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Riassunto: Il presente lavoro propone una metodologia per determinare medie mobili
centrate  in  grado  di  filtrare  correttamente,  da  dati  storici  stagionali,  il  ciclo-trend,
quando questo sia localmente approssimabile con una funzione polinomiale del tempo. 
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1. Introduction

The aim of this paper is to provide a method to filter the polynomial trend in seasonal
time  series  by  moving  average  (MA).  If  we  suppose  the  classical  additive
decomposition:

ty = tf + ts + ta
(1)

a MA “m” (1) has to satisfy the following conditions:

m tf = tf (2)
m ts = 0 (3)
Var(m ta ) ≤ Var( ta ) (4)

It is known that a simple MA satisfy the condition 2) (cancelling seasonal fluctuation)
and 3) (smoothing noise), but no 1) (conserving trend) if  tf  is a polynomial trend of
order p≥2. Nevertheless there are weighted MA, that conserve local polynomial trend
and  smooth  efficiently  the  noise  (classical  optimal  MA).  They  smooth  seasonal
fluctuation too, but don’t cancel it. Neither a double filtering, resolve the problem.
Neither Spencer nor Henderson’s MAs prove an unbiased filter for seasonal time series.
They  have  powerful  smoothing  features,  but  they  don’t  exactly  cancel  seasonal
component.  There are methods like X-11 that prove acceptable estimates,  but  by an
iterative method.
In the following page it is shown a method to get efficient and unbiased filters of local
polynomial trend in seasonal time series.

2. Optimal filters
1() In this case we consider a moving average like a  operator.



A centred MA  m  of order d =2k+1 (2) can be represented like a d×1 vector :

m’= [ ]k-k ,..,,.., θθθ 0 (7)
Hence: 

m ty  = m’ ty (8)
and

Var( m ta ) = 2
aσ m’m (9)

where ty = [ ]kttt-k y,..,y,..,y +  and  Var( ta ) = 2
aσ   ∀  t.

It’ s clear that m is an efficient filter if its degree of smoothness  m’m< 1

Now, let be tf  a  pth order polynomial trend in time interval  t ± k , where  k≥ p/2.
A classic optimal MA is proved by solution m* of the following problem:
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where e1 is an elementary vector of   p+1 elements (the first is 1 and the others 0); T is a 
d×(p+1) matrix:
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In this case, m* (3) is the most efficient among polynomial trend conserving MAs, but
don’t cancel seasonal fluctuation so it is not an unbiased filter.

2.1 A Seasonal Unbiased Moving Average (SUMA)
Consider a seasonal time series and let ms a simple MA of order s, that cancel seasonal
fluctuation. For example:

m5’ = [ ].1250  .250  .250  .250  1250 ,,,,. (12)

cancels seasonal fluctuation in quarterly data.
Let Ds the following matrix:

2() k is a positive integer; d is obvious odd.
3() Now we consider a moving average indifferently like a operator or a vector.
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Ds has order d×(d-s+1).
Now we can change the optimisation problem (10) into:
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with  sg  vector of  d-s+1 symmetric coefficient. The solution  *
sg  proves an unbiased

filter, which is the most efficient of the seasonal unbiased moving average, SUMA:

*
sm  = Ds

*
sg (15)

Of course the efficiency of  *
sm  is measured by  *

sm ’ *
sm   and is obvious that major is d

greater efficiency.  We remember  d=2k+1 and  k≥ p/2.  Moreover, if *
sg  is not banal,

d≥ s+2, also:
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3. Validation and Conclusion

In order to validation the suggested filter, we have considered a SUMA of order 9 for
quarterly data:

*
sm  =[-0.057, 0.020, 0.125, 0.230, 0.364, 0.230, 0.125, 0.020, -0.057 ] (17)

and the Handerson’s MA, HMA, of order 9.

We have tested the two MA on 100 different quarterly time series, simulated by the
pattern (1), where:

 (4) i =1, 2, …100 (18)

and st is a quarterly fluctuation with standard deviation σs; at is a random number with
normal distribution and standard deviation σa. 
We show the estimated Squared Error, S.E., of  ft for the two MA in the in following
table:

4()  A0 , Ai,j , Bi,j, αi,j, βi,j are parameters, different for every series.



Table 1: The squared error in the SUMA and HMA (5)

We  can  note  that  the  SUMA  is,  obviously,  independent  by  the  width  of  seasonal
fluctuation and its degree of smoothness is a little smaller than HMA. Because to its
structural  features, HMA is more efficient only if the width of seasonal and random
fluctuations are little respect to error of approximation to polynomial trend. Of course
the filtering of trend is only a formal abstraction based on some hypotheses: it doesn’t
exist  a true trend of a time series and is  questionable to assume constant effects  of
seasonal  fluctuation.  Nevertheless  structural  decomposition  can  be  useful  for  many
analyses and the proved method, we think, assure some good features.
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5  The squared error and standard deviation are shown in percentage respect the medium level of series.

SUMA m*'m* = 27.7% HMA m*'m* = 28.3%

S. E. σs = 4.5% σs = 18% S. E. σs = 4.5% σs = 18%

σa = 1% 1.3% 1.3% σa = 1% 1.3% 1.4%
σa = 10% 13.1% 13.1% σa = 10% 13.2% 13.3%


