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Abstract The paper presents a study of seasonality in Italian dadgtetity prices. In particular,

it compares the ARIMA approach with the structural statecepgpproach in the case of seasonal
data. Unlike ARIMA modeling, the structural approach haat#ed us to detect, in the prices under
consideration, the presence of stochastic daily effects@lintensity is slowly decreasing over time.
This dynamic of seasonality is the consequence of a moretadaconsumption of electricity over
the week. Some causes of this behavior will be discusseckifirial considerations. Moreover, it
will be proved that state space modeling allows the type a$aseality, stochastic or deterministic,
to be tested more efficiently than when unit root tests ard.use
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1 Introduction

In the past twenty years, competitive wholesale marketdedftiécity have started in the OECD
countries in the international context of the deregulatbenergy markets. At the same time, an
increasing number of studies on electricity prices havenlpemlished. Most of these studies have
sought to identify good prediction models, and, for thisma ARIMA modeling has been the most
common methodology. Nevertheless, electricity prices@meperiodic patterns, seasonality in time
series terminology, for which ARIMA modeling does not alwaeem the best approach.

The treatment of seasonality in the ARIMA framework is cqutoally similar to the treatment of
trends: like these, seasonality entails the non-statityr@frthe process, and its non-stationary effect
has to be removed before modeling the process. More spdlgifitthe seasonal effects are constant
at corresponding times (e.g. every Sunday, every Mondgythe seasonality can be represented by
a periodic linear functios(t) (deterministic seasonality). In this case, the correct treatment consists
in subtracting the seasonality, and then in modeling theseasonal prices using an ARIMA model:

@(B)A[p —s(t)] = 6(B)&* 1)

On the other hand, if the seasonal effects are charactebyestochastic variability gochas-
tic seasonality), the correct treatment consists in applying the seasoifferehce to the prices
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1 Formally, model 1 is called the Reg-Arima model by some asthaRMAX by others.
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Aspr = pr — pr—s, and then modeling the differences using an ARIMA model:
@(B)AAsp = 6(B)& )

The two treatments are not interchangeable. In fact, in #se ©f deterministic seasonality, the
seasonal difference is not efficient because it introdueasanal unit roots into the moving average
part 8(B) of the ARIMA model; in the case of stochastic seasonalitg, fitst treatment does not
assure stationarity in the second moment of the data [6]célghe correct application of ARIMA
models to seasonal data requires first the identificatioheofytpe, stochastic or deterministic, of the
seasonality present in the prices.

In many cases, statistical tests indicate the presencetefrdimistic seasonality, at least in the
short run. For this reason, as well as for easiness reasamy, seholars ([1, 12, 9]) have opted for
representing seasonality by means of periodic functiohis. dpproach makes it possible to measure
the seasonal effects, but it is based on the strong assumntptib seasonal effects remain constant
over time. On the other hand, the seasonal difference apipm@es not satisfy the need to under-
stand and model the real dynamic of seasonality in elettiicices. Therefore, other scholars [10]
turned to periodic ARIMA models, but this modeling requiresmerous parameters when season-
ality presents numerous periods (e.g. daily pattern). @rbtsis of these considerations, Structural
State Space Models could be a solution for representingsehty in a flexible way, but using few
parameters. The paper illustrates some structural spatee rsbdels that yielded interesting find-
ings about seasonality in Italian daily electricity prick®re specifically, the paper is organized as
follows. The next section illustrates some items aboutrdatastic and stochastic seasonality, and
the most common test for checking seasonality is preselte®kbction 3, an analysis of the Italian
daily electricity prices is discussed, comparing the ARIEi#proach with the structural (space state)
approach. Final considerations are made in the last Section

2 Deterministic and stochastic seasonality

Seasonality can be viewed as a periodic compogafita seasonal procegsthat makes the process
non-stationary:

Y=Y +s (3

The remaining paif® = y; — 5 is the non-seasonal process and is generally assumedstiochat
& can be either deterministic or stochastic.

Deterministic seasonality can be represented by periodictions of time (having periods) like
the following ones:

S S
s=3 ndiewith 3y =0 (@)
=1 =1
[s/2]
ors = 3 Ajcos(wjt— @) (5)
=1

In equation 4, the parametgy represents the seasonal effect in fth period @;; is a dummy
variable indicating the period). In equation 5, seasopaitviewed as the sum d$§/2]?> harmonic
functions each of them having angular frequengy= j2m/s; j = 1, 2,...,[s/2]. Deterministic sea-
sonality satisfies the following relation:

2 [s/2] = s/2 for seven, ands/2] = (s— 1)/2 for sodd
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S(B)s =0 (6)

whereS(B) = 1+ B+ B?+ ... + BS 1 is the seasonal summation operator based on the backward
operatomB . In the case of stochastic seasonality, the relation 6 besom

S(B)s = w Q)

wherew; is azero-mean stochastic process (stationary or integrated). Now sedispnoan be viewed
as the sum of ofs/2] stochastic harmonic pathsh; ;:

Vi(B)hjt = wjy 8

where
yi(B) = (1-€“B)(1-e'“B)if0 <wj < 9)
yi(B) = (1+B)if wj=m (10)

andw;j ¢ is azero-mean stochastic process (stationary or integrated).

Since each seasonal operagp(B) is a polynomial with unit roots, each stochastic harmonitpa
implies the presence of one or two (complex and conjugatiéyowts in the process (more exactly,
in the autoregressive representation of the process) apeveirsa. Finally, since:

[s/2]
As=ASB)=A |‘| yi(B (11)

the application of the filte\s to a seasonal procegs makes the process stationary, removing a
stochastic trend (eventually present in the non-seas@ita) énd[s/2| stochastic harmonic paths
present in seasonality.

2.1 HEGY test

A very common methodology used to test for non-stationatity to seasonality is the procedure
developed by Hylleberg, Engle, Granger, and Yoo [8], andimnas the HEGY test. This test was
originally devised for quarterly seasonality, but it hasoabeen extended for weekly seasonality in
daily data by Rubia [13].

Under the null hypothesis, the HEGY test assumes that tlegaet variable iseasonally inte-
grated. This means, in the case of daily electricity pricgg),that the weekly differencézp; is
assumed to be a stationary process.

Since:

3 .
A;=(1-B) |‘| (1—€¥“B)(1—e '®B) (12)

(wj = 2m/7,41/7,61/7), the null hypothesis of the HEGY test entails the presémdie process
of seven unit roots: one at zero frequency (correspondirggdtochastic trend) and three pairs of
complex unit roots corresponding to three stochastic hareaths with frequencies®7, 4r/7,
671/7.

The test consists in checking the presence in the proce$eafrtit roots; in this sense it can be

3SB)s =S +S-1+ . +S-st1
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viewed as an extension of the Dickey-Fuller tests [2]. Likese tests, the HEGY test is based on an
auxiliary regression:

7 7 p
=0+ 5 it S Areat Y GArpy +&° (13)
= r=1 =1

whereds; is a zero/one dummy variable corresponding tostiieday of the week, and each regressor
z is obtained by filtering the procegs so that:

e it will be orthogonal to the other regressors;
e it will include only one root of the seven roots includeddn

For examplez;; includes only the unit root having zero frequency (stodhasend), but not the
seasonal roots,; andzs; include only the seasonal roots having frequenmy? and so on (see
[13] for more details).
The numberp of lags of the dependent variable in the auxiliary regres&uaigmentation) has to be
chosen to avoid serial correlation in the error texm

If A7p; is a stationary process, all roots have been removed, amcb#ficientsas are not sig-
nificant. As in the augmented unit root test of Dickey and &UulADF), the null hypothesig; =0
is accepted against the alternative hypothesgisc O on the basis of a non-standdrdtatistic. In
regard to the seasonal roots, the test should be performedancouple of roots having the same
frequency. Indeed, only the hypotheaig = a,j,1 = 0 (k= 1,2,3) means the absencedap (i.e.
the presence i) of an harmonic path with frequencyt?/7. This assumption can be tested by a
joint F-test; the distribution of each statisttg is not standard, but the critical values are reported in
[11]. In conclusion: if some hypothesis; = ;1 = 0 is not rejected, the seasonality should be
stochastic; if all the hypotheses; = aj1 = 0 are rejected and some coefficiggts significant,
the seasonality should be deterministic.

3 Analysisof the Italian daily electricity prices

The HEGY test was performed on the 2008-2011 Italian daillNP(more specifically the log-
PUN). As reported in Table 1, none of the null hypothes&s (vas significant at 1% level. Nev-
ertheless, the absence of a stochastic trend was not codfliynthe ADF test on the same data.
This might mean that the prices process is nearly a stochtastid, but also that the process is not
homogeneous over the whole period. Indeed, after perfasitiia HEGY test on the sub-periods
2008-09 and 2010-11, it can be noted that the statisticncerning the presence of a stochastic
trend gives different signals: the 2008-09 daily pricestsée include a stochastic trend, whereas
the 2010-11 daily prices do not. Such deductions were coafirby performing the ADF test on
the data (Table 1). The absence of mean-reversion in the#ériid is a particular case and should
be related to the high variation of the oil prices in the sameqa. On the other hand, seasonality
remains non stochastic in both periods (absence of seasmig). According to these findings, the
2008-09 daily log-PUN was represented by a Reg-ARIMA moblet,the 2010-11 Log-PUN by a
Reg-ARMA model: more specifically, a Reg-IMA(1,2) for thestiperiod and a Reg-AR(7) for the
second one. In both cases the regression was the following:

4 This is a standard version of the HEGY test for daily data,itian be extended to include trends. Nevertheless, in
this case, there is no reason for doing so.

5 The PUN is the National Single Price in the ltalian electyicharket (IPEX). The PUN series are downloadable
from the web site of the Energy Markets Manager: http://wwercatoelettrico.org



Table1l HEGY and ADF tests

Ho stat. 2008-11 (sign.) 2008-09 (sig.) 2010-11 (sign.)
a;=0 t -3,739 *** -1,572 -3,742 ***
a;=0a3=0 F 163,127 *** 65,480 *** 84,874 ***
as=0a5=0 R 175,639 *** 66,215 *** 90,891 ***
ag=0a7;=0 R 232,567 *** 103,114 *** 93,018 ***
ADF test T -2,288 -1,167 -3,371 **
Pt = WonOwvon + - + YeatGsat ¢ + Pf° (14)

The models parameters and their significance are reporfeabie 2.

Since the analyzed data are log-prices, each daily coeffii@ver part of the table) indicates the
average per-cent difference between the correspondigmtéte and the Sunday price, which is
obviously the lowest price. Indeed, the consumption ofteilgty is generally lowest on Sundays.
To be noted is that the daily effects are lower in the secomid@eThis result may mean that there
was a structural break in the seasonality as a consequeacgrofctural break in the daily demands
or in the daily supplies of electricity. On the other handysgmality may have had fluctuations of
slowly decreasing intensity in the period 2008-2011 as aequence of slow changes in the daily

demands and/or daily supplies of electricity.
In order to gain better understanding of the dynamics of @iy in the electricity prices, we
analyzed the prices by means of state space models.

Table2 Models parameters

model 2008-09

model 2010-11

param. value/sign. value/sign.
const -0,001 4,136 ***
AR1 - 0,351 ***
AR2 - 0,116 ***
AR3 - 0,084 **
AR4 - 0,134 **=*
AR5 - 0,088 **
AR6 - 0,038
AR7 - 0,067 *
MA1 -0,498 *** -

MA2 -0,237 *** -

Mon 0,148 *** 0,076 ***
Tue 0,173 **=* 0,093 ***
Wed 0,190 *** 0,091 ***
Thu 0,169 *** 0,097 ***
Fri 0,151 *** 0,080 ***
Sat 0,103 *** 0,072 **=*

3.1 State Space analysis of electricity prices

First, the following model was performed on the 2008-201iydag-PUN:



pr=m-+s+& (15)
M1 = M+ by + &1y (16)
b1 = b+ &t (17)
§41=—S%—S-1—- —S 5+ &; (18)

wherem is the non-seasonal level of the log-PUN b is the slope and is the seasonality (daily
efzfect). The disturbance factogs €1, £ andéez; arewhite noises with variancess?, 012, 022 and

o5.

T?ﬂs model, also known as thecal linear trend model with seasonal effect [3], is a common starting
state space model for seasonal data. Equation 18 is a parttaise of assumption Wy is assumed

to be a white noise) and entails stochastic seasonalitg.adsumption permits seasonality to change
in the period 2008-2010 according to the findings in Tablehe &stimation results of this model are
reported in the second column of Table 3. To be noted is tlea¢$timate of the standard deviation
of & is zero, which means the slope of the trdndan be assumed to be non stochastic; moreover,
the estimate ob; converges to zero. For these reasons, a seasonal modelirsthpe (withouty

in equation 16 and without equation 17), also known adahal level with seasonal effect, shows
better indices of fit (third column). The consideration of ttiagram of the smoothed seasonality

Table 3 Three state space models for the log-prices

Parameters local trend with local level with local leveltwit
seasonal effect seasonal effect decreasing seas. eff.

o 0,0856 *** 0,0858 *** 0,0858 ***

o1 0,0401 *** 0,0397 *** 0,0397 ***

[op) 0,0000 no no

03 0,0034 *** 0,0034 *** 0,0029 ***

a no no 0,9923

AIC -2.314,61 -2.346,51 -2.365,15

SBC -2.293,11 -2.330,37 -2.343,64

(Figure 1) shows that the daily effects tend to decreasedrp#riod 2008-2011 (in this case, the
daily effects should be viewed as the percentage devigfpmsitive on working days and negative
at weekends, from the trend of prices). According to thislence, the standard local level model
was modified by the following seasonal state equation:

S41=—0(S+S-1+...+S-5)+ &3 (19)

where 0< a < 1 so that the daily effects can tend to decrease. On perfgrthennew model on
the 2008-2011 log-PUN, the value of alpha resulted equal36aB (Table 3, fourth column); the
standard deviation of the disturbance on seasonality waaleéq 0,0029 (less than,8%). The
values of the Akaike (AIC) and Schwarz (SBC) indices are thas in previous models, denoting
an improvement in fit. These findings prove that the dailyaffevere very slowly decreasing in the
period 2008-2011; indeed, so slowly decreasing and se lititying that they could be viewed as
constant in a short period. For this reason, the HEGY tesi;iwik not a particularly powerful test,
detected deterministic seasonality (Table 1).
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Fig. 1 Seasonality in the period 2008-2011

4 Final considerations

The analysis described in the previous sections has shaostrtht daily effects (i.e. seasonality)
on daily wholesale electricity prices exhibited slowly teasing intensity in the period 2008-11 in
Italy. We reiterate that the daily effects can be viewed agadiens from the trend of the prices due
to the days of the week. A reduction of the daily effects meareduction of the differences among
the daily prices. Some causes regarding the demand andghbly @i electricity can be highlighted.
In regard to the demand, a more balanced consumption ofielgcbver the week has been noted
in recent years. One reason is certainly that more and mariida have subscribed contracts of
domestic electricity provision which make electricity somption cheaper in the evenings and at
weekends. Moreover, the difficulties of the Italian econamgecent years have caused a reduction
in electricity consumption on working days.

In regard to the supply, the entry into the market of severaliselectricity producers has made the
supply of electricity more flexible.

Regarding the methodology, Structural State Space Models $0 be a more powerful tool than
the HEGY test for detecting the type of seasonality. Fromstiatge sequence of the seasonal com-
ponents, it is possible to gain a first view on the kind of seafity affecting the data. Moreover,
the significance test on the standard deviation of the diature in the seasonal component makes
it possible to check whether or not seasonality is stochadibre specifically, if the standard devia-
tion is not significant, the seasonality should be assumée teterministic; otherwise it should be
assumed stochastic. Although these models are not usuagtlipged for electricity prices, they have
interesting features for the analysis and prediction aftelgty prices. As known, State Space mod-
eling can include ARIMA modeling, but it allows easier madglof periodic components compared
with the latter. Moreover, Structural State Space modeigepresent electricity prices according to
an economic or behavioral theory.

This study has not dealt with volatility clustering, a wkHlewn feature/problem of electricity
prices. As known, the GARCH models (in all versions) aretgfly used to model volatility clus-
tering. Although such modeling is generally associatedh WWNRIMA modeling, conditional het-
eroscedasticity can be considered in structural framewassiell ([7]).
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