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Abstract. Distributed systems are characterized by a large number of
similar interconnected objects that cooperate by exchanging messages.
Practical application of such systems can be found in computer systems,
sensor networks, and in particular in critical infrastructures. Though
formalisms like Markovian Agents provide a formal support to describe
these systems and evaluate related performance indices, very few tools
are currently available to define models in such languages, moreover they
do not provide generally specific functionalities to ease the definition
of the locations of the interacting components. This paper presents a
prototype tool suite capable of supporting the study of the number of
hops and the transmission delay in a critical infrastructure.

1 Introduction

The 2006 European Programme for Critical Infrastructure Protection (EPCIP)
stated that “The security and economy of the European Union as well as the
well-being of its citizens depends on certain infrastructure and the services they
provide. The destruction or disruption of infrastructure providing key services
could entail the loss of lives, the loss of property, a collapse of public confidence
and moral in the EU” [12].

Among the eight critical infrastructures identified were telecommunications,
electrical power, gas and oil storage, transportation and water supply. These in-
frastructures share some common aspects: i) their components are controlled by
communication networks and ii) their physical infrastructure can be represented
by graphs. For instance in a power grid, telecontrol buildings, like the SCADA
control centers, or the electrical stations can be represented as node of a graph.
Instead the links can model the communication channel or the high-voltage lines
over which the current travels.

The representation of networks as a graphs pervades the study of critical in-
frastructures and more generally of distributed systems, in [24] the authors pro-
pose a graph-based model to represent and to analyze interdependencies among



critical infrastructures; in [20] structural analysis of graphs is performed to sup-
port disaster vulnerability assessment, moreover in [3, 5, 6] the reliability of a
power grid controlled by a SCADA communication network was computed.

The number of hops and transmission delays are well-known concepts in
data-communication networks. These parameters have proved to be useful as
approximated performance metrics in different application contexts. The occur-
rence of a critical event (e.g. fault in an electrical line) in a power grid, its
location or its distance from the station, as well as the total delay from the in-
stant of the occurrence need to be signaled to a central station. When a critical
event is detected, the alarm signal is propagated along a path of intermediate
nodes. Assuming that the distances between the nodes are known or estimated,
the number of hops provides a measure of the distance between the critical event
and the central station.

Though formalisms like Markovian Agents (MAs) [16] provide a support to
describe these systems and evaluate related performance indices, very few tools
are currently available to define models in such languages, moreover they do not
provide generally specific functionalities to ease the definition of the locations of
the interacting components. In Section 4 a new tool for the definition of graph-
based interconnection network is presented.

Section 5 shows a formal stochastic model, based on MAs, to compute the
number of hops between a source and a destination in addition to the transmis-
sion time in a multi-hop routing. More precisely, the model represents a system
of interconnected nodes where each node is represented by a MA that can trans-
mit messages directly or through intermediate nodes to a specific destination.
Transmitted messages carry the number of hops, incrementing this value at each
step so that the mean hop count and the mean time needed by a message to
reach its destination are computed.

2 Related works

Beside the work on MAs, that will be considered in depth in Section 3, several
other spatial models have been introduced in the literature. One of the more
mature is Cellular automata (CAs) [21]. They are simple models of a spatially
extended decentralized systems composed by a set of individual entities (cells).
The communication between cells is limited to local interaction, and each in-
dividual can be in a state which changes over time depending on the states of
its local neighbors and on simple rules. In the area of performance evaluation,
applications of CA can be found in biomedical [23], ecology [15, 13] and geology
[19]. All the models of this sort are usually studied by running several simula-
tions of the CA, starting from different initial states and computing the desired
performance indexes.

More recent works considering spatial models are for example Spatial Pro-
cess Algebra (SPA) [14] where Locations are added to take into account spatial
dependencies. In particular spatial concepts are added to the stochastic process



algebra PEPA by allowing named locations to appear in process terms and on
the labels of the transitions between them.

The need of automatic tools to include spatial aspects in performance mod-
els is considered in [1]. The authors derive a Generalised Stochastic Petri Net
(GSPN) model from high-precision location tracking data traces, using cluster-
ing techniques. In particular, GSPNs places are used to model locations where
an object spends a large amount of time, and timed transitions are used to model
the movement among the locations.

3 Markovian Agents

MAmodels consist of a set of agents positioned into a space. The behavior of each
agent is described by a continuous-time Markov chain (CTMC) with two types
of transitions: local transitions that model the internal features of the MA, and
induced transitions that account for interaction with other MAs. During local
transitions, an MA can send messages to other MAs. The perception function u(·)
regulates the propagation of messages, taking into account the agent position in
the space, the message routing policy, and the transmittance properties of the
medium.

MAs are scattered over a space V, which can correspond either to a dis-
crete number of locations, or to continuous n-dimensional space. Agents can be
grouped in classes, and messages divided into different types. Formally a Multi-
ple Agent Class, Multiple Message Type Markovian Agents Model (MAM) is a
tuple:

MAM = {C,M,V,U ,R}, (1)

where C = {1 . . . C} is the set of agent classes; M = {1 . . .M} is the set of
message types; V is the space (discrete or continuous) where Markovian Agents
are spread; U = {u1(·) . . . uM (·)} is a set of M perception functions (one for each
message type); R = {ξ1(·) . . . ξC(·)} defines the density of agents, where each
component ξc(v) accounts either for the number or the density of class c agents
in position v ∈ V.

Each agent MAc of class c is defined by the tuple:

MAc = {Qc(v),Λc(v),πc
0(v),G

c(m,v),Ac(m,v)}. (2)

Qc(v) = [qcij(v)] is the infinitesimal generator matrix of the CTMC that models
the local behavior of an agent of class c. An element qcij(v) represents the tran-
sition rate from state i to state j (with qcii(v) = −

∑
j 6=i q

c
ij(v)), and Λc(v) =

[λc
i (v)], is a vector containing the rates of self-jumps (i.e. the rate at which the

Markov chain re-enters the same state). Using self-jumps, an agent can contin-
uously send messages while remaining in the same state. Gc(m,v) = [gcij(m,v)]
and Ac(m,v) = [acij(m,v)] represent respectively the probability that an agent
of class c generates a message of type m during a jump from state i to state j,
and the probability that an agent of class c accepts a message of type m in state
i, performing an immediate jump to state j. πc

0(v) represents the initial state



distribution. All the previous quantities depends on the location v: this allows
the agents to modify the rate at which they perform their activities as a function
of the position in which they are located.

The perception function is defined as um : V×C× IN×V×C× IN → IR+, and
um(v, c, i,v′, c′, i′) represents the probability that an agent of class c, in position
v, and in state i, perceives a message m generated by an agent of class c′ in
position v′ in state i′.

MAs models can be analyzed solving a set of differential equations that
compute the density ρci (t,v) of agents in class c, in state i in position v at
time t. In [8], a prototype tool, called MASolver from now on, was developed to
analyse MAs models using conventional discretization techniques for both time
and space. Since MAs models have no strict form of synchronisation, the whole
state-space of the model is not built, avoiding the well-known state explosion
problem. To consider the interaction among agents, we resort to an approximate
techinique based on mean-field theory [22]. The behavior of each agent depends
on both its local behavior, represented by the infinitesimal generator matrix
Qc(v), and the behavior induced by the interactions with other MAs, computed
as a mean-field. The whole behavior is represented by an infinitesimal generator
matrix Kc(t,v) which changes in time and depends on the class and the position
of the agent.

The evolution of the entire model can be studied by solving ∀v, c the following
differential equations:

ρc(0,v) = ξc(v)πc
0(v) (3)

dρc(t,v)

dt
= ρc(t,v)Kc(t,v). (4)

where ρc(t,v) = [ρci (t,v)].
The computation of the matrix Kc(t,v) represents the most expensive step

in the solution algorithm, because it considers all the possible interactions among
agents and messages, in every possible location. However, in most practical ap-
plications, the definition of the perception function confines the interaction of
each MA to a limited number of neighboring MAs, significantly reducing the
complexity of this step. Please refer to [8, 7] for a more detailed description of
Markovian Agents and the related analysis techniques.

3.1 Algorithmic Generation of Spatial Dependencies

The MA have been enhanced in order to model the geographical location of
agents over the space. The modelling of complex spatial behaviors is based on a
set of matrices that define the local agent behavior and the perception function
depending on the location v.

This approach requires however a larger set of parameters that needs to be
specified: without appropriate tools or techniques, it is not possible to exploit
such features. Another aspect to consider concerns the kind of topology. In case



of very simple or special topologies, the spatial dependencies can be determined
by using simple algorithms.

For example, in [11] a sensor network with a circular topology and the sink
in the center were considered. The perception function was computed to take
into account a specific minimal number of hops routing policy. In [7] instead, a
protocol based on ant colony optimization was studied. In that case the matrices
were constants, and the only spatial dependency was on the location of the sinks.
Sinks however were very limited in number, and their position were specified by
manually indicating their coordinates. In [4] the motion of agents in a tunnel
was considered. In that case, the parameters could be computed starting from
broad characteristics like the curvature of the track.

In more complex cases, specific tools are required to automatically infer the
model parameters from measured data, or to allow the modeler to design freely
the interactions among agents.

3.2 The Image-based tools

In previous works about MAs, parameters were obtained using Image-based tools.
These tools create the spatial dependencies starting from a bit-mapped image
that color-codes the value of the different parameters. They are suitable for
studying models defined over a geographical areas where parameters can be
extrapolated from already available maps.

For example in [9], the propagation of a disaster such as an earthquake was
studied starting from maps of the considered region such as the one presented in
Figure 1. In that particular case, an application capable of performing discretiza-
tion over a circular or elliptic grid was used. Figure 2 shows some screen-shots
of GUI of such application. The application is capable of specifying both the
center of the discretization that corresponds to the epicenter of the propagation,
a semi-axis and a direction in case of elliptical propagation. The output of the
tool consists in a list of cells, each characterized by its own parameters derived
from the associated map.

Fig. 1. Color coded maps of the model parameters: a) the source data; b) the discretized
version .



Fig. 2. The circular/elliptic discretization Tool screen-shot: a) importing the terrain
data; b) defining the center and the form of the discretization; c) the tool output .

In [10], the propagation of fire over a region was considered. In that case a
simple application that extracts the agent densities and the fire-extinction rate
from the RGB channels of a satellite image, and that allows the user to specify
the wind direction sampled by the meteorological stations was developed. Some
screen-shots of the tool interface are shown in Figure 3. The tool divides the
region into square cells of equal dimensions such that the burning properties
and the wind direction inside each cell can be considered constant. Also in this
case the tool produces a list of cells, each characterized by the property of the
corresponding area under the map.

Fig. 3. Tool screen-shot: a) importing the terrain data; b) defining the wind intensity;
c) exporting the output values .

Both applications are written in Adobe Flash, and join with the MASolver
can be considered as a part of a tool suite developed to allow the specification
and analysis of spatial dependencies in MA models.



4 The Graph-based tool

In this work a new tool for the Graph-based specification of the interconnection
among agents is introduced. This tool allows the user to define visually the
interaction among the objects using a graphical user interface, and it is preferable
over image-based tools when the number of objects is limited and the interactions
among the components can be defined manually.

The Graph-based tool uses the DrawNet[17, 18] framework as its Graphical
User Interface. DrawNet is a framework supporting the design and solution of
models represented in any graph-based formalism. It is based on an open archi-
tecture and uses an XML-based language to create new (multi)formalisms and
model-based (multi)formalisms.

A new DrawNET formalism4 called Markovian Agents Routing Graph has
been implemented to define the interconnection graph of stochastic models based
on multi-hop networks. The formalism allows the user to edit the following
objects: i) Location Nodes, ii) the Message Service Rates and iii) a set of
Parameters used to define the solution. Locations are used to define the posi-
tions of the agents in the model, and message service rates are used to specify
the interconnections among the agents. An example of a model-based Markovian

Agents Routing Graph is shown in Fig.4.
The built model can be exported to a plain ASCII file and made available
for further processing by other tools including the MASolver. The exported data
includes the Topology Incident Matrix, the Message Service Rates, the so-
lution Parameters and a Distance Matrix. The Topology Incident Matrix

is a matrix M where, for each pair of indexes (i, j), M [i][j] is set to 1 if there is
a directed arc from Locationi to Locationj (0 otherwise).The Message Service

Rates and the solution Parameters are floating point numbers; finally, the
Distance Matrix is a matrix D where, for each pair of indexes (i, j), D[i][j]
is calculated as the geometric distance between Locationi and Locationj . Fig.5
shows an example of output file for the previous model.

5 Computing the number of hops in critical
infrastructures with MA

In this section we provide an application of the Graph-based tool join with the
MASolver to define and analyse a case study of a simplified fault detection
distributed system monitoring an electrical power grid.

In a power grid, the nodes monitor the status of the electrical lines and signal
the presence of faults to the central station by sending messages each time they
detect a faulty line. These messages are transferred to the central station by
means of intermediate nodes according to a multi-hop routing. Moreover, each
message includes the number of hops traversed in its path to the sink. In this

4 DrawNET addresses sets of graphical primitives that can be used to design a model
as formalisms



Fig. 4. A Markovian Agents Routing Graph model in DrawNet

Fig. 5. Output produced by DrawNet



way the central station can infer the distance from its position to the detected
faulty line in terms of number of hops. Each time a node receives messages with
different values of number of hops, it forwards only the message carrying the
minimum value incremented by one. This is done in order to signal to the central
station the minimum number of hops to reach the faulty line. This scenario is
illustrated in Figure 6(b): node A receives messages from both nodes B and C
with a value of hops equal to one and zero respectively, and sends to the central
station S a message where the number of hops is set to one.
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Fig. 6. Agent Node (a), choice of the minimum between different values of hop number
(b).

Node Agent Agents belonging to the node class represent the distance of a
detected or signalled fault in their state space. It is assumed that the grid is
deployed to signal the presence of fault at most at M hops from the central
station, in such case each node maintains information of the presence of a fault
at most at M hops. The node agent is therefore characterized by M + 2 states,
and its state space is defined as Sn = {I, 0, 1, . . . ,M}. Nodes are represented by
a single agent MAn shown in Figure 6(a) for M = 3. The meaning of the states
is the following:

I - is the idle state: the node does not detect fault and it has not received
messages signaling the presence of it;

i - are the detection states: state 0 means that the node has detected a local
fault, state i, with 0 < i ≤ M , means that the node was informed by the
other ones of the presence of a fault at i hops from its position.



The local transition at a rate λ from the idle state to the state 0 indicate the
detection of a local fault.

The MAn can emit and receive M + 1 types of messages (m0,m1, ...,mM )
corresponding to the number of hops. The behavior of the MAn agent at the
reception of the messages is the following:

mi - the signal message; a message mi is sent with probability 1 at the rate µ
when the MAn sojourns in state i (shown as a self-loop in Figure 6(a)); when
the MAn is in states j and a message of type mi is perceived, it induces a
transition to state i + 1 with probability 1 only if j = I or i + 1 < j, it is
ignored otherwise. In such a way a node agent a, which is informed of a faulty
line at i hops from its position, transfers one hop further this information at
his neighbor node b which jumps to state i+ 1. Such information is ignored
if node b is already informed of a closer fault.

The nodes of the grid are connected to each other by communication links
along which the messages are exchanged. This results in a communication net-
work with a topology that can be represented by a graph G = (V,E), where
the elements in the set V are the vertices and the elements in set E are the
edges of the graph. The perception function umi(v, n, i,v

′, n, i′) is built to route
messages of type mi along the edges of such graph. To this end, the perception
function is defined for all the node of class n and all the message of types mi as:

umi(v, n, i,v
′, n, j) =

1 if (v′,v) ∈ E

0 otherwise
(5)

Therefore, a node v perceives messages incoming from a node v′, if and only
if node v′ is directly connected with v.

5.1 Performance evaluation

For each node of the network, the main measure of interest is the evolution of
the mean value of the hop-number carried by the received incoming messages.
This value is computed as:

φ(t,v) =
M∑
i=0

i · ρni (t,v) (6)

For a given node v of the network at time t, such index measures on average
how far (in hop units) are the sources of the incoming messages received by the
node.

A practical performance index is defined as the mean time needed by a mes-
sage - originated at a distance equal to a number of i hops from a node v - to
be received. This index is denoted as T (v, i). Another measure of interest can
be derived by calculating how quickly the central station was informed of the
detection of a fault in the electrical lines of the power grid and how quickly it
could recover the fault. The value of T (v, i) depends on both:



– the number of hop i needed by a message originated in the faulty section of
the grid to reach the central station;

– the mean time needed to the message to perform a single hop in its path to
the central station. Due to the exponential distribution of the time needed
by a transition to be performed by an MA , this value is equal to 1/α.

The index can be computed as:

T (v, i) =

∫ +∞

0

(1− ρni (t,v))dt (7)

the derivation of Eq (7) can be found in [25].

5.2 Numerical results

The indices defined in Eq (6) and (7) have been computed by means of the
MASolver under different topologies of the communication network monitoring
the power grid. The first set of experiments include two simple topologies shown
in Figure 7. They are called direct ring (a) and direct ring with shortcut (b).
In both cases it is assumed that the fault is originated in the section of the
grid monitored by node n7. In the direct ring topology such node starts to send
messages to its only neighbor node n0, n0 forwards to n1 and so on, instead
in the direct ring with shortcut n7 forwards its messages to both n0 and n3,
then n0 forwards to n1 and n3 forwards to n4 and so on. In all the experiments,
λ = α = 10s−1 while the initial state of n7 is set to 0, i.e. this node has detected
a fault. The initial state of all other nodes is set to the idle state I.

Figure 8(a) plots the evolution in time of φ(t,v), the mean value of the hop-
number carried by the messages received by the nodes n3, n4 and n5. It can be
observed that these values are equal to zero at t = 0 and then converge to the
exact number of hops that separate them to the node n7. Set t to the time of
convergence, Figure 8(b) shows the node identifier ni on the x-axis and the value
of φ(t, ni) on the y-axis. For all the nodes, this value is equal to the distance
in number of hops to the node n7, which confirms that the defined behavior of
the MAs allows to compute correctly in a distributed way the number of hops
between node n7 and all the other nodes of the network. Finally, Figure 8(c)
plots for each node of the network the value of T (ni, j) with j equal to the exact
distance in number of hops between the node itself and the node n7. This value is
the time interval needed by a message originated from node n7 to reach the other
nodes ni. The expected trend obtained in the figure is due to the topology of
the network. This time interval is proportional to m∗K, where m is the number
of hops performed and K is a constant equal to the time needed to perform a
single hop.

The second topology was designed to test whether the defined behavior of the
MAs allows not only to compute the number of hops, but also the minimum value
of them. To this end, it has been added a shortcut to the ring topology allowing
the message originated from node n7 to reach some nodes with less hops. Figure



9 plots for the ring with shortcut case the same set of results previously shown
for the ring topology. The minimum value is computed correctly in this case as
well. For example, node n3 can be reached by node n7 in two ways: along the
path n7 → n0 → n1 → n2 → n3 with four hops or directly through the shortcut
with one hop. As shown in Figure 9(b), the last path with the minimum number
of hop was correctly chosen.
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Fig. 7. Topologies: Direct Ring (a), Direct Ring with shortcut.
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Fig. 8. Topology: ring. Time evolution of the mean hop number to reach each node
(a), mean hop number to reach each node in steady state (b), mean time T (v, i) (c).

A final case was used to test a complex topology. This included a random net-
work - generated by using the functionality of the tool Pajek - and the computed
value of φ(t, ni). Pajek [2] is a tool developed by the University of Ljubljana for
the generation and analysis of large networks. Given a set of parameters (e.g.
number of nodes, connectivity degree distribution, ecc...) this tool is able to gen-
erate automatically a random network with specific characteristics, moreover it
can export the network in standard formats such as adjacency matrix, adjacency
list or others. The network produced by Pajek is shown in Figure 10(a), whereas
Figure 10(b) plots for each node ni the value of φ(t, ni). Also, in complex random
networks including bidirectional links, the results are computed correctly.
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6 Conclusions

In this work the problem of considering spatial aspects and performance models
in MAs has been considered. A review of some of the available tools has been
provided, and a new tool for the definition of graph-based interactions has been
introduced. To demonstrate how the tool works, an application including a power
grid critical infrastructure has been presented.

The graph-based and the image-based tools considered in this work, although
intended for MAs, can be applied also to other spatial formalisms (such as CAs
or SPAs). Currently, the presented tools are still in an experimental phase; future
works aim at integrating them into a multi-formalism environment to allow full
analysis of MA and SPA models.
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