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Abstract

Wireless Sensor Networks (WSN) are large networks of tiny sensor nodes that are usually randomly
distributed over a geographical region. The network topology may vary in time in an unpredictable
manner due to many different causes. For example, in order toreduce power consumption, battery
operated sensors undergo cycles ofsleeping - activeperiods; additionally, sensors may be located in
hostile environments increasing their likelihood of failure; furthermore, data might also be collected
from a range of sources at different times. For this reason multi-hop routing algorithms carrying mes-
sages from a sensor node to a sink should be rapidly adaptableto the changing topology. Swarm
intelligence has been proposed for this purpose, since it allows the emergence of a single global behav-
ior from the interaction of many simple local agents. Swarm intelligent routing has been traditionally
studied by resorting to simulation. The present paper aims to show that the recently proposed model-
ing technique, known asMarkovian Agents, is suited for implementing swarm intelligent algorithms
for large networks of interacting sensors. Various experimental results and quantitative performance
indices are evaluated to support this claim. The validity ofthis approach is given further proof by
comparing the results with those obtained using a WSN discrete event simulator.

Keywords: Wireless Sensor Networks, Markovian Agents, Swarm intelligence, Gradient-based
routing, Performance evaluation.

1. Introduction

Wireless Sensor Networks (WSN) are application-specific networks composed of a multitude of
tiny sensor nodes with limited computational, communication, and power capabilities [2]. Sensor
nodes collect measurements of physical parameters and transmit them to a sink node. Sensors may be
scattered randomly over a geographical region and, in orderto save battery energy, they may undergo
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cycles ofsleeping - activeperiods [3]. Nodes deployed in real fields might get damaged,or just fail at
any time. The sink node might also change its location, and more than one sink can be present at the
same time. As a result, the topology of the active nodes in a WSN may vary in time in an unpredictable
manner. For this reason routing algorithms used to carry messages from a sensor node to a sink in a
multi-hop fashion should rapidly adapt to the changing topology. A survey of routing algorithms is in
[4].

Swarm intelligence (SI) techniques [5] are population-based stochastic methods in which the col-
lective behavior of relatively simple individuals arises from their local interactions to produce global
patterns. Through the adoption of the swarm intelligence concept, it is possible to design distributed,
self-organizing, and fault tolerant routing protocols able to self-adapt to environmental changes. The
main properties of SI-based routing protocols are that:i) single nodes are assumed to be simple with
low computational and communication capabilities;ii) nodes are not aware of their position and com-
municate indirectly, i.e., messages are not directed to anyparticular node;iii) the range of messages
may be very short, nevertheless a robust global behavior emerges from the interaction of the nodes;iv)
global behavior adapts to topological and environmental changes.

SI in WSN is inspired by observing on how ant colonies forage for food [5]. Ants release a sub-
stance calledpheromoneduring their passage, and tend to move along paths where a high pheromone
trace is present, reinforcing that specific route. However,pheromone evaporates allowing the system to
remove existing information and randomly search for new solutions. In this way, large groups of sim-
ple agents, interacting only locally with neighboring agents, work together to coordinate their actions
toward fulfilling a common goal. In such systems, modeling the state space of the entire system as a
cross-product of the state spaces of individual nodes results in the well-known state explosion prob-
lem. In fact, the usual way to study these systems is through simulation [6, 7]. A few papers proposes
analytical approaches, as surveyed in Section 8.

This paper describes how the performance analysis of large SI-WSN systems composed of inter-
acting agents can be modeled and analytically evaluated by resorting to a recently defined new entity
calledMarkovian Agents (MA)[8, 9]. A MA is a discrete-state continuous-time Markov chain (CTMC)
governed by a transition rate matrix that contains local rates and interaction-induced rates. MAs in-
teract by sending and receiving messages that modify their behavior. Furthermore, agents are located
in a geographical space, and their interaction depends on their relative positions and is governed by a
suitableperception function.

In [10] the MA formalism was extended to include the capability of exchanging several types of
messages. The present paper illustrates a further extension to this development, introducing a set of
classes, each of them describing a different agent behavior. SI-WSN systems are thus modeled by two
types of MAs: one for the sinks and one for the sensors. The paper describes a stochastic model to
analyze a swarm-based routing protocol that is inspired by the one presented in [6]. According to [6],
pheromone information is stored at each node, and the algorithm starts with the sink agent(s) emitting
a message with the highest pheromone level; sensor agents that receive the pheromone message update
their pheromone level and transmit it to their neighbors; atthe same time sensor nodes are subject to an
evaporation process that reduces their stored pheromone intensity. The assumption is made in this pa-
per that the nodes (either sinks or sensors) are scattered over a rectangular mesh, with at most one node
in each cell. Even if the transmission range of each node limits the activity of the pheromone messages
to the closest neighboring nodes, the pheromone gradient rapidly forms over the entire region. Conse-
quently, the main aim of this paper is to show that a large system of interacting MAs can be analytically
solved to generate a pheromone intensity distribution around the sink(s) that can be successively used
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to create the routing table along the steepest gradient in order to minimize the number of hops from
each node to the sink(s).

A formal analytical model for the SI-WSN system is presentedand the related analytical solution
is illustrated. It can be proven that the implemented numerical technique is very efficient and scalable
and can cope with scenarios composed of thousands of sensor-nodes and tens of sinks in conditions in
which a state-space based analysis is unusable. It is noted again that a stable pheromone gradient is
established by letting each MA interact only with its first neighbors. This limits as much as possible
the transmission range and reduces the number of exchanged messages as well as energy consumption.
Several examples illustrate the sensitivity of the solution to characteristic parameters, such as emis-
sion and evaporation rates, transmission range, and different topological configurations. By increasing
the transmission range, the system reaches a stable pheromone configuration faster but at the cost of
increased energy consumption. Finally, the analytical model is validated via simulation.

The paper is organized as follows. Section 2 briefly revises routing protocols for WSN and de-
scribes the swarm-based routing algorithm. Section 3 presents the Markovian Agent technique and
illustrates its analytical and numerical solution. The SI algorithm is modeled in Section 4. Section 5
computes some performance indices that characterize the system. Section 6 is devoted to validating
the model and Section 7 provides an extensive set of experiments. Finally, an overview of the related
works is presented in Section 8, while Section 9 presents theoverall conclusions.

2. Gradient-based routing protocols in WSN

WSN’s specific characteristics make routing different fromtraditional wireless ad-hoc networks
[2, 11, 4]. Various routing metrics can be exploited with respect to different goals: hop count, energy
consumption, Quality of Service, throughput, network lifetime [12, 13, 14]. However, the main phi-
losophy is that the information the nodes contains is more important than the nodes themselves. Such
assumption leads routing in WSN to become data-centric as opposed to node-centric [11]. In this con-
text, gradient-based routings [15, 12] allow to establish routes to the sinks following such paths that
respect criteria related to data typologies, network topology, and nodes’ status.

From an autonomic perspective, routing algorithms easy to manage and able to react to the envi-
ronmental changes are required to set-up flexible, adaptive, and scalable networks. In the last years, SI
has been applied to autonomic networking systems [16, 17] demonstrating its feasibility and efficiency
in adapting to highly dynamic distributed systems. In analogy to the biological process of pheromone
emission, in [6] each node sends a signalling routing packetcontaining its pheromone level and updates
its value based on the level of its neighbors, thus creating apheromone gradient toward the sink. The
routing task is driven by the pheromone level of the network:data packets are forwarded toward the
highest pheromone density zone and reach the sink followingthe pheromone gradient. Any change
on the network condition will be reflected by an update of the pheromone level of the involved nodes;
changes on the pheromone gradient will automatically drivethe routing decisions toward the new op-
timal solution. In this way, the network can self-organize its topology and adapt to environmental
changes. Moreover, when link failures occur, the network reorganization task is accomplished by those
nodes near the broken links. This results in a robust and self-organized architecture.

In the following, we describe a SI based algorithm derived from [6]. Since our purpose is to study
the gradient construction process, we will focus on the signalling component of the routing protocol
avoiding details about data forwarding. We assume to have two types of node,sinksand sensors,
and that the pheromone intensity is discretized intoP different levels, ranging from0 to P − 1.
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Routing paths toward the sink are established through the exchange of pheromone packets containing
the pheromone levelp (0 ≤ p ≤ P − 1) of each node. The gradient construction is triggered by sinks
that maintain the highest level of pheromone (P − 1). The gradient construction protocol is described
by Algorithms 1 and 2, differentiated with respect to the node type: sink or sensor.

Sink nodes, once activated, set their internal pheromone level to the highest valuep = P − 1,
(Algorithm 1: line 1). Then, they periodically broadcast a pheromone message to their neighbors,
encoding the intensity valuep (Algorithm 1: lines 5-7). The time period is defined by the timerT 1.

The pheromone level of a sensor node is initially set to 0 (Algorithm 2: line 1) and then it is up-
dated following anexcitation - evaporationprocess. Sensor nodes periodically broadcast a pheromone
message containing their internal pheromone level. This activity is scheduled at fixed time intervals by
appropriately setting the timerT 1 (Algorithm 2: line 2). When the timer expires, a packet is sent to all
the neighbors (Algorithm 2: line 12-14).

Excitation is triggered by the reception of the pheromone level from a neighbor (Algorithm 2:
lines 6-10). As a consequence, the node updates its own levelwhen a greater value is received; the new
value is computed as a function of the current and the received pheromone levelupdate(p, pn). In this
paper, we useupdate(p, pn) = round((p + pn)/2) (Algorithm 2: line 9).

The evaporation mechanism is triggered at the expiration ofthe timerT 2 (Algorithm 2: lines
15), and it simply decreases the current value ofp by one unit (Algorithm 2: lines 15-16), assuring it
maintains a value greater or equal to0.

Algorithm 1 Sink nodes
1: p← P − 1
2: setT imer(T 1)
3: loop
4: e← waitForEvent()
5: if e = TIMER EXPIRED then
6: sendBroadcast(p)
7: end if
8: end loop

3. The Markovian Agent model

Markovian Agents Models (MAMs) [8] represent systems as a collection of agents scattered over a
geographical space. Each agent is described by a discrete-state continuous-time homogeneous Markov
chain where two types of transitions may occur:local transitionsandinduced transitions. Local transi-
tions are determined by internal features of the MA, whereasinduced transitions occur as a consequence
of the interactions with other MAs. Interactions are possible throughmessage exchanging: when a lo-
cal transition occurs, an MA can send a message that can be received or ignored by other MAs. The
propagation and reception of messages is regulated by aperception functionu(·), a function of the
agent position in the space, of the message routing policy, and of the transmittance properties of the
medium. The definition of the perception function is quite general, and allows several message routing
strategies. In particular, the receiving agent can be awareof the state in which the agent that issued
the message was, and uses this information to choose an appropriate action. The MA accepting an
incoming message changes its state performing an induced transition.

4



Algorithm 2 Sensor nodes
1: p← 0
2: setT imer(T 1)
3: setT imer(T 2)
4: loop
5: e← waitForEvent()
6: if e = DATA RECEIV ED then
7: pn ← getDataReceived()
8: if pn > p then
9: p← update(p, pn)

10: end if
11: else if e = TIMER EXPIRED then
12: t← getT imer()
13: if t = T 1 then
14: sendBroadcast(p)
15: else {t = T 2}
16: p← max(0, p− 1)
17: end if
18: end if
19: end loop

MAs are scattered over a finite geographical areaV that can be either continuous or discrete. In
case of a continuous space we have thatV ⊂ IRd, whered is an integer number representing the
dimension of the space. We denote byρ(v) : V → IR+ the spatial density function of the agents. In
particular,ρ(v) is defined such that for everyd-dimensional volumeA in V (with A ⊆ V) the number
of agents inA is distributed according to a Poisson distribution with mean

∫
A
ρ(v)dv. In this paper

we focus on the2-dimensional case, only, and considerd = 2.
To model an heterogeneous system such as a WSN with several sink and sensor nodes, we extend

the MAM [8] by adding the capability to represent, in addition to several types of messages [10], also
several classes of agents. Formally aMultiple Agent Class, Multiple Message TypeMarkovian Agents
Model (M3AM ) is defined by the tuple:

M3AM = {C,M,V ,U ,R}, (1)

where:
C = {1 . . . C} is the set of agent classes. We denote withMAc an agent of classc ∈ C.
M = {1 . . .M} is the set of message types. Each agent (independently of itsclass) can send or

receive messages of typem ∈M.
V is the finite space over which Markovian Agents are spread.
U = {u1(·) . . . uM (·)} is a set ofM perception functions (one for each message type).
R = {ρ1(·) . . . ρC(·)} is a set ofC agent density functions (one for each agent class).
Each agentMAc of classc is characterized by a state space withnc states, and it is defined by the

tuple:
MAc = {Qc,Λc,Gc(m),Ac(m),πc

0}. (2)
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Qc = [qcij ] is thenc × nc infinitesimal generator matrix of the CTMC that describes the local
behavior of a classc agent. Its entryqcij , with i 6= j, represents the transition rate from statei to state
j and we defineqcii = −

∑
j 6=i q

c
ij .

Λc = [λc
i ], is a vector of sizenc whose components represent the rate ofself-jumpsfor a classc

agent. It corresponds to the rate at which the Markov chain reenters the same state. Self-jumps allows
an agent to send messages with an assigned rate while sojourning in a state.

Gc(m) = [gcij(m)] is anc×nc matrix describing the probability that an agent of classc generates
a message of typem during a jump from statei to statej,. The elements ofGc(m) must respect the
restriction

∑M
m=1 gcij(m) ≤ 1, ∀c, i, j to ensure that during a transition an agent can generate at most

one message.
Ac(m) = [acij(m)] is anc × nc matrix, that describes the acceptance probability of typem

messages for an agent of classc. A message is dropped with probabilityacii(m), and it is accepted
with probability1 − acii(m). In the latter case, the agent immediately jumps to statej (j 6= i) with
probability acij(m), and

∑
j 6=i a

c
ij(m) = 1 − acii(m), ∀c, i,m. This implies that rows of matrix

Ac(m) sum to1.
π

c
0, is a probability vector of sizenc which represents the initial state distribution of an agentof

classc.
The perception function:um : V × C × IN× V × C × IN→ IR+ is defined such that the values

of um(v, c, i,v′, c′, i′) represent the probability that an agent of classc, in positionv, and in statei,
perceives a messagem generated by an agent of classc′ in positionv′ in statei′.

3.1. Analysis

An M3AM model can be analyzed solving a set of coupled differential equations.
Let us denote the total density of agents of classc in cell v with ξc(v) andρci (t,v) the density of

agents in statei in cell v at timet. We collect the state densities into a vectorρ
c(t,v) = [ρci(t,v)]

We assume that the total density of classc agentsξc(v) remains constant over time, however it
dynamically varies its distribution over the set of states of the agents. We have that:

nc∑

i=1

ρci (t,v) = ξc(v) , ∀t ≥ 0, ∀v, c. (3)

We are interested in computing the transient evolution ofρ
c(t,v). We start by definingβc

j (m) as
the total rate at which messages of typem are generated by an agent of classc in statej:

βc
j (m) = λc

j g
c
jj(m)

︸ ︷︷ ︸
a©

+
∑

k 6=j

qcjk g
c
jk(m)

︸ ︷︷ ︸
b©

. (4)

In (4), the term a© gives the rate at which messages are emitted when the MA remains in the statej
(λj ), taking into account the probabilitygcjj(m); similarly the term b© is introduced to accumulate
the rates of messages generated during state transitions, considering the transition rateqcjk and the
generation probabilitygcjk(m).

The rateβc
j (m) can be used to computeγc

ii(t,v,m), the total rate of messages of typem received
by an agent of classc, in statei, at positionv, at timet. Let us consider an infinitesimal areadv′. In
that point of the space there areρc

′

j (t,v
′)dv′ classc′ agents in the statej; all together they send
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messages of typem at rateβc′

j (m)ρc
′

j (t,v
′)dv′. A classc agent in positionv and in statei receives

just a portion of messages generated from a classc′ agents in statej located inv′. The fraction of
messages received is determined by the perception functionu(). The total rate of received messages is
then:

um(v, c, i,v′, c′, j)βc′

j (m)ρc
′

j (t,v
′)dv′.

Summing all the contributions coming from all the states andall the agent classes, and integrating over

the entire areaV , the total rate of received message is obtained:

γcii(t,v,m) =

∫

V

C∑

c′=1

n
c
′∑

j=1

um(v, c, i,v′ , c′, j)βc′

j (m)ρc
′

j (t,v
′)dv′. (5)

We collect the rates (5) in a diagonal matrixΓc(t,v,m) = diag(γc
ii(t,v,m)). This matrix can

be used to computeKc(t,v), the infinitesimal generator of a classc agent at positionv at timet:

Kc(t,v) = Qc +
∑

m

Γc(t,v,m) [Ac(m)− I] . (6)

The first term in the r.h.s. is the local transition rate matrix and the second term contains the rates
induced by the interactions.

The evolution of the entire model can be studied by solving∀v, c the following differential equa-
tions:

ρ
c(0,v) = ξc(v)πc

0 (7)

dρc(t,v)

dt
= ρ

c(t,v)Kc(t,v). (8)

From the density of agents in each state, we can compute the probability of finding a classc agent at
time t in positionv in statei as:

πc
i (t,v) =

ρci (t,v)

ξc(v)
. (9)

We collect all the terms in a vectorπc(t,v) = [πc
i (t,v)]. Note that the definition of Equation (9)

together with Equation (3) ensures that
∑

i π
c
i (t,v) = 1, ∀t, ∀v.

3.2. Solution technique

Equation (8) can be solved using conventional discretization techniques for both time and space.
Volume V is discretized with a rectangular grid ofnh × nw square cells of sizeds. From now
on, the node locationv = (h,w) identifies a discrete cell in positionh ∈ {1, . . . , nh} andw ∈
{1, . . . , nw}. Time is limited to an interval[0, TMax] and it is discretized with a uniform step∆t,
yielding T∆ = ⌈TMax/∆t⌉ discrete time points:t ∈ {0,∆t, . . . , T∆∆t}. The solution is then
computed using an implicit method [18]. In particular we approximate Equation (8) with:

ρ
c(t+∆t,v)− ρ

c(t,v)

∆t
≈ ρ

c(t+∆t,v)Kc(t+∆t,v). (10)
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Multiplying by ∆t and reordering terms we obtain:

ρ
c(t+∆t,v) [I−Kc(t+∆t,v)∆t] = ρ

c(t,v). (11)

Assuming att = 0 the initial condition (7), the solution vectorρc(t +∆t,v) is computed from (11)
starting fromρ

c(t,v). The method is implicit since matrixKc(t+∆t,v) depends onρc(t+∆t,v)
itself. Thus Equation (11) is solved at every time step applying a fixed-point iteration algorithm. The
number of required iteration is however very limited sinceρ

c(t+∆t,v) ≈ ρ
c(t,v).

Equation (10) is solved for every cell, and the continuous integral in (5) is replaced by a sum-
mation over all thenh × nw cells. If we denote bync∗ = Max{nc} the largest state space
dimension of thec classes of MAs, the time complexity of the solution algorithm turns out to be
O(T∆(nh×nw)

2C2Mn2
c∗) since: equation (8) iteratesT∆C(nh×nw) times the computation of the

Kc(t,v) matrix which in turns requiresM computations of theΓc(t,v,m) matrix whose complexity
is O((nh × nw)Cn2

c∗). The computation ofKc(t,v) has a complexity ofO(M(nh × nw)Cn2
c∗)

and represents the most expensive step in the procedure, because it considers all the possible inter-
actions among agents, messages, in every possible position. However, in most practical applications,
the definition of the perception function confines the interaction of each MA to a limited number of
neighboring MAs, significantly reducing the complexity of this step.

The storage complexity is limited by virtue of the iterativenumerical technique in (11) that allows
to compute all the needed quantities (vectors and matrices)at each iteration step. The size of the final
computed vectorρc(t,v) that must be stored at each iteration step (old and new value)is O((nh ×
nw)Cnc∗). In any case the complexity of the solution algorithm is time-bound with respect to memory-
bound.

4. Description of the WSN model

We model the SI protocol described in Section 2 with two MA classes: the classsink nodedenoted
by a superscripts and depicted in Fig. 1(a) and the classsensor nodedenoted by a superscriptn and
depicted in Fig. 1(b). The pheromone intensity is discretized intoP levels (ranging from0 to P − 1)
that also identify the number of message types (M = P ). We use a different message type for each
possible pheromone level, and defineM = {0, 1, . . . , P − 1}. The following pictorial rules are
adopted to represent MAs. MA states are drawn as circles. Local transitions, including self-jumps,
are represented by solid arrows and are labeled with the corresponding transition rate. A dashed arrow
starting from a transition arc identifies the generation of the massage defined by the associate label.
Induced transitions are represented with dotted arcs and are labeled with the message type that forces
the transition to occur. In this work we allow onlyacij(m) = 0 or acij(m) = 1 (that is messages can
only be always accepted, or always ignored), andgcij(m) = 0 or gcij(m) = 1 (that is, if messages are
generated during a transition, this happens with probability 1).

Thesinkclass (Fig. 1(a)) has a very simple structure, characterized by a single state. At a constant
rateλ, a sink node emits a message of typeP −1 representing the maximum pheromone intensity. The
rateλ = 1

T1 reflects the duration of timerT 1 of the algorithms presented in Section 2.
Thesensorclass (Fig. 1(b)) hasP states identifying the pheromone levels. The label inside each

state indicates the corresponding pheromone intensity. Ineach statei (i = 0, . . . , P − 1) a self-loop
of rateλ = 1

T1 models the firing of timerT 1. Message types model the current pheromone intensity
of a node: we have a different message for each possible pheromone level. At each self loop transition
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P-1

P-1

λ

(a) Agent class = sink.

0 1 2 P-1

0 1 2 P-1

M(0,P-1)

µ µ µ
λ λ λ λ

M(0,2)

M(0,1)

M(1,P-1)

M(1,2)

M(2,P-1)

(b) Agent class = sensor.

Figure 1: Markovian agent models.

in a statei, a message of the corresponding typei is emitted. The evaporation phenomenon is modeled
by the solid arcs (local transitions) connecting statei with statei − 1, with 0 < i ≤ P − 1. The
transition rate is set toµ = 1

T2 : this models the firing of timerT 2 as described in Section 2. The key
part of the algorithm is implemented in the dotted arcs (whose labels are explained in (12)) that model
the transitions induced by the reception of a message. In particular, when a node in statei receives a
message of typem, it immediately jumps to statej if m ∈M(i, j), with:

M(i, j) = {m ∈ [0 · · ·P − 1] : round((m + i)/2) = j}
∀i, j ∈ [0 · · ·P − 1] : j > i.

(12)

In other words, an MA in statei jumps to the statej that represents the pheromone level equal to the
mean between the current leveli and the levelm encoded in the perceived message.

TheN nodes (either sinks or sensors) are positioned over a uniform grid that matches the dis-
cretization structure defined in Section 3.2. Sensors can only be located in the center of each cell and
we allow at most one node per cell: i.e., some cell might be empty, andN ≤ nh × nw. However, sink
nodes are very few with respect to sensor nodes. Messages sent by a node are characterized by a trans-
mission rangetr that defines the radius of the area in which an MA can perceive amessage produced
by another MA. This property is reflected in the perception functionum(·) that,∀m ∈ [1 · · ·M ], is
defined as:

um(v, c, i,v′, c′, i′) =

{
0 dist(v,v′) > tr
1 dist(v,v′) ≤ tr,

(13)
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where dist(v,v′) represents the distance between two nodes in positionv andv′. We callη the max-
imum number of neighbors, inside the transmission rangetr, from which an MA can perceive mes-
sages, notwithstanding border effects or node failures. Inthe numerical experimentation we consider
two cases:

ds ≤ tr4 <
√
2 ds corresponding to η = 4√

2 ds ≤ tr8 < 2 ds corresponding to η = 8.
(14)

5. Performance evaluation

In this section, we illustrate the measures evaluated in order to investigate the capability of the
protocol to correctly build the routing table. The value ofπn

i (t,v) provides the probability distribution
of the pheromone level of the sensor node for each cell. From this raw measure, we can compute the
average pheromone intensity which evaluates the forwarding attitude of the node. Since in a multi-hop
gradient-based routing algorithm a node forwards its packets to the neighbor with higher forwarding
attitude, we define an estimator of the gradient quality as the maximum gain in the average pheromone
level. In such way, maximizing the gain corresponds to reducing the number of hops needed to reach
the sink. Finally, in order to evaluate the degree of convergence of the protocol, we introduce a temporal
index which defines when the average pheromone level distribution can be considered established.

The main measure of interest is the evolution ofπn
i (t,v), the distribution of the pheromone inten-

sity of a sensor node as a function of the time, over the entireareaV . πn
i (t,v) can be computed from

(9) and allows us to obtain several performance indices likethe average pheromone intensityφ(t,v) at
time t for each cellv ∈ V :

φ(t,v) =
P−1∑

i=0

i · πn
i (t,v). (15)

The shape of the average pheromone intensityφ(t,v) depends on both the pheromone emission rate
λ and the pheromone evaporation rateµ; furthermore, the excitation-evaporation process depends on
the transmission rangetr that determines the number of neighboring cellsη perceived by an MA in a
given position. To take into account this physical mechanism, we define the following quantity:

r =
λ · η
µ

, (16)

that gives the ratio between the global emission and evaporation process.

5.1. A measure for the gradient quality

We need to define an estimator of the gradient quality to evaluate whether the swarm-based routing
algorithm correctly operates in creating a well formed pheromone distribution overV . Our estimator
is based on the fact that a multi-hop gradient-based routingalgorithm forwards the packets of a node
toward the neighbor with the greatest pheromone level, whether it exists, until the sink is reached.
Hence, we estimate the gradient quality by maximizing the average gain in pheromone level at each
hop.

To formalize this concept, we denote byN (v) ⊆ V the set of the positions of the neighboring
cells that can be perceived by an MA in cellv. Let 〈v, t〉 be the MA in positionv sending a data
packet toward the sink at timet. To do the next hop, the MA〈v, t〉 selects the neighboring MA〈v′, t〉
in the direction of the maximum gradient, i.e., in a positionv′ ∈ N (v) with the greatest pheromone
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increment, whether it exists. If such node does not exist, the data packet is not forwarded. We point
out that these rules are the same used from the swarm based routing protocol in [6] to build the routing
tables of sensor nodes. More formally, letℓ(v,v′, t) = φ(v′, t) − φ(v, t) be the gradient value
measured as the increment in the pheromone level2 of agent〈v′, t〉 with respect to agent〈v, t〉; we
define:

ℓgr(v, t) =

{
max

v
′∈N (v) ℓ(v,v

′, t) φ(v′, t) > φ(v, t)
0 otherwise,

as the maximum gradient seen by a node in positionv at timet. The average over the space of all these
values is the considered gradient quality estimator, and can be computed as:

ℓgr(t) =
1

N

∑

v∈V

ℓgr(v, t), (17)

whereN is the number of nodes in the area of interest. A high value ofℓgr(t) means an high average
pheromone gradient, which corresponds to a reduced number of hops.

As previously introduced, the indexℓgr(t) directly arises from the routing mechanism to the pur-
pose of finding the optimal values for the characteristic parameters of the protocol; thanks to this
metrics, we will able to give a general method to set the parameters either optimizing the sensor nodes
routing tables construction and the mean routing path length towards the sink node.

5.2. A measure for the time to gradient stabilization

Another practical performance index in a real WSN is the timeat which the pheromone intensity
distributionφ(t,v) can be considered established. As before, let us consider the agent〈v, t〉; we say
that it is in astable statewhen its level of pheromoneφ(t,v) does not vary any more; sinceφ(t,v)
depends onπn(t,v), we estimate thestable stateas the first time where:

wwww
∂πn(t,v)

∂t

wwww ≤ ε. (18)

We approximate Equation (18) with the discrete derivative:

wwww
∂πn(t,v)

∂t

wwww ≈
wwww
π

n(t,v) − π
n(t−∆t,v)

∆t

wwww , (19)

where∆t is the discretization step, and we evaluate

ts(v) = inf

{
t ∈ [0,+∞] :

wwww
π

n(t,v) − π
n(t−∆t,v)

∆t

wwww ≤ ε

}
, (20)

that ists(v) correspond to the first time instant at which the inequality is satisfied. Since the overall
network reaches the stability when all the nodes are into a stable state, the time for stability is taken as:

t̃ = max
v∈V

ts(v). (21)

2ℓ(v,v′, t) could be a negative quantity, meaning that〈v′, t〉 has a lower level than〈v, t〉.
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6. Model validation

We built a discrete event simulator of a WSN implementing thepheromone gradient construction
algorithm, and we compared the results with the one obtainedusing the MAs model. A set of experi-
ments has been conducted to compare the pheromone distributionφ(t,v) in the stable state conditions
at timet̃, with respect to different values of ther parameter.

The discrete event simulator has been implemented using theOMNeT++ [19] simulative environ-
ment. We conducted the experiments using a simple computer equipped with an Intel Core 2 Duo CPU
at 2.33 GHz, 4MB L2 Cache, and 3GB RAM. Both sets of experiments have been performed consid-
eringN sensor nodes uniformly distributed over a grid of sizenh = 31 andnw = 31, with a spatial
densityξn(v) = 1.0 node/cell ∀v ∈ V ; the discrete levels of pheromone have been assumed equal
to P = 25. The emission time (Algorithms 1 and 2) has been fixed toT1 = 4.0s, whereas we have
assumed a transmission range such thatη = 4. Moreover, the simulation runs have been initialized by
activating each sensor node after an exponentially distributed random delay, with mean equal to1.0 s.
The random activation of sensors reflects the asynchronous nature of the WSN. All the measures have
been computed executing500 simulation runs, using a90% confidence level. To simplify the presen-
tation, we have not shown the confidence interval in the following pictures. This choice was motivated
by the fact that intervals were very tight, and visually not distinguishable from their mean.

The set of experiments has been conducted assuming the values1.0, 2.0, and4.0 for the parameter
r; the value of evaporation timeT2 has been set to0.0625 s, 0.125 s and0.25 s, respectively. As will
be explained later, such values produce different behaviors of the algorithm and they have been chosen
in order to validate the model under different conditions. The timet̃ to perform the transient simulation
has been fixed to40 s. Fig. 2 shows the pheromone distribution valuesφ(t̃,v) obtained in the three
experiments for each cell, numbered according to the following formula:

x(v) = i ∗ nw + j, (22)

wherev = (i, j), with i, j = 0, · · · , 30.
It can be noticed that the maximum value of pheromone intensity is reached at the center of the grid

where the sink is located. Since the sink coordinates arei = j = 15, this corresponds positionx =
15∗31+15 = 480. Departing from this location the pheromone intensity decreases. The characteristic
spike-shape trend is due to the way the cells are numbered (see (22)). Each spike represents a horizontal
slice of the grid. When the evaporation rate is small (r = 1.0), the lines in Fig. 2(a) are overlapped,
meaning that the analytical and simulative results agree inthe whole grid; increasing the evaporation
rate (Fig. 2(b)) some discrepancies between the results canbe noticed near the border of the grid, as
well as in the case of saturation (Fig. 2(c)). We also depicted a magnified region of the graphs in Fig. 2
to emphasize the differences between the two results, sincethey were too small to be noticed in the
complete plots. The differences in the final results seems tobe due to the fact that the MA model uses
stochastic timers, while the simulator uses deterministicclocks. However, as can be seen, discrepancies
are minimal and the MA model is able to capture the overall behavior of the system.

Finally, as can be seen in Fig. 3, the computation of the analytical solution is always faster, despite
the restricted number of simulation run; the results of Fig.3 has been executed by computing a transi-
tory to time20 s. We are currently trying to exploit the possibility of aggregating the number of MAs
in each cell (ξn(v) > 1.0 node/cell) to further reduce the model computational time.
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Figure 2: Comparison between simulative and analytical pheromone intensity distribution overV
in the stable state.

7. Numerical experiments

The indices defined in Equation (17) and (21) have been computed under different conditions to
test the SI algorithm and to provide insights into the settings of the algorithm parameters. As a first
experiment we consider the dependency of the pheromone intensityφ(t,v) on r. We show the results
obtained by solving a model defined on a square gridV of sizenh = nw = 31 with N = 961
cells. We position one single sink in the center of the area (positionv = (15, 15)) and one sensor
node per cell (ξn(v) = 1.0 node/cell, ∀v ∈ V) corresponding to 961 sensors. We fixλ = 4.0s−1,
P = 25, andtr = tr4 (i.e.,η = 4 in (14)). The numerical solution is computed with∆t = 0.01s and
ε = 0.005.

7.1. Gradient evolution

Fig. 4 shows the pheromone distribution overV measured in the stable state,φ(t̃,v), for different
values ofr. To improve the graph readability, each map is plotted both in 3D and 2D views. It
can be noticed that the parameterr has a direct impact on the shape of the pheromone intensity. In
particular, ifr is too small (r = 1.0) or too high (r = 4.0), the quality of the gradient is poor. In fact,
small r corresponds to a high value of the evaporation rate (Fig. 4(a)) that prevents diffusion of the
pheromone signals, thus reducing the area covered by the sink. On the other hand, larger corresponds
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Figure 4: Distribution of the pheromone intensityφ(t,v) in V for different values ofr.

to a low value of the evaporation rate (Fig. 4(c)) giving riseto a saturation of the pheromone level,
thus hindering the formation of a useful gradient. Intermediate values, although giving rise to different
density shapes, generate well formed pheromone gradients able to cover the whole area.

To provide a formal validation of the pheromone gradient construction process, we compute the
gradient quality estimatorℓgr(t) as a function oft for different values ofr. Fig. 5 shows that, for low
values ofr (curver = 1.0), ℓgr(t) exhibits a monotonic behavior while for high values ofr (curve
r = 4.0) the value ofℓgr(t) exhibits a maximum and then decreases due to the saturation phenomenon.

Another parameter that influences the pheromone gradient isthe message transmission rangetr.
Figure 6 reports the value of (ℓgr(t̃)) as a function ofr, varying from1.0 to 2.4, for bothtr = tr4 and
tr = tr8. While in the first case we have at mostη = 4 neighbors, in the second we haveη = 8. In
both cases we are interested in finding the valuer∗ of r that optimize the gradient qualityℓgr(t̃) when
the stabilization timẽt is reached. Observing the curveη = 4, it is possible to identify the maximum
value ofℓgr(t̃) at r∗ = 1.8. Curveη = 8 shows a similar qualitative trend but with an overall higher
value ofℓgr(t̃) and with the maximum atr∗ = 1.7. The better gradient quality can be explained by
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Figure 5: Transient behavior of the gradient quality estimator ℓgr(t) for different values ofr.

pointing out that a greater value oftr implies a reduced number of hops needed to reach the sink with
a corresponding greater value of the pheromone increment ateach hop.
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Figure 6: Gradient quality estimator in the stable condition ℓgr(t̃) with respect tor varyingη.

7.2. The influence of the emission rate

Once the parameterr has been set, the pheromone gradient quality is not influenced by the absolute
values of pheromone emission and evaporation rates. However, changingλ influences other system
properties, such as the gradient time to stabilityt̃ and the energy spent in setting a stable gradient. To
set the proper value Fig. 7(a) plotst̃ as a function ofλ at r = r∗, with bothη = 4 andη = 8.
It can be observed that increasing eitherλ or η, shorter values of̃t are obtained due to a faster and
more efficient propagation of the pheromone signals in the network. In particular: i) An increase of
λ results in higher frequency at which pheromone messages arecirculated in the network, allowing to
reach a stable pheromone distribution faster;ii) An increase of the transmission range increments the
number of neighbor nodes that are able to receive a message, thus producing a more pervasive signal
dissemination. Note that the decrease in the stabilizationtime is not simply inversely proportional to
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Figure 7: (a) Time to reach the stable conditiont̃ versusλ varying η, (b) average number of
signalling messages per nodem, and (c) average energy consumption per node (e).

the message rate (as it could be argued) because as the transmission rate increases the convergence
criterion starts playing a significative role in the determination of the stopping condition.

An important aspect related to the time to reach the stable state is the average numberm of sig-
nalling messages sent by each node. We can define such parameter as a function of the pheromone
emission rate as:

m = λ · t̃. (23)

Fig. 7(b) shows an increasing trend ofm as a function ofλ for both values of the considered neighbor
number. Increasingη from 4 to 8, the average number of signals decreases due to the larger action
range of each message.

Both results in Figs. 7(a) and 7(b) tend to show that enlarging the transmission range provides bet-
ter results. However, to complete the analysis, we need to take into account also energy consumptions
aspects, in the computation of the cost needed to reach the stable condition. As described in [20], the
energy cost per bitE(tr) required to exchange a message between a node and itsη neighbors can be
computed as:

E(tr) = Cd · tαr + E(ele) + E(proc)

︸ ︷︷ ︸
a©

+ η(E(ele) + E(proc))︸ ︷︷ ︸
b©

, (24)
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whereE(ele) andE(proc) are the consumptions due to the transceiver electronics andthe processing
functions,Cd is a constant factor,tr is the transmission range needed to cover the distance between
the sender and the receivers, as defined in Section 3.1, andα is the exponential power decay factor. In
Equation (24) the terma© refers to the energy required to send a message, while the term b© corre-
sponds to the energy consumed by the nodes receiving the message. Assuming to have a regular grid
where nodes are uniformly distributed, the dependence ofη as a function oftr andds is given in (14).
The average energy cost per node needed to reach the stable state can then be expressed as:

e = E(tr) ∗m. (25)

In agreement with [21], we use the following values for setting the parameters in (24):E(ele) =
E(proc) = 0.15mJ/bit, Cd = 0.018mJ/(bit · mα), andα = 2.5. Moreover, assuming to have a
square area of900× 900m2 we setds = 30m, tr4 = 32m, andtr8 = 45m. In Fig. 7(c) we observe
that, as expected, the average energy consumption needed toreach the stable state increases withλ.
However, a comparison between Figs. 7(b) and 7(c) shows that, notwithstanding the lower value of
messages needed, whenη = 8 we obtain a greater energy cost than the caseη = 4. Using the proposed
model, it is then possible to estimate the cost associated tothe time needed to reach the stable state and,
in order to respond to particular application-specific requirements, a trade-off betweeñt ande can be
appropriately found during the setting phase of the network.

In order to test the model in more complex scenarios, in Fig. 8we consider a larger network where
N = 10, 000 sensors are uniformly distributed on a grid of3000 × 3000m2 (that under the above
conditions corresponds tonh = 100 andnw = 100) with 50 sinks placed in random locations. Using the
proposed methodology, we are able to calculate the valuer∗ of r that maximizes the gradient quality
estimatorℓgr(t̃), that for the network topology shown in Fig. 8 is equal to 1.2.We can assess, with the
results obtained, that the pheromone gradient is reached also when no symmetries are present in the
network. Such scenario also demonstrates the scalability of the proposed analytical technique, which
can be easily adopted for the analysis of extremely large networks.

7.3. Irregular topologies

Next experiments aim at analyzing the pheromone gradient construction process in the presence of
irregular network topologies. When not otherwise expressed, we always refer to a value ofη equal to 4.
First of all, the robustness of the algorithm for the formation of the pheromone gradient is analyzed in
scenarios where some sensor nodes are removed from the network (either because dormant or failed),
as shown in Fig. 9.

We consider two different situations. In the first one (Fig. 9(a)), blocks of contiguous nodes are
removed from the network, reproducing scenarios where nodes fail due to conditions strictly related to
the geographic position. In the second one (Figs. 9(b) and 9(c)), nodes are removed randomly with an
assigned percentage. Vacant cells are represented as whitespots in the graphs.

From the inspection of Fig. 9(a), we observe that the algorithm is able to recognize and isolate the
vacant blocks and build up a pheromone gradient that circumvents the taboo zones by creating useful
paths to the sink along increasing gradient lines also for sensors that are not in direct view of the sink.
The same happens for the irregular topologies of Figs. 9(b) and 9(c). However, increasing the number
of removed nodes from the network (Fig. 9(c)), the gradient quality deteriorates, since some active
sensors may become masked by the failed sensors and are not able to receive the pheromone messages
emitted by the sink. This phenomenon is highlighted in Fig. 10 where the same topologies of Figs.
9(b) and 9(c) are considered. The failed nodes are marked by agray circle.

17



 0
 10

 20
 30

 40
 50

 60
 70

 80
 90  0

 10
 20

 30
 40

 50
 60

 70
 80

 90

 0

 5

 10

 15

 20

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0  10  20  30  40  50  60  70  80  90

Figure 8: Distribution of the pheromone intensity overV in the stable condition when the network
is composed by a grid of 10,000 sensor nodes with 50 sinks (η = 4, r∗=1.2).

When nodes are removed from the network (gray circles), other sensors happen to be isolated due
to the absence of any path to the sink. Such unreachable nodes, marked in the graphs with the symbolx,
degrade the gradient quality and their number increases as the percentage of non-active node increases.
The appearance of unreachable nodes may be mitigated by increasing the transmission rangetr. As an
example, compare Fig. 10(b) obtained withtr = tr4 (i.e.,η = 4 in (14)) with Fig. 10(c) obtained with
tr = tr8 (η = 8): the number of unreachable sensors is drastically reduced(in Fig. 10(c) only the
sensor in position(0, 30) remains isolated). Increasing the transmission range improves the network
connectivity and efficiency but at the cost of higher power consumption and reduced network lifetime.

8. Related Work

In the literature, simulation is the first choice for the study of mobile and ad hoc networks [7].
In [22] and [23] the authors survey conference papers and found a number of common simulation
study pitfalls such as an incorrect use of pseudo random number generators or an inadequate statistical
analysis of the simulation outputs. Moreover, such studiesare mostly scenario and simulator specific,
therefore their results cannot be generalized to other scenarios and simulators. However, few works
propose analytical models for the performance of routing algorithms. An attempt to tackle the problem
analytically is in [24], but the analysis is limited to the asymptotic behavior of a two-nodes two-links
system. In [25], Markov chains are used to compute the steadystate routing probabilities given the rout-
ing parameters and network costs, [26] proposes a probabilistic performance evaluation framework that
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Figure 9: Distribution of the pheromone intensity overV when some nodes are removed from the
network (r∗ = 1.8). (a) Contiguous areas, (b) 20% of nodes, and (c) 35% of nodes.
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Figure 10: Removed nodes (circles), isolated nodes (X), andthe pheromone intensity distribution
overV in the stable condition.

can be used to model performance metrics such as routing overhead and energy consumption. Markov
chains were used also for studying gossip protocols, in [27]gossip-based membership protocols are
modeled as a Markov chain representing random membership graph transformations; stationary dis-
tribution of such chain is thus analyzed to determine the expected properties of the protocol. Also
mean-field technique was proposed in [28] to approximate thebehavior of a Gossiping Time Proto-
col implemented in a very large network and to investigate its performance. All these models ignore
the spatial relationships among nodes of the network, however such characteristics are necessary, for
instance in wireless network, to consider the effects of therange of the transmitter unit on the per-
formance of the protocols. The application of stochastic geometry to the performance evaluation of
communication networks [29] is a first attempt in this direction, however such models lacks the expres-
siveness to represent complex behavior. Instead, MA modelsare a modeling technique suitable to deal
with systems composed by a multitude of interacting entities with complex behavior, whose spatial
location is also relevant in determining their interaction.
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9. Conclusions

The analytical study of the gradient formation in large WSN outlined in this paper has been carried
out by resorting to an analytical model based on interactingMarkovian Agents. This has allowed testing
the effectiveness of the routing protocol even in contexts composed of several thousands of nodes: a
size that, in general, cannot be handled with conventional discrete event simulation.

Swarm intelligence mechanisms in which the global behavioris built up starting from very short
range interactions (each MA is able to interact only with itsclosest neighbors) have proven to be
particularly suited to be analyzed using the MA technique. The analytical studies carried out on several
examples illustrated in this paper have shown the adaptability of the routing algorithm to the changing
conditions of the WSN in terms of parameter values and topology. The proposed model could then
be exploited to effectively evaluate the parameter set in order to guarantee the convergence of the
algorithm toward a stable pheromone gradient and the efficient set up of the routing tables.

Although the results obtained are encouraging, a lot of workstill needs to be done to further
explore both the routing algorithm and the modeling power ofthe MA. Future research will move
towards investigating the behavior of WSN in operational conditions, assuming the routing algorithm
presented in this paper, and evaluating the forwarding process with respect to the settings of the routing
protocol. In particular, it is intended to develop a specificmodel to study the network traffic generated
by an application.

To this end we need to add new types of messages representing the packets transmitted by the
sensors, and to add new states to the sensor nodes to characterize the transmission, the reception, and
the possible queueing of the message packets.

Modeling the transmission of messages from the sensors to the sink(s), using the paths defined
by the routing algorithm presented in this paper, will allowus to study the WSN in different load
conditions, with different application level strategies such as message aggregation and on-off behavior
for energy saving. In this way, we should be able to provide network designers with a tool for tuning
the system parameters.
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