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Abstract
We propose an external memory algorithm for the computation of the BWT and LCP array
for a collection of sequences. Our algorithm takes the amount of available memory as an input
parameter, and tries to make the best use of it by splitting the input collection into subcollections
sufficiently small that it can compute their BWT in RAM using an optimal linear time algorithm.
Next, it merges the partial BWTs in external memory and in the process it also computes the
LCP values. We show that our algorithm performs O(nmaxlcp) sequential I/Os, where n is the
total length of the collection and maxlcp is the maximum LCP value. The experimental results
show that our algorithm outperforms the current best algorithm for collections of sequences with
different lengths and when the average LCP of the collection is relatively small compared to the
length of the sequences.

In the second part of the paper, we show that our algorithm can be modified to output two
additional arrays that, combined with the BWT and LCP arrays, provide simple, scan based,
external memory algorithms for three well known problems in bioinformatics: the computation
of the all pairs suffix-prefix overlaps, the computation of maximal repeats, and the construction
of succinct de Bruijn graphs.
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10:2 External memory LCP and BWT computation with applications

Supplement Material Source code: https://github.com/felipelouza/egap/
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1 Introduction

A fundamental problem in bioinformatics is the ability to efficiently search into the billions
of DNA sequences produced by NGS studies. The Burrows Wheeler transform (BWT)
is a well known structure which is the starting point for the construction of compressed
indices for collection of sequences [24]. The BWT is often complemented with the Longest
Common Prefix (LCP) array since the latter makes it possible to efficiently emulate Suffix
Tree algorithms [14, 31]. The construction of such data structures is a challenging problem.
Although the final outcome is a compressed index, construction algorithms can be memory
hungry and the necessity of developing lightweight, i.e. space economical, algorithms was
recognized since the very beginning of the field [9, 26, 27]. When even lightweight algorithms
do not fit in RAM, one has to resort to external memory construction algorithms (see [13,
18, 19, 23] and references therein).

Although the space efficient computation of the BWT in RAM is well studied, and
remarkable advances have been recently obtained [2, 30], for external memory computation
the situation is less satisfactory. For collections of sequences, the first external memory
algorithm is the BCR algorithm described in [1] that computes the multi-string BWT for
a collection of total size n, performing a number of sequential I/Os proportional to nK,
where K is the length of the longest sequence in the collection. This approach is clearly
not competitive when the sequences have non homogeneous lengths, and it is far from the
theoretical optimal even for sequences of equal length. Nevertheless, the simplicity of the
algorithm makes it very effective for collections of relatively short sequences, and this has
become the reference tool for this problem. This approach was later extended [11] to compute
also the LCP values with the same asymptotic number of I/Os. When computing also the
LCP values, or when the input strings have different lengths, the algorithm uses O(m) words
of RAM, where m is the number of input sequences.

In this paper, we present a new external memory algorithm for the computation of the
BWT and LCP array for a collection of sequences. Our algorithm takes the amount of
available RAM as an input parameter, and tries to make the best use of it by splitting the
input into subcollections sufficiently small so that it can compute their BWT in internal
memory using an optimal linear time algorithm. Next, it merges the partial BWTs in
external memory and in the process it also computes the LCP values. Since the LCP values
are computed in a non-standard order, the algorithm is completed by an external memory
merge sort procedure that computes the final LCP array. We show that our algorithm
performs a number of sequential I/Os between O(n avelcp) and O(nmaxlcp), where avelcp
and maxlcp are respectively the average and the maximum Longest Common Prefix of the
input sequences. The experimental results show that our algorithm is indeed much faster
than BCR for collections of sequences when the average LCP is relatively small compared to
the length of the sequences.

To our knowledge, the only other known external memory algorithm for computing
the BWT and LCP arrays of a collection of sequences is the one recently proposed in [4]
that performs O(nmaxlcp) sequential I/Os and uses O(m+ k) words of RAM. We plan to
experimentally compare this algorithm to ours in the near future.

https://github.com/felipelouza/egap/
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Another contribution of the paper, which follows from our main result, is the design of
simple external memory algorithms for three well known problems, namely: the computation
of maximal repeats [21, 34], the computation of the all pairs suffix-prefix overlaps [16, 33, 35],
and the construction of succinct de Bruijn graphs [3, 7, 8]. This is achieved using the BWT
and LCP arrays, together with two additional arrays that our algorithm can compute without
any asymptotic slowdown. The first one is the so called Document Array providing for each
suffix the ID of the sequence it belongs to; the second one is a bit array indicating whether
each suffix is a substring of the one immediately following it in lexicographic order. Our
external memory algorithms for these problems are derived from known internal memory
algorithms, but they process the input data in a single sequential scan. In addition, for
the problem of the all pairs suffix-prefix, we go beyond the recent solutions [5, 33, 35]
that compute all the overlaps, by computing only the overlaps above a certain length, still
spending constant time per reported overlap. Since the above problems often involve huge
datasets we believe it is important to provide external memory algorithms. To our knowledge,
only for the all pair suffix-prefix problem there exists an external memory algorithm that
computes all the overlaps given the BWT, LCP and Generalized Suffix Array of the input
collection [5, Algorithm 2].

2 Background

Let s[1, n] denote a string of length n over an alphabet Σ of size σ. As usual, we assume s[n]
is a special symbol (end-marker) not appearing elsewhere in s and lexicographically smaller
than any other symbol. We write s[i, j] to denote the substring s[i]s[i+ 1] · · · s[j]. If j ≥ n we
assume s[i, j] = s[i, n]. If i > j or i > n then s[i, j] is the empty string. Given two strings s1
and s2 we write s1 � s2 (s1 ≺ s2) to denote that s1 is lexicographically (strictly) smaller than
s2. We denote by LCP(s1, s2) the length of the longest common prefix between s1 and s2.

The suffix array sa[1, n] associated to s is the permutation of [1, n] giving the lexicographic
order of s’s suffixes, that is, for i = 1, . . . , n− 1, s[sa[i], n] ≺ s[sa[i+ 1], n].

The longest common prefix array lcp[1, n+ 1] is defined for i = 2, . . . , n by

lcp[i] = LCP(s[sa[i− 1], n], s[sa[i], n]); (1)

the lcp array stores the length of the longest common prefix (LCP) between lexicographically
consecutive suffixes. For convenience we define lcp[1] = lcp[n+ 1] = −1.

Let s1[1, n1], . . . , sk[1, nk] be such that s1[n1] = $1, . . . , sk[nk] = $k, where where $1 <

. . . < $k are k symbols not appearing elsewhere in s1, . . . , sk and smaller than any other
symbol. Let sa1···k[1, n] denote the suffix array of the concatenation s1 · · · sk of total length
n = Σkh=1nh. The multi-string BWT [11, 25] of s1, . . . , sk, denoted by bwt1···k[1, n], is defined
as

bwt1···k[i] =
{

sj [nj ] if sa1···k[i] = Σj−1
h=1nh + 1

sj [sa1···k[i]− Σj−1
h=1nh − 1] if Σj−1

h=1nh + 1 < sa1···k[i] ≤ Σjh=1nh.
(2)

Essentially bwt1···k is a permutation of the symbols in s1, . . . , sk such that the position
in bwt1···k of si[j] is given by the lexicographic rank of its context si[j + 1, ni] (or si[1, ni]
if j = ni). Fig. 1 shows an example with k = 2. Notice that for k = 1, this is the usual
Burrows-Wheeler transform [10].

Given the suffix array sa1···k[1, n] of the concatenation s1 · · · sk, we consider the corres-
ponding LCP array lcp1···k[1, n] defined as in (1) (see again Fig. 1). Note that, for i = 2, . . . , n,
lcp1···k[i] gives the length of the longest common prefix between the contexts of bwt1···k[i]

WABI 2018
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lcp bwt context
-1 b $1

0 c ab$1

2 $1 abcab$1

0 a b$1

1 a bcab$1

0 b cab$1

-1

lcp bwt context
-1 c $2

0 $2 aabcabc$2

1 c abc$2

3 a abcabc$2

0 a bc$2

2 a bcabc$2

0 b c$2

1 b cabc$2

-1

id lcp12 bwt12 context
1 -1 b $1

2 0 c $2

2 0 $2 aabcabc$2

1 1 c ab$1

2 2 c abc$2

1 3 $1 abcab$1

2 5 a abcabc$2

1 0 a b$1

2 1 a bc$2

1 2 a bcab$1

2 4 a bcabc$2

2 0 b c$2

1 1 b cab$1

2 3 b cabc$2

-1

Figure 1 LCP array and BWT for s1 = abcab$1 and s2 = aabcabc$2, and multi-string BWT
and corresponding LCP array for the same strings. Column id shows, for each entry of bwt12 =
bc$2cc$1aaaabbb whether it comes from s1 or s2.

and bwt1···k[i − 1]. We stress that all practical implementations use a single $ symbol as
end-marker for all strings to avoid alphabet explosion, but end-markers from different strings
are then sorted as described, i.e., on the basis of the index of the strings they belong to.

2.1 Computing multi-string BWTs
The gSACA-K algorithm [22], based on algorithm SACA-K [32], computes the suffix array
for a string collection. Given a collection of strings of total length n, gSACA-K computes
the suffix array for their concatenation in O(n) time using (σ + 1) logn additional bits (in
practice, only 2KB are used for ASCII alphabets). It is optimal for alphabets of constant size
σ = O(1). The multi-string bwt1···k of s1, . . . , sk can be easily obtained from the suffix array
as in (2). gSACA-K can compute also the lcp array lcp1···k still in linear time using only the
additional space for the lcp values.

2.2 Merging multi-string BWTs
The Gap algorithm [12], based on an earlier algorithm by Holt and McMillan [17], is a simple
procedure to merge multi-string BWTs. In its original formulation the Gap algorithm can
also merge LCP arrays, but in this paper we compute LCP values using a different approach
more suitable for external memory execution. We describe here only the main idea behind
Gap and refer the reader to [12] for further details.

Given k multi-string BWTs for disjoint subcollections, the Gap algorithm computes a
multi-string BWT for the whole collection. The computation does not explicitly need the
collection but only the multi-string BWTs to be merged. For simplicity in the following
we assume we are merging k single-string BWTs bwt1 = bwt(s1), . . . , bwtk = bwt(sk); the
algorithm does not change in the general case where the inputs are multi-string BWTs. Recall
that computing bwt1···k amounts to sorting the symbols of bwt1, . . . , bwtk according to the
lexicographic order of their contexts, where the context of symbol bwtj [i] is sj [saj [i], nj ], for
j = 1, . . . , k.
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The Gap algorithm works in successive iterations. After the h-th iteration the entries of
each bwtλ are sorted on the basis of the first h symbols of their context. More formally, the
output of the h-th iteration is a k-valued vector Z(h) containing nλ = |sλ| entries λ for each
λ = 1, . . . , k, such that the following property holds.

I Property 1. For λ1, λ2 ∈ {1, . . . , k}, λ1 < λ2, and i = 1, . . . , nλ1 and j = 1, . . . , nλ2 the i-
th λ1 precedes the j-th λ2 in Z(h) iff sλ1 [saλ1 [i], saλ1 [i]+h−1] � sλ2 [saλ2 [j], saλ2 [j]+h−1]. J

Following Property 1 we identify the i-th λ in Z(h) with bwtλ[i] so that Z(h) corresponds
to a permutation of bwt1···k. Property 1 is equivalent to state that we can logically partition
Z(h) into b(h) + 1 blocks

Z(h)[1, `1], Z(h)[`1 + 1, `2], . . . , Z(h)[`b(h) + 1, n] (3)

such that each block is either a singleton or corresponds to the set of bwt1···k symbols whose
contexts are prefixed by the same length-h string. Within each block, for λ1 < λ2, the symbols
of bwtλ1 precede those of bwtλ2 and the context of any symbol in block Z(h)[`j + 1, `j+1]
is lexicographically smaller than the context of any symbol in block Z(h)[`k + 1, `k+1] with
k > j. We keep explicit track of such blocks using a bit array B[1, n + 1] such that at
the end of iteration h it is B[i] 6= 0 if and only if a block of Z(h) starts at position i, i.e.
lcp1···k[i] ≤ h− 1. By Property 1, when all entries in B are nonzero, Z(h) describes how the
bwtj (j = 1, . . . , k) should be merged to get bwt1···k.

3 The eGap algorithm

At a glance, the eGap algorithm for computing the multi-string BWT and LCP array in
external memory works in three phases. First it builds multi-string BWTs for sub-collections
in internal memory, then it merges these BWTs in external memory and generates the LCP
values. Finally, it merges the LCP values in external memory.

3.1 Phase 1: BWT computation
Given a collection of sequences s1, s2, . . . , sk, we split it into sub-collections sufficiently small
that we can compute the multi-string SA for each one of them using the linear time internal
memory gSACA-K algorithm (Section 2). After computing each SA, Phase 1 writes each
multi-string BWT to disk in uncompressed form using one byte per character.

3.2 Phase 2: BWT merging and LCP computation
This part of the algorithm is based on the Gap algorithm described in Section 2 but it is
designed to work efficiently in external memory and it computes LCP values in addition to
merging the input (multi-string) BWTs. In the following we assume that the input consists
of k BWTs bwt1, . . . , bwtk of total length n over an alphabet of size σ. The input BWTs are
read from disk and never moved to internal memory. We denote by bwt1···k and lcp1···k the
output BWT and LCP arrays.

The algorithm initially sets Z(0) = 1n12n2 . . .knk and B = 10n−11. Since the context of
every symbol is prefixed by the same length-0 string (the empty string), initially there is a
single block containing all symbols. At iteration h the algorithm computes Z(h) from Z(h−1)

as follows. We define an array F [1, σ] such that F [c] contains the number of occurrences of
characters smaller than c in bwt1···k. F partitions Z(h) into σ buckets, one for each symbol.
Using Z(h−1) we scan the partially merged BWT, and whenever we encounter the BWT
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character c coming from bwti, with i ∈ {1, . . . , k}, we store it in the next free position of
bucket c in Z(h); note that c is not actually moved, instead we write i in its corresponding
position in Z(h). Instead of using distinct arrays Z(0), Z(1), . . . we only use two arrays Zold

and Znew, that are kept on disk. At the beginning of iteration h it is Zold = Z(h−1) and
Znew = Z(h−2); at the end Znew = Z(h) and the roles of the two files are swapped. While
Zold is accessed sequentially, Znew is updated sequentially within each bucket, that is within
each set of positions corresponding to a given character. Since the boundary of each bucket is
known in advance we logically split the Znew file in buckets and write to each one sequentially.

The key to the computation of the LCP array by eGap is to exploit the bitvector B used by
Gap to mark the beginning of blocks. We observe that entry B[i] is set to 1 during iteration
h = lcp1···k[i] + 1, when it is determined that the contexts of bwt1···k[i] and bwt1···k[i − 1]
have a common prefix of length exactly h− 1 (and a new block is created). We introduce
an additional bit array Bx such that, at the beginning of iteration h, Bx[i] = 1 iff B[i] has
been set to 1 at iteration h− 2 or earlier. During iteration h, if B[i] = 1 we look at Bx[i].
If Bx[i] = 0 then B[i] has been set at iteration h− 1: thus we output to a temporary file
Fh−2 the pair 〈i, h− 2〉 to record that lcp1···k[i] = h− 2, then we set Bx[i] = 1 so no pair for
position i will be produced in the following iterations. At the end of iteration h, file Fh−2
contains all pairs 〈i, lcp1···k[i]〉 with lcp[i] = h− 2; the pairs are written in increasing order of
their first component, since B and Bx are scanned sequentially. These temporary files will
be merged in Phase 3.

As proven in [12, Lemma 7], if at iteration h of the Gap algorithm we set B[i] = 1, then
at any iteration g ≥ h + 2 processing the entry Z(g)[i] will not change the arrays Z(g+1)

and B. Since the roles of the Zold and Znew files are swapped at each iteration, and at
iteration h we scan Zold = Z(h−1) to update Znew from Z(h−2) to Z(h), we can compute
only the entries Z(h)[j] that are different from Z(h−2)[j]. In particular, any range [`,m]
such that Bx[`] = Bx[`+ 1] = · · · = Bx[m] = 1 can be added to a set of irrelevant ranges
that the algorithm may skip in successive iterations (irrelevant ranges are defined in terms
of the array Bx as opposed to the array B, since before skipping an irrelevant range we
need to update both Zold and Znew). We read from one file the ranges to be skipped at the
current iteration and simultaneously write to another file the ranges to be skipped at the
next iteration (note that irrelevant ranges are created and consumed sequentially). Since
skipping a single irrelevant range takes O(k+ σ) time, an irrelevant range is stored only if its
size is larger than a given threshold t and we merge consecutive irrelevant ranges whenever
possible. In our experiments we used t = max(256, k + σ). In the worst case the space for
storing irrelevant ranges could be O(n) but in actual experiments it was always less than
0.1n bytes.

As in the Gap algorithm, when all entries in B are nonzero, Zold describes how the
BWTs bwtj (j = 1, . . . , k) should be merged to get bwt1···k, and a final sequential scan of
the input BWTs along with Zold allows to write bwt1···k to disk, in sequential order. Our
implementation can merge at most 27 = 128 BWTs at a time because we use 7 bits to store
each entry of Zold and Znew. These arrays are maintained on disk in two separate files; the
additional bit of each byte are used to keep the current and the next copy of B. The bit
array Bx is stored separately in a file of size n/8 bytes. To merge of a set of k > 128 BWTs
we split the input in subsets of cardinality 128 and merge them in successive rounds. We
have also implemented a semi-external version of the merge algorithm that uses n bytes of
RAM. The i-th byte is used to store Zold[i] and Znew[i] (3 bits each), B[i] and Bx[i].
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3.3 Phase 3: LCP merging
At the end of Phase 2 all LCP-values have been written to the temporary files Fh on disk
as pairs 〈i, lcp[i]〉. Each file Fh contains all pairs with second component equal to h in
order of increasing first component. The computation of the LCP array is completed using
a standard external memory multiway merge [20, ch. 5.4.1] of maxlcp sorted files, where
maxlcp = maxi(lcp1···k[i]) is the largest LCP value.

3.4 Analysis
During Phase 1, gSACA-K computes the suffix array for a sub-collection of total length m
using 9m bytes. If the available RAM is M , the input is split into subcollections of size
≈M/9. Since gSACA-K runs in linear time, if the input collection has total size n, Phase 1
takes O(n) time overall.

A single iteration of Phase 2 consists of a complete scan of Z(h−1) except for the irrelevant
ranges. Since the algorithm requires maxlcp iterations, without skipping the irrelevant ranges
the algorithm would require maxlcp sequential scans of O(n) items. Reasoning as in [12,
Theorem 8] we get that by skipping irrelevant ranges the overall amount of data directly
read/written by the algorithm is O(n avelcp) items where avelcp is the arithmetic average
of the entries in the final LCP array. However, if we reason in terms of disk blocks, every
time we skip an irrelevant range we discard the current block and load a new one (unless
the beginning of the new relevant range is inside the same block, in that case skipping
the irrelevant range does not save any I/O). We can upper bound this extra cost, with
an overhead of O(1) blocks for each irrelevant range skipped. Summing up, assuming the
total number of skipped ranges is Ir and that each disk block consists of S words, the I/O
complexity of Phase 2 is O(Ir+n avelcp log k/(S logn)) block I/Os, where k is the number of
input BWTs. Although the preliminary experiments in Section 4 suggest that in practice Ir
is small, for simplicity and uniformity with the previous literature we upper bound the cost
of Phase 2 with O(nmaxlcp) sequential I/Os, (corresponding to O(nmaxlcp log k/(S logn))
block I/Os). As a future work, we plan to do a detailed theoretical and experimental analysis
of the impact of skipping irrelevant ranges.

Phase 3 takes O(dlogK maxlcpe) rounds; each round merges K LCP files by sequen-
tially reading and writing O(n) bytes of data. The overall cost of Phase 3 is therefore
O(n logK maxlcp) sequential I/Os. In our experiments we used K = 256; since in our tests
maxlcp < 216 two merging rounds were always sufficient.

The above analysis suggests that Phase 2 is the most expensive phase of the eGap
algorithm. Indeed, in our experiments we found that Phase 2 always took at least 95% of
the overall running time.

4 Experiments

In this section we report some preliminary experiments on the eGap algorithm. Testing
external memory algorithms is extremely time consuming since, to make a realistic external
memory setting, one has to use an amount of RAM smaller than the size of the data. If more
RAM is available, even if the algorithm is supposedly not using it, the operating system will
use it to temporary store disk data and the algorithm will be no longer really working in
external memory. This phenomenon will be apparent also from our experiments. For this
reasons we used datasets of size 8GB, reported in Table 1, and a machine with 32GB of RAM
but reduced at boot time to 1GB, to simulate input data much larger than the available
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10:8 External memory LCP and BWT computation with applications

Table 1 Datasets used in our experiments. shortreads are DNA reads from human genome5

trimmed to length 100. longreads are Illumina HiSeq 4000 paired-end RNA-seq reads from plant
Setaria viridis6 trimmed to length 300. pacbio are PacBio RS II reads from Triticum aestivum
(wheat) genome7 with different lengths. pacbio.1000 are the strings from pacbio trimmed to length
1,000. Columns 5 and 6 show the maximum and average lengths of the single strings. Columns 7
and 8 show the maximum and average LCPs of the collections.

Name Size GB σ N. of strings Max Len Ave Len Max LCP Ave LCP
shortreads 8.0 6 85,899,345 100 100 99 27.90
longreads 8.0 5 28,633,115 300 300 299 90.28
pacbio.1000 8.0 5 8,589,934 1,000 1,000 876 18.05
pacbio 8.0 5 942,248 71,561 9,116 3,084 18.32

RAM, and 8GB, to simulate input data of approximately the same size as the available RAM
and test also the semi external version of our algorithm. Note that for a 8GB input, the
output BWT+LCP data has size 24GB, so even 8GB RAM is still significantly less than the
input and the output combined.

We implemented eGap in ANSI C based on the source code of Gap [12] and gSACA-
K [22]. Our algorithm was compiled with GNU GCC ver. 4.6.3, with optimizing option
-O3. The source code is freely available at https://github.com/felipelouza/egap/. The
experiments were conducted on a machine with GNU/Linux Debian 7.0/64 bits operating
system using an Intel i7-3770 3.4 GHz processor with 8 MB cache, 32 GB of RAM and a 2.0
TB SATA hard disk with 7200 RPM and 64 MB cache.

We compared eGap with BCR+LCP8 from the BEETL Library [1] which is the currently
most used tool for the construction of BWT and LCP arrays in external memory. As a
reference we also tested the external memory tool eGSA [23] that computes the Suffix and
LCP arrays for a collection of sequences. However, we tested eGSA only using 32GB of RAM
since the authors in [23] showed its running time degrades about 25 times when the RAM is
restricted to the input size.

The results in Table 2 show that eGap’s running time per input byte is roughly proportional
to the average LCP. For example, if we look at the two pacbio datasets we see that they have
widely different maximum LCPs, yet their running times are very close similarly to their
average LCPs. According to the theoretical analysis in [1], BCR+LCP running time per input
byte is proportional to the sequence length. Using 1GB RAM the tool BCR+LCP could not
handle the shortreads dataset because of insufficient internal memory, and it stopped with an
internal error after four days of computation on the pacbio.1000 dataset (we have contacted
the authors about the error and plan to complete the comparison as soon as we obtain a
stable version of the software). The tool BCR+LCP cannot handle input sequences of different
lengths, so for the pacbio dataset we used the tool extLCP [11] by the same authors. However,
extLCP appears to be not competitive on pacbio and for each instance we stopped it when
it became clear that its running time was much higher than eGap’s. In the future we also
plan to include in the comparison two recent algorithms proposed in [4, 6]. In particular, the
algorithm in [4] is also based on a merge strategy. First, for each h, it computes the sequence

5 ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
6 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
7 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
8 https://github.com/BEETL/BEETL/

https://github.com/felipelouza/egap/
ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
https://github.com/BEETL/BEETL/
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Table 2 Running times in µ seconds per input byte.

Name eGap BCR+LCP eGSA
1GB 8GB 32GB 1GB 8GB 32GB 32GB

shortreads 17.19 3.76 2.87 × 5.65 3.96 2.08
longreads 52.39 9.75 6.76 18.54 16.01 10.88 1.89
pacbio.1000 24.88 3.54 1.81 × 54.00 36.96 1.89
pacbio 23.43 3.42 1.82 > 70 > 50 > 50 1.74

of characters preceding all length-h suffixes, ordered according to the lexicographical order
of the length-h suffixes (a sort of partial BWT). Then, it uses a procedure inspired by the
Holt-Macmillan algorithm [17] to merge all the partial BWTs to the final output.

Although incomplete, the results show that BCR+LCP is competitive for short reads or
collections with a large average LCP, while eGap clearly dominates in datasets with long
reads and relatively small average LCP. In particular, when the available RAM is at least
equal to the size of the input, eGap can use the semi-external strategy described in Section 3
and becomes significantly faster. Note that using 32GB RAM both algorithms become much
faster: even though they allocate for their use a small fraction of that RAM, the operating
system uses the remaining RAM as a buffer and avoids many disk accesses. Using 32GB
RAM eGSA turns out to be the fastest algorithm and its running time appears to be less
influenced by the size of the average LCP. Another advantage is that it also computes the
Suffix Array, but it has the drawback of using a large amount of disk working space: 340GB
for a 8GB input vs 56GB used by eGap.

5 Applications

In this section we show that the eGap algorithm, in addition to the BWT and LCP arrays, can
output additional information that can be used to design efficient external memory algorithms
for three well known problems on sequence collections: the computation of maximal repeats,
the all pairs suffix-prefix overlaps, and the construction of succinct de Bruijn graphs. For
these problems we describe algorithms which are derived from known (internal memory)
algorithms but they process the input data in a single sequential scan. In addition, the
amount of RAM used by the algorithms is usually much smaller than the size of inputs since
it grows linearly with the number of sequences and the maximum LCP value.

Our starting point is the observation that the eGap algorithm can also output an array
which provides, for each bwt entry, the id of the sequence to which that entry belongs. In
information retrieval this is usually called the Document Array, so in the following we will
denote it by da. In Phase 1 the gSACA-K algorithm can compute the da together with the
lcp and bwt using only additional 4n bytes of space to store the da entries. These partial da’s
can be merged in Phase 2 using the Znew array in the same way as the BWT entries. In the
following we use bwt, lcp, and da to denote the multistring BWT, LCP and Document Array
of a collection of m sequences of total length n. We write s to denote the concatenation
s1 · · · sm and sa to denote the suffix array of s. We will use s and sa to prove the correctness
of our algorithms, but neither s nor sa are used in the computations.

5.1 Computation of Maximal Repeats
Different notions of maximal repeats have been used in the bioinformatic literature to model
different notions of repetitive structure. We use a notion of maximal repeat from [15, Ch. 7]:
we say that a string α is a Type 1 maximal repeat if α occurs in the collection at least twice
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and every extension, i.e. cα or αc with c ∈ Σ, occurs fewer times. We consider also a more
restrictive notion: we say that a string α is a Type 2 maximal repeat if α occurs in the
collection at least twice and every extension of α occurs at most once.

We first show how to compute Type 1 maximal repeats with a sequential scan of the
arrays bwt and lcp. The crucial observation is that we have a substring of length ` that
prefixes sa entries j, j+ 1, . . . , i iff lcp[h] ≥ ` for h = j+ 1, . . . , i, and both lcp[j] and lcp[i+ 1]
are smaller than `. To ensure that the repeat is maximal, we also require that there exists
h ∈ [j + 1, i] such that lcp[h] = ` and that bwt[j, i] contains at least two distinct characters.

During the scan, we maintain a stack containing pairs 〈j, lcp[h]〉 such that j ≤ h; in
addition if〈j′, lcp[h′]〉 is below 〈j, lcp[h]〉 on the stack, then h′ < j. If, when we reach position
i ≥ h, the pair 〈j, lcp[h]〉 is in the stack this means that all positions k between j and i we
have lcp[k] ≥ lcp[h]. To maintain this invariant, when we reach position i, if the current top
pair 〈j, lcp[h]〉 has lcp[h] < lcp[i], then 〈i, lcp[i]〉 is pushed on top of the stack. Otherwise, all
pairs 〈j, lcp[h]〉 with lcp[h] ≥ lcp[i] are popped from the stack; if ̂ is the index of the last pair
popped from the stack, pair 〈̂, lcp[i]〉 is pushed on the stack. The rationale for the latter
addition is that for all ̂ ≤ j ≤ i it is lcp[j] ≥ lcp[i] and therefore the prefix of length lcp[i] of
s[sa[j], n] is the same as the prefix of the same length of s[sa[i], n]. It is not difficult to prove
that for each stack entry 〈j, lcp[h]〉, it is lcp[j − 1] < lcp[h].

If entry 〈j + 1, lcp[h]〉 is removed from the stack at iteration i+ 1, by the above discussion
lcp[j] < lcp[h]; lcp[i + 1] < lcp[h] (because 〈j + 1, lcp[h]〉 is being removed), and for k =
j + 1, . . . , i lcp[k] ≥ lcp[h]. To ensure that we have found a Type 1 maximal repeat we only
need to check that bwt[j, i] contains at least two distinct characters. To efficiently check this
latter condition, for each stack entry 〈j, lcp[h]〉 we maintain a bitvector bj of size σ keeping
track of the distinct characters in the array bwt from position j − 1 to the next stack entry,
or to the last seen position for the entry at the top of the stack. When 〈j, lcp[h]〉 is popped
from the stack its bitvector is or-ed to the previous stack entry in constant time; if 〈j, lcp[h]〉
is popped from the stack and immediately replaced with 〈j, lcp[i]〉 its bitvector survives as
it is (essentially because it is associated with an index, not with a stack entry). Clearly,
maintaining the bitvector does not increase the asymptotic cost of the algorithm.

To find Type 2 maximal repeats, we are interested in consecutive LCP entries lcp[j], lcp[j+
1], . . . , lcp[i], lcp[i + 1], such that lcp[j] < lcp[j + 1] = lcp[j + 2] = · · · = lcp[i] > lcp[i + 1].
Indeed, this ensures that for h = j, . . . , i all suffixes s[sa[h], n] are prefixed by the same string
α of length lcp[j + 1] and every extension αc occurs at most once. If this is the case, then α
is a Type 2 maximal repeat if all characters in bwt[j, i] are distinct since this ensures that
also every extension cα occurs at most once. In order to detect this situation, as we scan
the lcp array we maintain a candidate pair 〈j + 1, lcp[j + 1]〉 such that j + 1 is the largest
index seen so far for which lcp[j] < lcp[j + 1]. When we establish a candidate at j + 1 as
above, we init a bitvector b marking entries bwt[j] and bwt[j + 1]. As long as the following
values lcp[j + 2], lcp[j + 3], . . . are equal to lcp[j + 1] we go on updating b and if the same
position is marked twice we discard 〈j + 1, lcp[j + 1]〉. If we reach an index i+ 1 such that
lcp[i+ 1] > lcp[j + 1], we update the candidate and reinitialize b. If we reach i+ 1 such that
lcp[i+ 1] < lcp[j + 1] and 〈j + 1, lcp[j + 1]〉 has not been discarded, then a repeat of Type 2
(with i− j + 1 repetitions) has been located.

Note that when our algorithms discover Type 1 or Type 2 maximal repeats, we know
the repeat length and the number of occurrences, so one can easily filter out non-interesting
repeats (too short or too frequent). In some applications, for example the MUMmer tool [28],
one is interested in repeats that occur in at least r distinct sequences, maybe exactly once
for each sequence. Since for these applications the number of distinct sequences is relatively
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small, we can handle this requirements by simply scanning the da array simultaneously with
the lcp and bwt arrays and keeping track of the sequences associated to a maximal repeat
using a bitvector (or a union-find structure) as we do with characters in the bwt.

5.2 All pairs suffix-prefix overlaps
In this problem we want to compute, for each pair of sequences si sj , the longest overlap
between a suffix of si and a prefix of sj . Our solution follows closely the one in [33] which in
turn was inspired by an earlier Suffix-tree based algorithm [16]. The algorithm in [33] solves
the problem using a Generalized Enhanced Suffix array (consisting of the arrays sa, lcp, and
da) in O(n + m2) time, which is optimal since there are m2 overlaps. However, for large
collections it is natural to consider the problem of reporting only the overlaps larger than a
given threshold τ still spending constant time per reported overlap. Our algorithm solves
this more challenging problem.

In the following we say that the suffix starting at sa[i] is special iff s[sa[i] + lcp[i+ 1]] = $
or, in other words, if the suffix starting at sa[i] is a substring of the suffix starting at sa[i+ 1]
(not considering the end-marker $). For example, in Fig. 1 (right) the suffixes ab$0, abc$1,
abcab$0 are all special. We can modify Phase 2 of our algorithm so that it outputs also a bit
array xlcp such that xlcp[i] = 1 iff the suffix starting at sa[i] is special. In the full paper we
will formally prove that this modification does not increase the asymptotic cost and requires
only 2n bits of disk working space.

Our algorithm consists of a sequential scan of the arrays bwt, lcp, and da, and xlcp. We
maintain m distinct stacks, stack[1], . . . , stack[m], one for each input sequence; stack[k] stores
only special suffixes belonging to sequence k. When the scanning reaches position j, we store
the pair 〈j, lcp[j + 1]〉 in stack[da[j]] if and only if xlcp[j] = 1 and lcp[j + 1] > τ . During the
scanning we maintain the invariant that for all stack entries 〈j, lcp[j + 1]〉, lcp[j + 1] is the
length of longest common prefix between s[sa[j], n] and s[sa[i], n], where i is the next position
to be scanned. To this end, when we reach position i we remove all entries 〈j, lcp[j + 1]〉 such
that lcp[j + 1] > lcp[i + 1]. To do this spending constant time for removed entry requires
some additional machinery: We maintain an array of lists top such that top[`] contains the
indexes k for which the entry at the top of stack[k] has LCP component equal to ` (this
array is a stripped down version of [33]’s list). In addition, we maintain an additional stack
lcpStack containing, in increasing order, the values ` such that some stack[k] contains an
entry with LCP component equal to `.

At iteration i, we use lcpStack and the lists in top[·] to reach all stack[k] containing entries
with LCP component greater than lcp[i + 1] and we remove them. After the removal, we
update top[`] where ` is the LCP value now at the top of stack[k]. Finally, if xlcp[i] = 1
and lcp[i + 1] > τ , we add 〈i, lcp[i+ 1]〉 to stack[da[i]]; this requires that we also add da[i]
to top[lcp[i+ 1]], and that we remove da[i] from the list top[`] where ` is the previous top
LCP value in stack[da[i]] (to do this we need to maintain for each element at the top of the
stack a pointer to its corresponding da entry in top). Since we perform a constant number of
operations per entry, maintaining the above data structures takes O(n) time overall.

The computation of the overlaps is done as in [33]. When the scanning reaches position i,
we check whether bwt[i] = $. If this is the case, then s[sa[i], n] is prefixed by the whole
sequence sda[i], hence the longest overlap between a prefix of sda[i] and a suffix of sk is given by
the element currently at the top of stack[k], since by construction these stacks only contain
special suffixes whose overlap with s[sa[i], n] is larger than τ . To spend time proportional to
the number of reported overlaps, instead of accessing all stacks we access only those which
are non-empty. This requires that we maintain an additional list containing all values ` such
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that top[`] is non-empty. For each entry ` in this list, top[`] gives us the id of the sequences
with a suffix-prefix overlap with da[i] of length `. As in [33], we have to handle differently the
case in which the whole sda[i] is a suffix of another sequence, but this can be done without
increasing the overall complexity. Since we spend constant time for reported overlap, the
overall cost of the algorithm, in addition to the scanning of the bwt/lcp/xlcp/da arrays, is
O(n+ Eτ ), where Eτ is the number of suffix-prefix overlaps greater than τ .

5.3 Construction of succinct de Bruijn graphs

A recent remarkable application of compressed data structures is the design of efficiently
navigable succinct representations of de Bruijn graphs [3, 7, 8]. Formally, a de Bruijn graph
for a collection of strings consists of a set of vertices representing the distinct k-mers appearing
in the collection, with a directed edge (u, v) iff there exists a (k + 1)-mer α in the collection
such that α[1, k] is the k-mer associated to u and α[2, k + 1] is the k-mer associated to v.

The starting point of all de Bruijn graphs succinct representation is the BOSS repres-
entation [8], so called from the authors’ initials. For simplicity we now describe the BOSS
representation of a k-order de Bruijn graph using the lexicographic order of k-mers, instead
of the co-lexicographic order as in [8], which means we are building the graph with the
direction of the arcs reversed. This is not a limitation since arcs can be traversed in both
directions (or we can apply our construction to the input sequences reversed).

Consider the N k-mers appearing in the collection sorted in lexicographic order. For
each k-mer αi consider the array Ci of distinct characters c ∈ Σ ∪ {$} such that cαi appears
in the collection. The concatenation W = C1C2 · · ·CN is the first component of the BOSS
representation. The second component is a binary array last, with |last| = |W |, such that
last[j] = 1 iff W [j] is the last entry of some array Ci. Clearly, there is a bijection between
entries in W and graph edges; in the array last each sequence 0i1 (i ≥ 0) corresponds to
the outgoing edges of a single vertex with outdegree i+ 1. Finally, the third component is
a binary array W−, with |W−| = |W |, such that W−[j] = 1 iff W [j] comes from the array
Ci, where αi is the lexicographically smallest k-mer prefixed by αi[1, k − 1] and preceded by
W [j] in the collection. Informally, this means that αi is the lexicographically smallest k-mer
with an outgoing edge reaching W [j]αi[1, k − 1]. Note that the number of 1’s in last and
W− is exactly N , i.e. the number of nodes in the de Bruijn graph.

We now show how to compute W , last and W− by a sequential scan of the bwt and lcp
array. The crucial observation is that the suffix array range prefixed by the same k-mer αi is
identified by a range [bi, ei] of LCP values satisfying lcp[bi] < k, lcp[`] ≥ k for ` = bi+1, . . . , ei
and lcp[ei + 1] < k. Since k-mers are scanned in lexicographic order, by keeping track of the
corresponding characters in the array bwt[bi, ei] we can build the array Ci and consequently
W and last. To compute W− we simply need to keep track also of suffix array ranges
corresponding to (k − 1)-mers. Every time we set an entry W [j] = c we set W−[j] = 1 iff
this is the first occurrence of c in the range corresponding to the current (k − 1)-mers.

If, in addition to the bwt and lcp arrays, we also scan the da array, then we can keep
track of which sequences contain any given graph edge and therefore obtain a succinct
representation of the colored de Bruijn graph [29]. Finally, we observe that if our only
objective is to build the k-order de Bruijn graph, then we can stop the phase 2 of our
algorithm after the k-th iteration. Indeed, we do not need to compute the exact values of
LCP entries greater than k, and also we do not need the exact BWT but only the BWT
characters sorted by their length k context.
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