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ABSTRACT
The increase of energy consumption and the related costs
in large data centers has stimulated new researches on tech-
niques to optimize the power consumption of the servers. In
this paper we focus on systems that should process a peak
workload consisting of different classes of applications. The
objective is to implement a policy of load control which al-
lows an efficient use of the power deployed to the resources.
The proposed strategy controls the workload mix in order
to achieve the maximum utilization of all the resources al-
located. As a consequence, the power provision will be fully
utilized and the throughput maximized. Thus, the costs to
execute a given workload will be minimized, together with
its energy consumption, since the required processing time
is decreased.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Performance, energy optimization, energy-aware scheduling,
queuing network, multi-class workload, load control policies

1. INTRODUCTION
The energy management of computer systems has become a
key issue in the design and implementation of IT infrastruc-
tures. The cost of powering computers is increased along
with their improvement of performance. Typically, users of
data centers expect the quality of service they require to be
continuously available to their high performance requests.

For this reason, and for the highly fluctuations in the flow
of incoming requests, data centers are usually sized to meet
peak workload with the performance required. This produce
an outlay of massive amounts of energy since several servers
undergo long periods of low utilization during which their
energy consumptions is still significant.
The search for green IT has inspired a wide spectrum of tech-
niques for power management that exploit, albeit in different
ways, two types of basic mechanisms: the dynamic scaling
of a given component’s performances (Dynamic Speed Scal-
ing) and the dynamic hibernation of components (Dynamic
Resource Sleeping), see e.g.[1]. Among the techniques de-
veloped for energy efficiency in data center, there are some
works on the system load, providing algorithms/policies ei-
ther to balance or schedule it among the servers. Simple
Linux Utility for Resource Management (SLURM) is de-
scribed in [2] and is a resource management and job schedul-
ing system for Linux based clusters of all sizes. It provides a
power management facility for idle nodes that can be placed
in a lower power state. In [3] the authors propose a schedul-
ing technique to reduce the energy consumption by allo-
cating jobs to a node based on rack information. In [4],
the authors propose a load balancing policy that turns on
or off cluster nodes dynamically according to the system
workload. Their work is continued in [5], where the Service
Level Agreement (SLA) is used to adjust active resources by
making a trade-off between service quality and power con-
sumption. By using multiple-class production workloads,
in [6], the authors to quantify how power usage patterns
are affected by workload choice. To our knowledge this is
the first power usage study at the scale of datacenter work-
loads, and the first reported use of model-based power mon-
itoring techniques for power provisioning in real production
systems. In [7] several high-level full-system power mod-
els for a wide range of workloads and machines are gener-
ated and their accuracy evaluated with experimental data.
Results show the limitations of previously proposed models
based solely on OS-reported component utilization for sys-
tems where the CPU is either aggressively power-managed
or is not the dominant consumer of dynamic power. The
work in [8] focused on energy-efficient parallel application
job allocation for heterogeneous architectures. In heteroge-
neous architectures, the system power model becomes much



more complicated because the power consumption patterns,
power state spaces, and power management mechanisms are
different.
In [9] a model is proposed to make a trade off between perfor-
mance of the system and its power consumption, by dynam-
ically powering down servers and powering them up again
according to demand. Several heuristic policies that try to
optimise the behaviour of the system are also proposed.

In this paper we apply queuing networks to derive the val-
ues of the parameters for the load control so that the energy
consumption of servers processing a multi-class workload is
minimized. It is known that the performance of systems
providing services to different classes of users depends on
the population mix of the workload that the systems pro-
cess. More precisely, given a set of resources characterized by
their service demands, it is possible to identify a set of pop-
ulation mixes corresponding to which some of the resources
are saturated simultaneously and the system achieves its
best performance. It is known that one of these population
mixes allow two resources to be equiutilized regardless the
population sizes. This operational condition is optimal since
it maximizes the utilization of the resources and the system
throughput. Thus, with this optimal mix in execution the
power provisioned is fully utilized and, consequently, the en-
ergy consumption per job executed is minimized.
Since the arriving flow of requests of the various classes is
subject to fluctuations, in this work we propose strategies
to shape and redirect the incoming workload to allow one
or more interconnected systems to work at their optimal
conditions. As a result, for a larger range of population
mixes the interconnected systems work as much as possible
at their optimal conditions, spending less energy to execute
each job and thus the total energy consumption is reduced.
The strategies and their variations are analyzed to evaluate
the achieved gain in terms of both performance and energy
reduction. Such approach takes advantage in presence of
high heterogeneity among the requests of each system char-
acterized by large differences between their optimal mixes.
The remainder of the paper is organized as follows. Section
2 presents the model used to characterize energy consump-
tion using queuing networks. In Section 3 we extend the
model to include multi-class, multiple stations systems to
show that the energy consumption is minimized when the
system works with an optimal population mix. In Section
4 we add an energy-aware mechanism that changes the in-
coming population mix workload, while in Section 5 results
are presented to show the validity of our approach. Section
6 concludes the paper presenting some future directions

2. ENERGY CONSUMPTION
CHARACTERIZATION

As seen in Section 1, energy consumption has been analyzed
in several works, and it has been related to several param-
eters of the considered systems. In this work we will focus
on energy consumption models that can be related to classi-
cal performance indexes, such as utilization, throughput and
system response time, provided by queuing network models.

2.1 Behavior
A data center machine is characterized by several compo-
nents: CPUs, storage units, networking, as well as other de-

vices to control the infrastructure. In many works, see e.g.
[6] [7], the instantaneous power consumption of a server is
shown to have a linear relation to the CPU utilization. This
linear relation seems to still hold true with today’s high-end
systems, as shown in Figure 1, where results from a set of
measurement collected on an Intel i7 are presented. The
estimated utilization of several workloads vs the power con-
sumption in Watts are shown. To perform the tests we used
a 4 cores, 2 simultaneous multi-threaded (SMT) machine
running at 2.4GHz. This architecture provides 8 CPUs for
running the applications. The machine’s operating system
was Ubuntu 14.04.1(Trusty Tahr)[10] and we used the pow-
erstat[11] command as the energy consumpion meter. To
simulate an increasing CPU-intensive workload, we run the
Sunflow benchmark of the DaCapo suite[12] increasing from
1 up to 8 the number of simultaneous threads generated by
the application at each run. Since each thread fully utilizes
a CPU, the total utilization of the machine is approximately
12.5% times the number of used threads. This explains the
small clusters of data visible in Figure 1.
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Figure 1: Power consumption models vs utilization

Let U be the CPU utilization, the power consumption PC(U)
of a server can be described as [6]:

PC(U) = Pidle + U · (Pmax − Pidle) (1)

where Pidle is the power consumed when no user application
is running, and Pmax is the maximum power consumption
when the server is 100% utilized. Note that both PC(U),
Pidle and Pmax are measured in Watt since they represent
the instantaneous amount of energy consumed by the appli-
cation. In the example of Figure 1, parameters have been
estimated as Pmax = 66.85 Watt and Pidle = 17.59 Watt.

Although in this paper we focus on linear models only, the
proposed results are still valid for any expression of the
power consumption that increases monotonically with re-
spect to the utilization. For example, a slightly more com-
plex expression for PC(U), as defined in [13], can be the
following:

PC(U) = Pidle + (2U − Ur) · (Pmax − Pidle) (2)

where r must be experimentally determined by data col-
lected from the considered system. In the example shown
in Figure 1, this shape parameters has been estimated as
r = 1.743.



2.2 Metrics
From Eq.1, it seems that in order to reduce the power con-
sumption we must reduce the utilization of a server. How-
ever, reducing the utilization means also decrease the pro-
ductivity of the server. A better characterization of a server
energy consumption is the average energy consumed per job
EJ(U). Let us focus on a time interval T : if PC(U) is the
average power required by the server, then the total energy
required during T is PC(U) · T . The number of jobs com-
pleted by the server in the interval T is C = X ·T , where X
represents the throughput of the server. Thus, EJ(U) is:

EJ(U) =
PC(U) · T

C
=

PC(U) · T

X · T
=

PC(U)

X
(3)

Since, for the utilization law we have that U = X ·D, where
D represents the average service demand, we can express the
energy consumption per job as a function of the utilization:

EJ(U) = D ·
PC(U)

U
(4)

If we insert Eq. 1 into Eq. 4 we obtain:

EJ(U) = D ·
Pidle + U · (Pmax − Pidle)

U
(5)

= D ·

(

Pidle ·
1− U

U
+ Pmax

)

Figure 2 shows the average energy per job for D = 1sec and
Pmax = 1Watt for different values of Pidle. As U → 0, al-
though the power consumption is minimized, the energy per
job increases, while as U → 100% it tends to its minimum
value D · Pmax. So, in order to reduce the energy required
per job, the utilization of the system must be maximized,
even if this can result in a higher instantaneous power con-
sumption.
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Figure 2: Energy consumption per job, for D =
1 sec., Pmax = 1 Watt and different Pidle.

Let us now consider a system composed by R different re-
sources, each characterized by a specific power consumption
PCr(Ur). We can define a system-wise power consumption
PCS and energy consumption per job EJS as:

PCS =
R
∑

r=1

PCr(Ur) EJS =
PCS

X
(6)

whereX is the system throughput. As observed in Eq. 5, each
resource works with the minimum energy consumption per

job when it is fully utilized. We characterize this condition
with the index EES that we refer to as Energy Efficiency.
In particular, we want that EES → 1 as the system utilizes
all its resources in the most efficient way, and that EES → 0
when all resources are used at their worst. We define EES

as:

EES =
1

R
·

R
∑

r=1

PCr(Ur)− PCr(0)

PCr(100%) − PCr(0)
(7)

It can be easily seen that Eq.7 has the two desired properties
of EES → 0 if Ur → 0, ∀r and EES → 1 if Ur → 100%, ∀r.
Moreover, in the special case in which all the resources are
identical and follow the linear behavior of Eq.1, the Eq.7 can
be simplified to:

EES =
1

R
·

R∑

r=1

Pidle + Ur · (Pmax − Pidle)− Pidle

Pmax − Pidle

=

∑R
r=1 Ur

R

(8)

3. ENERGY OPTIMIZATION
IN SYSTEMS WITH
MULTI-CLASS REQUESTS

Given the significantly different service demands exhibited
by nowadays web applications, multi-class models are the
most appropriate technique to characterize their workload.
For example, in a site for e-commerce some requests heavily
load the DB server, e.g., search operations on the catalog,
while others stress particularly the application server, e.g.,
operations to finalize the purchase. The load generated by
the various requests can be modeled accurately by multiple
classes of users, each class representing a different type of
requests.
In this paper we consider large-scale data centers comprising
thousands of servers processing millions of requests. Typi-
cally, in this type of computing environment Quality of Ser-
vice considerations suggest to limit the number of requests
in execution in each server. Several studies are reported
in literature addressing the problem of energy consumption
minimization of a set of servers subject to fluctuating arrival
traffic. Consolidation policies, reduction of active servers,
and decrease of clock frequency are among the actions sug-
gested. In this paper we consider the same problem focusing
only on periods of peak load. In this condition, the flow of
arriving requests is much higher than usual, and the limi-
tation of the maximum number of requests in execution on
each server is active.
According to the considerations described above, in the fol-
lowing we use closed multi-class queuing networks to model
the servers and the workload considered. More precisely, we
consider two classes of requests and two queue stations for
each system, representing the computation and the storage
servers, respectively.
Some of the considerations apply for two-station models only
while others can be extended to models with a higher num-
ber of resources and with a higher number of classes. More
generally, we consider that for each class of requests there
is a resource that is utilized the most, i.e., the bottleneck
of that class. Such station must be different for each class.



Note that when the classes have the same bottleneck, the
technique discussed in this work is still valid, but less effec-
tive.

Let N be the total number of requests in execution in a sys-
tem consisting of two resources modeled with two fixed rate
queue stations. Since the model is closed and the workload
comprises two classes of requests, it will be: N = N1 + N2

where Nc is the number of requests of class c in execution.
Let β = (β1, β2) be the vector describing the proportion of
the requests of each class that are in execution, referred to
as population mix. Thus, it is β1 = N1/N and β2 = N2/N
with β1 + β2 = 1. Therefore, the population of the system
is given by the vector N = (β1N, β2N).
For simplicity, we parameterize our model using the service
demands Dr,c of the requests, i.e., the total amount of time
that a request of class c requires in service at resource r for
a complete execution. The characteristics of the classes are
described by a demand matrix D. For example, consider
the following demand matrix where per-class demands are
by column and per-resource demands are by row:

Class 1 Class 2
Resource 1 0.75 0.64
Resource 2 0.48 1.25

(9)

According to matrix (9), class 1 service demands on re-
sources 1 and 2 are 0.75 sec and 0.48 sec, respectively. Class
2 service demands on resources 1 and 2 are 0.64 sec and 1.25
sec, respectively. The bottleneck of class 1 is resource 1,
while the bottleneck of class 2 is resource 2. The workload
of the system is completely described by the vector N , or
alternatively by the total number N of requests in execution
and the population mix vector β, and the service demand
matrix D.

3.1 Optimal operational mix
In the following, we will use some peculiar properties of two-
class models to approach the energy consumption minimiza-
tion problem. It is known that in systems with multi-class
workloads having at least two distinct class bottlenecks, i.e.,
the resource most loaded by a class is different from that
most loaded from the other classes, two or more resources
may saturate concurrently as a function of the population
mixes. In this case, varying the population mix, keeping
constant the total number of requests in execution, it is pos-
sible to observe that the saturation condition moves among
different resources. In [14] it is shown that when the bot-
tleneck migrates between two resources there exists a set
of population mix, referred to as common saturation sector,
corresponding to which the two resources saturate simulta-
neously. The population mixes that belong to a common
saturation sector are interesting for our purposes since they
maximize the sum of the utilization of the two resources
that saturate concurrently, and thus maximize the Energy
Efficiency EES of Eq.8. We will see that this condition
corresponds to the minimization of the energy consumption
per request EJS . Let us focus now on a system with two re-
sources and two class of requests. In [15] it is shown that in
such a system there exists a combination of requests of the
different classes such that the resources are equally utilized
regardless of the total number of requests in execution. The

corresponding mix β∗, referred to as equiutilization mix, is
within a common saturation sector and maximizes the sum
of the resource utilizations for all population sizes. So, with
this mix of classes the condition of saturation with very high
population size can be relaxed. The equiutilization mix, as
a function of the service demands Dr,c, in [15] is given by:

β∗ =






β1 =

ln
D22

D12

ln
D11D22

D12D21

, β2 = 1− β1






(10)

It is shown that the equiutilization mix provides an optimal
operational point of the system where the system power, a
metric defined in [16] as the ratio of system throughput to
system response time, is maximized. This means that the
system operates with the best performance since the global
utilization of the resources is maximum and so is the ratio
of throughput to response time. This condition corresponds
to having the maximum throughput with the minimum re-
sponse time, and thus to have the minimum energy con-
sumption per job EJS .
Let us remark that with multi-class workload the system
throughput must be properly weighted to take into account
the differences among the service demands of the various
classes. Indeed, classes with high total service demand, i.e.,
the total service demand of class c is

∑

r
Dr,c, are slower and

have smaller throughput than fast classes, i.e., those with
small total service demands. The weight should balance
the amount of work completed per time unit, i.e., through-
put, with the service time it requires. According to [15], we
normalize system throughput by multiplying the per-class
components by the ratio of the total service demand of each
class to the total service demand of all the classes. Thus,

the normalized system throughput X
′

is:

X
′

=
D11 +D21

D
X1 +

D12 +D22

D
X2 (11)

where the total service demand of all the classes is D =
∑

r

∑

c

Dr,c. Using the utilization law Ur,c = XcDr,c, and

considering that Ur1 + Ur2 = Ur, where Ur is the total uti-
lization of resource r , Eq. 11 becomes

X
′

=
U1 + U2

D
(12)

showing that the normalized throughput X
′

is equal to the
sum of the utilizations of all the resources scaled with the
total service demand of the workload. Eq.12 shows that the
normalized throughput is directly proportional to the sum of
resource utilizations. Since in multi-class workload both PC
and normalized throughput X

′

depend on the utilizations,
which in turn depend on the population mix β, we use the

notations PC(β) and X ′(β). With the new notation, Eq. 6
is extended for multi-class workload in:

PCS(β) =

R
∑

r=1

PCr(β) EJS =
PCS(β)

X ′(β)
(13)

In the closed model with constant population N the utiliza-
tions of the stations with respect to all the possible pop-
ulation mixes are maximized with the optimal population



mix β∗. With this mix, as N grows the utilizations tend to
100%, thus the power consumption PCS is maximized and
the energy consumption per job EJS is minimized. As a
consequence, the optimal population mix provides the best
result in term of both performance and energy consumption.

4. THE ENERGY-AWARE SCHEDULER
Section 3 shows that with multi-class workload the energy
consumption is minimized when the system works in its op-
timal condition, i.e. when the population mix is equal to
β∗. However, the workload of the system is often variable in
unpredictable ways and thus the system rarely works at its
optimal mix. In this Section, we propose to add an energy-
aware component that changes the incoming population mix
workload.

4.1 Architecture
We consider a collection of several sub-systems with hetero-
geneous resources that may have different optimal popula-
tion mixes. For simplicity we assume that each of them is
composed by two resources. Moreover, we assume that the
capacity W of each sub-system is limited, i.e., the number of
jobs admitted in each sub-system is bounded. Then, we add
to the global system the energy-aware component to control
the incoming workload, as shown in Figure 3.

Since each sub-system has a limited capacity, when all of
them are full, the further incoming jobs will wait in the
queue of the energy controller. Such component monitors all
the sub-systems in order to evaluate their actual population
mixes. According to these values the controller implements
two strategies that aim to preserve as much as possible the
actual population mix of each sub-system equal to the cor-
responding target mix value.

Figure 3: Architecture of the energy optimizer

4.2 Energy-aware strategies
The scheduling strategy identifies the next job, and in par-
ticular its class, that will be selected from the queue of the
controller and directed towards the sub-systems. The rout-
ing strategy decides to which sub-system the selected job will
be forwarded. The destination sub-system will be selected
so that the distance between the new mix and its optimal
target mix is minimized with respect to all the sub-systems.

The entire process is tuned by the following parameters.
Window - It identifies the portion of the controller queue
from which the jobs are selected. A larger window increases

the chance to have enough jobs of the proper class to pre-
serve the target mix.
Age - In case of a very unbalanced target mix, jobs of one
class will be very frequently forwarded to the sub-systems,
whereas the jobs of the other class will wait for a very long
time. The Age parameter prevents starvation: any job wait-
ing longer than the Age value will be always forwarded ig-
noring its effect on the population mix.
Drop - When a job has waited longer than the Age param-
eter, but all sub-systems are full, the controller must take a
decision. It will drop the job, in case of a Drop policy; it
will keep the job in its queue, otherwise.

Let β∗

Sysi
the optimal mix of the sub-system i and βact

Sysi

the actual population mix of the sub-system i as computed
by the controller. The two strategies are described by Al-
gorithms 1 and 2. First, the scheduler strategy inspects for
a job in the front of the queue of the controller older than
the Age parameter (Algorithm 1: line 1-10). When all sub-
system are full, such job will be dropped or it will stay in the
queue according to the Drop policy chosen. If at least a sub-
system is not full, such job will be forwarded. In absence of
too old jobs, the strategy computes for all pair of classes and
sub-system (c, Sysi) the mix that will result from forward-
ing a class c job to sub-system i (Algorithm 1: line 15-17).
The scheduling strategy forwards the first job in the queue
of the class that minimizes the distance between the com-
puted population mixes and the corresponding target ones
(Algorithm 1: line 18-19). Analogously, the routing strategy
forwards the selected job to the sub-system that minimizes
the same measure (Algorithm 2: line 1-5).

Notice that the scheduling strategy must consider together
both the class of the job and the sub-system at which it
will be forwarded, to take the proper choice. Typically, the
scheduling and routing decisions are logically separated and
so they have been described. Clearly, the algorithms can be
integrated together in order to avoid duplicated computa-
tions.

5. RESULTS
We evaluate the scheduler proposed in Section 4, by ini-
tially applying the strategy to a system consisting of a single
sub-system and then to a most complete case with two sub-
systems. In these experiments we do not consider the age
parameter. We have extended the simulator JSIMgraph of
the JMT tool [17] to implement the energy optimizer sched-
uler.

5.1 Single system
We start by applying the energy optimizer to a system com-
posed by a single set of two resources, characterized by
the demands defined in Eq. 9, with a global population
of N = 50 jobs and W of them in the sub-system, as shown
in Figure 4. In this case, the model can be studied analyti-
cally. After an initial period, as soon as the population mix
in the sub-system reach a value close to β∗, whenever a job
of a given class exits from the sub-system, it is replaced by
another one of the same class selected from the jobs wait-
ing in the energy controller queue. Thus, the system can
be analyzed as a closed model with just the jobs inside the
sub-system. The resulting closed model is shown in Figure



Algorithm 1 Scheduling strategy

Input: Set of β∗

Sysi
, Window, Age, Drop option

1: FJ=First job in Window of the controller queue
2: if FJ too old then
3: if All Sub-system full then
4: if Drop option then
5: Drop FJ
6: end if
7: return NULL
8: else
9: return FJ
10: end if
11: else
12: if All Sub-system full then
13: return NULL
14: end if
15: for all pairs (c, Sysi) do
16: βact

Sysi
(c) = ComputeMix(c, Sysi)

17: end for
18: c∗ = argmin

(c,Sysi)

|βact

Sysi
(c)− β∗

Sysi
|

19: return the first job in Window of class c∗, when it is
present, of the other class, otherwise

20: end if

Algorithm 2 Routing strategy

Input: Set of β∗

Sysi
, c∗ computed by scheduling strategy

1: for all Sysi do
2: βact

Sysi
(c) = ComputeMix(c∗, Sysi)

3: end for
4: Sys∗ = argmin

Sysi

|βact

Sysi
(c∗)− β∗

Sysi
|

5: return Sys∗

4 enclosed by the inner box and where the dashed arrow
represents the new path of the jobs.

Let us call W1 = β∗

1W and W2 = β∗

2W (with W1+W2 = W )
the number of jobs in the sub-system for the two classes. We
apply the Mean Value Analysis (MVA) to solve a system
with W1 and W2 jobs. Since we have only one sub-system,
the utilization and the throughput computed with the MVA
also apply to the complete model. In order to compute the
global response time, we add to the response time of the
sub-system the time spent in the queue of the scheduler
computed using Little’s law: in particular, if we call X1

and X2 the throughput of the two classes, the time spent
in the scheduler can be computed as (N1 − W1)/X1 and
(N2 −W2)/X2.

N1-W1, N2-W2 W1, W2

N1, N2

W1+W2=W

N1+N2=N

Figure 4: Single system closed model.

We start by validating the analytical solution with the re-

sults obtained by the simulator as shown in Figure 5a. In
particular it can be seen that the analytical model perfectly
matches the results provided by the simulation when the ca-
pacity of the sub-system is W = 20. The figure also shows
that with W = N , the analytical model matches the simu-
lation of the system without the energy optimizer.

We then analyze the effect of the size of the capacity W
on the energy efficiency (Figure 5b) and on the energy con-
sumption per job (Figure 5c). As the capacity decreases,
the maximum efficiency tends to become smaller, but it is
reached for a larger set of input mixes. This allows to opti-
mize the energy consumption by selecting the best capacity
W for a given input mix. As shown in Figure 5d, for a
fixed input mix the energy consumption per job has a min-
imum that represents the best capacity for the considered
β. This optimum tends to the maximum capacity (which
means that the energy optimization is not useful) only if the
input mix corresponds to the optimal operational point of
the sub-system. The “Optimal W ” curve in Fig.5c repre-
sents the minimum energy consumption per job that can be
obtained when the optimal capacity corresponding to each
input mix is used.

Note that as N increases, the energy optimizer becomes
more effective, by making the energy efficiency with opti-
mal capacity closer to 1, as it can be seen in Figure 5e.
Reducing the energy consumption has however a negative
effect on the throughput of the class with more jobs than
the one at the optimal mix, that is slowed down to allow
the sub-system working at its optimal point (see Figure 5f).
This suggests that the optimization can be further tuned to
provide the best tradeoff between the energy consumption
and the per-class performances.

5.2 Two heterogeneous sub-systems
We have also applied the proposed procedure to two sub-
systems, as shown in Figure 6. They are characterized by
different demand matrix, in particular we have chosen them
to be opposite:

D1 =

∣

∣

∣

∣

0.75 0.64
0.48 1.25

∣

∣

∣

∣

D2 =

∣

∣

∣

∣

0.64 0.75
1.25 0.48

∣

∣

∣

∣

(14)

Figure 7 shows the resulting energy efficiency computed via
simulation using the extended version of JMT. The total
number of jobs is N = 100, and both sub-systems have a
capacity W = 20. As it can be seen, the energy optimizer
obtains the highest energy efficiency for almost all the input
mixes between 0.2 and 0.8.

Subsystem 1

Subsystem 2

Controller

Figure 6: Closed model with two heterogenous sub-
systems.
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Figure 5: Single system closed mode performance indices and validation: a) Energy efficiency validation, b)
Energy efficiency as function of the capacity, c) Energy per job, d) Optimization of the capacity, e) Energy
efficiency as function of the total population, f) System Throughput
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Figure 7: Energy efficiency of a model with two het-
erogeneous sub-systems

6. CONCLUSIONS
In this paper we have explored the possibility of using known
results on optimal operational point of multi-class queueing
networks to reduce the energy consumption per job. A new
type of energy-aware scheduler has been proposed. Simula-
tions with a two-class workload have shown that reduction of
energy per job can be obtained as a function of the propor-
tions of the two classes. We are currently implementing the
proposed algorithm to experimentally validate the results
presented in this paper. Future works will include evalu-
ating the effectiveness of the technique with bursty arrivals,
and the study of its effectiveness in a very large scale system
using fluid approximations and mean-field techniques.
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