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Abstract One of the most crucial task during the design of a computing infrastructure is
the decision about the proper amount of equipments requiredto handle a specific workload
while satisfying a set of performance objectives. This problem is emphasized even more in
actual computer infrastructure such as clouds, where the user can provision the resources
very easily thanks to the use of virtual machines. If the system has to handle a low work-
load, resources can be consolidated together to reduce the costs. If however the workload
is very high, resources must be replicated to gain an acceptable service level. In this paper
we derive the impact on several performance indexes for bothconsolidation and replication
when considering both open and closed workloads. In particular, we present an analytical
model to determine the best consolidation or replication options that match given perfor-
mance objectives specified through a set of constraints. Depending on the particular type
of workload and constraints, we present either closed form expressions, heuristics or an
iterative algorithm to compute the minimum number of resources required.

Keywords Consolidation and replication· Open and closed workload· Cloud computing
and virtualization· Analytical techniques

1 Introduction

Consolidation and replication techniques are commonly used to manage efficiently large
datacenters. According to the former technique, the load ofseveral systems are merged in a
reduced number of servers minimizing operational costs. The latter technique partition the
load among several physical machines executing replicatedapplications: in this way, the re-
quests flow each server has to handle is reduced and the performance improved.
Both these techniques have several positive aspects but they may also lead to complex man-
agement and technical problems that require wide knowledgein several computer science
topics to be satisfactorily solved.
While the introduction of virtualization concept alleviated some of the difficulties related to
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the management of large infrastructures (see, e.g., VirtualBox (2013); VMware (2013)), it
also increased the logical distance between the users and the physical resources making more
complex the performance forecast. This problem is particularly evident in virtual environ-
ments, such as clouds, where users have a limited or no control of the hardware allocated to
execute their requests. These drawbacks, coupled with the heterogeneity of the actual work-
load service demands Ganapathi et al (2010) and the variability of arrival patterns make
from a user perspective the matching of its performance expectations a very difficult task.
This paper extends the results proposed in Gribaudo et al (2012), exploring the relationships
between the servers consolidation/replication actions and the performance experienced by
users in systems running mixes of different classes of applications when dealing with both
open and closed workloads. Indeed, these actions play a fundamental role in determining
the overall performance since they have a direct impact on the bottleneck creation and mi-
gration.
In the considered infrastructure the subjects of consolidation and replication actions are Vir-
tual Machines (VMs) that users may startup or shutdown. Users provision VMs in a quantity
assumed sufficient to satisfy their requirements. The number of instanced VMs has a strong
impact on the performance experienced. Under-provisioning will provide unsatisfactory per-
formance, that may lead to violating its expectations, while over-provisioning will result in
a waste of money.
We will focus on the forecast of performance resulting from consolidation and replication
actions from a user perspective. In particular, we present atechnique that allows to determine
the optimal consolidation or replication actions to match auser performance objectives sub-
ject to a number of constraints. When possible, the technique uses closed form expression
to determine the best possible resource allocation. If the considered performance objectives
do not allow a unique closed form expression, either heuristics or an iterative procedure are
proposed. The latter technique allows to take into account closed workloads, generated for
example by batch elaboration processes.

The structure of the paper is as follows. In the next section we present other works aim-
ing to the allocation of resources in virtual environments.In Section 3 we present the main
definitions used throughout the paper and the performance indexes considered. In Section 4
we derive the minimum number of replications needed to handle a given multiclass work-
load, and we extend the methodology to deal with performanceconstraints. In Section 5 we
propose an iterative algorithm to find a minimum replicas solution to satisfy a given set of
PCs. Both techniques are then analysed in Section 6. Section7 concludes the paper.

2 Related Work

In the literature, there are several works that deal with theoptimal allocation of resources in
virtual environments. Several techniques and models focuson database consolidation, some
like in Curino et al (2011) by means of workload monitoring for load balancing, others like
in Kokkinos et al (2008) using data migration and task scheduling. Other techniques, as in
Benevenuto et al (2006); Bennani and Menascé (2005); Khanna et al (2006) are aimed to
maintain acceptable application performance levels whileminimizing the costs of migra-
tion/consolidation of resources. Many works propose different approaches to enable auto-
nomic controller to satisfy service level objectives by dynamically provisioning resources,
as Bushehrian (2011); Padala et al (2007); Watson et al (2010). In particular, in Bobroff et al
(2007); Menascé (2005) the dynamic allocation of VMs in cloud environment is described.
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A probabilistic approach to enable autonomic controllers is proposed in Watson et al
(2010). Different techniques and models for the monitoringof workload to provide load
balancing and database deployment consolidation are described in Curino et al (2011).
Data consolidation in grid networks using data migration and task scheduling is analyzed
in Kokkinos et al (2008). In Khanna et al (2006) heuristics are proposed to minimize the
costs of migration/consolidation and maintain acceptableapplication performance levels. In
Benevenuto et al (2006) several models are developed to predict the performance of appli-
cations running on virtual servers consolidated on few physical machines. In Padala et al
(2007) the problem of dynamically control resource allocation to individual components of
multi-tier enterprise application in a shared hosting environment is addressed. Analytical
queueing network models combined with combinatorial search techniques is described in
Bennani and Menascé (2005) to dynamically redeploy resources to the various applications
of a datacenter. The dynamic allocation of VMs in cloud environment is described in Bo-
broff et al (2007) Menascé (2005). In Bushehrian (2011) exploits bin packing and time series
forecasting to minimize the number of physical machines required to support a workload.
Virtual Machine Manager allocation policies is described in Ongaro et al (2008). Managing
the physical resources to correctly allocate them among thedifferent Virtual Environments
is discussed in Menascé and Bennani (2006).

The technique proposed in this paper is different from the previous one, since we study
the impact of consolidation/replication actions on performance indexes subject to constraints
and we consider VMs executing concurrently applications having heterogeneous service de-
mands, i.e., running a multiclass workload. Also, the suggested approach to the identifica-
tion of the optimal number of VMs that satisfy performance objectives is proactive while
the approaches proposed in literature are reactive.

3 System Model

To analyse the consolidation/replication effects on performance indexes we will use the
queuing network theory. Consider a system with a multiclassworkload composed byM
servers andC customer classes. Initially in Sections 3 and 4, each serverwill be modeled by
a single station of the queeuing network. Such assumption issuitable to represent services
which strongly impact on a single resource of the system (e.g. a CPU-bound applications).
In such a way, the behavior of a server can be characterized bya single value of the demand.
More formally, the mean service demand of a classc (with 1≤ c ≤C) job at serverm (with
1≤ m ≤ M) is defined as the product of the mean service time of a classc job for each visit
to serverm and the mean number of visits by a classc job to serverm, and it is denoted by a
M×C matrixD whose elementdmc represents the service demand that a classc job requires
from them-th server, i.e., the mean time required by serverc to its complete execution. In
Section 5 we will relax such assumption modeling a single server as a set of stations where
each station represents a different resource (e.g. CPU or disk) of the server. In such a case
to characterize the server behavior, different values of the demand are needed (i.e. one for
each resource).

The considered workload can be either open or closed. In an open model, the jobs arrive
to the system according to Poisson processes. In particular, we call λc the arrival rate of
classc jobs to the system, and we define the total arrival rate asΛ = ∑C

c=1 λc. In a closed
model, there is a fixed number of jobs for each class that circulates inside the system. Let
us callNc the number of classc jobs in the system, and let us denote withN = ∑C

c=1 Nc the
total population of the model. In both cases, each classc can provide a different contribution
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to the total load of the system: we can measure the individualcontribution of each class
with a vectorβββ = |β1 . . .βC|, referred to as thepopulation mix. Each termβc accounts for
the fraction of the total workload of the system due to classc jobs. The definition ofβc is
different for open and closed models: in the first case we haveβc =

λc
Λ , and in the second

we haveβc =
Nc
N . As further assumptions, we exclude system with mixed-workload (e.g.

systems where some classes have an open workload, while someothers are closed), and we
do not allowclass switching (that is the possibility for a job to change its class during its
service).

We assume that servers can be eitherconsolidated or replicated. Two servers are con-
solidated when they are implemented as two different VMs on the same physical system.
To simplify the presentation, we consider that the servers that are consolidated in a single
physical machine are the ones of indexesM−1 andM. We assume that the effects of server
consolidation is the sum of the service demands of the two servers. With this assumption,
the matrixD# resulting from the consolidation of serversM−1 andM hasM−1 rows; row
M−1 represents the consolidated server:

d#
m,c = dm,c ∀c ∈ {1,2, ...,C},∀m ∈ {1,2, ...,M−2}

d#
M−1,c = dM−1,c +dM,c ∀c ∈ {1,2, ...,C}

(1)

With the replication technique a service is deployed through several physical machines re-
ducing the workload each server has to handle. We assume to have km instances for each
serverm with km ≥ 1,∀m ∈ {1,2, ...,M}. Each instance of a serverm is a replica of such
server implemented as a single VM running on a physical machine. In the following we
will use the term instance and replica with the same meaning and, to simplify the notation,
we will denote a particular configuration of instances simply as k1 − k2 − . . .− km. Let k
be the total number of instances that the system with replications will havek = ∑M

m=1 km,
we have thatk ≥ M. We assume that traffic is equally shared among thekm instances of
them-th server. Thus, the service demand matrix of a system with replications depends on
the configuration of instancesk1− k2 − . . .− km. In particular, it is described by a matrix
Dk1−k2−...−km with k rows andC columns where the subscript identifies the configuration of
instances. Rows are partitioned inM groups, each of them composed bykm identical rows,
corresponding to thekm instances of them-th server. The demand associated to each row in
a group can be derived fromD, by considering that each instance of the server has the same
demand as the original model, with a visit ratio equal to1

km
. In particular, we can define:

Dk1−k2−...−km =
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(2)

The purpose of consolidation is to reduce the number of physical machines required to
handle workloads characterized by very low demands. Replication on the other hand allows
to share requests among several machines to handle very highworkloads. It is based on
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Table 1 Performance indexes and constraints

Index Description Threshold
Rmc Residence time at resourcem of a given classc ρmc

Rm = ∑c Rmc Aggregated residence time at a given resourcem ρm
Rc = ∑m Rmc System response time of a classc ρc

R = ∑m ∑c Rmc System response time ρ
umc Utilization at a resourcem of a given classc σmc
um Aggregated utilization at a given resourcem σm

the assumption that a load balancer can equally share the demands among the replicated
servers: of course if the load is extremely high, the load balancer becomes the bottleneck of
the system, and it must be replicated as well.

3.1 Performance indexes and constraints

Severalperformance constraints (PCs) can be defined by a user in order to match his own
expectations or objectives, in this paper we will focus on requirements concerning: the uti-
lizationu and the mean response timeR. Both types of indexes can be computed at different
level of granularity of the model, i.e. for each instance of aserver, for each server, or for
the whole model. Notice that the values of a performance index of each instance of a given
server are the same, because the replication shares uniformly the workload among them.
Thus, the residence time of a server is the sum of the residence times over all its instances,
or, equivalently, the product of the residence time of one instance and the number of in-
stances. The utilization of a server is equal to the utilization of one of its instances, or,
equivalently, the mean utilization over all its instances.As usual, the system response time
is the sum of the residence times at all servers. Moreover, both response time and utilization
can be computed for a specific workload class, or aggregated over all classes.

We will use the subscript ‘mc’ to denote an index at resourcem of classc (Rmc, umc), the
subscript ‘m’ for index at a resourcem aggregated over all classes (Rm, um), and ‘c’ for index
of a given classc of the whole system (Rc). Analogous subscripts are used for the thresholds
needed to define the PCs. Table 1 summarizes the performance indexes and corresponding
thresholds analyzed in the paper.

3.2 Example of consolidation/replication actions

Let us consider a system with a multiclass open workload composed ofC = 2 classes of
customers, andM = 3 servers. The service demand matrixDDD in milliseconds is:

DDD =

∣

∣

∣

∣

∣

∣

391 238
281 346
223 450

∣
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∣

∣

∣

∣

(3)

Depending on the population mixβββ , server 1 or server 3 can be saturated. The system per-
forms a bottleneck switch atβ1 = 0.5579 (see Balbo and Serazzi (1996) for the computation
of the bottleneck switching point). This means that with 0≤ β1 < 0.5579, server 3 is the bot-
tleneck of the system, otherwise the bottleneck is server 1.Using standard queueing theory
results (see e.g.,Lazowska et al (1984); Jackson (1963)), we plot the system response time
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as function of the population mixβββ = |β1 (1−β1)| for different arrival rateΛ and differ-
ent consolidation (Figure 1) or replication (Figure 2) patterns. The actual demand matrices,
obtained after consolidation and replication are shown in Figure 1(c) and 2(c), respectively.
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Consolidations of servers

Server 1+2 Server 2+3 Server 1+3 Server 1+2+3
672 584 391 238 614 688 895 1034
223 450 504 796 281 346

c)

Fig. 1 System response time inmsec as function population mixβ1 of various consolidation configura-
tions of the system described by the demand matrixDDD presented in Eq. 3 for different arrival rate: (a)
Λ = 0.0008 jobs/msec; (b) Λ = 0.0014 jobs/msec; (c) service demands of the system. NOTE: in (b) system
response time is set to zero in case of unstable conditions and it is capped at 15000msec in order to avoid
out-of-scale values.
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Replication of servers

2-1-1 1-2-1 1-1-2
195.5 119 391 238 391 238
195.5 119 140.5 173 281 346
281 346 140.5 173 111.5 225
223 450 223 450 111.5 225

c)

Fig. 2 System response time inmsec as function population mixβ1 of various replication configura-
tions of the system described by the demand matrixDDD presented in Eq. 3 for different arrival rate: (a)
Λ = 0.0014 jobs/msec; (b) Λ = 0.0028 jobs/msec; (c) service demands for the system. NOTE: in (b) system
response time is set to zero in case of unstable conditions and it is capped at 15000msec in order to avoid
out-of-scale values.
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In both Figures 1 and 2 the values of system response time are set to zero when the
system is unstable, thus a zero value does not correspond to aresponse time equal zero, but
an undefined value due to an unstable situation. Moreover, the response times are capped at
1500msec. For instance in Figures 1(b) when server 2 and 3 are consolidated, the system is
unstable forβ ∈ [0,0.23] and the system provides a response time greater than 1500msec
for β ∈ [0.23,0.4]. Figure 1(a) shows the effect of consolidation when the system is lightly
utilized, i.e., the global arrival rate is low with respect to the maximum load that the system
can handle. This system is stable for all the different population mixesβ , and the response
time increases with the number of server consolidated on thesame physical machine because
no workload partitioning can be applied, which is natural when the server runs on separate
hardware. It is interesting to see that the choice of the particular consolidation pattern affects
the performance, and that the best choice is function of the population mix. When class 1
jobs are dominant, i.e., (β1 ≈ 1), consolidating server 2 and 3 provides the best results in
terms of response time, with respect of the consolidation ofthe other servers, e.g., 1 and 3
or 1 and 2 or 1,2,3. This behavior is emphasized in Figure 1(b)where the system is unstable
when all the servers are consolidated in a single physical resource, and cannot be stable
for β < 0.23 when server 2 and 3 are consolidated. Indeed, the best choice is always to
consolidate the machines that are not bottleneck for a particular population mixβββ .
Replication on the other hand reduces the response time. As shown in Figure 2(a), the best
choice, again depending on the population mixβ , corresponds to the replication of the
bottleneck server. Figure 2(b) shows the same replication scheme when the system is very
heavily loaded, i.e., the global arrival rate is close to themaximum load that the system
can handle. In this case replication can make stable a systemotherwise unstable. It is also
interesting to see that the replication of server 2, the one that is never a bottleneck, has
the effect of reducing the response time whenβ ∈ [0.4,0.8], but it does not extend the
stability region of the system which remains the same as the one of the non-replicated case.
The response time of a replicated system has a lower bound, which can be computed by
considering all the resources as infinite server resources.The minimum response time of the
infinite server case is also shown in Figure 2(a) and (b) to emphasize the difference between
the obtained response time and its lower bound.

Finally, we investigate the effect of the replication pattern on the aggregated utiliza-
tions of each server. In Figure 3 we plot the aggregated utilizations as function of the pop-
ulation mix βββ = |β1 (1− β1)| for different replication patterns and a fixed arrival rate
Λ = 0.0028 jobs/msec. We keep the same values of demand (see Figure 2(c)) of the previous
analysis. Each graph shows the effect of the different replication patterns on the aggregated
utilization of a specific server. The utilization behavior of the different server for the non-
replicated configuration confirms that the bottleneck server depends on the population mix.
Indeed forβ ∈ [0,0.5579] the utilization of server 3 (Figure 3(c)) is greater that theother
servers reaching saturation atβ = 0.4, whereas forβ ∈ [0.5579,1] server 1 is the bottleneck
saturating atβ = 0.8 (Figure 3(a)), thus the stability interval without replicas is[0.4,0.8].
As expected, replication of a server halves its utilization, furthermore replication of a bottle-
neck server has the effect of enlarge the stability interval. Replication of server 1 enlarges it
to [0.4,1], and symmetrically replication of server 3 to[0,0.8]. Instead, as previously stated,
replication of the non-bottleneck server 2 does not change the saturation conditions.
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Fig. 3 Aggregated utilizations as function of population mixβ1 for various replication configurations of the
system described by the demand matrixDDD presented in Eq. 3. The aggregated utilization is shown for areplica
of: (a) Server 1; (b) Server 2; (c) Server 3.
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4 Analytical results

In this Section we provide equations to size a system with an open workloads in order to
fulfill given PCs. We start investigating a scenario where all virtual machines are consol-
idated into the same physical server and computing the maximum manageable workload
intensity and the minimum number of required virtual machines to preserve the stability
of such configuration (Section 4.1). Then, we introduce in the analysis the effect of repli-
cation and determine the best allocation strategy of the replicas (Section 4.2). Finally, we
extend such approach to take into account the satisfaction of performance constraints too
(Section 4.3-4.6).

4.1 Computing the best number of replications

With a light load, all the servers can be consolidated in a single physical machine. In this
case, the demand matrix reduces to a 1×C vectorD# = |d#

1c|, with each element defined as:

d#
1c =

M

∑
m=1

dmc, ∀c ∈ {1,2, ...,C}. (4)

The utilization of the resources isU# = λλλD# =Λβββ D#. Since the utilization must be≤ 1, we
can compute the maximum arrival rate that the consolidated system can handleΛ#(βββ) as:

Λ#(βββ) =
1

βββD# =

(

C

∑
c=1

βcd#
1c

)−1

(5)

In other words, given a population mixβββ , all the virtual machines can be consolidate in
a single physical machine ifΛ < Λ#(βββ). For this reasonΛ#(βββ) will be referred as the
maximum consolidation workload. Suppose now that we have a high workloadΛ for which
some server of the system must be replicated. We can prove that the theoretical minimum
number of physical machineskT

min(βββ) required to handle a workload with intensityΛ is:

kT
min(βββ) =

⌈

Λ
Λ#(βββ )

⌉

=
⌈

ΛβββD#⌉ (6)

Proof.
The minimum number of instancesk = ∑M

m=1 km required to handle a workload of intensity
Λ and population mixβββ must guarantee that the utilization of all the resources is strictly
less than one:

C

∑
c=1

λc
dmc

km
< 1 ∀1≤ m ≤ M. (7)

from which we can computekm:

km >
C

∑
c=1

λcdmc = Λ
C

∑
c=1

βcdmc. (8)

If we apply the definition ofk we obtain:

k =
M

∑
m=1

km >
M

∑
m=1

Λ
C

∑
c=1

βcdmc = Λ
C

∑
c=1

βc

M

∑
m=1

dmc = Λ
C

∑
c=1

βcd#
1c =

Λ
Λ#(βββ)

(9)
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If we consider that the minimum number of physical machines should be an integer, and we
roundk to the closest higher integer, we obtain the definition ofkT

min(βββ) give in Eq. 6. The
theoretical minimum requires the replication of a server that consolidates all the resources,
which can be unpractical. If we require that each resource holds at most one service, then
the theoretical minimum is just a lower bound to the actual minimum, which could be a little
bit higher. In Section 4.2 the actual minimum will be considered.

4.2 Stability issues in open models

We want to study the system as the arrival rate increases. Letγm the number of instances of
serverm normalized with respect to the total number of instancesk, we have:

γm =
km

k
, with:

M

∑
m=1

γm = 1. (10)

Let γγγ = |γ1 . . .γM| be the vector representing theinstances mix. As we have seen, in order to
maintain the system stable, the number of instances must grow accordingly to the increased
arrival rate. In particular, reversing the definition ofΛ#(βββ) given in Eq. 5, we may express
the total arrival rate as a function ofk (the total number of instances):

Λ = kΛ#(βββ). (11)

We can thus define thestability condition, that is the condition of the system in which the
utilization of all the resources should be strictly less than one:

max
m

{

C

∑
c=1

Λβcdmc

km

}

= max
m

{

Λ#(βββ)
γm

C

∑
c=1

βcdmc

}

< 1. (12)

The best allocation strategy would saturate all the available physical machines, raising their
utilization to 1. In other words, it will:

∀m ∈ {1,2, ...,M} :
Λ#(βββ)

γm

C

∑
c=1

βcdmc = 1. (13)

From the previous Eq., we can then computeγm:

γm =Λ#(βββ)
C

∑
c=1

βcdmc. (14)

It can be easily proven that the definition given in Eq. 14 is consistent with the definition of
γm, that is that∑M

m=1 γm = 1.
Proof.
If we sum theγm for all the resources we obtain:

M

∑
m=1

γm =
M

∑
m=1

Λ#(βββ)
C

∑
c=1

βcdmc = Λ#(βββ)
C

∑
c=1

βc

M

∑
m=1

dmc = Λ#(βββ)
1

Λ#(βββ)
= 1 (15)

Eq. 6 and Eq. 14 are very important, because they tell us how many virtual machinesk should
be provisioned, and which fraction of these machines shouldbe used to host a particular
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servicem, to be able to serve an input workload of intensityΛ distributed according to a
given population mixβββ ,. In particular, inserting Eq. 6 in 14, we can obtain:

km = ⌈kγm⌉=

⌈

Λ
C

∑
c=1

βcdmc

⌉

. (16)

We can use the results from Eq. 16 to compute the actual minimum number of physical
machineskA

min(βββ) required to handle a workloadΛ as:

kA
min(βββ) =

M

∑
m=1

km (17)

Note that by definition, we have thatkT
min(βββ)≤ kA

min(βββ ), but the relative difference between
kT

min(βββ) andkA
min(βββ) tends to 0 asΛ tends to infinity.

4.3 Constraints on the utilization of a class in a resource

In Eq. 12, the parametersk andγγγ were compute to make the system stable. If instead of
saturating all the resource, we want to limit the utilization of the classc at stationm to a
value 0≤ σmc < 1 (with ∑C

c=1 umc ≤ 1,∀m), Eq. 12 becomes:

Λ#(βββ)
γm

βcdmc < σmc. (18)

Eq. 18 should be valid for all the classesc. We can thus find the minimum value ofγm that
satisfy the PCs on the utilization for all the classes as:

γm = max
c

{

Λ#(βββ)
σmc

βcdmc
}

(19)

In this case however, we can have that∑M
m=1 γm > 1. The number of replicaskm for them-th

resource can be computed exactly as in Eq. 16:

km = ⌈kγm⌉=

⌈

Λγm

Λ#(βββ)

⌉

. (20)

The minimum number of instancesk that respect the PCs,kPCs
min(βββ), can thus be computed as

follows:

kPCs
min(βββ) =

M

∑
m=1

⌈

Λγm

Λ#(βββ)

⌉

(21)
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4.4 Constraints on the total utilization of a resource

Suppose instead that we want to limit the total utilization of a resourcem to be at mostσm,
and to be equally shared among the classes. In this case we will have that:

Λ#(βββ)
γm

C

∑
c=1

βcdmc < σm, (22)

from which we can easily determineγm:

γm =
Λ#(βββ)

σm

C

∑
c=1

βcdmc. (23)

The same considerations given in Section 4.3 about the possibility of having ∑M
m=1 γm > 1

and its implications are also valid for this PC and for the ones considered in the following
sections.

4.5 Heuristics for Constraints on the system response time

If we require that the mean system response time should be less than a given thresholdρ ,
we can express this constraint as:

M

∑
m=1

km

C

∑
c′=1

λc′

Λ

drc′

km

1−
Λ#(βββ)

γm

C

∑
c=1

βcdmc

=
M

∑
m=1

C

∑
c=1

βcdmc

1−
Λ#(βββ )

γm

C

∑
c=1

βcdmc

< ρ , (24)

The previous Eq. has infinite solutions inγm. Determining the optimal value (i.e., the one that
minimizes the total number of instances), requires the solution of a non-linear optimization
problem. We can however very easily compute one of the solutions (which might be sub-
optimal). If we defineγm as:

γm =
1
α

Λ#(βββ)
C

∑
c=1

βcdmc. (25)

then Eq. 24 becomes:

M

∑
m=1

C

∑
c=1

βcdmc
1

1−α
=

1
Λ#(βββ)(1−α)

< ρ , (26)

we can computeα :

α =
1
ρ

(

ρ −
1

Λ#(βββ)

)

(27)

from which we derive:

γm =

ρΛ#(βββ)
C

∑
c=1

βcdmc

ρ −
1

Λ#(βββ)

. (28)
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4.6 Heuristics for Constraints on mean resource residence time

Now, let us consider a PC that imposes that the mean response time of a resource should
be less than a givenρm. Using standard queueing theory results, we can formulate this
requirement as:

km

C

∑
c′=1

λc′

Λ

dmc′

km

1−
Λ#(βββ)

γm

C

∑
c=1

βcdmc

=

C

∑
c=1

βcdmc

1−
Λ#(βββ)

γm

C

∑
c=1

βcdmc

< ρm, (29)

Note that, since the server is split inkm replicas, we have to consider the sum of the residence
time at all the replicas, this the first member on the left handside of Eq. 29 is multiplied by
km. We can invert the Eq. and computeγm, as:

γm =

ρmΛ#(βββ)
C

∑
c=1

βcdmc

ρm −
C

∑
c=1

βcdmc

. (30)

5 An Algorithm for Closed Model

In Sections 4.5 and 4.6 we have proposed a set of heuristics tocompute the minimum number
of server needed to satisfy a given PC about response time. Such heuristics are based on an
approximated solution of a non-linear optimization problem, thus they may provide a sub-
optimal solution. In case we are interested in more efficientsolutions, a different approach
can be chosen: in this Section we propose an algorithm to support the capacity planning of
a system.

Given the greater flexibility of algorithms, such techniquecan be applied on both open
and closed model, and when a single server in a system is modeled by a set of resources.
The latter feature can be useful when an accurate representation of each server is needed, for
instance the modelling of a database server represented by two resources: one for the CPU
and one for the disk. Moreover, the algorithm can be used alsowhen we want to satisfy a
set of non homogeneous PCs: for example that both response time and utilization must be
lower than given thresholds.

In order to include these characteristics, we need to enrichthe system model presented
in Section 3. Consider a system with a multiclass workload composed by a set of server
S = {1,2, ...,S} andC customer classes where each server can be represented by oneor
more resources. Define withM = {1,2, ...,M} the set of resources indexes and withΠ a
partition ofM such that the number of partitioning set ofΠ is equal toS. Each partitioning
set represents the mapping between a server and its resources, i.e. each server corresponds to
a single partitioning set and the resources belonging to thepartitioning set are used to model
that server. MatrixDDD is defined as usual, but is also partitioned according to partition Π .
The replication of a single server implies the replication of each of its resources according
to the partitionΠ . In particular, if resource indexesi, j belong to the same partitioning set,
we have thatki = k j (See Section 3).

Example In the following we provide a simple closed model used in the rest of the paper
as a running example. Consider a system composed ofC = 2 classes of customers andS = 3
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servers where each of them is modeled by two resources: CPU and disk. In such a case, the
set of servers isS = {1,2,3} and the set of resources isM = {1CPU ,1Disk, ...,3CPU ,3Disk},
the partitionΠ is {{1CPU ,1Disk},{2CPU ,2Disk},{3CPU ,3Disk}}, where we haveS = 3 parti-
tioning sets{1CPU ,1Disk},{2CPU ,2Disk},{3CPU ,3Disk}.

The replication of a server consists on the replication of both resources CPU and disk,
thus the resulting resources set after replication of, for instance server 1, will be the fol-
lowing: {{1a

CPU ,1
a
Disk,1

b
CPU ,1

b
Disk},{2CPU ,2Disk},{3CPU ,3Disk}}, where 1aCPU and 1bCPU are

replicas of the CPU of server 1, and 1a
Disk and 1bDisk are replicas of the disk of server 1. Given

that the replication of a server implies the replication of each of its resources, we can denote
the configuration of instances in the usual way. Thus, the service demand matrixD and the
matrix D2−1−1 resulting from the replication of server 1 will be:

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

(31)

where the values are in ms.

5.1 The capacity planning algorithm

The main goal of this Section is to define a procedure by which one can correctly dimension
the system to satisfy a given set of PCs. In closed model the response time increases pro-
portionally to the load of the system, that is the size of jobspopulation circulating inside it.
After a certain population size, the response time will become larger than the threshold de-
fined in the PC. Also for closed models, as seen is Section 3.2 for open ones, improvements
in response time can be obtained by replicating some of the servers and equally sharing the
load among them. The proposed algorithm follows an iterative approach: starting from the
analysis of the system without replicas and with a minimum intensity workload, the number
of jobs is incremented until a PC is violated. In such a case, aserver is duplicated split-
ting uniformly the incoming requests among its replicas. The effectiveness of the algorithm
strongly depends on the policy used to choose which server duplicate. The proposed policy
is based on the bottleneck analysis: whenever a specific PC isviolated, we duplicate the bot-
tleneck of the system, that is, the most utilized server. Then, the new system is re-analyzed
to check whether it satisfies the PCs. In affirmative case, theintensity workload is increased;
otherwise, another server is identified as bottleneck and replicated. Such process continues
until the given maximum intensity is reached.

The formal description of the process is shown in the Capacity Planning Algorithm 1.
It takes as parameters the maximum population size of the system, the population mix and
the list of performance constraints|ρc| on the per-class response time (Algorithm 1: line
1). The algorithm starts testing the satisfiability of the given thresholds (Algorithm 1: line
2+3), in particular if the sum over all resources of the service demands for a given class
is greater than the corresponding threshold, the PC is unsatisfiable. Then, the algorithm
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Algorithm 1 Capacity Planning Algorithm.
1: INPUT (DDD,NMAX ,β , |ρc |)
2: if TestSatis f iability(DDD, |ρc |) == FALSE then
3: Unsatis f iable
4: else
5: NVals = [NMIN..NMAX ]
6: for all N ∈ NVals do
7: m = GeneratePopulation(DDD,β ,N)
8: |Rc|= AnalyseModel(m)
9: success = TestPer f ormanceConstraints(|Rc |, |ρc |)

10: while NOT success do
11: BottleneckServer = Identi f yBottleneck(m)
12: m = AddStationServer(BottleneckServer)
13: |Rc|= AnalyseModel(m)
14: success = TestPer f ormanceConstraints(|Rc |, |ρc |)
15: end while
16: end for
17: end if

iteratively generates and analyses the model with an increasing population size and the given
population mix, computing the achieved per-class responsetime |Rc|(Algorithm 1: line 7+8).
Then it tests whether the results satisfy the given PCs (Algorithm 1: line 9). Whenever the
PCs are violated, it proceeds to identify (Algorithm 1: line11) and to replicate (Algorithm
1: line 12) the bottleneck server, i.e. the one with maximum aggregate utilization. As said,
the replication implies that the initial demand is shared uniformly among all the servers of
the bottleneck server type. The replication is iterated until the PCs are satisfied. The whole
process is done until the maximum population size is reached. The analysis of the model is
provided by theMean Value Algorithm(MVA)Lazowska et al (1984), a standard technique
of operational analysis.

We apply the algorithm to the example described in Section 5 with a population mix
β = 0.7, assuming thresholds of 0.2 and 0.6s for the classc1 and c2, respectively. The
algorithm starts analyzing the model with the minimum number of jobs, in such a case
N = 2 1. Such model satisfies the PCs, thus the number of jobs in the system is increased
till we reachN = 11 jobs, where the first PCs violation happens for both classes c1 andc2.
Inspecting the aggregated utilizations, serverS2 can be identified as the system bottleneck
and therefore it is replicated. So, two more replicas (i.e. CPU and Disk) are added toS2

server sharing uniformly the requests among both pair of CPUand Disk of serverS2. Re-
running the model with the new configuration 1-2-1, PC for classc2 is still violated, but
now the bottleneck has shifted to serverS3. A new replica of such server is added resulting
on the configuration 1-2-2 which satisfies both PCs, therefore a new model withN = 12
jobs is analyzed. Such process is repeated till the scenariowith N = NMAX = 1000 jobs
is reached, where the configuration 37-126-112 satisfies both PCs and the algorithm ends.
Table 2 shows the aggregate utilization, i.e. the sum of the utilizations for the two classes,
and the achieved per-class response time measured with the various configurations; violation
of PCs and corresponding system bottlenecks are highlighted by bold values.

1 the minimum number of jobs is equal to the number of workload classes, because there must be at least
one job for each class in order to define a proper model
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Table 2 Aggregate utilization and per-class response time forc1 andc2 classes at different servers. Thresh-
olds on per-class response times are set to 0.2 and 0.6 for classesc1 andc2, respectively. Violations of the
thresholds and the system bottlenecks are highlighted in bold.

Iteration Aggregate Utilization Response time
S1 S2 S3

N Configuration CPU Disk CPU Disk CPU Disk c1 c2

2 1-1-1 0.150 0.105 0.470 0.173 0.304 0.459 0.067 0.236
...

11 1-1-1 0.274 0.203 0.949 0.321 0.468 0.831 0.211 0.632
11 1-2-1 0.322 0.240 0.567 0.189 0.531 0.976 0.171 0.608
11 1-2-2 0.437 0.325 0.763 0.256 0.368 0.663 0.129 0.415
12 1-2-2 0.456 0.334 0.771 0.266 0.407 0.693 0.136 0.439

...
1000 37-126-112 0.746 0.551 0.753 0.256 0.427 0.748 0.187 0.599

5.2 Complexity

In the proposed version, the algorithm does not impose any restriction to the total number of
instances of the resulting replicated system, but in real world physical resources are limited.
As a first solution, resources’ consumption can be mitigatedimplementing instances by
different VMs sharing a limited number of physical hosts. Insuch a case, the assumption
that the workload of a server can be evenly partitioned between its instances may not hold,
due to the sharing of the same physical host among several VMs. Clearly, a trade-off arises
between the strictness of the constraint to satisfy and the number of used physical resources.

The algorithm can be used in two ways:off-line to plan the capacity of a system andon-
line to dynamically scale the system resources to respect the considered PCs. When used off-
line for N jobs, the algorithm must repeat the inner loopN times, one for each job. The loop
can perform several iterations until the PCs are matched. However, at most one new copy for
every server (e.g. when the PCs are so strict that each new jobrequires an entire copy of a
server on its own), so its complexity isO(S), whereS is the number of servers2. To verify the
PCs, MVA is used with complexityO(NM). The total complexity of the algorithm is thus
O(N2MS) when used off-line. When used on-line however, the algorithm can start from
the previously computed solution, and its complexity reduces toO(NMS). Since usuallyS
andM are not very large, the proposed procedure can be implemented in common system
management hardware even with large number of jobs.

The application of the algorithm on-line poses a further practical issue: the additional
overhead introduced by VMs migration that, according to thespecific application, may be
relevant. Actually such cost is not included in the algorithm, it is assumed that it can be
considered negligible with respect to the system response time. We plan to account for it in
future works.

6 Numerical results

In this Section we present the results achieved by both the analytical approach proposed
in Section 4 for open models, and the algorithm applied for the closed model described in

2 In some cases, when the PCs are particularly tight, the actual number of iterations can be larger thanS
to account for the random routing considered by the technique, but its complexity is stillO(S)
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Section 5. We will first show how the Equations given in Section 4 can be used to properly
choose the number of replicas required to handle a given workload while respecting a set of
PCs. We apply the proposed equations on a test system to investigate the results provided in
case of satisfaction of PCs about utilization and response time. The test system was simu-
lated using the JMT tool Bertoli et al (2009): confidence interval at 99% were evaluated, but
only mean values are shown to simplify the presentation.

Then, we will study in detail the behavior of the algorithm applied on the closed model
of Section 5. In particular, the response time and the numberof replicas needed to fulfill PCs
related to per-class index. Next, we show the sensitivity ofthe algorithm to different values
of the PCs thresholds and the interaction with the population mix. Finally, we investigate
the effectiveness of the proposed system bottleneck policyto provide a minimum solution
in term of number of replicas needed to satisfy the PCs. The example was analysed using
the JMVA application included in the JMT tool.

6.1 Sizing an open system

Let us consider the three-tier system withC = 2 classes, andM = 3 servers, characterized
by the demand matrixDDD of Eq. 3. Suppose that the utilization of each serverm for each class
c must be less than the following given valuesσmc:

|σmc|=

∣

∣

∣

∣

∣

∣

0.5 0.5
0.3 0.7
0.65 0.35

∣

∣

∣

∣

∣

∣

. (32)

If we apply the results presented in Section 4.3, we obtain that the number of replicas for
each server is 1-1-3.

Figure 4(a) shows the utilization of all the combination of classes and servers for the
1-1-2 and the 1-1-3 configurations, together with the targetvalue required by the PC. Com-
binations are labeled withCi −Mm, for instance the utilization of server 1 for class 2 is
labeledC2−M1.

As it can be seen, the 1-1-3 configuration respects all the PCs, while the 1-1-2 violate the
constraint on the second class for the third server (C2-M3),where the utilization is about
40% and the requirement should be less than 35%. Next we put the requirement on the
utilizations of single server to be less thanσm defined as|σm| = |0.5 0.3 0.8|. Using the
results presented in Section 4.4, we can see that at least 2-4-2 replicas are required to satisfy
the PCs. In Figure 4(b) we present the utilization of the servers for three configurations: 2-2-
2, 2-3-2 and 2-4-2. Clearly the 2-2-2 configuration violatesthe PC on the second server. At
first sight, the 2-3-2 configuration would seem to be adequateto satisfy all the constraints.
However, at a closer look, we can see that with this configuration the utilization of the second
server would be 30.26%, slightly higher than the 30% required by the PC.

Constraints on the response time of the single server is considered in Figure 4(c), where
there PCs are set according to the following values, inmsec: |ρm| = |1000 500 1050|. In
this case, applying the results presented in Section 4.6, wehave that minimum configuration
should have at least 2-3-2, and a 2-2-2 configuration will violate the PC on the second
server. Finally, we consider the system response time and weuse the expression presented
in Section 4.5. In particular we examine a series of possibleconstraints,ρ = 14000msec, ρ =
8200msec, ρ = 4200msec, ρ = 2200msec, ρ = 1200msec and we compute the configuration
required to obtain such system response time. They are 1-1-2, 1-2-2, 2-2-2, 2-2-2 and 5,6,6
respectively. Figure 4(d) shows that by using the proposed configuration the system response
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time is always lower than the requirement. However, since the Equations given in Section 4.5
compute only a sub-optimal solution, there could be cases where the constraint can be met
with a smaller set of instances. In this case this happens forthe ρ = 4200msec constraint,
which is met not only for the 2-2-2 configuration (the one computed by Eq. 28), but also for
the 1-2-2 configuration that uses one instance less.
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Fig. 4 Minimum number of replicas to handle a workload arrival rateΛ = 0.0028 jobs/msec and population
mix βββ = |0.36,0.64| with the following constraints on the: (a) utilization of a serverm by a classc; (b) total
utilization of a serverm; (c) response time of serverm; (d) system response time. The last two are expressed
in msec.

6.2 Considering a closed model

Let us focus on the analysis of the model described in the running example of Section 5.
We start considering the PC thresholds about the per-class response time|γc|= |1 3.5| and
running the algorithm for different population mixesβ . Figure 5 a-c), shows the effect of the
replication, for a population size varying from 1 to 500 respectively forβ = 0.3, β = 0.5 and
β = 0.7. The upper part of the figure shows the average response timefor both the classes
c1 andc2, together with their respective PCs.

The bottom part shows the number of replicas per server, and the total number of in-
stances (that is, the total cost) required to run the system with the required PCs. As expected,
whenever one of the two classes reaches the threshold, the most heavily loaded server is
replicated (new resource replicas for the considered server is added). The addition of new
instances creates a discontinuity in the response time: in particular, it reduces the response
time for the class whose PC was violated. For the other classes however, two possible be-
haviors can be observed: it can either decrease (e.g.N ≈ 140 forβ = 0.5), or increase (e.g.
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Fig. 5 Mean System Response Time per classes (c1, c2); ρc1 = 1 sec;ρc2 = 3.5 sec; for different population
mixesβ and maximum population sizeN: a) β = 0.3;N = 500, b)β = 0.5;N = 500, c)β = 0.7;N = 500, d)
β = 0.3;N = 4000, e)β = 0.5;N = 4000, f)β = 0.7;N = 4000.

N ≈ 130 forβ = 0.5). The decrease is quite intuitive: the replication of the bottleneck server
has benefit not only on the class whose response time was over the PC, but also for the other
one. The increase might seem strange at first, but it also has aphysical explanation: when
the bottleneck server is replicated, the throughput of all the replicas together is increased.
For this reason, a non-replicated server, may see an increase in the number of its arrivals,
creating thus an higher mean service time. Moreover there are cases where two servers be-
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come bottleneck almost at the same time (e.g.N ≈ 145 forβ = 0.3). In this case, in order to
obtain the required PC, two servers (in particular bothS2 andS3) have to be replicated at the
same time. To summarize, let us follow the evolution of the number of replicas required to
obtain the given PC forβ = 0.5. The system is able to handle the requests with the wanted
performance for a total population of aboutN ≈ 130. Then the PCs for thec1 class is vi-
olated, and the serverS2 has to be replicated. This causes an increase in the responsetime
to c2 class, since nowS3 becomes more loaded. After a few more request, atN ≈ 140, the
response time for thec2 class reaches its threshold. The serverS3 has now to be replicated,
creating a large improvement in the response time for both classes. The system in this new
configuration 1-2-2 is able to handle a population of aroundN ≈ 260, whereS2 becomes
the bottleneck again and violates the PC on thec2 class. The serverS1 becomes a bottleneck
only for N ≈ 315, where to respect the PCs in configuration 2-3-3, 8 replicas are required.
For N = 500, in configuration 2-4-4 ten machines are required to maintain the PCs. It is
interesting to see how the replication pattern increases for larger populations. Figure 5 d-f),
shows the same settings forβ , this time up toN = 4000. Several insights can be argued
examining these plots: first the growth in the number of replicas is linear with respect to
the population size. In this case the replicas of theS2 andS3 servers have more or less the
same slope (with theS3 a little bit higher forβ = 0.3, and lower forβ = 0.5,0.7). This can
be justified by the fact that demands of both servers presented in Table 31 are similar, and
higher with respect to serverS1. Second, we can see that total number of replicas neces-
sary to handle a given population strongly depends on the population mix β . In this case
70 replicas are required withN = 4000 forβ = 0.3, and 77 forβ = 0.7, that is 10% more.
Finally, it is very interesting to note that for large populations, only one of the PCs become
dominant. As it can be seen, when the number of replicas becomes large, the effect of the
replication decreases: the jump in the response time becomes smaller and smaller. One of
the two response time (thec2 in this case), becomes almost constantly equal to the threshold.
The other, tends to be smaller, and to have a different asymptotic behavior. Despite an higher
jump that destroys the trend aroundN ≈ 3500 for all the consideredβ , the response time of
thec2 class seems to stabilize around 2.8 sec., almost 25% less than the required PC.

It is thus interesting to test the sensitivity of the proposed technique with respect to the
thresholds. With a fixed threshold of 1 sec. for thec1 class, we vary the threshold of the
c2 class from 2 sec. to 3.5 sec., and study the total number of replicas necessary to satisfy
the PCs with a population ofN = 3000, for two opposite mixes:β = 0.3 andβ = 0.7. The
results in Figure 6 confirm the importance of the population mix showing a difference of
around 15 replicas between the two considered values ofβ . It is interesting to see that the
change in the threshold seems to affect both population mixes in the same way, causing an
increase of around 8∼ 10 machines. On the other hand the curve becomes flat for large
thresholds, confirming the fact that in this case the PC on thec2 class is masked out by the
constraint on thec1 class.

In the previous experiments, we have seen that the considered replication strategy (that
is, replicating the most used server when an increase in the population determines the viola-
tion of an PC) allows the system to deal with a growing number of requests, while respecting
the given performance constraints. Now we want to investigate whether the proposed policy
is optimal or not. A rigorous prove, based on queuing theory results would be advisable,
but it is outside the scope of this paper. We tackled the problem by showing that at least
in the considered case the replication pattern proposed by the algorithm is always the best
possible. Of course this cannot give the confidence that can be derived by a rigorous proof,
but at least it can show that the proposed strategy can find theoptimal solution in the consid-
ered cases. In particular, for each proposed configuration,we have computed all the possible
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Fig. 6 Number of replicas needed to satisfy different valueρc2 of the PC with population sizeN = 3000.

configurations with one less replica. For example, if the algorithm determined that the con-
figuration with the minimum number of replicas required to match the PCs is 3-3-2, we tried
the three configurations: 2-3-2, 3-2-2 and 3-3-1. We then computed the minimum response
time obtainable (for each class) between the three configurations with one less replicas: this
corresponds to a lower bound to the response time that can be achievable with less replicas
than computed. We then compared this minimum with the PCs, and verified that for all the
considered cases, at least for one of the classes it was greater than the PC threshold. Figures
7 and 8 show the minimum response time for one less replica (Rc1,Rc2), and the response
time computed by the proposed algorithm (R∗

c1
,R∗

c2
) for both thec2 andc1 class, as function

of the different population mixesβ , for N = 1000 andN = 2000. In both cases, the minimum
response time with one less replica for thec1 class is always greater than the PC threshold.
In some cases however the difference is minimal (e.g. forβ = 0.4), and thus it cannot be
fully appreciated by the graph. It is interesting to see thatfor N = 1000 andβ = 0.1, also
the minimum response time for thec2 class would have been greater than its threshold.

7 Conclusions

In this paper we have considered the topic of consolidation and replication from an end-user
point of view. In particular for open workloads, we have proposed analytical equations to
predict the effect of consolidation, and to appropriately dimension a system, in terms of
replication of service, to match a given set of performance objectives. For closed workloads,
we have developed an iterative algorithm to fulfill PCs basedon the principle of provisioning
resources only when needed. We have presented a set of experiments to investigate the
effectiveness of both approaches.

Future works will address more complex performance objectives, and will consider more
complex types of resources, to better capture the internal parallelization characteristics re-
lated to multi-core and multi-threaded resources.
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