the circumference of the waistline and with the WHR (Waist-

hip Ratio)22. On the contrary, other researcher groups obtained opposite results 

regarding the correlation of plasma eNAMPT levels and metabolic disorders. 

These conflicting results might be explained by the variability in the 

commercial immunoassays available for the detection of eNAMPT. For 

example, Körner et al. identified an unknown protein (with high molecular 

weight of eNAMPT) that compromised the measurement of eNAMPT in one 

of the commercial immunoassay kits24.  

 

2.2 eNAMPT: inflammatory diseases   

 

Many evidences have been provided for an involvement of eNAMPT in both 

the innate and adaptive immunity. First, eNAMPT is secreted upon 

inflammatory stimuli (listed in Table 1). For example, Jia et al. demonstrated 

that the amount of eNAMPT is increased in the presence of different 

inflammatory stimuli such as LPS, IL-1β and TNF-α in monocytes and 

neutrophils in vitro25.  

Not only, but the stimulation of innate and adaptive immune cells with 

eNAMPT is able per se to induce an inflammatory response, inducing a 

positive loop. Indeed, it has been reported that eNAMPT induces M2 

polarization, increases phagocytosis and promotes macrophage survival and 

myeloid differentiation26. Moreover, eNAMPT treatment induces the 

activation of T cells and B cells. In this direction, different studies reported that 

eNAMPT treatment increased the mRNA levels and the release of different 

cytokine such as IL-1β, IL-1Rα, IL-10, IL-6, IL8 and TNF-alpha through the 

activation of p38, ERk1/2, AKT, JNK, NF-κB or the JAK/STAT3 pathways2, 

27-29. Moreover, eNAMPT induces the expression of iNOS (inducible NO-

synthase), which leads to the formation of peroxynitrite in macrophages30. 
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It has been demonstrated also that the injection of eNAMPT in peritoneal mice 

stimulates the production of pro-inflammatory cytokines from mononuclear 

blood cells (such as IL-8 and IL-16) and increases mRNA expression and 

plasma levels of IL-631.  

All these data support the evidence that eNAMPT plays a crucial role in 

inflammation. Likewise, eNAMPT circulating levels are up-regulated in 

different acute and chronic inflammatory conditions, such as lung injury, 

atherosclerosis, ulcerative colitis, rheumatoid arthritis, psoriasis and sepsis. 

Rheumatoid arthritis. High levels of eNAMPT in plasma are associated with 

the severity of joint damage, prompting cartilage erosion32. Moreover, 

eNAMPT regulates the production of PGE2, MMP-3 and ADAMTS synthesis 

in chondrocytes, postulated as a degradation marker in patients33, 34.  

Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). 

It has been reported that eNAMPT is one of the proteins overexpressed in ALI 

and ARDS, determining increased levels of the cytokines such as IL-1β, TNF-

α and IL-8. Moreover, in heterozygous NAMPT+/- mice, operating with a 

deletion of a single allele, there is a modest protection from lung injury35.  

Inflammatory bowel disease. Several studies have reported the correlation 

between high plasma levels of eNAMPT and ulcerative colitis and Chron’s 

disease and there is a correlation with the stage of the disease. Due to the 

anatomic proximity of bowel and visceral fat, the bowel inflammation could 

activate adipocytes, which release several cytokines and adipokines, among 

which eNAMPT. Interestingly, after three months of treatment, eNAMPT 

levels were significantly reduced36.  

 

2.3 eNAMPT: cancer 

The role of iNAMPT in the cancer pathology is well documented 13, 14, 37. 

Indeed, iNAMPT has been observed overexpressed in cancer cells, and the 

treatment of tumoural cells with FK866 leads to cellular death in vitro13. Also 

in tumour-bearing mice, the treatment with FK866/CHS828 leads to reduction 
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in tumour volume and metastasis formation compared to controls. As described 

above, FK866/CHS828 entered phase I/II clinical trials for non-solid and solid 

tumour (www.clinicaltrials.gov). 

To date, it is known that also eNAMPT has a pivotal role in cancer. Indeed, as 

observed for other cell types, eNAMPT has a cytokine effect on tumour cells 

and controls several cancer hallmarks.  

Indeed, the treatment of eNAMPT on different tumour cells, such as PC3 

(prostate cancer) cells, melanoma cells and MCF7 (breast cancer) cells, results 

in a proliferative effect28, 29. Indeed, it has been demonstrated that the eNAMPT 

treatment on cancer cells increases mRNA levels of VEGF, MMP-2/9, 

CXCL12 and CXCR4/7 thought the activation of MAPK, NF-κB and notch 

pathways38-41.  All these effects are then translated in an increase in 

proliferation, migration and colony formation.    

Furthermore, eNAMPT seems to promote the epithelial-mesenchymal 

transition (EMT), a process in which epithelial cells lose their adhesion 

properties and become mesenchymal stem cells with migratory and invasive 

properties. Regarding this aspect, Cheng et al. and Soncini et al. have shown 

that eNAMPT, in a NF-κB- dependent manner, promotes osteosarcoma and 

breast cancer cell migration through the reduction of E-cadherin expression 

and the increase of N-cadherin, vimentin and ZEB142, 43.  

The tumoural microenvironment is a heterogeneous environment in which 

tumoural cells cooperate with immune cells, bone marrow-derived 

inflammatory cells, endothelial cells and fibroblasts. It is evident that 

eNAMPT may affect cell types other that tumoural cells in vivo. 

In endothelial cells, eNAMPT treatment induces the activation of MAPK, 

PI3K, AKT and NF-κB intracellular pathways, which results in the increase of 

the release of Fibroblast Growth Factor 2 (FGF-2), Vascular-Endothelial 

Growth Factor (VEGF) and nitric oxide (NO)44. Kim et al. and Adya et al. 

reported that eNAMPT treatment of human umbilical vein endothelial cells 

(HUVECs) promotes angiogenesis through the activation of ERK1/2. Indeed, 
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in vivo and in vitro, it has been found that eNAMPT stimulates the formation 

of new vessels, facilitating the migration and formation of veins in HUVECs. 

This action is attributable to both the up-regulation of VEGF and of the matrix 

metalloproteases (MMP) and the suppression of metallopeptidase inhibitor 1-

2 (TIMP 1-2). Moreover, the inhibition of PI3K/Akt and ERK1/2 leads to a 

drastic decrease in the effect of eNAMPT on the activation of the gene 

expression of VEGF and MMP, and consequently leads to a reduction of 

endothelium proliferation and capillary formation45-48. In vivo, Kim et al. 

observed that eNAMPT in matrigel plug assays and in chorioallantoic 

membrane assay in mice promotes angiogenesis29, 46. The pro-angiogenetic 

effects of eNAMPT observed on HUVECs are also reflected on cancer cells.  

Moreover, Audrito et al. have shown that eNAMPT is able to polarize resting 

monocytes obtained from chronic lymphocytic leukaemia towards M2-

macrophages with tumour-supporting properties26. Indeed, eNAMPT 

treatment increased CD163, CD206 expression and the release of IL-6 and IL-

8 tumour-promoting cytokine and IL-10 immunosuppressive cytokine. 

Therefore, eNAMPT may modulate cancer cell proliferation and migration but 

also angiogenesis and tumour-related inflammation. 

In support of these observations, eNAMPT circulating levels are increased in 

cancer patients compared to healthy subjects49-51. Furthermore, a positive 

correlation between circulating levels of eNAMPT and cancer progression 

has been described15-17 (Table 2).  
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Table 2. eNAMPT as a cancer biomarker 

  

Despite these encouraging results, there are, however, still numerous aspects 

to be revealed about the role and the biological importance of eNAMPT: (i) 

there is no information, in literature, about the physiological levels and role of 

eNAMPT, (ii) circulating eNAMPT levels, as described above, have been 

observed elevated in different pathologies and not only in cancer patients, and 

therefore there is no specificity associated to this phenomenon; (iii) different 

cells types, such as inflammatory cells, endothelial cells and adipocytes release 

eNAMPT and it is difficult to understand the source of circulating eNAMPT. 

In this regard, our group, recently, demonstrated that part of circulating 

eNAMPT derives directly from tumoural cells12.  

 

2.4 eNAMPT: neuro- and cardio- protection  

 

While in cancer and autoimmune disorders eNAMPT seems to have 

predominantly a negative role, increasing the aggressiveness of the tumour and 

inducing inflammatory responses, in brain and heart the picture appears 

different, with a cardio-protective and neuro-protective described.  

Evidences demonstrate that eNAMPT protects from apoptosis, induces 

proliferation and DNA synthesis via the activation of PI3K, p38, ERK 1/2 and 

NF-κB in cardiomyocytes52, 53. By doing this, eNAMPT reduces post-

reperfusion myocardial injury. In neurons, eNAMPT treatment increases 
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mRNA levels of COX-2, TNF and IL-1β via ERK 1/2, resulting in neurite 

outgrowth, protection from apoptosis induced by OGD (oxygen-glucose 

deprivation) and regulates glucose metabolism11. 

In conclusion, there is ample evidence that eNAMPT triggers numerous 

intracellular signalling pathways and it can also participate in many biological 

processes. The discrepancies observed may suffer from poor systematic 

investigation and may be translated in different roles of this cytokine dependent 

on the type of context in which it exerts its actions, both physiological and 

pathological.   

 

3 eNAMPT EFFECTS: ENZYMATIC ACTIVITY OR BINDING TO 
A RECEPTOR? 
 

The manner by which eNAMPT triggers the above phenomena is still largely 

unknown. Given that eNAMPT has the potential to remain enzymatically 

active upon release, these effects can be attributed to (i) its extracellular 

enzymatic activity and/or to (ii) the binding and activation of a cell surface 

receptor (Figure 1). Currently, there are evidences both for and against these 

possibilities, which are not mutually exclusive. 

 

3.1 Enzymatic activity of eNAMPT 
 

Revollo et al. demonstrated through size exclusion chromatography that 

secreted eNAMPT can exist as a dimer in conditioned media of adipocytes19. 

Given that dimerization is required for the creation of the catalytic site of the 

enzyme, this represents the possibility that eNAMPT might be active in the 

extracellular space. Obviously, the availability of substrates is crucial for this 

hypothesis, and the presence of sufficient concentrations of phosphoribosyl 

pyrophosphate (PRPP), nicotinamide or ATP has been disputed54. 

In this regard, a recent work of Li et al. has reported that eNAMPT protects 

macrophages from apoptosis induced by ER-stress through its enzymatic 
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activity55. It is true that if eNAMPT acts as an active enzyme, its product, 

NMN, should be able to mimic the effects of eNAMPT exposure. While a 

minority of experiments have confirmed this, many others have failed to 

demonstrate an effect of NMN19, 55. Indeed, some reports have shown no effect 

of NAMPT inhibitors on its function, demonstrating that at least part of its 

effects are independent of enzymatic activity26, 55.  

Indeed, the mutants of eNAMPT: H247E, R392A, R311A (that lead to a loss 

in enzymatic activity) and S200D (that prevents the dimerization of proteins), 

have the same ability compared to wild-type protein to protect macrophages 

from apoptosis induced by ER-stress, to induce the activation of STAT3 and 

to stimulate the release of IL-6. Only one report in the literature has shown that 

treatment with wild-type eNAMPT, but not with the H247A enzymatically 

inactive mutant, attenuates the detrimental effect of OGD on cell viability of 

neuronal and glial cells11.  

To date, it is still difficult to define if eNAMPT acts as an extracellular enzyme 

to induce intracellular pathway activations. 

 

3.2 Putative eNAMPT receptors 
 

Since the effects of eNAMPT are observable at ng/mL concentrations and the 

activation of specific intracellular pathways occurs in minutes, eNAMPT may 

bind to and activate a cell surface receptor. In 2007, the insulin receptor was 

the first propose by Fukuhara et al., but the article was subsequently retracted 

because the data were not reproducible8, 56. Only recently, other two different 

receptors were proposed: CCR5 and TLR4 but, up to date, no other research 

group has replicated or disputed those receptors. 

Van den Bergh et al. have reported that eNAMPT inhibits HIV infection of 

macrophages by R5 HIV and not by X4 HIV, moreover using the Surface 

Plasmon Resonance found an interaction between CCR5 and eNAMPT with a 

nanomolar range affinity57. Unfortunately, there are no information about the 

physiological role of this interaction. In 2015, Camp et al., also have reported 
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that eNAMPT binds and activates TLR4 inducing NF-κB activation in lung 

injury. The authors confirmed this interaction using Surface Plasmon 

Resonance, but without indicating either a KD or an affinity range58. 

Despite these evidences, the real identity of the receptor still remains unclear, 

and CCR5 or TLR4 may be reputed good candidates at best, given the 

incomplete data available. 

Most of my thesis has been focused on exploring the possibility that CCR5 is 

the eNAMPT receptor, and my observations will be submitted soon for 

publication. Given that the chapter on CCR5 is written in a manuscript-like 

format, with only minor information given about this receptor, I will expand 

this information below. On the contrary, given that only preliminary evidence 

have been provided by myself on TLR4 and this is too preliminary for 

publication, the corresponding chapter is not yet publication-ready and I have 

included TLR4 details there. 

 

4 CHEMOKINE RECEPTOR TYPE 5 (CCR5) 

 

CCR5 (also known as CD195) is the C-C chemokine receptor type 5, which 

binds selectively the chemokines of the CC-family. Chemokine receptors are 

members of the family of seven transmembrane-spanning receptors that signal 

through heterotrimeric G proteins upon ligand binding 59-61. In general, the 

effects of CCR5 include inhibition of cAMP production, stimulation of calcium 

release, activation of PI3-kinase and MAP kinases, as well as other tyrosine 

kinase cascades. Through these pathways, CCR5 regulates trafficking and 

effector function of immune cells and serves as the main co-receptor for the 

entry of R5 strains of the human immunodeficiency virus (HIV-1, HIV 2)60.  
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4.1 CCR5 signalling  

 

Endogenous agonists: 

A number of inflammatory CC-chemokines, including macrophage 

inflammatory protein 1 alpha (MIP-1α) and MIP-1β, chemokine (C-C motif) 

ligand 5 (CCL5 also known as RANTES), monocyte chemotactic protein 2 

(MCP-2 also known as CCL8) and HCC-1, structurally related to MIP- 1α, 

have been described as endogenous ligands of CCR5. 
 
Signal transduction of CCR5 induced by binding with the ligand, starts with 

the dissociation of G-protein into Gαi and Gβγ subunits and the consequent 

inhibition of adenylate cyclase and the activation of phospholipase Cβ isoforms 

(PLCB). These events lead to the hydrolysis of the phospholipid 

phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol-1,4,5- trisphosphate 

(IP3) and diacylglycerol (DAG). Then, the increase of IP3 production causes 

calcium release from the endoplasmic reticulum and the activation of several 

calcium- dependent signalling. Like other Gi-coupled receptors, also CCR5 

stimulates the opening of inward-rectifying K+ channels and activates different 

tyrosine kinase cascades62, 63. 

CCR5 ligands stimulate the activation of several intracellular pathways. Some 

of them involve the MAP kinase family, such as ERK1/2, p38 and JNK, 

p56Lck, the phosphatases SHP1 and SHP2, leading to the phosphorylation of 

Src-related kinase and the cytoskeleton associated protein kinases paxillin64, 65. 

Another one involves JAK-STAT signalling. The activation of JAK by 

RANTES leads to the translocation of STAT1-3 to the nucleus and the 

regulation of gene transcription66-68. 

All these RANTES-mediated signalling are inhibited by pertussis toxin (PTx), 

suggesting a Gαi mechanism69, 70, except for the JAK-STAT pathway67.  

Moreover, RANTES has also been shown to promote the activation of PI3 

kinase and Rho A, a member of the Rho family of small GTPases, in T cells71. 



	 18	

Rho GTPases, including Rho A, coordinate the reorganization of the actin 

cytoskeleton and regulate cell polarity, adhesion and motility. 

 

The modulation of CCR5 activity by its endogenous agonists includes also a 

physical conformational change, which results in the receptor internalization. 

Indeed, after ligand binding, the G-protein–coupled receptor kinases (GRK2 

and GRK3) phosphorylate the receptor and, subsequently, the β-arrestin 

recognises the phosphorylated receptor and mediates the internalization 

through clathrin-coated vesicles62, 63.    

 

 
Figure 3. CCR5 intracellular signalling pathways72. 

 

Endogenous antagonists: 

The chemokine Monocyte Chemotactic Protein-3 (MCP-3 also named CCL7) 

is a natural antagonist proposed for CCR5 receptor73. It competes with MIP-

1β on CCR5 and reduces MIP-1β- dependent calcium signalling73. Blanpain et 

al., demonstrated that MCP-3 is able to reduce the binding of the virus 
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membrane glycoprotein gp120 to CCR5 over-expressing CHO cells, but this is 

not translated into a reduction of the HIV infection73. 

Uguccioni et al., reported that MCP-3 induces a migration response with 

bimodal concentration dependence, with different efficacy and curve trends. In 

detail, MCP-3 increased monocyte migration until the concentration of 100 

nM, while higher concentrations inhibit the cell migration. They discovered 

that the effects of agonism obtained at low doses were mediated by CCR1, 

CCR2 and CCR374. 

 

Synthetic antagonists: 

The development of CCR5 inhibitors is mainly due to the need to find drugs 

that can reduce and prevent HIV R5 strain infection. Different small molecules 

have been synthetized such as maraviroc, cenicriviroc, aplaviroc and 

vicriviroc. 

Maraviroc is a synthetic competitive antagonist of CCR5. It reduces both 

RANTES- mediated calcium signalling and HIV infection, without affecting 

the internalization rate of the receptor75. Maraviroc is defined as a slowly 

reversible small molecule antiretroviral drug, classified as an entry inhibitor, 

which impedes gp120 binding to CCR5 and the consequent fusion of the virus 

with the host75, 76. It is used in the treatment of HIV R5 strains positive patients 

and, recently, entered into phase II for HIV pre-exposure prophylaxis (PrEP) 

in woman and men77, 78.  

Maraviroc is the only drug of this class approved for HIV therapy, while the 

other compounds failed in primary efficacy endpoints (vicriviroc) or showed 

liver toxicity (aplaviroc) in clinical trials79. Clinical trials with cenicriviroc are 

still ongoing. 
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4.2 CCR5 and inflammation 

 

CCR5 is largely expressed on resting T-lymphocytes with memory/effector 

phenotype, and on monocytes, macrophages and immature dendritic cells80, 81, 

and is up-regulated by pro-inflammatory cytokines82, 83. 

CCR5 plays an important role in the fate of CD8+ T cells. Indeed, upon entering 

the lymph nodes, naive CD8+ T cells are activated and quickly express CCR5 

on the cellular membrane. The subsequent contact between CD8+ T cells and 

antigen-mediated dendritic cells promotes the development of CD8+ T cells 

responses and the acquisition of immune memory. The effector T cells which 

express CCR5, subsequently exit from the lymph nodes and are recruited into 

sites of inflammation and/or infection by chemokines that are released by 

innate immune cells84-87.  

Moreover, CCR5 plays an important role in the fate of monocytes, 

macrophages and dendritic cells. Indeed, upon infection, tissutal macrophages 

produce a large amount of chemokines, among which some lead to CCR5 

activation. This contributes to the survival of macrophages during 

inflammation and infection, and drives and retains the macrophages and 

dendritic cells in inflammed tissue88.  
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Figure 4. CCR5 effects on immune cells 

 

 

Infections 

The role of CCR5 in infection is well documented. First, CCR5-/- mice develop 

normally in a pathogen free-environment, but exhibit a partial deficiency in 

macrophage function resulting in: (i) a reduction of Listeria infection 

clearance; (ii) a delay in hypersensitivity reactions and (iii) an increase of 

humoral responses to T-cell- dependent antigenic challenge89, 90.  

In particular, CCR5 plays an important role in human immunodeficiency virus 

(HIV) infection. In detail, CCR5 is the co-receptor used by M-tropic HIV, 

while CXCR4 is the co-receptor used by T-tropic HIV91, 92(Figure 5). In the 

first stage of HIV infection, the gp120 glycoprotein of HIV interacts with CD4 

and, after a conformal change, it binds to CCR5.  
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In the second stage, the interaction between gp120, CD4 and CCR5 (or 

CXCR4) leads to exposure of the gp41 subunit on the virus envelop which 

anchors the membrane of the host and mediates the HIV fusion process crucial 

for the infection93-96. 

 
Figure 5. Scheme of HIV infection (hivbook.com) 

 

 

Furthermore, CCR5 delta 32 (CCR5Δ32) is a mutant allele of CCR5 frequent 

in populations of European origin, and encodes a non-functional truncated 

protein that is not transported to the cell surface. Homozygotes for the Δ32 

allele exhibit a strong resistance to HIV R5 strain infection, whereas 

heterozygotes display delayed progression to acquired immunodeficiency 

syndrome (AIDS). Many other alleles affect the primary structure of CCR5 or 

its promoter, some of which lead to a non-functional receptor or otherwise 

influence AIDS progression97-101.  

 

Autoimmune diseases 

To evaluate the CCR5 mediated effects, most of the studies have taken 

advantage from the CCR5 KO mouse model and from pharmacogenetic 

analysis of patients (i.e. CCR5 Δ32 mutants).  

For example, the mutant Δ32 allele is associated: (i) to a milder phonotype in 

rheumatoid arthritis102 (ii) to a decrease risk of rejections in renal 
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transplantation103, (iii) to a decrease risk of atherosclerotic plaque formation 

and a protection against an early episode of myocardial infraction104, 105. 

 

Neuroinflammation 

Epidemiological studies reveal that CCR5Δ32 allele is associated with less 

severe forms of multiple sclerosis, but do not affect the risk of patients to 

develop the disease, suggesting that antagonism of CCR5 might reduce 

multiple sclerosis progression106 but also that CCR5 is not involved in its 

development. 

 

4.3 CCR5 and cancer 

 

Large amount of evidence describes CCR5 as crucial in cancer pathology, 

although most of these refer to pre-clinical studies conducted on cancer cells 

and tumour-bearing mouse models.  

CCR5/RANTES axis activation may have a double role in cancer: on one hand, 

it induces an immune response against cancer cells107, on the other hands, it 

appears to promote cancer progression and metastasis formation108. These 

contradictory effects may be explained, at least in part, with the ability of 

RANTES to also bind receptors (e.g. CCR1 and CCR3) other than CCR5. 

The activation of CCR5 leads to cancer cell proliferation, angiogenesis, 

modulation of extracellular matrix, and immune evasion mechanisms. Indeed, 

exogenous RANTES stimulates cell migration and invasion through the 

activation of PI3K/AKT and αvβ3integrins109, and by releasing MMP-2 and 9 

through NF-κB, ERK and Rac signalling pathways110-113.  
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Figure 6. CCR5 in cancer114 

 

Increase in glucose uptake and ATP production and enhanced glycolysis are 

consequences of CCR5 stimulation in cancer cells, favouring their 

proliferation115, 116.  

Moreover, different types of cancer, such as breast, melanoma, colorectal, 

ovarian and prostate cancer, over-express both CCR5 and RANTES117-123, a 

selection advantage that contributes to increase ability of cell migration and 

invasiveness. Specifically, in primary melanoma and some cutaneous 

metastasis RANTES and CCR5 have been found over-expressed compared to 

normal melanocytes and their expression correlates with malignancy state118, 

119. To understand the role of RANTES/CCR5 axis in melanoma, Song et al. 

generated a melanoma model in CCR5 knockout (CCR5−/−) and wild type 

(CCR5+/+) mice and observed that melanoma growth was delayed in CCR5-

deficient mice due to an increased cell death and activation of apoptotic 

signalling124.  

RANTES/CCR5 may also perturb the equilibrium of tumour infiltrating cells 

in the tumour microenvironment. In fact, RANTES promotes the recruitment 
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of tumour-promoting cells such as tumour associated macrophages (TAMs) 

and myeloid derived suppressor cells (MDSCs), that leads to immuno-

suppressing effects and reduce the antitumor T-cell activities117, 125, 126.  

Last, few information are available regarding cancer patients and CCR5 

signalling. Yet, in breast cancer, Niwa et al. and Bieche et al. found a 

correlation between RANTES and cancer progression, relapse and metastasis 

formation compared to patients in remission127, 128.  Moreover, Luboshits et al. 

showed that RANTES release was mostly due to cancer cells, but also 

infiltrating leucocytes and mesenchymal stem cells (MSCs), present in the 

tumour microenvironment, contribute to increase RANTES levels in 

patients129.  

 

5 TLR4: toll-like receptor 4 

  

Toll-like receptors (TLRs) are type I transmembrane proteins and belong to 

pattern recognition receptor (PRR) families. Their extracellular domain 

contains leucine-rich repeats (LRRs) and binds to a specific ligand unique to 

bacteria, fungi and viruses: lipopeptides are recognised by TLR2, 

lipopolysaccharide by TLR4 and flagellin by TLR5, while virus compounds 

such as RNA single- and double-strand are recognised by TLR8130-133. The 

activation of TLR receptors induces an inflammatory response through the 

cytosolic domain, which is conserved to all TLR receptors. The intracellular 

regions are similar to the cytosolic domain of IL-1 receptor and it is called 

Toll/IL-1 receptor (TIR) domain.  Moreover, TLRs are able to heterodimerise 

with other types of TLRs, TLR2 dimerises with TLR6 or with TLR1 to respond 

to diacylated or triacylated lipoproteins134. 
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Scheme 1. TLRs signalling135 

 

 

5.1 Signalling of TLR4 

 

Endogenous agonists: 

TLR4 is activated by a variety of pathogen-associated molecular patterns 

(PAMPs), among which the most characterized is lipopolysaccharide (LPS). 

LPS is not the only ligand of TLR4, but there are also glucoronoxylomannan, 

mouse mammary tumour virus envelope protein, fibrinogen, heat shock protein 

(HSP) 60 and 70, high-mobility group box 1 protein (HMGB1) and others. In 

addition to PAMPs, TLR4 can be also activated by damage-associated 

molecular patterns (DAMPs) derived from damaged tissues, such as 

oligosaccharides of hyaluronic acid, fibronectins, and fatty acids in response 

to cellular damage136-139.  

Yet, LPS remains the main agonist of TLR4 and it is composed from 3 different 

regions: the endotoxin (or lipid A), the core composed by oligosaccharides and 
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the O-antigen region140. The endotoxin is the only part of LPS recognised by 

TLR4, and the binding of endotoxin with TLR4 requires some different adaptor 

or accessory molecules, such as lipopolysaccharide-binding protein (LBP), 

CD14 and MD-2141-143.  

LPB: it is produced in the liver and in the lung and present into the blood. LPB 

does not participate in the TLR4 binding, but enhances the sensibility to 

LPS141. Indeed, LPB is a lipotransferase that facilitates the transfer of LPS onto 

CD14. Indeed, mice lacking LPB (LPB-/-) showed a reduction of LPS 

responses144, 145.  

CD14: it exists in 2 forms: a GPI-linked and a soluble form. CD14 lacks in a 

transmembrane and in a cytoplasmic region and it is not able to produce an 

intracellular signalling. Otherwise, soluble CD14 plays an important role in 

increasing the sensitivity to LPS in cells143. 

MD-2: it is essential to LPS responses. Indeed, the lack of MD-2 in cells leads 

to a lack of LPS response. In this context, different research groups have 

achieved conflicting results when they transfect TLR4 in HEK293T cells, 

indeed, some report showed a response of LPS in these cells146, while some 

others did not observed any responses. These conflicting results were due to a 

lack of MD-2 in HEK293T, while subsequent studies demonstrated that MD-

2 is also a soluble TLR4 co-receptor and its presence in serum might be 

sufficient to make cells responsive to LPS146-149. 

The activation of TLR4 induced by MD-2/LPS leads to a recruitment of four 

different TIR-domain-containing adapter molecules, which lead to activation 

of two different pathways: (i) the MyD88-dependet pathway and (ii) the 

MyD88-independet pathway.  
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Scheme 2. Mechanism of LPS activation of TLR4150 

 

(i) The MyD88-dependent pathway requires the recruitment of myeloid 

differentiation factor 88 (MyD88) and TIR-domain-containing adapter protein 

(TIRAP), which are involved in the early activation of NF-κB and the 

consequent production of different cytokines, such as IL-12 and IL-6151-154. 

MyD88 recruits IL-1R-associated kinase-1 (IRAK1) and the adaptor molecule 

TNF Receptor-Associated Factor 6 (TRAF6)155. The fundamental role of 

MyD88 was demonstrated by Shizuno et al. that showed that macrophages 

obtained from MyD88-deficient mice were insensitive to LPS-induced death 

and were not able to release some cytokines such as IL-6 and TNFα156. In brief, 

the activation of MyD88 triggers the activation of TRAF6 which in turn 

induces transforming growth factor-β-Activated Kinase 1 (TAK1). All these 

events culminate with the activation of MAPK and IκB kinase (IKK) that 

promotes NF-κB translocation into the nucleus.  
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(ii) The MyD88-indipendent pathway requires the recruitment of TIR-domain-

containing adaptor inducing interferon-β (TRIF) and TRIF-related Adaptor 

Molecule (TRAM). The activation of TRIF results in a strong activation of 

interferon (IFN)-regulator factor 3 (IRF3), involved in the late NF-κB 

activation, which culminates with the production of IFN-β and the expression 

of IFN-inducible genes134, 153, 157, 158.   

 

Antagonists: 

The antagonists of TLR4 interfere both with receptor dimerization or with the 

adapter recruitment, leading to a reduction in NF-κB and MAPK activation and 

to a decreased production of pro-inflammatory cytokines159, 160. 

To date, no endogenous antagonists of TLR4 are known, however recently 

several TLR4 inhibitors obtained from plant extracts have been identified. 

Particularly, many herbs used in Traditional Chinese medicine (TCM) and 

Ayurvedic medicine resulted rich in molecules acting as antagonists of 

TLR4161. These include green tea, Glycyrrhiza uralensis (licorice), Magnolia 

officinalis, ginger, Salvia miltiorrhiza, curcumin and Ganoderma lucidum159, 

160, 162-164. In detail, the main natural compounds that act as an antagonist of 

TLR4 are paclitaxel, morphine, opioids, sulforaphane, caffeic acid phenethyl 

ester and glycyrrhizin163, 165-168.  

Some synthetic compounds, such as naloxone, naltrexone, amitriptyline and 

imipramine, have been described as TLR4 antagonists169, 170.  

As alternative strategy, analogues of lipid A which act as antagonists of TLR4 

have been synthesized, such as LPS-RS and eritoran, which is currently 

undergoing clinical trials for use in treating Gram-negative endotoxemia and 

sepsis171, 172.  
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5.2 TLR4 and diseases 

 

Since the major ligand of TLR4 is bacterial LPS, it is clear that TLR4 covers 

an important role in inflammatory diseases, in particular in infections. 

However, TLR4 is related also with non-infection diseases such as cancer, 

cardiac disease, obesity and diabetes. 

 

Metabolic diseases   

TLR4 is expressed in many cell components of insulin target tissues, including 

liver, adipose tissue, skeletal muscle, vasculature, pancreatic β cells, and 

brain173, 174. 

Saturated Fatty Acids (SFAs) activation of TLR4 is an attractive link between 

obesity, insulin resistance and inflammation. SFAs are acyl components of 

LPS, which bind directly to TLR4/MD2/LPS and activate the receptor in 

vitro175, 176. However, recent studies document endotoxin contamination of 

experimental reagents, which generate false positive177-179.  

Extensive literature suggests that high fat diet-augmented postprandial 

endotoxemia is a possible mode by which dietary SFAs induce inflammation 

through TLR4 in diet-induced obesity models180. Moreover, insulin resistant 

diet-induced obesity and genetically obese mice exhibited elevated plasma LPS 

levels and endotoxemia, and it is correlated with insulin resistance. In addition, 

genetically obese mice treated with a LPS inhibitor showed a reduction in 

inflammation and metabolic abnormalities compared to untreated mice, 

suggesting a correlation of obesity with the TLR4 signalling181, 182. 

All these evidences suggest a correlation between obesity, inflammation and 

insulin resistance with the activation of TLR4. In this sense, different studies 

show that the alteration of TLR4 gene in mice confers protection from obesity-

induced inflammation and insulin resistance. In particular, using TLR4 

deficient mice (with loss-of function or deletion/mutations in the TLR4 gene), 
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different studies demonstrated that TLR4 signalling in macrophages and 

adipose tissue regulates whole body glucose homeostasis thought the effects 

on adipose, muscle, and liver tissues. Moreover, TLR4 deletion also improved 

insulin sensitivity, with higher rates of glucose disposal into skeletal muscle 

and adipose tissue183-187. 

 

Cardiac diseases 

An ischemia/reperfusion injury (I/R injury) is a hypoxic condition in which 

there is an interruption of the blood supply and a subsequent restoration. In 

addition to the damage caused by ischemia, the reperfusion of blood supply 

may cause an acute inflammatory response that leads to an extensive tissue 

injury named “reperfusion injury”188. Moreover, hypoxia induces the release 

of different damage-associated molecular patterns (DAMPs) from cells in 

response to a cell damage or tissue injury. DAMPs induce the activation of 

macrophages, which release pro-inflammatory cytokines, and the recruitment 

of neutrophils, monocytes, and lymphocytes in ischemic area189. Different 

studies, some of them conducted also in mice, demonstrated that DAMPs bind 

directly to TLR4 and activate its downstream pathways. Chong AJ et al. 

generated a TLR4 mutant mouse model, and observed a reduction of infarct 

size in I/R injury compered to wild type groups. Moreover, they reported a 

reduction in IL- 6 release and NF-κB and AP-1 activation190. Likewise, 

Shimamoto et al. demonstrated that the inhibition of TLR4 in a murine model 

of myocardial I/R injury results in a reduction of tissue damage172.  

 

Inflammation diseases  

The polymorphism studies conducted on the human TLR4 gene revealed 

diversifications among individuals, which determine different infection disease 

outcome.  

Two different TLR4 polymorphisms, the Asp299Gly and Thr399Ile variant 

alleles, were found to cause a reduction in LPS response191. Indeed, individuals 
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carrying these mutations showed a decreasing responsiveness to inhaled 

Escherichia coli LPS. Interestingly, Lorenz et al. observed in a comparative 

study between patients with septic shock, that patients with Asp299Gly and/or 

Thr399Ile polymorphisms were more susceptible compare to wild type. 

Moreover, these patients showed an increased sensitivity to gram-negative 

bacterial infections192. Unfortunately, other studies failed to confirm these data 

and the results were conflicting. Indeed, different research groups failed to 

observe any difference between patients with wild-type TLR4 and mutated 

TLR4. Ferwerda et al. reported that the primary cells obtained from 

Asp299Gly/Thr399Ile haplotypes patients did not show any different in LPS 

responsiveness compered to wild-type patient’s primary cells193, 194.  

Ferwerda et al., in a review, supposed that an erroneous study methodology 

can influence the results194. Indeed, they observed that four haplotypes exist 

for TLR4 genes: wild type/wild type, Asp299Gly /wild type, Thr399Ile /wild 

type, and Asp299Gly / Thr399Ile194. Moreover, recent data, obtained from the 

same research group, showed that only the Asp299Gly polymorphism differs 

from wild-type, indeed the blood samples obtain from Asp299Gly patients 

showed an increased TNF-α response after LPS-stimulation193.  

In addition, another single nucleotide polymorphism rs11536889 in 3′-

untranslated region of TLR4 was identified, and different studies reported a 

correlation between this polymorphism and periodontitis or organ failure in 

sepsis195. Subsequent studies showed that this polymorphism causes a 

reduction in cell surface expression of TLR4 and IL-8 production in response 

to LPS treatment196. 

 

Cancer 

A possible implication of TLR4 in tumour proliferation, metastasis formation 

and apoptosis inhibition has been supposed. 

First, an overexpression of TLR4 was found in many different types of cancer 

cells, such as lung cancer A549 and H460 cell lines197, cervical squamous 
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epithelial cells198, colon cancer cells and MDA-MB-231 human breast cancer 

cell line199.  

Moreover, a role of TLR4 in chemotherapy resistance and in pro-proliferative 

and pro-invasive stimulation of the tumour has been demonstrated. Indeed, 

Wang et al. reported in ovarian cancer a possible role of TLR4 in paclitaxel 

chemotherapy resistance200, while Hua et al. demonstrated that the silencing of 

TLR4 reduced cell invasion, survival, and tumorigenicity of prostate cancer201. 

Additionally, different studies observed that the TLR4 and MyD88 expression 

correlates with survival, metastasis formation and the expression of different 

chemokine such as CCL2 and CCL5202. Moreover, in H7402 (human liver 

cancer) and HepG2 (hepatoblastoma), LPS stimulation increased cell 

proliferation, chemotherapy resistance and NF-κB activation, which in turn 

leads to an increase of TNF, IL-6 and IL-8 release203-205. 

While on the one hand the expression of TRL4 in tumour cells is linked to a 

poor prognosis, on the other hand the expression of TLR4 on immune and 

inflammatory cells in tumour microenvironment leads to a production of pro-

inflammatory and immunosuppressive cytokine and angiogenetic mediators. 

This results in a polarization of tumour-associated macrophages (TAM), 

tumour-promoting cancer-associated fibroblasts (CAF), and the activation and 

accumulation of myeloid-derived suppressor cells (MDSCs)206-208.  
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During my Ph.D., I worked in two separate fields of research: (i) the 

investigation of novel chemicals as putative tubulin inhibitors; and (ii) the 

generation of data towards the identification of the eNAMPT receptor. Given 

that the articles describing novel tubulin agents have now been published1, my 

thesis work will concentrate on the more challenging, and so far unpublished, 

data attempting to unravel the eNAMPT receptor. 

In this latter aspect, I focused my attention on: 

(i) evaluating whether CCR5 could mediate the effects of eNAMPT, 

starting from the report that an interaction between eNAMPT and 

CCR5 determined by Surface Plasmon Resonance occurred2. 

 

(ii) Confirming the hypothesis emerged by Camp et al. that TLR4 may 

mediate part of the effects elicited by eNAMPT3. 

 

(iii) setting up different methodologies to discover new eNAMPT 

interactors, via fluorescent probes and cross-linking techniques.    
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ABSTRACT 

 

Extracellular nicotinamide phosphoribosyltransferase (eNAMPT, PBEF, 

Visfatin) is a metabokine released by various cell types with pro-tumoural and 

pro-inflammatory properties. In cancer, eNAMPT regulates tumor growth and 

metastasis formation through the activation of intracellular pathways, 

suggesting that eNAMPT acts through a putative receptor, although the nature 

of this receptor is still elusive. Recently, using Surface Plasma Resonance 

(SPR) it has been demonstrated that eNAMPT binds to the C-C chemokine 

receptor type 5 (CCR5), although the physiological meaning of this finding is 

still unknown.  

The aim of the present work was therefore to evaluate whether eNAMPT could 

act through the CCR5 receptor to explicate its effects in cancer cells. To study 

this phenomenon, B16 melanoma cells and a stable cell line that over-

expressed murine CCR5 (HeLa-CCR5) were used. eNAMPT, unlike 

RANTES, did not induce MAPK activation and calcium responses, two typical 

CCR5 signalling pathways, suggesting that eNAMPT does not act as an agonist 

of the receptor. Surprisingly, pre-treatment with eNAMPT resulted in the 

blockage of RANTES-dependent calcium signalling. In addition, eNAMPT did 

not modify other calcium signalling pathways triggered by ATP and carbachol, 

suggesting that the effect of eNAMPT may be specific for CCR5. This 

modulation in calcium signalling culminates with a delay in migration of 

melanoma cells in wound healing assays in vitro. Yet, eNAMPT does not act 

as an allosteric modulator of CCR5 since it does not modify CCR5 

internalization. 

Our work does not support the hypothesis that CCR5 is the elusive receptor for 

eNAMPT, but shows that exists a functional link between eNAMPT and CCR5 

signalling.  
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INTRODUCTION 

 

Extracellular nicotinamide phosphoribosyltransferase (eNAMPT), also known 

as PBEF or visfatin, is the secreted form of NAMPT, a key enzyme involved 

in maintaining the balance of NAD and ATP levels in cells1. This enzyme is 

now considered a metabokine secreted by different cells with pro-

inflammatory and pro-tumoural activity 2-4. Importantly, eNAMPT is over-

expressed in cancer 5, 6, where eNAMPT controls angiogenesis, tumour growth 

and metastasis formation 7-9. The stimulation of cancer cells with exogenous 

eNAMPT is sufficient to activate specific intracellular signalling pathways 

(e.g. STAT3, NF-κB, Akt, p3810-13) within minutes, which indicates that 

eNAMPT binds to and activates a cell surface receptor. Although the identity 

of this receptor remains unknown. The first receptor proposed was the insulin 

receptor, based on the insulin mimetic properties of eNAMPT14, however this 

article has been retracted15. Nonetheless, at least two others putative eNAMPT 

receptors have been proposed. Camp et al., demonstrated that eNAMPT 

induces lung inflammatory via direct ligation of Toll-like receptor 4 (TLR4)16. 

Moreover, computational analysis demonstrated that eNAMPT and MD-2, 

a TLR4-binding protein, share ~30% sequence identity16.  In 2012, was 

reported that eNAMPT selectively inhibits infection of macrophages by human 

immunodeficiency virus (HIV), this activity was linked, using SPR, to a direct 

interaction with the C-C chemokine receptor type 5 (CCR5; CD195)17.  

CCR5 is a seven transmembrane, G-protein coupled receptor (GPCR), belongs 

to the β-chemokine receptor, expressed by macrophages, T-cells, microglia, 

dendritic cells and cancer cells18. CCR5 is involved in inflammatory response, 

thought the regulation of trafficking and effector functions of immune cells and 

it also serves as a co-preceptor for the entry of HIV R5 strains19, 20.  Moreover, 

CCR5 is over-expressed in several cancers (e.g. breast cancer, melanoma) and 

it was suggested that the activation of CCR5 controls tumour development 

by acting as growth factors, stimulating angiogenesis, inducing the 
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recruitment of additional stromal and inflammatory cells, and taking part in 

immune evasion mechanisms21, 22. For example, in melanoma CCR5 

expression on stromal cells is necessary for the spread of B16 cells to the 

lungs23 and in CCR5-deficient mice the B16 growth is delayed 24. The 

activation of CCR5 receptor induces G-protein alpha-i family that results in a 

blockage of adenylate cyclase type I and then in a reduction of intracellular 

cAMP, PLC-γ activation and a calcium influx21, 25.  To date, the CCR5 ligands 

include the agonists RANTES (CCL5), MIP-1α and 1-β and CCL2-8-11-14, 

and the natural antagonist MCP-326.  

Starting from this proof of principle, the aim of our study was to shed light on 

whether eNAMPT may be a novel ligand for CCR5 in cancer cells. 
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MATERIALS AND METHOD 

 

Cell culture 

HeLa (human cervix carcinoma) and B16 (murine melanoma) cells were 

cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% 

foetal bovine serum (FBS), 2 mg/ml glutamine, 10 U/ml penicillin and 100 

µg/ml streptomycin (Sigma, St. Louis, MO, USA). Cells were maintained in a 

humidified incubator supplied with 5% CO2/95% air at 37°C.  

 

Recombinant eNAMPT preparation  

Wild-type murine full-length and H247E NAMPT (ORF GenBank BC018358) 

was cloned in pET28a (NdeI/EcoRI). Recombinant eNAMPTs were expressed 

in E. Coli (ClearColi, BL21(DE3)), inducted with IPTG 0.5 mM for 3 h at 

20°C, and purified by His-tag affinity chromatography with NiNTA Superflow 

resin (Qiagen).  

 

Generation of stable HeLa-CCR5 cell line  

Murine CCR5 was cloned in the pLV lentiviral vector. Correct insertion and 

sequence were confirmed by DNA sequencing. The lentiviral particles were 

produced as described elsewhere7 in HEK293T cells transfected with 

pMDLg/pRRE, pMD2.VSVG, pRSV-Rev and pLV-CCR5/pLV-empty 

plasmids. Briefly, after 48 h, cell medium was collected, filtrated and 

centrifuged for 1 h 30 min at 100 000 g. The viral particles, corresponding to 

the pellet fraction, were resuspended and used to infect HeLa cells, after virus 

titration. Stable scramble (HeLa-SCR) and HeLa-CCR5 were generated and 

CCR5 expression was monitored with Real Time PCR and FACS analysis.  

 

CCR5 internalization assay 

 5 × 105 cells were plated in 96-well plates and treated with vehicle, RANTES 

(Peprotech) and/or eNAMPT for 15, 30 or 60 minutes at 37°C or 4°C. Cells 
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were washed twice in PBS and resuspended in 100 µL of Phosphate Buffer 

saline (PBS) and stained with anti-CCR5 PE for 20 min at 4°C. Cells were then 

washed twice in PBS and resuspended in PBS. Cell surface expression of 

CCR5 analysis was determined with a BD Accuri FACS. 

 

Immunofluorescence 

Cells were fixed in 4% formaldehyde. Subsequently, primary and secondary 

antibodies were applied in 0.2% gelatin. Fluorescence images were acquired 

using a Leica Confocal microscopy.  

 

Fura-2 imaging 

Cells were loaded with 2 µM Fura-2-AM in KRB solution (Krebs-Ringer 

modified buffer: 125 mM NaCl, 5 mM KCl, 1 mM Na3PO4, 1 mM MgSO4, 5.5 

mM glucose, 20 mM HEPES, pH 7.4) supplemented with 2 mM CaCl2, 0.01% 

pluronic acid and 5µM sulfinpyrazone. After washing and de-esterification (30 

minutes), the coverslip was mounted in a chamber and placed on the stage of a 

Leica epifluorescent microscope equipped with a S Fluor 40×/1.3 objective. 

Cells were stimulated with the indicated treatments and excited at 340/380 nm 

by the monochromator Polichrome V (Till Photonics, Munich, Germany) and 

the fluorescent signal was collected by a CCD camera (Hamamatsu, Japan) 

through bandpass 510 nm filter; the experiments were controlled and images 

analysed with MetaFluor (Molecular Devices, Sunnyvale, CA, USA) software. 

To quantify the difference in the amplitude of Ca2+ transients, the ratio values 

were normalized according to the formula (ΔF)/F0 (referred to as normalized 

(norm.) ratio). The cells with norm. ratio above 0.2 were considered as 

responders and used for further analysis. 
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Western blot analysis 

5 × 105 cells were treated at the indicated time-points and the cells were lysed 

in 80 µL in lysis buffer composed of 20 mM HEPES, 100 mM NaCl, 5 mM 

EDTA, 1% Nonidet P-40+ Protease & Phosphatase Inhibitor Cocktail (Sigma). 

Proteins quantification was performed with BCA Protein Assay (Thermo 

Fisher Scientific, Waltham, MA, USA), and proteins were resolved on SDS–

PAGE. Densitometry analysis was performed with Quantity One program 

(Bio-Rad, Hemel Hempstead, UK). 

 

Wound-healing assay 

In vitro wound assays were performed using IBIDI Culture-Inserts according 

to Shih et al.27. Briefly, when confluent monolayers of B16 cells were 

established on IBIDI dishes (35 mm with high culture-insert coating), cells 

were washed twice with PBS to remove residual cell debris. Cells were then 

incubated with RANTES, eNAMPT and maraviroc or the combination of three 

for 24 h and pictures of a defined wound spot were made at different time 

points. The area of the wound in the microscopic pictures was measured using 

Image J software (National Institutes of Health, MD) at different time points. 

The percentage wound healing after 4, 6, 8 and 10 hours was calculated in 

relative to the total wound area at t = 0 h of the same wound spot. 

 

Binding experiment 

1 × 105 cells suspension were incubated with 2U/1 × 105 cells of Heparinise I 

and III for 1 hour at 4°C. Then, cells were washed and incubated with 

eNAMPT (27 µg) or maraviroc (10 µM) for 20 minutes at 4°C in complete 

medium. After, biotin-RANTES (25ng) conjugated with PE were added to 

cells suspension for 2 hours at 4°C. Then, cells were washed 3 times in ice cold 

PBS, resuspended in FACS Buffer (Hanks' Balanced Salt solution HBSS + 

0.5% BSA) and samples were analysed using a FACS (BD accuri).   
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Reagents 

Rabbit polyclonal antibody anti-p42/44 MAPK was from Cell Signalling 

Technology,; mouse anti-tubulin was from Sigma; peroxidase-conjugated 

secondary antibodies were from Biorad; maraviroc, ATP and carbachol were 

from Sigma, PE-anti mouse CCR5 from Biolegend. Recombinant 

RANTES/CCL5 was from Peprotech; biotinylated-reconbinant-RANTES was 

from ChemoTactis. DRAQ5 was from Thermo Fischer Scientific  
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RESULTS  

 

It has been demonstrated that eNAMPT binds to CCR5 through Surface 

Plasmon Resonance technique and that it is capable of inhibiting infections by 

R5 HIV in monocytes, although the relevance of this interaction in cancer has 

not been evalueted17. 4r 

To understand whether CCR5 could be the receptor for eNAMPT, at first, we 

decided to employ HeLa cells with stable over-expressing of CCR5 (HeLa-

CCR5) comparing them with scrambled HeLa (HeLa-SCR). We first evaluated 

whether this cytokine parallels the effects of RANTES, a known potent agonist, 

in CCR5-overexpressing HeLa cells. As it can be seen in Figure 1A-B, 

RANTES 25ng/ml was able to elicit a marked induction of p42/p44 ERK 

phosphorylation in a time-dependent manner. Yet, we were unable to see an 

effect with eNAMPT, in a range of concentrations between 250-1000 ng/ml, 

in the activation of this pathway (Figure 1A-B; concentrations of 250 ng/ml 

and 1000 ng/ml not shown). It is therefore likely that the receptor usually 

associated with eNAMPT is not CCR5.  

Calcium signalling has also been associated with CCR5 and we also evaluated 

this pathway. As it can be seen in Figure 1C-D, RANTES was able to induce 

calcium increases while eNAMPT was unable to do it. In support of this data, 

we investigated the ability of eNAMPT to induce CCR5 internalization, a 

common feature of CCR5 agonists. As expected RANTES induced a time and 

concentration dependent internalization of the receptor, however eNAMPT 

alone failed to modify the pattern of CCR5 (Figure 2A, B).  

In light of these results, it would not appear that CCR5 is the receptor 

responsible for the effects commonly associated to eNAMPT and that 

eNAMPT is not an agonist of CCR5. On the contrary, the pre-treatment of 

eNAMPT partially obstructed the RANTES-mediated CCR5 internalization, 

suggesting a possible antagonistic role. 
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We next tested whether eNAMPT was able to modulate the responses to 

RANTES. Co-incubation or pre-treatment of cells with eNAMPT did not 

modify the phosphorylation pattern of p42/p44 ERK. The effect of RANTES, 

as expected, was antagonized, by maraviroc, a known antagonist of CCR5 

(Figure 3A-B). Surprisingly, pre-incubation, but not co-incubation, with 

eNAMPT at both 250 and 500 ng/ml reduced significantly the calcium 

mobilization induced by RANTES. The effect of eNAMPT at the higher dose 

was quantitatively similar to maraviroc (Figure 4A-B). To evaluate whether 

the effect of eNAMPT on calcium signalling was specific, we evaluated the 

effect of the same concentration of eNAMPT on Ca2+-signalling induced by 

ATP or carbachol, whose receptors are present both in wild-type and HeLa-

CCR5 cells. As shown in Figure 4C-F, the antagonistic effect of eNAMPT was 

specific for CCR5 signalling, as the responses to ATP or CCh were unaffected. 

All these data suggest that eNAMPT blocks selectively the RANTES-

dependent calcium signalling. To test if this inhibition is mediated by the 

enzymatic activity or via binding to the receptor, we investigated the effect of 

a mutated and inactive form of eNAMPT called H247E eNAMPT. The pre-

incubation with H247E eNAMPT (500 mg/ml) reduced the calcium 

mobilization induced by RANTES (91.5 ± 3.28 % of responsive cells) in the 

same manner of the WT form (47.16 ± 11.47 % of responsive cells for H247E 

vs 45.58 ± 8.47 % of responsive cells for WT) (Figure 5 A-B). This data 

suggests that the reduction in calcium signalling by eNAMPT is mediated by 

a putative interaction with the receptor and not via its enzymatic activity.  

Moreover, the effect of eNAMPT could not be mimicked by the buffer in 

which the protein was dissolved, or by proteins isolated in the same manner 

such as nicotinamide mononucleotide adenylyltransferase (NMNAT) at 

identical concentrations (Figure 5). 

The effect observed was obtained in an artificious system, and we therefore 

decided to investigate the interaction between CCR5 signalling and eNAMPT 

in a system that has been reported to respond to both. In this respect, we chose 
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a melanoma cell line, B16, in which we have previously shown an effect of 

eNAMPT7. As expected, in this system, RANTES was able to induce a Ca2+-

response, which was blunted by the eNAMPT pre-incubation (Figure 6A).  

RANTES has been shown to promote migration in these cells, possibly via the 

calcium signalling pathway, and we confirmed this via the wound-healing 

assay. Briefly, RANTES, at a concentration of 200 ng/ml promoted wound 

closure compared to control in a time dependent manner (Figure 6B-C). This 

effect, as expected was antagonized by maraviroc and by eNAMPT, that per 

se had no effect on migration of these cells.  

Considering these results, it would appear that eNAMPT acts as a natural 

antagonist of CCR5. However, from our results we were not yet able to 

determinate whether eNAMPT binds directly to CCR5 or interferes with 

RANTES-mediated calcium signalling through another receptor.  

Therefore, we tested whether eNAMPT could directly bind to CCR5, taken 

advantage from a competitive binding assay. As it shown in Figure 7, pre-

incubation of eNAMPT reduced cell surface binding of biotinylated-RANTES 

conjugated with avidin PE in HeLa-CCR5 cells. The effect of eNAMPT was 

similar to maraviroc. Specifically, eNAMPT reduces the percentage of 

RANTES-PE positive cells of 24%, while maraviroc reduction was of 29% 

(Figure 7A).  The analysis of the mean florescence intensity (MFI) confirmed 

these results (Figure 7B).  

A binding assay performed with a labelled iodine CCL3, preferred to 

radioactive CCL5 because of nonspecific aggregation, in collaboration with 

professor Massimo Locati (Humanitas research centre) is still on going to 

confirm the data described above obtained using RANTES-PE.  

Since the crystal structure of RANTES in complex with CCR5 has been 

resolved, we performed an in silico analysis. Uniport alignment revealed 

similar amino acid sequence between eNAMPT and RANTES considering the 

chemical and physical properties of amino acids (Figure 8A). Surprisingly, 

these data were partially confirmed analysing the structure of eNAMPT and 



	 66	

RANTES using PyMol software. We identified a N-terminal alpha-helix of 

RANTES (black, Figure 8B), crucial for the binding with CCR5 (green, Figure 

8B), which was aligned with a loop of eNAMPT (orange, Figure 8B). 

Moreover, RANTES has three β-strands and one α-helix that co-participate to 

the binding with CCR5. These motifs are also present in eNAMPT (yellow, 

Figure 8B). Despite of eNAMPT is a 55 kDa protein with a greater steric 

hindrance compared to RANTES (9 kDa), the alignment with PyMol 

demonstrated that eNAMPT could interact with CCR5. Mutations in these 

emerged regions might be useful to evaluate the structure–function relationship 

between eNAMPT and CCR5. 
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Figure 1. (A) Western blot and densitometry analysis of phosphorylated p42/44 ERK after 2 
hours of starvation followed by treatment for 5 minutes with recombinant RANTES (25ng/mL) 
in serum-free condition in HeLa-SCR and HeLa-CCR5 cell lines. Representative data of 4 
separate experiments. (B) Western blot and densitometry analysis of phosphorylated p42/44 
ERK after 2 hours of starvation followed by treatment for 5 minutes with recombinant 
eNAMPT (500ng/mL) in serum-free condition in HeLa-SCR and HeLa-CCR5. Representative 
data of 3 separate experiments.  (C) Calcium traces in HeLa-SCR and HeLa-CCR5 loaded with 
FURA-2AM and stimulated with RANTES (25ng/mL). Representative traces of peak calcium 
concentrations reached are shown for 98–110 cells from 5 independent experiments.   (D) 
Calcium traces of HeLa-SCR and HeLa-CCR5 loaded with FURA-2AM and stimulated with 
eNAMPT (500ng/mL). Representative traces of peak calcium reached (90–102 cells from 7 
independent experiments). 
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Figure 2. (A) Flow cytometry analysis of HeLa-CCR5 cells treated with RANTES (50, 100, 
500 ng/mL) for 60 minutes in presence or absence of eNAMPT at 37°C, stained with anti-
mouse CCR5-PE and analysed using FACS BD accuri. The data are summarized in histograms 
and expressed as mean ± S.E.M. of 12 determinations from 4 separate experiments. (B) 
Confocal images of HeLa-CCR5 cells treated with RANTES (100 ng/ml) for 60 minutes in 
presence or absence of eNAMPT (500ng/ml) at 37°C, stained with anti-mouse CCR5-PE (Red) 
and DRAQ5 (nuclear marker, blue). Representative images of 6 determinations of 3 separate 
experiments.  
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Figure 3. (A) Western blot and densitometry analysis of phosphorylated p42/44 ERK after 2 
hours of starvation followed by co-treatment for 5 minutes with recombinant RANTES (25 
ng/mL) in presence of eNAMPT (500ng/mL) or maraviroc (10 µM) or eNAMPT vehicle in 
serum-free condition in HeLa-SCR and HeLa-CCR5 cell lines. Representative data of 4 
separate experiments. (B) Western blot and densitometry analysis of phosphorylated p42/44 
ERK after 45 minutes of eNAMPT (500ng/mL) or maraviroc (10 µM) or eNAMPT vehicle 
pre-incubation followed by treatment for 5 minutes with recombinant RANTES (25 ng/mL). 
Representative data of 4 separate experiments.  
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Figure 4. (A) Representative calcium traces of HeLa-CCR5 loaded with FURA-2AM and 
treated with RANTES (25 ng/ml) alone or pre-treated with eNAMPT (250ng/mL or 500 ng/ml) 
or maraviroc (3 µM) for 100 sec. High dose of ATP (333 µM) was used to verify the ability of 
the cells to evoke normal calcium traces. (B) Histograms of responding cells (left panel) and 
% of max peak (right panel) as mean ± S.E.M. of % responding cell for slice. (248–410 cells 
from 6 to 11 independent experiments) **P < 0.01, ***P<0.001 versus ctrl. (C) Representative 
calcium traces of HeLa-SCR and HeLa-CCR5 loaded with FURA-2AM and treated with ATP 
(3 µM) alone or pre-treated with eNAMPT (500 ng/ml) for 5 minutes. (D) The data are 
summarized in histograms and expressed as mean ± S.E.M. of % max peak calcium response 
(120–190 cells from 5 to 9 independent experiments). (E) Representative calcium traces of 
HeLa-SCR and HeLa-CCR5 loaded with FURA-2AM and treated with CCh (300 µM) alone 
or pre-treated with eNAMPT (500 ng/ml) for 5 minutes. (F) The data are summarized in 
histograms and expressed as mean ± S.E.M of % max peak calcium response (105–185 cells 
from 5 to 9 independent experiments). 
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Figure 5. HeLa-CCR5 cells were loaded with FURA-2AM and treated with RANTES (25 
ng/ml) alone or pre-treated with eNAMPT (500 ng/ml) or eNAMPT-H247E (500 ng/ml) or 
NMNAT 2 (500 ng/ml) for 100 sec. Histograms of responding cells (left panel) and % of max 
peak (right panel) as mean ± S.E.M. of % responding cell for slice. (180–210 cells from 3 
independent experiments) *P<0.05, **P < 0.01, versus ctrl.  
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Figure 6. (A) Representative calcium traces of B16 cells loaded with FURA-2AM and treated 
with RANTES (600 ng/ml) alone or pre-treated with eNAMPT (500 ng/ml) for 100 sec. (B) 
Time course of wound opening in B16 cells treated or not with RANTES (200 ng/ml), 
eNAMPT (500 ng/ml) or maraviroc (10 µM). Mean ± S.E.M. of 12 determinations from 4 
separate experiments. (C) Representative images of wound healing assay at 4 hours of 
treatment with RANTES (600 ng/ml) and/or eNAMPT (500 ng/ml) *P<0.05, ** P<0.01 
***P<0.001: * RANTES vs CTRL; + RANTES vs eNAMPT + RANTES.  
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Figure 7. Percentage of positive cell (A) and the mean florescence intensity (B) of RANTES-
PE binding on HeLa-CCR5 cells incubated or not with eNAMPT (27 µg, 100-fold increase 
compared to RANTES molar concentration) or maraviroc (10 µM). Mean ± SEM of 5 separate 
experiments. 

 

Figure 8. (A) Uniprot alignment of amino acid sequence between murine NAMPT and 
RANTES. (B) Analysis of NAMPT and RANTES using PyMol software. Full-length 
RANTES in black; CCR5 in green; NAMPT residues from 1 to 60 in yellow; NAMPT residues 
from 60-491 in orange. 
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Key finding: 

• eNAMPT is not an agonist of CCR5, since it is unable to induce ERK 
phosphorylation, calcium signalling and internalization of CCR5.  

• eNAMPT is an antagonist of CCR5, as it reduces RANTES-mediated 
calcium signalling and migration. 

• eNAMPT does not affect the internalization rate of CCR5 induced by 
RANTES. 

• eNAMPT binds to CCR5 and competes with RANTES.  
• Bioinformatics suggests structural similarities between RANTES and 

eNAMPT. 
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UNPUBLISHED RESULTS 
 
 
Is the Toll-Like Receptor 4 (TLR4) the eNAMPT receptor? 
 
 
Keywords:   eNAMPT, membrane receptor, TLR4, NF-κB pathway 
 
 
 
ASTRACT 
 
Camp et al. sustains that eNAMPT induces the activation of NF-κB through 

the direct binding to the Toll-like Receptor 4 (TLR4), demonstrated via the 

Surface Plasma Resonance (SPR) technique. In addition, using in silico model, 

they suggest that eNAMPT does not require MD-2 binding complex to activate 

TLR4. In this paragraph we tried to recapitulate Camp’s observations, even 

more experiments are necessary to draw a conclusion. 

To study the ability of eNAMPT to bind to and activate TLR4 in presence or 

absence of MD2, Jurkat CD4+ T cells and a stable cell line that over-expressed 

human TLR4 (HeLa-TLR4) were used. eNAMPT and LPS did not induce NF-

κB activation in MD2 lacking cells (HeLa-TLR4). Surprisingly, eNAMPT was 

able to induce NF-κB activation in CD4+ T cell line Jurkat, (which expressed 

MD-2) after 1 hour of treatment. These data suggest that eNAMPT probably 

required MD2 to explicate its effects on TLR4. Moreover, gene expression 

analysis reveals similarities in genes up-regulation evoked by eNAMPT and 

LPS, but results are not superimposable.   

Our work does not support the hypothesis that TLR4 is the elusive receptor for 

eNAMPT, but shows that exists a functional link between eNAMPT and TLR4 

signalling. 
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INTRODUCTION  
 
One mechanism by which the immune system senses pathogens is through the 

Toll-like receptors (TLRs), which recognize microbial components1-4. TLRs 

are type I transmembrane proteins expressed on the membranes of immune 

cells, including macrophages, B and T cells and dendritic cells, but also 

fibroblast and endothelial cells. In humans, to date 11 functional TLRs have 

been identified, and their stimulation induces different patterns of gene 

expression which lead first to the activation of the innate immune system and 

second to the development of antigen-specific acquired immunity5.  

TLR4 plays an important role in controlling innate immune responses after 

infection, but has been found involved also in other disorders including cancer, 

cardiac disease, obesity and diabetes. 

TLR4 is activated by a variety of pathogen-associated molecular patterns 

(PAMPs), among which the most characterized is lipopolysaccharide (LPS). 

In addition to PAMPs, TLR4 can be also activated by damage-associated 

molecular patterns (DAMPs) derived from damaged tissues, such as 

oligosaccharides of hyaluronic acid, fibronectins, and fatty acids in response 

to cellular damage7-10.  

Recently, Camp et al., reported through the Surface Plasmon Resonance (SPR) 

technique that the extracellular nicotinamide phosphoribosyltransferase 

(eNAMPT) binds to TLR4 and it is able to activate NF-κB downstream32. They 

demonstrated that eNAMPT induced the activation of NF-κB and the 

expression of NF-κB signalling genes in pulmonary endothelial cells and that 

this effect was reverted by the pre-treatment with TLR4 inhibitors (e.g. RS-

LPS, CLI-095 and OxPAPC). Moreover, through the use of monoclonal 

antibodies against eNAMPT and TLR4, they have demonstrated the 

dependence of TLR4 in eNAMPT-mediated NF-κB activation. In support of 

this, eNAMPT-induced lung inflammation was reduced in TLR4−/− mice 

compared to wild type mice32.   
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eNAMPT is a cytokine released by various cell types with autocrine and 

paracrine effects27, 28. The first evidence of a relevant role of eNAMPT in 

immunity was the identification of its capacity to synergize with IL-7 and SCF 

to stimulate B-cell differentiation29. From this first observation, several studies 

have been conducted and now we know that several inflammatory stimuli 

induce the secretion of eNAMPT, especially from innate immune cells, such 

as monocytes, neutrophils, and macrophages. Furthermore, eNAMPT per se 

has pro-inflammatory properties. For example, eNAMPT controls the 

differentiation of resting monocytes, proliferation and polarization of 

macrophages27. In these cells, the treatment with recombinant eNAMPT 

induces the activation of different pathways such as STAT3, NF-κB, Akt and 

ERK1/2, suggesting the presence of a receptor that mediates these effects30, 31.  

Starting from these evidences, we decided to further investigate the possibility 

that TLR4 was the eNAMPT receptor.  

 

MATERIALS AND METHODS 

 

Cell culture 

HeLa (human cervix carcinoma) and Jurkat (CD4+ T cell line) cells were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% foetal bovine serum (FBS), 2 mg/ml glutamine, 10 U/ml penicillin and 

100 µg/ml streptomycin (Sigma). Cells were maintained in a humidified 

incubator supplied with 5% CO2/95% air at 37°C.  

 

Recombinant eNAMPT preparation  

Wild-type murine full-length NAMPT (ORF GenBank BC018358) was cloned 

in pET28a (NdeI/EcoRI), expressed in E. Coli (ClearColi, BL21-DE3), 

induced with IPTG 0.5 mM for 3 h at 20°C) and purified by His-tag affinity 

chromatography with NiNTA Superflow resin (Qiagen). 
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Limulus amebocyte lysate (LAL) test 

Endotoxin levels were determined with the ToxinSensor Chromogenic LAL 

Endotoxin Assay kit according to manufacturer's instructions. Briefly, 

reconstitute LAL was added to eNAMPT samples and incubate 40 minutes at 

37°C. Then, chromogenic substrate solution was added to each sample and 

incubate for 6 minutes at 37°C. Subsequent, the Colour-stabilizer was added to 

stop the reaction and absorbance of samples were acquired at 545 nm using the 

spectrophotometer Victor3 (Perkin Elmer).   

 

Generation of stable HeLa-TLR4 cell line 

Human TLR4-YFP plasmid was purchased from AddGene. HeLa cells were 

transfected using lipofectamine 2000 with Human TLR4-YFP or PCDNA-

empty vector and after 48 h cells were maintained in medium supplemented 

with neomycin at 500 ng/mL for cells selection for the generation of stable 

HeLa-TLR4 and HeLa-SCR (scramble) cell lines. The relative expression of 

TLR4-YFP was determined by flow cytometry (BD accuri).  

 

Western blot analysis 

5 × 105 cells were treated at the indicated time-points with or without eNAMPT 

or LPS (581-009-L002 Alexis Biochemicals) and then lysed in 80 µL in lysis 

buffer (20 mM HEPES, 100 mM NaCl, 5 mM EDTA, 1% Nonidet P-40+ 

Protease & Phosphatase Inhibitor Cocktail (Sigma)). Proteins quantification 

was performed with BCA Protein Assay (Thermo Fisher Scientific, Waltham, 

MA, USA), and proteins were resolved on SDS–PAGE. Densitometry analysis 

was performed with Quantity One program (Bio-Rad, Hemel Hempstead, UK). 

Mouse anti-tubulin was from Sigma; peroxidase-conjugated secondary 

antibodies were from Biorad. P-NF-κB (p65) at Ser536 was from Cell Signalling 

Technology. 
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Peritoneal exudate cells (PECs) isolation  

Peritoneal exudate cells (PECs) were elicited by injecting i.p. 1 ml of 

thioglycolate (3% in H2O) into 8-weeks old C57BL/6 mice. After 4 days, cells 

were recovered from the peritoneal cavity by lavage using 5 ml of PBS. Cells 

were plated in 6-well plates for 1 h at 37°C. Non adherent cells were removed 

by washing the wells three times with ice-cold PBS. Macrophages were treated 

with eNAMPT or LPS for indicated time points.  

 

RT-PCR 

Total mRNA was extracted using QIAzol Lysis Reagent (Quiagen, Milan, 

Italy) and retro-transcribed to cDNA using ImProm-II RT system (Promega, 

Milan, Italy). Real-time PCR was performed using SYBR Green according to 

manufacturer's instructions (Biorad) on a SFX96 Real-time system (Biorad, 

Segrate, Italy). For normalization of the raw qPCR data, S18 ribosomal subunit 

housekeeping gene was used. 
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Results 

Camp et al., demonstrated that eNAMPT induces the activation of NF-κB 

through the binding to TLR4. In addition, they suggested that eNAMPT, 

conversely to LPS, does not require MD-2 binding complex to activate TLR4.  

Indeed, using an in silico model, they demonstrated that a similarity exists 

between the loop region of eNAMPT and MD-2 involved in TLR4 binding32. 

First of all, we decided to produce a recombinant eNAMPT protein in 

endotoxin-free bacteria to avoid unspecific activation of TLR4 due to a 

probable LPS contamination. After the purification of eNAMPT, the endotoxin 

content was determined by LAL test and as expected the level of endotoxins 

was <0.1 EU. 

We generated a stable HeLa cell line overexpressing TLR4 (HeLa-TLR4) and 

scramble HeLa (HeLa-SCR) cell line as control. It is known that HeLa cells 

lack of MD-2 expression and we decided to use this model to investigate the 

ability of eNAMPT to induce NF-κB activation, monitored through the p65 

phosphorylation33, 34.  

As expected, in MD-2-deficient cells (HeLa-SCR; HeLa-TLR4) the treatment 

with LPS (100 ng/ml) was not able to induce p65 phosphorylation (Figure 1A-

B). Unfortunately, we failed to observe a significant phosphorylation of p65 

upon eNAMPT-treatment at different time points (Figure 1A-B).  
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Figure 1. Western blot (left) and densitometry (right) analysis of phosphorylated p65 after 2 
hours of starvation followed by treatment for indicated time points with recombinant eNAMPT 
or LPS in serum-free condition in HeLa-SCR (A) and HeLa-TLR4 (B) cells. Representative 
data of 4 separate experiments. (t test * P<0.05; **P<0.01; ***P<0,001) 
 
 
 
We next evaluated whether the inability of eNAMPT to induce NF-κB in 

TLR4-overexpressing cells was due to the absence of MD-2. To do this, we 

next tested the ability of eNAMPT to induce NF-κB in CD4+ T cell line Jurkat, 

which expressed MD-2. 

The stimulation of LPS (100ng/mL) of Jurkat cells was able to elicit a marked 

increase of p65 phosphorylation in a time-dependent manner (Figure 2A). On 

the other hand, as shown in Figure 2B, eNAMPT treatment induced the p65 

phosphorylation at 15, 45 and 60 minutes, however the p65 phosphorylation 

was statistically significant only after 60 minutes of stimulation (Figure 2C).  
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Figure 2. Representative Western blot of phosphorylated p65 after 2 hours of starvation 
followed by treatment for indicated time points with recombinant LPS (A) or with recombinant 
eNAMPT (B) in serum-free condition in Jurkat cell line. (C) Densitometry analysis of 
phosphorylated p65 after LPS or eNAMPT treatment. Representative data of 4 separate 
experiments. (*P<0.05, **P < 0.01, ***P<0.001 versus ctrl).  
 

 

These data, although not fully convincing, are unable to support TLR4 as the 

receptor for eNAMPT. A number of explanations may be provided for these 

negative findings, including the possibility that eNAMPT binds to TLR4 with 

lower affinity compared to LPS or that it is responsible for the late activation 

of NF-κB. However, our results are largely inconclusive.  

Interestingly, genome-wide gene expression analysis reveals similarities in 

genes up-regulation evoked by eNAMPT and LPS32. Therefore, to shed light 

on this aspect, we moved to ex vivo experiments using mouse peritoneal 

macrophages (PEC), which expressed both TLR4 and MD-2. As expected, the 

treatment of macrophages with LPS (100 ng/ml for 4 hours, Figure 3A) was 

able to increase several pro-inflammatory cytokines (i.e. iNOS, COX-2, 

IL12p40, CXCL9, CXCL10, IFNβ, IL-6, IL-1β, ΤΝF, IL23p19), however 

eNAMPT induced the up-regulation only of CXCL9, CXCL10, IL-6, and IL-

1β (Figure 3B).  
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Figure 3. RT-PCR analysis of M1-polaritazion-associated genes (iNOS, COX-2, IL12p40, 
CXCL9, CXCL10, IFNβ, IL-6, IL-1β, ΤΝF, IL23p19) and M2-polarization-associated genes 
(FIZZ, ArgI, YmI) in peritoneal exudate cells (PECs) isolated from C57BL6 mice and 
stimulated for 4h with LPS (100ng/ml) (A) and eNAMPT (500ng/ml) (B). Representative data 
of 3 separate experiments. 
 
 
 
In conclusion, the experiments conducted in this section are very preliminary 

and inconclusive. They represent a small part of my PhD work, but I believe 

that investigating this aspect based on Garcia’s finding was relevant and 

essential for the objective of my thesis. Unfortunately, the time spent for them 

was insufficient to obtain strong results, but this is still an open project in the 

laboratory of Armando Genazzani. 

 

	 	
Key findings: 

 

- Data on TLR4 and eNAMPT from my work are largely inconclusive; 

- We failed to see an activation by eNAMPT of TLR4 in MD-2 deficient cells 

or a strong activation in Jurkat cells, which express MD-2; 

- We observed a moderate and late increase in p65-phosphorylation in MD-2 

expressing cells; 

- Similarities exist between LPS and eNAMPT in the pattern of up-regulation 

of genes in peritoneal macrophages, but results are not superimposable. 
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UNPUBLISHED RESULTS 

 

Investigation of a putative receptor for extracellular 
Nicotinamide Phosphoribosyltransferase (eNAMPT) using 
fluorescent probes  

 

INTRODUCTION 

The identity of the eNAMPT receptor is still unknown although there is 

sufficient evidence that suggests that a plasma membrane receptor exists and 

mediates at least part of the effects of eNAMPT. We have demonstrated that 

eNAMPT binds to CCR5 acting as natural antagonist, but this interaction is 

unlikely to explain many of the effects observed with eNAMPT. To identify 

other putative eNAMPT receptors, we therefore decided to use a different 

experimental approach. 

In 1970 Lefkowitz RJ et al. first described an innovative assay to study and 

characterize receptor-ligand interactions using radiolabelled proteins1. In 

subsequent years, radioligand binding assays were widely used to discover new 

receptors and/or investigate new ligands. Given that this technique is perceived 

as costly, risky and dangerous to the users, has an environmental impact and 

requires a custom infrastructure, researchers have been encouraged to develop 

ligand-binding assays not based on radioactivity, but rather based on 

fluorescent-labelled ligands. One of the first fluorescent-ligand binding assays 

was developed in 1988 by Yamasaki K et al. They have taken advantage from 

fluorescence probe techniques to discover the IL-6 receptor. In their strategy, 

they coupled FITC to the IL-6 protein and evaluated binding by using FACS 

analysis on COS7 cells transfected with different cDNAs. They observed that 

FITC-IL6 was able to bind on the cell surface of COS7 transfected with 

pBSF2R.236 cDNA plasmid, identifying the coding sequence of the IL-6 



	 94	

receptor. In addition, they demonstrated that cells that lacked mRNA for the 

sequence they identified (e.g. Jurkat cells) were unable to bind FITC-IL62.  

In the last years, different types of fluorophores have been developed with 

different spectra of excitation and emission to improve the emission intensity 

and to reduce the quenching phenomena and the effect of temperature, pH and 

ionic strength on fluorescent emission. For example, the Alexa Fluor® 488 

dye, which has the same excitation and emission spectra of fluorescein, is 

brighter and more photostable than fluorescein. In addition, the intensity 

fluorescence of the Alexa Fluor® 488 dye is insensitive to pH between 4 and 

10 as opposed to fluorescein. We decided to develop a fluorescent eNAMPT 

labelled with the Alexa Fluor® 488 dye to investigate new interactors.  

 

MATERIALS AND METHODS 

 

Cell culture 

B16 (murine melanoma) and 4t1 (murine mammary carcinoma) cells were 

cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% 

foetal bovine serum (FBS), 2 mg/ml glutamine, 10 U/ml penicillin and 100 

µg/ml streptomycin (Sigma, St. Louis, MO, USA). Cells were maintained in a 

humidified incubator supplied with 5% CO2/95% air at 37°C.  

 

Recombinant eNAMPT preparation  

Wild-type murine full-length NAMPT (ORF GenBank BC018358) was cloned 

in pET28a (NdeI/EcoRI). Recombinant eNAMPT was expressed in E. Coli 

(ClearColi, BL21 DE3) (inducted with IPTG 0.5 mM for 3 h at 20°C) and 

purified by His-tag affinity chromatography with NiNTA Superlow resin 

(Qiagen).  
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eNAMPT 488 preparation 

eNAMPT was labelled with Alexa Fluor®488 Protein Labelling Kit 

(Molecular Probes) according to manufacture manual. Briefly, 1 mg of 

eNAMPT was incubated with Alexa Fluor®488 for 1 hour at room temperature 

and free dye was removed by column resin. The labelled eNAMPT-488 was 

collected and the concentration and the degree of labelling were controlled 

using a spectrophotometer. 

 

Purification of membrane fraction from tissues of mice 

Heart, lung, brain, kidney, liver, adipose tissue, spleen and bone marrow 

obtained from C57BL/6 mice were weighed and cut with scalpel. Five volumes 

of homogenizer buffer (20 mM Hepes pH 7.2, 0,5 mM EGTA, 0.32 M sucrose, 

1 mM β-mercaptoethanol) were added and tissues were lysate in a potter with 

30 strokes and centrifuged at 600g 10 min at 4°C to remove debris and intact 

cells. The supernatants were collected and centrifuged at 10000g for 10 min at 

4°C, to remove the nuclei. The supernatants were collected and subsequently 

centrifuged at 40000g for 45min at 4°C to obtained membrane fractions. 

Membranes were washed twice and resuspended in homogenizer buffer.  

 

Competitive binding assay  

Spectrophotometer analysis: labelled eNAMPT-488 (5 µg) with or without 

unlabelled eNAMPT (500 µg) was added to 50 or 100 µg of membrane extracts 

in binding buffer (137 mM NaCl, 2.7 mM KCL, 10 mM Na2HPO4, 1.7 mM 

KH2PO4, pH 7.2) and the mixture was incubated for 1h at 4°C on a wheel. 

Then, membranes were washed 3 times with binding buffer and centrifuged at 

20000g 15min 4°C. The pellet was then solubilized in binding buffer and 

transferred in a black plate. Fluorescence was acquired using a Viktor3 plate-

reader. 

SDS-page analysis: labelled eNAMPT-488 (5 µg) with or without unlabelled 

eNAMPT (500 µg) was added to tissue membranes in binding buffer and the 
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mixture was incubated for 1h at 4°C on a wheel. Then, the membranes were 

washed 3 times and centrifuged at 20000g for 15min at 4°C in binding buffer. 

Pellets were then resuspended in 50 µL of binding buffer and loaded on SDS-

page gels. Images were acquired using Chemidoc Biorad with the Alexa Fluor 

488 program. 

 

Pull down with NI-NTA beads and cross-linking 

Recombinant NAMPT (50 µg) was incubated with 100 µL of NI-NTA beads 

for 15 minutes at 4°C. Then, beads were washed 3 times in wash buffer (50 

mM NaH2PO4 pH 7.5, 0.5 M NaCl, 40 mM imidazole) and added to kidney or 

liver membranes (700 µg) for 1h at 4°C. Subsequently, beads were washed 3 

times in wash buffer, and 0.01% of glutaraldehyde was added for 45 min at 

4°C. The reaction was quenched with Tris-HCl (1M, pH 8) and the samples 

were loaded on SDS-page. Proteins were analysed via western blot and/or 

silver stain. The gel bands were analysed by Liquid chromatography–mass 

spectrometry (LC-MS) in collaboration with the Laboratory of Prof. Emilio 

Marengo, University of Piemonte Orientale.  

 

Western blot analysis 

Membranes were lysed in 80 µL in lysis buffer composed of 20 mM HEPES, 

100 mM NaCl, 5 mM EDTA, 1% SDS + Protease & Phosphatase Inhibitor 

Cocktail (Sigma). Protein quantification was performed with BCA Protein 

Assay (Thermo Fisher Scientific, Waltham, MA, USA), and proteins were 

resolved on SDS–PAGE. Densitometry analysis was performed with Quantity 

One program (Bio-Rad, Hemel Hempstead, UK). 

 

FACS analysis 

3 × 105 cells were trypsinised, wash 3 times in cold PBS, and suspended in 

PBS. eNAMPT-488, at different concentrations, was added to cells and 

incubated at 4°C for the indicated time points. Cells were washed 3 times in 
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ice cold PBS and resuspended in FACS Buffer (Hanks' Balanced Salt solution 

HBSS + 0.5% BSA). Samples were analysed using a FACS (BD accuri).   

 

Immunofluorescence 

2 × 104 B16 cells were seeded on a 13mm coverslip. Cells were washed in PBS 

and incubated with 10 µg of eNAMPT-488 in Locke’s solution (134 mM NaCl, 

5mM KCl, 4 mM NaHCO3, 10 mM HEPES, 2.3 mM CaCl2, 1 mM MgCl2, 5 

mM Dextrose, pH 7.4) for 1 hour at 4°C. Then, cells were cross-linked with 

2mM of BS3 (Bissulfosuccinimidyl suberate) for 2h at 4°C, and after 

quenching with Tris-HCl (1M, pH 7.4), cells were washed with PBS. 

Subsequently cells were fixed with PFA 4% for 15 minutes at 4°C and stained 

with DRAQ5 (2.5 µM) for 20 minutes. Then, cells were washed in PBS and 

mounted onto cover slips to be visualized with confocal microscopy (Leica). 

 

Reagents 

Mouse monoclonal antibody anti-NAMPT was purchased from AdipoGen. 

Mouse monoclonal antibody anti-HSP90 and Mouse monoclonal antibody 

anti-CoxIV were purchased from Santa Cruz Biotechnology. Rabbit polyclonal 

anti-H2A was purchased from Abcam. Rabbit polyclonal anti-E-cadherin and 

was purchased from cell signalling. Peroxidase-conjugated secondary 

antibodies were from Biorad. Glutaraldehyde from Sigma, NI-NTA beads were 

purchased from Quiagen. Bissulfosuccinimidyl suberate (BS3) and Pierce™ 

Silver Stain for Mass Spectrometry were purchased from Thermo Fisher 

Scientific. Glutaraldehyde was purchased from sigma. DRAQ5 was purchased 

from Invitrogen™ Life technology. 
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Results 

Starting from the idea of Yamasaki K et al., we decided to generate a 

fluorescent eNAMPT with Alexa Fluor 488 (eNAMPT-488) to evaluate the 

ability of eNAMPT-488 to bind on cell surface. We started from the murine 

melanoma B16 and mammary carcinoma 4T1 cell lines, in which we 

previously demonstrated that the administration of recombinant eNAMPT 

induced an activation of phospho- ERK1/25 and phospho-STAT-3 (not shown).  

As shown in Figure 1A-B, FACS analysis reveals that the incubation of 

eNAMPT-488 (30ng, 500ng and 1 µg) on B16 cells was able to induce a shift 

in positive FL-1 area (indicative of 488 intensity) in a dose-dependent manner. 

The percentage of B16-positive cells was in a range between 5-20%, while in 

4T1 cells the percentage was between 2-5%. Moreover, in 4T1 cells the 

binding of eNAMPT occurs only with very high amounts of eNAMPT-488 

(1µg), suggesting that the expression of the putative receptor in these cells is 

lower than in B16 cells. Anyway, the strong binding of eNAMPT-488 observed 

on B16 cell surface convinced us to investigate more deeply these findings. 

Therefore, we evaluated the localization and the binding intensity of eNAMPT-

488 via confocal microscopy. 
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Figure 1. eNAMPT-488 bind to the cell surface of B16 and 4T1 cells. Representative flow 
cytometry analysis of B16 cells (A) and 4T1 cells (B) incubated with eNAMPT-488 (30ng, 
500ng, 1 µg) for 60 minutes and analysed using FACS BD accuri. (C) Confocal images of B16 
cells treated with eNAMPT-488 (10 µg, green) for 60 minutes, stained with DRAQ5 (nuclear 
marker, blue). Representative images of 3 determinations of 3 separate experimental days. 

 

B16 cells were treated with 10 µg of eNAMPT-488 and crossed-linked with 

BS3, in order to avoid a possible dissociation of the protein-receptor binding 

during the different steps of the protocol. Specifically, the BS3 cross-linker is 

membrane-impermeable, helping the study of cell surface interactions, and has 

a space arm of 11.4 angstrom, that reduces the unspecific cross-linking. The 

cells were then fixed and analysed by confocal microscopy. As shown in Figure 

1C, eNAMPT-488 was linked to the cell surface membrane of B16 cells, 

confirming the data obtained by flow cytometry.  

These data confirm our hypothesis that eNAMPT is able to bind a putative 

receptor and that the receptor is present in melanoma cells. 

To better characterize these evidences and to improve the probabilities to 

obtain a functional competitive binding assay by increasing the percentage of 
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positive cells linked to eNAMPT-488, we moved to membranes obtained from 

whole tissues.  

We generated membrane fractions from heart, lung, brain, kidney, liver, 

adipose tissue, spleen and bone marrow of C57BL/6 mice. To confirm the 

purity of the membranes in the isolation process, we performed a western blot 

analysis of membrane fractions for E-cadherin and Cox-IV (membrane 

markers), for HSP90 (cytosolic marker) and H2A (nuclear marker) (Figure 2).  
 

 

 

Figure 2. Isolation of tissue membranes. Western blot analysis of HSP90, H2A, E-cadherin 
and CoxIV levels in different tissues. Representative data of tissue membrane preparation. 
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Figure 3. eNAMPT-488 binds to tissue membranes. (A) Tissue membranes (50, 100 µg) 
were incubated with eNAMPT-488 (5 µg) in binding buffer for 1 hour at 4°C. Then, the 
fluorescence was acquired using Victor3. Histograms of relative fluorescent intensity as mean 
± S.E.M. of 5-6 independent experiments. (B) Tissue membranes (100 µg) were incubated 
with eNAMPT-488 (5 µg) in presence or absence of unlabelled eNAMPT (500 µg) in binding 
buffer for 1 hour at 4°C. Histograms of relative fluorescent intensity as mean ± S.E.M. of 5-7 
independent experiments. (C) Histograms represent the fluorescence intensity of eNAMPT-
488 (5 µg) with or without eNAMPT (500 µg) after 1 hour at 4°C of incubation in absence of 
tissue membranes. Histograms of relative fluorescent intensity as mean ± S.E.M. of 5 
independent experiments. 

 

To evaluate whether labelled eNAMPT-488 was able to bind to tissue 

membranes, we performed a fluorescent binding assay in the presence or 

absence of an excess amount of unlabelled eNAMPT, and the fluorescent 

intensity was acquired using Victor3 spectrophotometer.  

As shown in Figure 3A, eNAMPT-488 (5 µg) was able to bind to all tissues 

tested. In the competitive binding assay, in which unlabelled eNAMPT (500 

µg) was added together with labelled eNAMPT (5 µg), the binding of 

eNAMPT-488 was inhibited significantly only in kidney (Figure 3B). 

Unfortunately, in some tissues we observed an increase of fluorescent intensity 

when labelled and unlabelled eNAMPT were incubated together (e.g. liver). 

Overall, while most of the data suggested that the binding of eNAMPT on 
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membranes occurred, the inability of unlabelled eNAMPT to displace the 

fluorescence raised doubts on the phenomenon.  

Thus, we proceeded in verifying whether an interaction occurred between 

labelled and unlabelled eNAMPT in the absence of membranes. To our 

surprise, we observed that the fluorescence intensity was significantly higher 

in the presence of unlabelled eNAMPT (Figure 3C). Moreover, we performed 

a repeated acquisition of fluorescence intensity at different time points and the 

fluorescence intensity changed over time, resulting in a high variability (not 

shown).  The above data were drawback, as they suggest that standard 

displacement protocols, usually employed in binding assay, could not be 

performed. The reason is unclear and might be attributed to a change in protein 

folding as well as to the formation of labelled-unlabelled dimers. In either case, 

fluorescence cannot be reputed linear with membrane binding, a pre-requisite 

for quantitative approaches.  

We therefore decided to change the conditions of the binding experiments, 

moving to a static system, i.e. SDS-Page gels, in order to avoid possible 

dynamic conformational changes or protein-protein interactions that might 

compromise fluorescence linearity. We decided to start this novel approach 

analysing the binding in two organs that, in the preliminary experiments 

yielded the highest signal, kidney and liver. Briefly, eNAMPT-488 with or 

without the unlabelled eNAMPT was incubated with membrane fractions and 

samples were then loaded into a SDS-page gel to resolve the proteins. The 

fluorescence of the bands on the gel was then analysed via the Chemidoc 

equipment.  
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Figure 4. Competitive binding assay. (A) eNAMPT-488 (500 ng) was incubated in presence 
or absence of unlabelled eNAMPT (50 µg) for 1 hour at 4°C. Then samples were resolved in 
SDS-page and fluorescence intensity was acquired using Chemidoc (Bio-Rad) with Alexa 
fluor 488 program. Representative SDS-page gel (left panel) and histogram (right panel) of 
eNAMPT-488 fluorescence intensity. (B) Liver and kidney tissue membranes (100 µg) were 
pre-incubated or co-incubated with unlabelled eNAMPT (500 µg) in presence or absence of 
eNAMPT-488 (5 µg) in binding buffer for 1 hour at 4°C. Representative SDS-page gel (left 
panel) and histogram (right panel) of eNAMPT-488 fluorescence intensity. (5 independent 
experiments) **P < 0.01, ***P<0.001 versus control.  

 

As shown in Figure 4A, a fluorescent band corresponding to the correct 

molecular weight of eNAMPT was evident in this procedure. Pre-incubation 

with an excess of unlabelled eNAMPT resulted in both tissues in a reduction 

of the fluorescence intensity, which was significant in both cases as determined 

by densitometry. Both co- and pre- incubation resulted in a reduction of the 

displacement, as would be expected (Figure 4B).  

These new evidences convinced us of the existence of a competitive binding 

for eNAMPT in kidney and liver membranes, which could be translated in a 

concrete possibility of the presence of an eNAMPT receptor in these 

preparations. We next decided to identify its nature through the pull-down of 

the complex and subsequent analysis of LC-MS.  
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Towards this aim, we took advantage of the histidine tag of recombinant 

eNAMPT, which is specifically recognized by NI-NTA beads. Briefly, 

eNAMPT was incubated with NI-NTA beads, added to tissue membranes and 

cross-linked with glutaraldehyde. Samples were then loaded in SDS-page gel 

and developed with antibody against NAMPT. Subsequently, the bands of 

interest were analysed by LC-MS. 

As shown in Figure 5A, we were able to recognise the monomeric and dimeric 

forms of cross-linked eNAMPT alone at expected molecular weights (50 kDa 

for the monomer and 110 kDa for the dimer). When eNAMPT was cross-linked 

with membranes, we observed the appearance of bands with molecular weight 

higher than 110 kDa (Figure 5A, band B). In contrast to the above bands, we 

are unable to determine whether these bands contain the receptor or whether 

sufficient amounts are present to be detectable by LC-MS. 

Figure 5. Pull down assay of eNAMPT interactors from membranes. eNAMPT (50 µg) 
was incubated with NI-NTA beads in presence or absence of liver and kidney tissue 
membranes (700 µg) in binding buffer for 1 hour at 4°C. Then samples were cross-link and 
the proteins were resolved by SDS-Page. Representative silver stain (A) and western blot (B) 
of eNAMPT alone and in presence or absence of membranes. 
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We performed LC-MS analysis in collaboration with Dr. Marcello Manfredi 

(University of Piemonte Orientale, Alessandria) of the bands named A, B, C, 

D and E in Figure 5. D and E bands were analysed as controls to verify the 

presence of eNAMPT in the samples. In band B, LC-MS identified two 

interested proteins such as glyceraldehyde-3-phosphate dehydrogenase, 

sodium/potassium-transporting ATPase subunit alpha 1 and 3 and obviously 

eNAMPT (Table 1). Table 1 shows the proteins identified by this technique. It 

must be noted that LC-MS also revealed in band B cytosolic and nuclear 

proteins, such histones, nuclear receptor coactivator 2, calmodulin and actin, 

suggesting that the membrane preparations were contaminated with cytosolic 

and nuclear proteins. 

Table 1. eNAMPT interactors identified through LC-MS analysis 

 

protein	description prot_score prot_mass N°	peptide
10853|H2B1F_MOUSE	Histone	H2B	 411 13928 8
Q6GSS7|H2A2A_MOUSE	Histone	H2A	 168 14087 2
Q99KQ4|NAMPT	MOUSE	 121 55698 3
P16858|Glyceraldehyde-3-phosphate	dehydrogenase	 55 36072 3
Q6PIC6|Na+/k+	-transporting	ATPase	subunit	alpha-3	 41 113045 2
Q8VDN2|Na+/k+	-transporting	ATPase	subunit	alpha-1	 24 114221 2
Q61026|Nuclear	receptor	coactivator	2	 22 159221 1
Q99P72-1|Isoform	3	of	Reticulon-4	 21 22452 1

protein	description prot_score prot_mass N°	peptide
P36369|K1B26_MOUSE	Kallikrein	1-related	peptidase	 142 224807 3
Q3TD16|K226L_MOUSE	Uncharacterized	protein	 68 1246366 6
Q3UH68-2|LIMC1_MOUSE	Isoform	2	of	LIM	 14 101706 3

protein	description prot_score prot_mass N°	peptide
sp|Q99KQ4|NAMPT_MOUSE	 229 55698 2
Q61846|MELK_MOUSE	Maternal	embryonic 29 73709 1
Q3UV17|K22O_MOUSE	Keratin,	type	II	cytoskeletal 27 63319 1

protein	description prot_score prot_mass N°	peptide
sp|Q99KQ4|NAMPT_MOUSE 76 55698 2
sp|Q8BJH1-2|ZC21A_MOUSE 40 31891 1
sp|Q61846|MELK_MOUSE 27 73709 1

Band	C

Band	D

Band	E

Band	B
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We also performed a further analysis with StavroX program, which is 

specifically programmed for Cross Linking-Mass Spectrometry Analysis. 

Indeed, cross-linking creates an analysis bias by which cross-linked proteins 

would not be recognized by expected molecular weights. The analysis with 

StavroX of band B, revealed that eNAMPT was in complex with 

glyceraldehyde-3-phosphate dehydrogenase, sodium/potassium-transporting 

ATPase subunit alpha 1 and 3 and with the same eNAMPT with a significance 

<0.05 compared to the internal control of decoy analysis. The program also 

suggested a putative sequence of interaction of eNAMPT with glyceraldehyde-

3-phosphate dehydrogenase and sodium/potassium-transporting ATPase 

(Table 2).  

 

Table 2. Peptides corresponding to sequence of interactions identified using StavroX tool. 

 

Score Peptide	1 Protein	1 Peptide2 Protein	2
105 [LNKYLK] Q99KQ4|NAMPT_MOUSE [TGVFTTMEKAGAHLK] P16858|G3P_MOUSE
105 [RKNBLVK] ATPase	subunit	alpha-1	and	alpha-3 [NKILIFGL] ATPase	subunit	alpha-1	and	alpha-3
102 [SSKIM] ATPase	subunit	alpha-1	andalpha-3 [VLDILGKKF] Q99KQ4|NAMPT_MOUSE
102 [ILLQGK] ATPase	subunit	alpha-3 [VLDILGK] Q99KQ4|NAMPT_MOUSE
102 [GKVVT] Q99KQ4|NAMPT_MOUSE [TVLKVLDILGK] Q99KQ4|NAMPT_MOUSE
102 [NBSFK] Q99KQ4|NAMPT_MOUSE [GIALIKK] Q99KQ4|NAMPT_MOUSE
101 [VLDILGK] Q99KQ4|NAMPT_MOUSE [QPRNPKT] ATPase	subunit	alpha-1
100 [YLKGKV] Q99KQ4|NAMPT_MOUSE [LRMYPLK] ATPase	subunit	alpha-1	and	alpha-3
100 [SILLHGK] ATPase	subunit	alpha-1 [AKRMARK] ATPase	subunit	alpha-1	and	alpha-3
99 [KNGKVTK] Q99KQ4|NAMPT_MOUSE [TVKAENGKLVINGK] P16858|G3P_MOUSE
99 [KEVAM] ATPase	subunit	alpha-3 [FNSTNK] ATPase	subunit	alpha-1	and	alpha-3
97 [SGTSFDK] ATPase	subunit	alpha-3 [SEHGDKKGKK] ATPase	subunit	alpha-1
97 [FEBREK] Q99KQ4|NAMPT_MOUSE [ASAHLVNFK] Q99KQ4|NAMPT_MOUSE
97 [NGEKmSIN] ATPase	subunit	alpha-1 [LMRERNK] ATPase	subunit	alpha-3
96 [KTENS] Q99KQ4|NAMPT_MOUSE [VKFBR] ATPase	subunit	alpha-1	and		alpha-3
96 [ADPNK] Q99KQ4|NAMPT_MOUSE [YDNSLKIVSNAS] P16858|G3P_MOUSE
96 [YYGTK] Q99KQ4|NAMPT_MOUSE [YDNSLKIVSNA] P16858|G3P_MOUSE
96 [KYYGT] Q99KQ4|NAMPT_MOUSE [YDNSLKIVSNA] P16858|G3P_MOUSE

Analisys	with	StavroX
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Key finding: 

• The fluorescence binding assays is an efficient technique to track 

membrane proteins that bind to eNAMPT; 

• While artefacts may occur when determining binding in cells via 

spectrophotometer, SDS-page appears to be effective. This technique 

must therefore be useful if a protein purification strategy is sought to 

identify the eNAMPT receptor or to confirm the identity of the 

receptor; 

• Cross-linked fluorescent eNAMPT coupled with LC-MS allows for the 

identification of a number of eNAMPT binding proteins, some of which 

have been validated via other means (see discussion). 
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Discussion 

In 1966, Dietrich et al. reported for the first time the enzymatic activity of 

nicotinamide phosphoribosyltransferase (NAMPT), which catalyses the 

formation of nicotinamide mononucleotide (NMN) starting from nicotinamide 

(NAM), 5-phosphoribosylpyrophosphate (PRPP) and adenosine triphosphate 

(ATP)1. Nowadays, NAMPT is considered an important regulatory enzyme 

since it is the rate-limiting enzyme in the nicotinamide adenine dinucleotide 

(NAD) salvage-pathway in mammals2.  

In 1994, Samal et al. identified NAMPT as a secreted protein that enhanced 

the proliferation and differentiation of lymphocytes B3. From that time on, the 

extracellular form of NAMPT (eNAMPT) was classified as a cytokine, a factor 

released from cells with paracrine and autocrine effects. Large amount of data 

have demonstrated that eNAMPT has the ability to activate intracellular 

pathways such as NF-κB, Akt, p38 and MAPK, and leads to the control of 

angiogenesis, cellular proliferation, cell differentiation and migration4-6.  

To date, the information available in the literature reveal that the extracellular 

form of NAMPT has the same sequence and structure of the intracellular form, 

maintaining its ability to dimerize7. This insinuates the doubt if its function in 

the extracellular space is due to its ability to form NMN or to the binding to a 

plasma membrane receptor. Some evidences, even if not fully convincing, on 

the identity of eNAMPT receptor are present in literature.  After the retraction 

by Fukuhara of the identification of the insulin receptor as a candidate8, 9, other 

groups started to tackle the issue. In 2012, Van den Bergh et al. demonstrated 

that eNAMPT binds to CCR5 through the technique of Surface Plasmon 

Resonance10, however they did not characterize the biological role of this 

interaction.  

I decided to start from this evidence to develop my PhD project: discover of 

the receptor of eNAMPT. I started from the validation of Van den Bergh’s 

evidence at first by verifying the interaction between eNAMPT and CCR5. The 
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choice to concentrate on CCR5 was mainly due to the fact that the report on 

TLR4 had not been released at the time. 

Initially, I generated an experimental model by over-expressing murine-CCR5 

in HeLa cells in which perform most of the experiments. Through a 

competitive binding assay in which the pre-treatment of the cells with 

recombinant eNAMPT led to a reduction of the binding of the natural ligand 

RANTES to CCR5 receptors, I confirmed effectively an interaction between 

NAMPT and CCR5. Then, I moved to characterize the biological role of this 

interaction. It is known that CCR5 triggers the activation and consequent 

phosphorylation of ERK and the efflux of calcium from endoplasmic 

reticulum. However, in our hands, eNAMPT, tested at different concentrations, 

was not able to induce neither ERK activation nor calcium efflux in HeLa 

CCR5 cells, suggesting that eNAMPT was not behaving as an agonist on this 

receptor. Surprisingly, the pre-incubation with high doses of recombinant 

eNAMPT was able to inhibit the RANTES-mediated calcium transients in 

HeLa-CCR5 cells.  

Coming back on Van den Bergh’s report, they showed that NAMPT was able, 

similar to the CCR5 antagonist maraviroc, to reduce HIV R5 strand (which use 

CCR5 as a co-receptor) infection in macrophages, on the contrary it was not 

able to reduce HIV X4 strand infection (which use CXCR4 as a co-receptor)10. 

Indeed, I started to think that eNAMPT might be considered an antagonist of 

this receptor, binding to it to interfere with the RANTES stimulus.  

Maraviroc is a well-known competitive antagonist of CCR5. This molecule has 

antiretroviral properties and it is also classified as an entry inhibitor and used 

in the treatment of HIV positive patients11-14.  

I then decided to compare the effects of maraviroc to eNAMPT on CCR5-

mediated phenomena.  Effectively, the pre-treatment of eNAMPT was able to 

reduce RANTES-mediated calcium signalling in the same manner of 

maraviroc. In support of this, eNAMPT was not able to internalize the receptor, 

phenomenon that occurs only for CCR5 agonists12.  
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This antagonistic activity seemed to be specific for RANTES-mediated CCR5 

activation. In fact, ATP-induced calcium transients and carbachol-induced 

calcium transients were not affected by eNAMPT treatment, demonstrating 

that it was not a general action on calcium stores, but a specific activity on 

CCR5. 

It is well known that RANTES treatment induces migration and chemotaxis in 

a calcium-dependent manner. Cell migration requires local calcium pulses to 

activate myosin and to modulate focal adhesions. In this context, our data 

demonstrated, once again, that eNAMPT was interfering with CCR5 by 

reducing RANTES-mediated migration in the same manner of maraviroc.  We 

performed these experiments on B16 melanoma cells as HeLa cells have a 

reduced tendency to migrate. To corroborate these data, we confirmed the 

antagonistic effects of eNAMPT on RANTES-mediated calcium signalling 

even in B16 cells. 

All together these evidences demonstrate that eNAMPT can act as an 

antagonist against CCR5. 

A concrete example of this antagonistic effect on CCR5 signalling is the 

chemokine monocyte chemotactic protein-3 (MCP-3), also named CCL7. 

MCP-3 is the unique endogenous antagonist proposed for CCR515. It abolishes 

CCR5-dependent calcium signalling and cell migration, while at lower doses 

it is an agonist of CCR1, CCR2 and CCR316.  Indeed, it has been reported that 

the chemokines MCP-1, MCP-2, MCP-3 and RANTES induced a migration 

response with bimodal concentration dependence, with different efficacy and 

curve trend17.  

Therefore, my hypothesis is that eNAMPT might have the same behaviour of 

MCP-3 protein: it may be an antagonist of CCR5 receptor at a certain dose and 

in a specific type of cell, while it may activate other pathways at similar or 

different concentrations or in a different context (Figure 1A).  
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In support of my hypothesis, I performed a preliminary in silico analysis using 

PyMol and Uniprot software, which revealed a common structure 

conformation and conserved sequencing between eNAMPT and MCP-3. 

As shown in Figure 1B, the Pymol analysis of the NAMPT (cyano) and MCP-

3 (orange) structures showed a strong homology. Specifically, MCP-3 random 

coil (highlighted by the red square), which is used by the protein to bind to 

CCR5, is superimposable with a portion of the NAMPT structure (amino acids 

420-430). Moreover, the chemical-physical features of the amino acids of this 

portion are comparable to the steric hindrance of MCP-3 in the same region.  
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Figure 1. A) Scheme of RANTES, MCP-3 and eNAMPT signalling; B) PyMol analysis of 
alignment of eNAMPT (ciano) and MCP-3 (orange) sequences. Red square indicates the 
random coil in common between NAMPT and MCP-3, which leads to bind to CCR5. 

 

Thus, our experimental data and our assumption derived from the in silico 

model can support the role eNAMPT as antagonist of CCR5 and its similarity 

with the natural antagonist MCP-3, both in the structure and in the functions. 

 
During the second year of PhD, an innovative paper was published by Camp 

et al. They reported that eNAMPT binds to and activates Toll-like receptor 4 

(TLR4), inducing NF-κB activation in human lung endothelium. Through the 

antibodies against eNAMPT and TLR4, and the use of TLR4 KO mice, they 

validated this hypothesis18. Of course, I decided to devote part of my 

experiments to validate their hypothesis also in my models. 

Taken together, my results only partially recapitulate the evidence of Camp et 

al. In my hands, we failed to observe an activation of TLR4 in MD-2 deficient 

cells, maybe suggesting that eNAMPT requires MD-2 for TLR4 activation, 

contrarily to what affirmed. Yet, eNAMPT seems to bind to TLR4 because it 

induces a mild and late increase in p65-phosphorylation in MD-2 expressing 

cells (Jurkat). Moreover, eNAMPT up-regulated four genes (CXCL9, 
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CXCL10, IL-6, and IL-1β) involved in TLR4 signalling in ex vivo peritoneal 

macrophages.  

Therefore, this evidence on TLR4 brings further support to the idea that more 

than one receptor may be recognized by eNAMPT, yielding therefore a 

complex pattern. This is further supported by the notion that NF-κB is not the 

only intracellular pathway activated by eNAMPT from literature4-6, 19. 

Moreover, our results were not able to convince us that eNAMPT actions were 

fully comparable to those of LPS, even if we recognize that many other 

experiments should be carried to fully elucidate this issue.  

A crucial element regarding the experiments with TLR4 is the absolute 

necessity to avoid any endotoxin contamination in eNAMPT preparations. We 

have paid incredible attention to ensure that recombinant proteins (in our case 

eNAMPT) used for cell treatment and all the reagents and tools used in the 

experiments were completely endotoxin-free. For example, our eNAMPT were 

prepared from ClearColi BL21 (DE3) kit, in which the bacterial strain has been 

modified to express an LPS modified form not recognised by the receptor and 

the preparations were subjected to the LAL test. Our eNAMPT was 

comparable to most commercial available recombinant proteins, which puts us 

in a situation at par with others, but does not give a 100% guarantee of totally 

LPS-free preparations. Only the use of samples from the TLR4 KO mouse 

model could inform us without further doubt that the gene expression changes 

peritoneal exudates can be attributed to the activation of TLR4. 

Taken together, the evidences that I obtained regarding CCR5 and TLR4 as 

eNAMPT receptor candidates, are not fully convincing and conclusive. At 

present, the working hypothesis is that eNAMPT antagonizes CCR5, mildly 

activates the TLR4 and that further receptors may be involved in explaining 

the full spectrum of effects. In this setting, there is room for actions attributable 

also to its enzymatic activity and to NMN. 
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In this scenario, I decided to pursue a fishing strategy to identify further 

receptors. As other researchers have attempted to identify the eNAMPT 

receptor by using the yeast two-hybrid technique and by screening cDNA 

libraries without being able to achieve appreciable results, it persuaded us to 

move in a different direction4. 

I set up and validated a method to identify new membrane interactors of 

eNAMPT by using fluorescent probes. Our idea arises from the evidences of 

Yamasaki K et al., which discovered the IL-6 receptor using a fluorescence IL-

6 on COS7 transfect cells20. We paralleled their experiments by generating a 

labelled eNAMPT-488 to analyse its binding to the membranes.  

Despite initial problems with artefacts in our model, we demonstrated an 

effective binding of eNAMPT to the membranes of both B16 melanoma and 

4T1 mammary carcinoma cells, both with FACS analysis and confocal 

imaging. 

To improve the quality of our results and allow this technique to support future 

identifications, we required an increased amount of protein coupled with 

homogeneity of our preparations, and for this we moved to mouse tissues. A 

competitive binding assay, in which unlabelled NAMPT was used to compete 

with the binding of eNAMPT-488, revealed that in kidney and liver 

membranes a partial displacement occurred, indicating an effective binding to 

a competitive site. 

The following step was to pull-down the interactors present in kidney and liver 

preparations and to identify them through LC-MS analysis. For this, we took 

advantage from the cross-linking technique, via a BS3 linker, which allows to 

fix and stabilize the interaction between proteins and to improve the quality 

and accuracy of the results.  

Our very preliminary data indicate two possible interesting proteins: GAPDH 

(Glyceraldehyde-3-phosphate dehydrogenase) and Na+/K+ ATPase subunit 1 

and 3 (Sodium/potassium-transporting ATPase).  
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While the presence of GAPDH might at first appear to be an artefact, a member 

of my lab (Ambra Grolla; personal communication) has strong evidence that 

this interaction occurs and may be relevant both in a physiological and 

pathological perspective. This provides therefore reassurance on the validation 

of the method. 

On the other hand, despite the fact that GAPDH has been demonstrated to be 

also at plasma membrane21, its presence in our preparations may be translated 

in a partial contamination with the cytosolic fraction and this may mean that 

further characterizations of the membrane preparations may be required in the 

future. 

Since 1994, when eNAMPT was described for the first time as a cytokine, no 

one has reported convincing evidence on the identity of its receptor(s)3. A 

possibility to explain the difficulty that has challenged researchers and that has 

probably been over-looked deals with the large variability of eNAMPT 

preparations that have been used. Indeed, most results in the literature have 

been recombinant NAMPT produced in bacteria, which might not be 

superimposable, for post-translational modifications, to mammalian eNAMPT. 

Members of my lab are at present tackling this issue (Cristina Travelli, Michele 

Bianchi, personal communication) and are finding striking differences between 

eukaryotic and prokaryotic recombinant eNAMPT preparations. Future studies 

should possibly use recombinant protein obtained from HEK293T or CHO 

cells, which may be more reliable and relevant. Such a drawback, which 

somehow may explain part of my negative results, is shared by the entire 

literature: even Camp et al., in the material and methods section of the 

manuscript reporting the TLR4 interaction, reported “Commercially available 

recombinant NAMPT/PBEF exhibits batch/lot variability on NF-κB 

signalling, possibly via post-translational modifications or loss of 

bioactivity”18.  
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In conclusion, the scheme of Figure 2 summarizes all the evidences that I 

obtained during my PhD on eNAMPT, that has allowed me to define eNAMPT 

as an antagonist of CCR5 and to hypothesize that this protein may be a 

promiscuous ligand for multiple receptors.  

 

 

Figure 2. Summarizing scheme of eNAMPT findings 
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