
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper.2014;00:1–16
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Modeling and analysis of performances for concurrent multithread
applications on multicore and GPU systems

D. Cerotti1, M. Gribaudo1, M. Iacono2∗, P. Piazzolla1

1 Politecnico di Milano, Dipartimento di Informatica, Elettronica e Bioingegneria, Via Ponzio 34/5, I-20133 Milano,
Italy

2Seconda Università degli Studi di Napoli, Dipartimento diScienze Politiche, Viale Ellittico 31, I-81100 Caserta, Italy

SUMMARY

The capabilities of multicore processors lead them to be widely adopted in systems at any scale, since their
are able to provide more computing power at a lower consumption and dissipation cost. System designers are
challenged to a deeper understanding of multicore functioning in order to fully exploit them while keeping
the optimal balance between cores utilization and optimal throughput, response time and energy usage.
Besides the advancement of general purpose CPUs, the same technological evolution leads to the rise of
GPUs, dramatic evolution of graphical coprocessors, that are now affordable, efficient, dedicated computing
units, capable of parallel computing and equipped with facilities that make them suited for supporting
the main CPU of a system in running ordinary applications. The availability of Commercial off-the-shelf
(COTS) multicore computer with one or more collaborating GPUs makes them the basic building block of
data centers devoted to cloud applications or scientific computing.
The way to optimal exploitation of such a wide amount of computing power passes through the ability of
matching the best scheduling of hardware resources with thesoftware characteristics of the applications.
This requires appropriate models and evaluation methods.
Simulation and analytical techniques are an essential toolto support the design and the management process
of such architectures, but a sound characterization of the workloads is required. Typical workloads consist in
multithreaded applications, with different characteristics, that dynamically span over the cores of multiple
machines, connected by fast networks.
In this paper we propose several parametric performance models for different configurations of multicore
machines, with or without GPU support, running multiple class multithreaded applications, aiming to supply
a detailed modeling help for complex data centers.
Copyright c© 2014 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: performance modeling; multicore; GPU; multithread applications

1. INTRODUCTION

The evolution of processors led to the current multicore CPUs (Central Processing Units), that are
available at low price and are reliably used into data centers with hundreds of Commercial off-the-
shelf products (COTS) or dedicated computers. A separated branch of this evolution, that stems
from the same hardware technologies but aims to the development of parallel and vector processors
dedicated to the execution of complex graphics operations,resulted into the availability of non
general purpose but very powerful CPUs, dubbed GPUs (Graphic Processing Units). Modern GPUs
are capable, by means of special software libraries, of executing specific parts of the workload

∗Correspondence to: Mauro Iacono, Seconda Università degli Studi di Napoli, Dipartimento di Scienze Politiche, viale
Ellittico 31, I-81100, Caserta (CE), Italy - E-Mail: mauro.iacono@unina2.it

Copyright c© 2014 John Wiley & Sons, Ltd.

Prepared usingcpeauth.cls [Version: 2010/05/13 v3.00]

2 D. CEROTTI, M. GRIBAUDO, M. IACONO, P. PIAZZOLLA

generated by a software application (e.g. scientific computing), thus offering to general purpose
usage their capabilities.

Sophisticated architectures have been designed to coordinate such an enormous amount of
computing power, that can only be exploited by means of flexible scheduling and management
policies. Such architectures can be optimized in many aspects: power consumption, heating
reduction, parallelism and process granularity exploitation, spatial organization and interconnection.
The asymptotic goal is the possibility of a smart managementof each single core of each CPU
and each GPU, in order to properly allocate them to each application that in a certain moment is
executing a workload. This is mediated by virtualization, that allows decoupling between hardware
resources and software tasks, and provides a layer of flexible allocation at the cost of a small,
additional workload.

The complexity of such architectures results in the need forflexible modeling and assessment
tools to support their design and management. Proper performance evaluation techniques can
provide significant savings in case of very huge systems. In particular, if there is a big number
of application threads running on the system, a small increase in performance can be as much
significant as many. This is expecially true in massively distributed architectures or Big Data
infrastructures.

In this paper a set of models are presented, that support the design of computing systems based on
multicore CPUs and GPUs and run multiclass, multithreaded applications. The aim of their analysis,
using both analytical and simulative techniques, is to provide a characterization of different HW/SW
configurations, in order to build synthetic models, to be used as building blocks in models for more
complex architectures.

This paper extends [1], by adding the analysis of GPU effects and by considering the case of
multiclass applications, and by introducing a simple modeling formalism that assists the modeler in
developing performance models.

The paper is structured as follows: motivations are analyzed in Section2 and related works
are discussed in Section3. The proposed language is presented in Section4 and it is then used
to consider single workload models in Section5 and complex load mixes in Section6. Finally,
conclusions are given in Section7.

2. MOTIVATION

The correct design and management of computer based systemsis a crucial factor to achieve
the maximum exploitation of the resources needed to keep it in operating condition (energy
consumption, cooling, maintenance, administration, and other additional costs). Whenever the goal
of the system is to provide computing services to third parties, correct resources allocation and
scheduling is fundamental to sustain a variable workload while keeping the maximum efficiency.

Possible mismatches between requested operations and resources management, due to erroneous
scheduling decisions, can temporarily prevent the system to fulfill all the requests in the needed
terms. This problem can be limited if a valid prediction of the scheduling decision effects is
available. Performance models are thus essential to achieve the optimal scheduling of resources
among processes.

Complex systems need tools that provide a correct representation of their internal dynamics. This
can be obtained by a proper abstract modeling framework, capable of capturing the nature of the
system, and a flexible model evaluation technique. There aremany different techniques, based on
different premises that can be roughly grouped into analytical or simulation based. In the number
of traditionally exploited analytical techniques, at least Petri nets and queuing networks should be
mentioned, while the most spread approach on the other side is event-based simulation. The choice
between the two categories depends on the context, the personal preferences and the skills and habits
of the modeler. This choice is generally not a structural limit to the modeling potential, instead, the
choice of the most suited technique can help in understanding some essential, hidden aspect of the
system. In fact, modeling approaches exist (SIMTHESys [2][3], OsMoSys [4][5], Mobius [6]) that
support flexible choices.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

MODELING AND ANALYSIS FOR MULTITHREAD APPLICATIONS ON MULTICORE/GPU SYSTEMS 3

Whatever the chosen technique, the system growth in complexity causes a parallel growth in the
model complexity. When complexity level is low or a modular approach is viable, both the analytical
and the simulation based approach can scale up and be used to build fully functional simulations;
after a certain limit, the solution is to resort to approximation (or, of course, to completely change
the modeling approach, by choosing a more suitable modelingformalism or more efficient analysis
tools). Approximation, by the way, may increase the distance between the modeled and the real
behavior of the system, thus keeping the needed trust in the model can become difficult.

The true structural limit is a consequence of the fact that, in most cases, the adopted techniques
are limited by the need for a detailed characterization, so that it is necessary to adopt a modeling
approach that is based on hierarchical models. This can be done, for instance, by parting the
system into its layers, or its components, and studying themseparately, with proper solicitations
that represent the other elements. In this way it is possibleto understand their characteristics in
detail, analyze the main performance figures and the factorsthat influence them, and to understand
if secondary aspects, if any, can be neglected, with the goalof synthesizing simplified models to be
used at a higher level in full respect of the global behaviors.

The authors deal with the problem of complexity in [7], [8], [9] and [10] by means of
multiformalism techniques, in [11], [12] and [13] by resorting to mean field analysis based
techniques, suitable for systems that are highly modular and regular and have a high number of
elements: in both cases, a model hierarchy based approach has been used, with different aims and
purposes. In the first group of papers, the hierarchy is used to experiment with component models,
to obtain the simplest suitable form that will potentially empower the scale up of composed models,
by also exploiting the best modeling formalism for each of them, that can guide in the simplification
process; in the second group, in which the problem of scalingup is basically not a limit, the hierarchy
is used to identify and derive the parameters of basic building blocks.

This paper belongs to the second group, and aims to provide the results on which the
basic building blocks for massively parallel and distributed cloud systems can be designed. In
particular, the building blocks are single computing nodes, that are composed by a single thread or
multithreaded software layer and a single core or multicorehardware layer, with or without GPUs,
that can be managed in different fashions. The analysis is oriented to performances.

Coherently with the approach, the design of the building blocks is a separate problem. The choice
of the technique is partially independent from the general framework. In the following, the first
choice is to characterize all blocks as state-based systems, that have only exponential transitions and
that can be analyzed by both analytical tools and simulations; the expressiveness is then extended
by introducing fork and join constructs and non-exponential transitions, to better match a realistic
scenario, at the cost of switching to only simulation based techniques due to the excessive growth
of the resulting state space.

In order to provide an example of how these models can be used as a standalone tool for system
design and evaluation or within a more complex framework, wealso propose a simple modeling
formalism, that has been developed within the SIMTHESys multiformalism modeling framework.

3. RELATED WORKS

Multicore CPUs systems performance has been analyzed in literature by several points of view.
The main part of academic literature usually focuses on the impacts on performance that a single
component of the CPUs may introduce. For example, in [14] the authors propose a low-overhead,
runtime mechanism that partitions a shared cache between multiple applications depending on the
reduction in cache misses that each application is likely toobtain for a given amount of cache
resources. L2 cache sharing is also the focus of [15], where the authors investigate the performances
of on-chip cache to propose a new architecture for configuring the share of SDRAM among different
CPU functions. Moving outside the borders of a single chip, the goal of [16] is to understand
how off-chip bandwidth partitioning affects system performance, and how cache and bandwidth
partitioning interact.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

4 D. CEROTTI, M. GRIBAUDO, M. IACONO, P. PIAZZOLLA

The whole memory hierarchy is the topic of [17], in which the authors analyze and evaluate
support for expressing parallelism and locality in programming models for multi-processors with
explicitly managed memory hierarchies.

The modeling approach presented in [18], instead, uses data collected from performance counters
on two different hardware implementations using hyper-threading processors to demonstrate the
effects of thread interaction.

Thread interaction insights may be useful for guiding operating systems scheduling decisions. In
particular, different scheduling policies can introduce strong performance impacts, as highlighted in
[19]. Here, a new memory scheduling technique is introduced to improve system throughput without
requiring significant coordination among memory controllers.

More abstract features, such as virtualization effects, are considered in [20] where a quantitative
analysis of virtualization performance are provided to illustrate how server consolidation can
benefit from virtualization. In [21] a series of performance models for predicting performanceof
applications on virtualized systems are presented. Major factors that affect the performance of
virtualization platforms, such as the overhead of full virtualization for CPU-intensive and memory-
intensive workloads and how different core affinity properties affect the performance of individual
virtual machines, are evaluated in [22]. Another performance study, in [23], presents a light weight
monitoring system for measuring the CPU usage of different virtual machines including the CPU
overhead in the device driver domain caused by I/O processing on behalf of a particular virtual
machine.

In recent years, a large body of work has explored how to use GPUs for general purpose
computing, sometimes known asG̈PGPÜ. Highly parallel programmable processor featuring peak
arithmetic and memory bandwidth that substantially outpaces its CPU counterpart, the GPU’s
rapid increase in both programmability and capability has spawned a research community that
has successfully mapped a broad range of computationally demanding, complex problems to the
GPU. For example in [24], [25] the authors explore the effectiveness of GPUs for a variety
of application types. GPU performance is compared to both single-core and multicore CPU
performance. However, in [26] it is demonstrated that the phenomenal performance of GPUs
compared to CPUs strongly depends on where in the system dataresides, and the overhead to move
the data to where it will be used, and back again if necessary.

GPUs are designed for computing a large amount of data in parallel. They have a high data
transfer bandwidth and a large number of simple cores. However, GPUs lack the ability of saving
process execution state, thus they are unable to run two or more programs in a time sharing manner.
This lack of quick context switch makes it difficult to virtualize GPU. Many efforts have been
made by researcher to solve those issues, exploiting different techniques. For example in [27] a
framework for HPC applications that uses hardware acceleration provided by GPUs to address the
performance issues associated with system-level virtualization technology is proposed. The goal of
[28] is, instead, to design a GPU provision system that combinesCUDA programs from different
virtual machines and execute them concurrently, so as to support the concept of GPU sharing among
virtual machines.

As the general approach is founded onto the definition or the application of benchmarks that are
run on real systems to tune analytical or simulative models,in this paper in vivo measures will be
used to validate the proposed models, to obtain a reliable base on which more general performance
consideration can be carry out (as, e. g., in [29]), and try to get some general indications about
the influence of multithreading and multicore on the overallperformances of a complex system
architecture.

4. TASKS AND SYSTEM DESCRIPTION LANGUAGE

The scenario we would like to consider includes system composed by several multi-core
computational nodes, running multi-threaded applications characterized by a set of different stages
using different resources. We propose a two level description language that can be used to describe
both tasks and systems running them. Figure1 shows the primitives available in the formalism, and

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

MODELING AND ANALYSIS FOR MULTITHREAD APPLICATIONS ON MULTICORE/GPU SYSTEMS 5

TableI summarizes the properties associated to each element. The first modeling level considers
the infrastructure.Compute elements represent the computational nodes of the considered system.
They can be PC, servers, blades, storage controller, or whatever can be used to service the tasks
the system is executing. For this reason, each compute node is characterized by the number of
cores (NCores) that can concurrently execute the tasks and their speed (CoreSpeed). This speed
can be either constant, or load-dependent, to account the fact that some interference and locking
between the cores might reduce their performance when they execute tasks in parallel. Nodes
can also be equipped by a GPU composed ofNGPUCorescores, each working at a given speed
(GPUCoreSpeed). Compute elements can also perform IO tasks at the speed specified in property
IOSpeed.

The workload can be eitheropen, to model transactional systems, orclosedto model batch
processes. Open workloads are defined by the elementsArrival and Departure, that
respectively specify the points where the tasks enter and leave the system. In particular, the rate at
which jobs enter the system is given in propertyRateof theArrival primitive. Closed workloads
are identified by elements of typeRepJob. In this case, the number of the corresponding tasks is
specified in propertyN.

When a task has been executed in a node, it can be routed to another one for further processing,
or it can leave the system (for open workloads). The flow of tasks among the nodes is defined by the
Flow arcs. When more than oneFlow arc exits a node (either aCompute, Arrival orRepJob
element), theRoutingparameter specifies the selection policy of the next hop: it can be any of
the common job routing strategy defined in queueing system, such as random, probabilistic, round
robin, join the shortest queue and so on.

The steps required by each tasks are defined inWorkload elements. This type of primitive
must be connected either with anArrival or RepJob element with an incomingAssign arc,
and to aCompute node with an outgoingAssign arc. The meaning of this syntax is that a task
generated either by the inputArrival or RepJob primitive, will require the workload defined by
theWorkload element from theCompute node to which it is connected.

Workloads are described by sub-models specified in an ancillary formalism that defines
the steps required by the corresponding tasks. This corresponds with the second level of the
proposed description language. The steps can beSerial executions,Parallel executions,GPU
executions orI/O executions. Each step is connected to the next one by aFlow arc, and the next
step must be unique. The tasks start from the element withoutany input arc, and ends with the
element without any output arc: a properWorkload specification includes only a single chain of
elements. The time required from each step of the task is defined using theirDemandproperties.
Parallel CPU executions require the corresponding demand for a number of threads that can be run
in parallel as specified by the correspondingNThreadsproperty. In the same way, GPU tasks splits
into NGPUThreadsparallel executions, all characterized by the same corresponding demand.

Systems described in this language, are analyzed by translating them in equivalentmulti-class
fork/join queueing networks with finite capacity regions and class switching. This type of systems
can be analyzed using many available tools, such as JMT - JavaModeling Tool [30]. In particular,
jobs are divided into classes and sub-classes. A class of jobs is associated to eachRepJob and
Arrival element. Closed classes are used for the former, and open classes for the latter. Parameter
N of RepJob describes the population size of closed classes, and parameter Rateof Arrival
defines the arrival rate of jobs. Moreover, ifZ 6= 0, RepJob nodes generates also an infinite-server
queue, with demand equal to the waiting timeZ to account for the time each user elaborates the
results of the previous iteration before sending a new job.

EachCompute node is transformed into up to three queues, representing respectively the CPU,
the IO and the GPU of the corresponding infrastructure. If the considered node does not have a
component (i.e.NCores = 0, IOSpeed = 0or NGPUCores = 0), the corresponding queue is not
generated. The CPU is modeled by ac server processor sharing queue, wherec = NCoresparameter
of the correspondingCompute node. The I/O phase is modeled as a single server ordinary queue
with First Come First Served discipline. The GPU is modeled by ac server processor sharing queue
inside afinite capacity region(FCR). Parameterc = NGPUCoresmodels the parallelism of the

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

6 D. CEROTTI, M. GRIBAUDO, M. IACONO, P. PIAZZOLLA

GPU, that is the number of cores it is composed of. Since the GPU is used in mutual exclusion
among the competing processes, the FCR ensures that only oneclass of tasks is allowed to use
resource at each time.

Sub-classes and class-switches with sub-class dependent routing are used to model the fact that
the description of a workload can include more CPU, IO or GPU tasks. In particular, if more than
oneSerial orParallel elements are included, the job is transformed into another sub-class and
re-enters the sameCPU queue. To account for the speed of the node, and for the lengthof the task,
the demand of the considered sub-class is computed as the ratio of the Demandparameter of the
task, and theCoreSpeedof the assiciatedCompute node. If the speed of the node is load-dependent,
then the law that defines the dependency is used to define a load-dependent demand for the class
in the considered queue. Moreover, parallel tasks include afork/join primitive that replicates the
tasks as many times as defined by parameterNThreadsand waits for all its components to finish
before continuing to the next step. A similar approach is used for both the IO and the GPU. When a
workload has been completed, theRoutingproperty of theCompute node is used to route the job
to the next station.

Compute Arrival Departure RepJob

Workload
Flow Assign

Serial Parallel GPU I/O
Flow

Figure 1. The tasks and system description language.

As an example, Figure2a shows a single threaded application running in multicore environment.
In this case, a workload (elementSingThread) composed by a single-threaded CPU section
(elementCPU) and an I/O section (elementI/O) is executed on a server (elementServer) with
a predefined number of cores and I/O speed. Since the considered workload does not have a GPU
section, the corresponding queue is not included in the generated model. The workload is executed
indefinitely, and starts again immediately after it is completed (elementJobs). The proposed model
is automatically transformed into the queuing system shownin Fig. 2b. In particular, the equivalent
queueing system is composed by three stations: one infinite server corresponding to the waiting the
tasks experience before entering the system, one single server that represents the I/O component, and
a multiple server that considers the CPU and the scheduler ofthe operating system. The multiplicity
of the server of the queue corresponds to the number of cores of the CPU. More complex examples
will be given in the rest of the paper.

5. VIRTUALIZED MULTICORE SYSTEMS

We now show the application of the modeling formalism to morecomplex scenarios by means of
two models that respectively represent a virtualized multicore system without (in this Section) and
with GPU (in the next Section), running single thread and multithread applications. In order to tune
the models and validate them, a measurement campaign has been performed, part of the results of
which, that are presented in this Section, have been alreadyused in [1].

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

MODELING AND ANALYSIS FOR MULTITHREAD APPLICATIONS ON MULTICORE/GPU SYSTEMS 7

ServerJobs

SingThread

CPU I/O

a) b)

Figure 2. Model of a single-threaded application running ona multi-core system: a) using the proposed
formalism, b) the automatically generated corresponding queueing model.

ServerJobs

MultiThread

CPU_SI/O CPU_P

Figure 3. Model of a multi-threaded application running on amulti-core system.

Figure 4. Model for multithreaded applications in multicore environments.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

8 D. CEROTTI, M. GRIBAUDO, M. IACONO, P. PIAZZOLLA

Element Property Description
Compute NCores Number of cores of the server

CoreSpeed Speed of the cores
NGPUCores Number of GPU cores of the server

GPUCoreSpeed Speed of the GPU cores
IOSpeed Speed of the I/O
Routing Routing policy of the jobs that have terminated their service

Arrival Rate Arrival rate for the corresponding workload
Routing Routing policy of the jobs entering the system

Departure — — No parameters—
RepJob N Number of jobs for the corresponding workload

Z Job waiting time
Routing Routing policy of the jobs starting their service

Workload *** Defined in the associated sub-model

Serial Demand Average time spent in the serial part of the job
Parallel Demand Average time of each parallel part of the job

NThreads Number of threads of this parallel part of the job
GPU Demand Average time of each GPU task of the job

NGPUThreads Number of GPU threads of this part of the job
I/O Demand Average time spent in the I/O part of the job

Table I. Parameters of the formalism primitives

The measurement campaign aims to observe the behavior of themodeled platform running a
benchmark, and show how the proposed models are able to describe it. The chosen benchmark is
the DaCapo suite [31], from which thebatik andsunflow benchmark applications have been
chosen, respectively as mainly single threaded and multithread workload.Batik uses Apache Batik
to generate SVG images†, while sunflow is a 3D rendering application, based on parallel ray
tracing algorithms. The running architecture is based on virtual machines running Linux OS being
executed on Amazon EC2. Both applications are modeled as shown in Figure3. Execution of the
benchmark are driven by theRepJob elementJobs, and they are run on the node modeled by the
Compute elementServer. The workload is defined by a sub-model that includes an I/O phase (I/O),
a serial CPU phase (CPU S) and a parallel CPU phase (CPU P). Of course, thebatik benchmark
will have a very shortCPU P phase, and longCPU S. In contrast,sunflow will use a longCPU P
phase and a shortCPU S. The models are then automatically translated int the queueing network
shown in Figure4. In particular, theJobselement is converted to the delay stationRefStat. This node
is also used as the reference station to compute the performance indices of the main job class. Since
the workload does not require the use of the GPU, theServernode is mapped in two queues:IO and
CPU. The single type of job is converted into two sub-classes:Sto represent the serial execution of
the benchmark, andP to model the parallel behavior. After the I/O execution, jobs first enters the
CPU as classS jobs, then they switch to classP and are forked into as many jobs as threads. Each
thread re-enters the CPU queue, to model its execution. AllP jobs are then joined, and switched
back to classSto repeat the workflow for the next request.

In the first experiment, the benchmarks are forced to use a single thread execution model (using a
specific parameter of the DaCapo benchmarks). This is achieved by setting the propertyNThreads
= 1 of theCPU P element. The demand for the I/O is measured using theiostatLinux command. By
considering the relations between CPU and I/O demand and thenumber of cores and I/O fraction,
the experimental results are then fitted using Microsoft Excel to determine the model parameters,

†The transcoding of image elements may be performed by means of multiple threads, but the most of the processing is
run by a single thread.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

MODELING AND ANALYSIS FOR MULTITHREAD APPLICATIONS ON MULTICORE/GPU SYSTEMS 9

and the response time curve is estimated. CPU demands for computing (DCPU) and I/O (DI/O)
are obtained by minimizing the squared distance between results from the model and the measured
response times. Results show that accuracy forsunflow is good, with a mean error of4.07%
and a demand of15.524, while for batik the error grows to17.42% with a demand of2.246. In
fact, Figure5 shows that the two approaches achieve very similar responsetimes in all cases. This a
consequence of the fact that this benchmark is highly parallel and essentially works in memory using
large chunks of data, so that the contribution of the L2 shared cache provided by the architecture is
minimal if not barely influential, as saturation of this resource happens almost immediately, due to
the number and the volume of data transfers. The same choice instead is the cause of the significant
error in the case ofbatik, the results of which are shown in Figure6 for the considered cases.
This is due to the fact thatbatik essentially processes data in a sequential task, and the effects of
caching and of the presence of more cores, that are not completely exploited, are not negligible.

Figure 5. Model results and measurements forsunflow.

The problem can be solved by resorting to a load dependent approach for the CPU model, inspired
to [32]. The parameterCPUSpeedof theCompute nodeServer(the service station that describes
the CPU behavior) is made dependent on the workload.

By means of a new parameter fitting, load dependent server speed can be estimated so to account
for the effect of the CPU architecture in absence of a complete saturation of all available cores. This
technique allows the model to keep the constant service rateof the fully loaded system when there
are enough threads to saturate all the cores, while compensating the other cases. The results obtained
with the new approach forbatik are in Figure7, that shows a better fitness: the error in this case
is now4.53%, for a demand of2.214. Thesunflow case also benefits of the new approach, as the
error is0.85% and the demand is15.704.

In the second experiment, the benefits of multithreading areanalyzed. Multithreading allows a
better exploitation of the various available cores since whenever the overall workload is not able to
saturate the cores, more threads of the same application canactually run in parallel [33]. This has
the effect of a reduction of the application execution time,that must be quantified in order to enable
a correct modeling process.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

10 D. CEROTTI, M. GRIBAUDO, M. IACONO, P. PIAZZOLLA

Figure 6. Model results and measurements forbatik.

Figure 7. Comparison of results for the load-dependent model and measurements forbatik.

Sunflow has been run on the reference architecture with different configurations, that enable
an increasing number of threads‡. The related response times are shown in Figure8 and Figure9.
As the nature of this benchmark is inherently highly parallelizable, due to the rendering algorithms
used, the benefits are clearly visible in the figure whenever the number of jobs times the number of
threads is less than the number of cores.

‡For the sake of completeness, the same analysis has been doneonbatik as well in [1].

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

MODELING AND ANALYSIS FOR MULTITHREAD APPLICATIONS ON MULTICORE/GPU SYSTEMS11

In the model of Figure3 multithreading is achieved by setting a value greater than one to the
propertyNThreadsof theCPU P element. As before, the demands of the two phases can be fitted
with respect to the measurements. Figure8 and Figure9 compares the response times predicted
by the model with the ones measured on the reference architecture, a good agreement between the
results can be observed.

Figure 8.sunflow mean response time for four cores, and different threads andN.

Figure 9.sunflow mean response time for eight cores, and different threads and N.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

12 D. CEROTTI, M. GRIBAUDO, M. IACONO, P. PIAZZOLLA

6. COMPLEX APPLICATIVE SCENARIO

In the last years, GPUs have been exploited to support the main CPU of a system in the execution of
massively parallel applications. When the GPU is used to perform computation instead of graphics,
applications are defined asGeneral-Purpose computing on Graphic Processing Unit(GPGPU).
Such applications are partitioned by the CPU in several independent tasks executed by threads
which are allocated to specific GPU cores. When GPGPU applications are executed concurrently
with CPU applications this approach introduces complex inter-dependencies among CPU and GPU
that must be investigated in order to increase the global performance. In this section, we show how
the proposed methodology can deal with this type of applications.

Fig. 10 shows an example of a model where two workloads are concurrently executed: a multi-
threaded CPU application and a GPU intensive application. The multi-threaded application is similar
to the one described in Figure3. The GPU workload consists of a multi-threaded GPU section
(elementGPU) and a single-threaded CPU section (elementSerial). The latter takes care of the
allocation of threads to the GPU cores.

The model is automatically translated in the two-class queuing network system shown in Fig.11.
The two classes represent the CPU and GPU intensive workloads, respectively. According to their
class, the jobs follow a different path: CPU intensive jobs starts from the delay stationCPU Jobs,
then they perform I/O operations in theI/O queue, finally enter the CPU (stationCPU). When they
exit from theCPU, jobs change their sub-class from “S” (Serial) to “P ” (Parallel), and experience a
fork (nodeCPU-thread) to simulate the split into several parallel jobs. Paralleljobs are routed again
to the CPU, then they are merged back into a single element in the join nodeCPU-Thread-end,
and return to the “P ” sub-class before finishing and returning to theCPU Jobsnode. Instead, GPU
intensive jobs are forwarded by the delay stationGPU Jobsdirectly to theCPUqueue, thus avoiding
the I/O service. After the CPU service, GPU class jobs are routed to the sub-system composed by
theGPU-threadfork node, theGPU queue in the corresponding finite capacity region, and finally
joined back in theGPU-thread-endjoin node. In this case, the maximum number of threads is
limited to the number of GPU cores by the FCR. The model is thencharacterized by a total of7
time durations: delay for both the CPU and the GPU applications, serial part of the GPU application,
time for each GPU thread, I/O duration for the CPU application, serial and parallel duration of the
CPU application.

ServerCPU_Jobs

CPU_Thread CPU_SI/O CPU_P

GPU_Jobs

GPU_Thread

Serial GPU

Figure 10. Model of a system running two different types of application, with one characterized by GPGPU
workload.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

MODELING AND ANALYSIS FOR MULTITHREAD APPLICATIONS ON MULTICORE/GPU SYSTEMS13

Figure 11. Queuing network of a system running two differenttypes of application, with one characterized
by GPGPU workload.

To validate the model against real system measurement, we perform the following experiments
using a desktop PC with an i7-3770 CPU@3.4GHz. with eight cores and 16 GB. The GPU is a
GeForce GTX 560 with 384 cores. In all experiments we set the maximum number of CPU (GPU)
threads equal to the number of CPU (GPU) cores. Initially we analyze the model with just a GPU
workload (i.e. a single GPU class model) and compare the results with a GPU benchmark. We
consider a CUDA [34] implementation of the eigenvalues computation of a squarematrix. In such
algorithm, the original problem is hierarchically decomposed in several sub-problems which can be
solved separately by different threads allocated to the GPUcores, thus resulting in an high-parallel
GPU application. With a single class model the number of parameters needed to characterize the
system is reduced to4: users delay, I/O duration, CPU serial part and GPU parallelpart.

Figure 12.CUDA mean response time for different values of N.

In order to determine the parameter values, we use a Nelder-Mead simplex algorithm [35] to
find the minimum of a multivariate function, i.e. the square error between the computed system
response time and the experimental one, thus performing a non linear least square minimization.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

14 D. CEROTTI, M. GRIBAUDO, M. IACONO, P. PIAZZOLLA

The Nelder-Mead simplex algorithm is implemented in thescipy.optimizemodule [36] of Python
language. Even with this simple algorithm, we obtain quite satisfactory results with a mean relative
errorσ = 11.23%. A graphical comparison between simulated and experimental system response
time as a function of the number of jobsN is shown in Fig.12.

Then we analize the two-class model with both CPU and GPU intensive workloads. LetNCPU

andNGPU be the number of CPU and GPU intensive jobs, respectively. Since the model is closed
the total number of jobsN is constant withN = NCPU + NGPU . In a two-class model the average
time needed to complete a job of a specific classc (also called per-class response times) depends on
the proportion of classc jobs inside the system. We define the population mix of the CPUintensive
jobs asβ = NCPU/N and investigate the model for valuesβ ∈ [0.1, 0.9] with step-size0.1.

We consider two multi-class scenarios: in both of them the GPU workload is given by the CUDA
eigenvalues computation, whereas the CPU workload is givenby eithersunflow or batik
benchmark, respectively. As before, to parametrize the model we perform a fitting procedure based
on the Nelder-Mead simplex algorithm when this time we minimize the sum of the square errors
between the computed and experimental system per-class response times for all values ofβ. In such
a way, we aim to obtain a single set of parameter values that fitindependently ofβ.

The graphic comparison between simulated and experimentalper-class response times as a
function of the population mixβ is shown in Fig.13 for the CUDA-Sunflow scenario, and in Fig.
14 for the CUDA-Batik scenario. The mean relative error in the first scenario isσ = 22.02%, in the
second one isσ = 10.91%.

In this case the worst model accuracy is obtained in the CUDA-Sunflow scenario where both per-
class response times are not properly fitted. Instead in the CUDA-batik scenario at least the batik
workload is well fitted. It appears that the interactions between CUDA and Sunflow workloads
are not well captured by the model, a different fitting procedure would lead to a better agreement
between the model and the real data. We decided to leave this investigation outside the scope of this
work.

Figure 13.Sunflow andCUDA mean response time for different values of N.

7. CONCLUSIONS

In this paper we proposed a modeling language and a techniquefor the development and the tuning
of models for the performance evaluation of multithreaded applications in multicore environments
with GPU support. The proposed technique requires a limitednumber of parameters to characterize

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

MODELING AND ANALYSIS FOR MULTITHREAD APPLICATIONS ON MULTICORE/GPU SYSTEMS15

Figure 14.Batik andCUDA mean response time for different values of N.

the models. Some examples of model tuning have been provided, by means of proper measurements
of real benchmark applications on multicore and GPU machines. The proposed results are intended
to support the design process of complex Big Data applications and cloud infrastructures, in
conjunction to prior authors’ work, and give a foundation toa general approach to performance
design and assessment in this field.

REFERENCES

1. Cerotti D, Gribaudo M, Iacono M, Piazzolla P. Workload characterization of multithreaded applications on
multicore architectures.ECMS, European Council for Modeling and Simulation, 2014; 480–486.

2. Iacono M, Barbierato E, Gribaudo M. The SIMTHESys multiformalism modeling framework.Computers and
Mathematics with Applications2012; (64):3828–3839, doi:10.1016/j.camwa.2012.03.009.

3. Barbierato E, Gribaudo M, Iacono M. Defining Formalisms for Performance Evaluation With SIMTHESys.Electr.
Notes Theor. Comput. Sci.2011;275:37–51.

4. Vittorini V, Iacono M, Mazzocca N, Franceschinis G. The OsMoSys approach to multi-formalism modeling of
systems.Software and System Modeling2004;3(1):68–81.

5. Franceschinis G, Gribaudo M, Iacono M, Marrone S, MoscatoF, Vittorini V. Interfaces and binding in component
based development of formal models.Proceedings of the Fourth International ICST Conference onPerformance
Evaluation Methodologies and Tools, VALUETOOLS ’09, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering): ICST, Brussels, Belgium, Belgium, 2009; 44:1–44:10.

6. Gaonkar S, Keefe K, Lamprecht R, Rozier E, Kemper P, Sanders WH. Performance and dependability modeling
with möbius.SIGMETRICS Perform. Eval. Rev.Mar 2009; 36(4):16–21, doi:10.1145/1530873.1530878.
URL http://doi.acm.org/10.1145/1530873.1530878 .

7. Barbierato E, Rossi GLD, Gribaudo M, Iacono M, Marin A. Exploiting product forms
solution techniques in multiformalism modeling. Electronic Notes in Theoretical Com-
puter Science 2013; 296(0):61 – 77, doi:http://dx.doi.org/10.1016/j.entcs.2013.07.005. URL
http://www.sciencedirect.com/science/article/pii/S1571066113000364.

8. Barbierato E, Gribaudo M, Iacono M, Marrone S. Performability modeling of exceptions-aware systems in
multiformalism tools.ASMTA, 2011; 257–272.

9. Barbierato E, Gribaudo M, Iacono M. A performance modeling language for big data architectures.ECMS,
Rekdalsbakken W, Bye RT, Zhang H (eds.), European Council for Modeling and Simulation, 2013; 511–517. URL
http://dblp.uni-trier.de/db/conf/ecms/ecms2013.html#BarbieratoGI13.

10. Barbierato E, Gribaudo M, Iacono M. Modeling apache hivebased applications in big data architectures.
Proceedings of the 7th International Conference on Performance Evaluation Methodologies and Tools,
ValueTools ’13, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering): ICST, Brussels, Belgium, Belgium, 2013; 30–38, doi:10.4108/icst.valuetools.2013.254398. URL
http://dx.doi.org/10.4108/icst.valuetools.2013.254398 .

11. Castiglione A, Gribaudo M, Iacono M, Palmieri F. Exploiting mean field analysis to model performances of Big
Data architectures.Future Generation Computer Systems2013; (0):–, doi:http://dx.doi.org/10.1016/j.future.2013.
07.016.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

http://doi.acm.org/10.1145/1530873.1530878
http://www.sciencedirect.com/science/article/pii/S1571066113000364
http://dblp.uni-trier.de/db/conf/ecms/ecms2013.html#BarbieratoGI13
http://dx.doi.org/10.4108/icst.valuetools.2013.254398

16 D. CEROTTI, M. GRIBAUDO, M. IACONO, P. PIAZZOLLA

12. Barbierato E, Gribaudo M, Iacono M. Performance evaluation of nosql big-data applications using multi-formalism
models.Future Generation Computer Systems2013;to appear, doi:http://dx.doi.org/10.1016/j.future.2013.12.036.

13. Castiglione A, Gribaudo M, Iacono M, Palmieri F. Modeling performances of concurrent big
data applications. Software: Practice and Experience2014; :n/a–n/adoi:10.1002/spe.2269. URL
http://dx.doi.org/10.1002/spe.2269.

14. Qureshi MK, Patt YN. Utility-based cache partitioning:A low-overhead, high-performance, runtime mechanism to
partition shared caches.Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 39, IEEE Computer Society: Washington, DC, USA, 2006;423–432.

15. Kavadias SG, Katevenis MG, Zampetakis M, Nikolopoulos DS. On-chip communication and synchronization
mechanisms with cache-integrated network interfaces.Proceedings of the 7th ACM international conference on
Computing frontiers, CF ’10, ACM: New York, NY, USA, 2010; 217–226.

16. Liu F, Jiang X, Solihin Y. Understanding how off-chip memory bandwidth partitioning in chip multiprocessors
affects system performance.HPCA 2010, Jan.; 1–12.

17. Schneider S, Yeom JS, Nikolopoulos D. Programming multiprocessors with explicitly managed memory
hierarchies.ComputerDec;42(12):28–34.

18. Moseley T, Kihm J, Connors D, Grunwald D. Methods for modeling resource contention on simultaneous
multithreading processors.Computer Design: VLSI in Computers and Processors, 2005. ICCD 2005. Proceedings.
2005 IEEE International Conference on, Oct.; 373–380.

19. Kim Y, Han D, Mutlu O, Harchol-Balter M. Atlas: A scalableand high-performance scheduling algorithm for
multiple memory controllers.HPCA 2010, Jan.; 1–12.

20. Menasce’ DA. Virtualization: Concepts, applications,and performance modeling.Proc. of The Computer
Measurement Groups 2005 International Conference, 2005.

21. Benevenuto F, Fernandes C, Santos M, Almeida VAF, Almeida JM, Janakiraman GJ, Santos JR. Performance
models for virtualized applications.ISPA Workshops, Lecture Notes in Computer Science, vol. 4331, Min G,
Martino BD, Yang LT, Guo M, Rnger G (eds.), Springer, 2006; 427–439.

22. Huber N, Von Quast M, Brosig F, Kounev S. Analysis of the performance-influencing factors of virtualization
platforms.Proceedings of the 2010 international conference on On the move to meaningful internet systems: Part
II , OTM’10, Springer-Verlag: Berlin, Heidelberg, 2010; 811–828.

23. Cherkasova L, Gardner R. Measuring cpu overhead for i/o processing in the xen virtual machine monitor.Proc. of
the USENIX Annual Technical Conference, ATEC ’05, USENIX Association: Berkeley, CA, USA, 2005; 24–24.

24. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Skadron K. A performance study of general-purpose applications
on graphics processors using cuda.J. Parallel Distrib. Comput.Oct 2008;68(10):1370–1380, doi:10.1016/j.jpdc.
2008.05.014. URLhttp://dx.doi.org/10.1016/j.jpdc.2008.05.014.

25. Owens J, Houston M, Luebke D, Green S, Stone J, Phillips J.Gpu computing.Proceedings of the IEEEMay 2008;
96(5):879–899, doi:10.1109/JPROC.2008.917757.

26. Gregg C, Hazelwood K. Where is the data? why you cannot debate cpu vs. gpu performance without the answer.
Performance Analysis of Systems and Software (ISPASS), 2011 IEEE International Symposium on, 2011; 134–144,
doi:10.1109/ISPASS.2011.5762730.

27. Shi L, Chen H, Sun J, Li K. vcuda: Gpu-accelerated high-performance computing in virtual machines.Computers,
IEEE Transactions onJune 2012;61(6):804–816, doi:10.1109/TC.2011.112.

28. Yeh CY, Kao CY, Hung WS, Lin CC, Liu P, Wu JJ, Liu KC. Gpu virtualization support in cloud system.
Grid and Pervasive Computing, Lecture Notes in Computer Science, vol. 7861, Park J, Arabnia H, Kim C,
Shi W, Gil JM (eds.). Springer Berlin Heidelberg, 2013; 423–432, doi:10.1007/978-3-642-38027-345. URL
http://dx.doi.org/10.1007/978-3-642-38027-3_45.

29. Gribaudo M, Piazzolla P, Serazzi G. Consolidation and replication of vms matching performance objectives.
Analytical and Stochastic Modeling Techniques and Applications, Lecture Notes in Computer Science, vol. 7314.
Springer Berlin Heidelberg, 2012; 106–120.

30. Bertoli M, Casale G, Serazzi G. Jmt: performance engineering tools for system modeling.SIGMETRICS Perform.
Eval. Rev.2009;36(4):10–15, doi:http://doi.acm.org/10.1145/1530873.1530877.

31. Blackburn SM, Garner R, Hoffmann C, Khang AM, McKinley KS, Bentzur R, Diwan A, Feinberg
D, Frampton D, Guyer SZ, et al.. The dacapo benchmarks: Java benchmarking development
and analysis. SIGPLAN Not. Oct 2006; 41(10):169–190, doi:10.1145/1167515.1167488. URL
http://doi.acm.org/10.1145/1167515.1167488.

32. Cerotti D, Gribaudo M, Piazzolla P, Serazzi G. Flexible cpu provisioning in clouds: A new source of performance
unpredictability.QEST, 2012; 230–237.

33. Cerotti D, Piazzolla P, Gribaudo M, Serazzi G. End-to-end performance of multi-core systems in cloud
environments.EPEW, 2013; 221–235.

34. CUDA Parallel Programming Language Website. http://www.nvidia.com/object/cudahomenew.html.
35. Nelder JA, Mead R. A simplex method for function minimization. The Computer JournalJan 1965;7(4):308–313,

doi:10.1093/comjnl/7.4.308. URLhttp://dx.doi.org/10.1093/comjnl/7.4.308.
36. SciPy Website. http://www.scipy.org/scipylib/index.html.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2014)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

http://dx.doi.org/10.1002/spe.2269
http://dx.doi.org/10.1016/j.jpdc.2008.05.014
http://dx.doi.org/10.1007/978-3-642-38027-3_45
http://doi.acm.org/10.1145/1167515.1167488
http://dx.doi.org/10.1093/comjnl/7.4.308

	1 Introduction
	2 Motivation
	3 Related works
	4 Tasks and system description language
	5 VIRTUALIZED MULTICORE SYSTEMS
	6 Complex applicative scenario
	7 CONCLUSIONS

