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Abstract. In this paper we study the impact of different types of con-
straints on the maximum throughput that a system can handle. In par-
ticular, we focus on constraints limiting the use of resources and/or the
allowed response time. The problem is made even more difficult by the
pronounced diversity in resource requirements of the different applica-
tions in execution, i.e., by the multiclass characteristic of the workloads.
The proposed approach allows to determine the maximum load of the
different classes, while still satisfying the considered performance objec-
tives. An experimental validation of the described technique through the
study of a realistic e-commerce application is presented.

1 Introduction

Over the last few years, the growth of available physical resources was a very
evident phenomenon thanks to the widespread diffusion of cloud computing.
Concurrently, the capacity requirements of the new applications has also in-
creased significantly. Modern computing infrastructures are characterized by a
huge amount of resources with heterogeneous capacities (e.g. [13, 22]) that are
shared among several applications with very different requirements. Such fea-
tures have made the allocation of resources a very critical problem because the
capacity required to sustain the flow of requests may not be always available.
The servers performance remains a crucial component of many computing in-
frastructures. In order to address this problem in the case of shared systems,
different types of constraints are imposed to the resources deployed to the vari-
ous applications.
In this paper we study the effects of a variety of resource and time based con-
straints on a performance objective function. The constraints at the resource
level are based on the utilization, and on the maximum number of jobs in the
system. As time based constraints we consider thresholds on residence time and
on the mean system response time. The performance objective function to be
maximized is the system throughput.



2 D. Cerotti, M. Gribaudo, I. Krüger, P. Piazzolla, F. Saracini, G. Serazzi

In this paper, peculiar properties of open multiclass queuing networks subject
to different types of constraints are investigated and their applicability to some
practical problems is proposed. In particular, the problem solved is the following:
find the maximum throughput per class of requests that the system can sustain
while satisfying the given time and/or resource based constraints.
Even if multiclass open queuing networks are well established mathematical mod-
els, the specific way in which they are used in this paper constitute a novelty.
This application of known theory can provide new interesting insights and be
useful to solve stream-line research problems about the allocation of resources
in contexts such as cloud computing and multi-tier architectures.
The structure of the paper is the following. Section 2 analyzes the related works,
and Section 3 presents a brief overview of some basic results of open queuing
networks that will be used throughout the paper. Sections 4 and 5 address the
identification of the maximum throughput without and with constraints. Section
6 applies the results to a realistic system, and Section 7 concludes the paper.

2 Related work

A common problem in data center management is resource allocation and pro-
visioning in the presence of loads that can vary frequently with Internet appli-
cations. Resource over-provisioning leads to low average server utilization and
high recurring utility costs. On the other hand, under-provisioning translates in
a potential shortage of computing resources. Both strategies may cause serious
economic losses. Provisioning decisions are usually taken by either hardware,
platform or application providers, even if in many cases the responsibility of
provisioning id demanded to end users (see e.g [22, 24, 23]).
Several techniques have been recently introduced to deal with the identification
of the proper set of resources. Autonomic data centers, referred sometimes to
as self-tuning, self-adaptive or self-aware systems (e.g.[10, 27]) try to adapt the
allocated resources to the fluctuations of requests in order to meet agreed op-
erational objectives. In [19, 20] the authors take into consideration the response
time only, typically defined as the aggregated value across all the request classes.
Our solution differs from these approaches as it deals also with multi-class work-
loads. Moreover, our approach enables the data center resource management
to identify the workload mix that maximizes both the throughput and the uti-
lization of resources under a set of constrains, not only response time. Other
bottleneck identification techniques for queueing networks are considered in [6].
Optimization of a cost function has been addressed in many different ways: us-
ing combinatorial search algorithms in [4, 8, 9], linear programming in [1], game
theory in [25], while in other cases the maximization of some utility functions
like response time (e.g. [21]) or power consumption (e.g. [2]) is sought.
The problem of scalability has been approached allocating and deallocating dy-
namically the resources. Admission control schemes have been devised in order to
guarantee given objectives. Usually, performance goals are achieved by rejecting
some types of requests during peak periods [7, 9] or by maximizing of provider’s
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revenue [12, 14]. Different approaches are also based on policies that control the
arrival rates of the classes of applications in order to saturate simultaneously
multiple resources to maximize a given metric as in [26, 11].

3 Background

In this section, we briefly review the basic notations that will be used in the
following. We consider a workload consisting of C classes of requests and a
system with M resources that operate at a fixed rate. Requests cannot change
class during their execution. Let Dmc be the global service demand of a class c
customer on station m. The service demands of the system are described by the
following M × C demand matrix:

D =

∣

∣

∣

∣

∣

∣

∣

D11 . . . D1C

...
...

DM1 . . . DMC

∣

∣

∣

∣

∣

∣

∣

(1)

Class c requests enter the system at a Poisson rate λc. We collect the workload
intensities of all the classes in a vector λ = (λ1, . . . , λC). The overall arrival rate,
i.e., the global load of the system, is given by Λ =

∑

c λc. Let β = (β1, . . . , βC)
be the population mix vector, where βc is the fraction of arriving requests that
belong to class c. The following relations between Λ, λ, β exists:

λ = Λβ, λc = Λβc,
∑

c

λc = Λ,

β =
λ

Λ
, βc =

λc

Λ
,

∑

c

βc = 1
(2)

We define the population mix scaled demand for resource m Dm as: Dm(β)

Dm(β) =
∑

c

βcDmc (3)

Dm(β) represents the mean service demand generated on resource m by a given
population mix β.
We use the subscript ‘mc’ to denote an index computed for class c at resource
m (Umc, Rmc and Qmc). We also denote aggregated metrics related to class c by
the index ⋆c: U⋆c, R⋆c and Q⋆c. The metrics at the resource level are denoted
by the index of the resource: Rm and Qm.

4 Maximization of unconstrained systems

With a multiclass workload, the maximum throughput that a system can handle
is a function of the fraction of the jobs of the different classes in concurrent
execution, i.e., is mix dependent. Indeed, for a given workload intensity there are
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mixes in correspondence to which the system perform better than with other, i.e.,
that provide the maximum throughput and the minimum response time. We are
considering open systems, and it is known that as the arrival rate of customers
of the various classes increase, the number of customers in the system, and thus
the response time, tend to grow without bounds, (i.e. the system saturate). In
particular, with a given population mix β, the system is not in saturation if the
utilization of each resource is strictly less than 1, that is: ΛDm(β) < 1, ∀m :
1 ≤ m ≤ M . This ensures that the system is stable, and it can be used to
determine the maximum arrival rates that it can handle. For a given population
mix β, the maximum possible arrival rate Λ̂(β) can be determined by inverting
the stability condition:

Λ̂(β) =
1

max
m

{Dm(β)}
. (4)

It can then be interesting to determine the population mix β for which the
system can experience the maximum throughput Λ̂(β). Since the utilization of
the resources are linear functions, the population mix β∗ corresponding to the
maximum throughput can be obtained solving the following Linear Programming
Problem (LPP):

Variables: λc, 1 ≤ c ≤ C

Objective: maximize
∑

c

λc

Constraints:
∑

d

λdDmd ≤ 1, 1 ≤ m ≤ M

λc ≥ 0, 1 ≤ c ≤ C

(5)

The interpretation of the LPP of Eq. 5 is the following: the objective function
corresponds to the total arrival rate, expressed as the sum of the arrival rates
of the individual classes (Λ =

∑

c λc). Constraints ensure that arrival rates
are positive (λc ≥ 0), and that the utilization of each resource is less than 1
(
∑

c λdDmd ≤ 1). If we call λ∗

c , 1 ≤ c ≤ C the optimizer, then the maximum
allowed throughput corresponds to the value assumed by the objective function
Λ∗ =

∑

c λ
∗

c . The optimal population mix can then be computed as β∗ = {β∗

c}
with β∗

c = λ∗

c/Λ
∗.

The set of the population mixes that can achieve the maximum throughput
depends on the set of the solution of the linear program. If the solution of the
LPP of Eq.5 is a single point, then the maximum throughput can be obtained
only for single population mix β∗. If the solution of the LPP in Eq.5 is a segment
or a convex polyhedron, then there exists a set of population mixes corresponding
to the maximum overall throughput Λ∗.

We now see the application of the technique through the description of an
e-commerce system consisting of four resources (Management, CMS System, In-
ventory and Shipping) and three classes of customers (Intranet, On-line Pur-

chase, In Store). The service demands of the three classes are shown in Table
1. The Management resource is the storage server for the financial, transactions
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and customers data. The different contents of the website (mainly products cat-
alog) are managed by the CMS system, while the administration of the catalog
and the warehouse inventory involve the Inventory server. A dedicated resource
is provided to handle the Shipping of purchased items. The back-end operations,
including tasks related to the organization of the web site, the products cat-
alog update, and the customers data update, are executed by the requests of
the Intranet class. On-Line Purchase represents the process of buying one or
more products through the web in a single transaction, while In Store purchase

transactions take place off-line, and usually are started by a customer entering
a physical store. During their execution the requests of each class visit all the
four servers. Fig.1 shows the maximum throughput Λ̂(β) for all the possible

Class 1 (ms.) Class 2 (ms.) Class 3 (ms.)

D Intranet
On-Line

Purchase
In Store

Resource 1 Management 80 65 60
Resource 2 CMS system 30 130 80
Resource 3 Inventory 45 30 135
Resource 4 Shipping 65 115 45

Table 1. Service demands D of the three classes of requests at the three resources of
the e-commerce model.

mixes β = |β1, β2, (1−β1−β2)| of the requests of the three classes. The mixes of
requests of each surface of the polyhedron shown correspond to a bottleneck on
a different resource (indicated in the figure by its own label). The edges at the
intersection of two surfaces are the common saturation sectors, and represent the
mixes whose execution generate more two bottlenecks, i.e., that saturate con-
currently two resources [3]. It is clear from the figure that there exists a point,
corresponding to the population mix β∗, for which the throughput is maximized
(i.e. the top of the pyramid like polyhedron). In this point, more than two re-
sources saturate concurrently.
Solving the LPP of Eq. 5 to determine the maximum system throughput with
respect to the mixes β, we obtain:

β∗ = |0.4512 0.2307, 0.3181| , Λ∗ = 14.25 jobs/s (6)

It is interesting to point out that the maximum system throughput is obtained
with β1 = 0.4512, that is, when 45% of the requests in execution are of the
Intranet class. This is not surprising, since the global service demand of the
Intranet requests, i.e., the sum of its service demands over all the resource, is
smaller with respect to the ones of the other two classes.
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Fig. 1. Maximum system throughput vs the population mixes β in a three class, four
resources system.

5 Performance constraints

We then consider the case in which constraints are imposed to some performance
metrics of the system. Typical constrains are, for example, thresholds to the
maximum mean response time, to the utilization, or upper bounds for the queue
lengths of a resource. Constraints may reduce the maximum allowed arrival
rate Λ∗ to values that are smaller than Λ̂(β) given by Eq.4. They can also
change the population mixes β∗ for which the maximum throughput Λ∗ can
be achieved. To address this issue, we divide the performance constraints in
two categories: system-level and resource-level. System-level constraints concern
either the whole system or a specific class c. For all possible β, as the total
arrival rate Λ approaches Λ̂(β), both the queue length and the response time
tend to the infinity:

lim
Λ→Λ̂(β)

R⋆c = ∞, lim
Λ→Λ̂(β)

RS = ∞,

lim
Λ→Λ̂(β)

Q⋆c = ∞, lim
Λ→Λ̂(β)

QS = ∞.
(7)

Resource-level constraints refer to a station m, either for a specific class c or
for the aggregate of all the classes. In this case the utilization, the mean queue
length and the response time can have very different behaviors depending on the
considered population mix β. Let us call d(β) = {m : 1 ≤ m ≤ M ∧ Dm(β) =
max

l
{Dl(β)}, the set of resources that are bottleneck with the population mix
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β, and let us call ûm, b̂m, q̂m, (ûmc, b̂mc, q̂mc) the maximum utilization, mean
response time and mean queue length that can be obtained for a resource m (re-
spectively for class c requests at resourcem). Let us focus on resource utilization
first. If a resource m is a bottleneck (i.e. m ∈ d(β)), then as the system reaches
its instability point (i.e. Λ → Λ̂(β)), the resource must be completely saturated.
In other words, we have that:

ûm = lim
Λ→Λ̂(β)

Um = 1, ∀m ∈ d(β). (8)

However, if we focus on the utilization of a given class c at a bottleneck station
m, it will tend to the fraction of jobs of that particular class present at the
considered resource. This fraction must be proportional to the arrival rate and
to the demand of class c at resource m. This can expressed as:

ûmc = lim
Λ→Λ̂(β)

Umc =
βcDmc

Dm(β)
, ∀r ∈ d(β). (9)

The mean response time of the mean queue length at a bottleneck resource m
tends to infinity since the system is not able to handle all the incoming requests.
That is:

b̂mc = lim
Λ→Λ̂(β)

Rmc = ∞, b̂m = lim
Λ→Λ̂(β)

Rm = ∞,

q̂mc = lim
Λ→Λ̂(β)

Qmc = ∞, q̂m = lim
Λ→Λ̂(β)

Qm = ∞,

∀m ∈ d(β).

(10)

Instead if we consider a resource k that is not a bottleneck (i.e, k 6∈ d(β)),
the limiting value of the considered performance index is finite, and it can be
computed with standard queueing network formulas using an arrival rate Λ̂(β).
Let us call such limiting values:

ûkc = lim
Λ→Λ̂(β)

Ukc = Ukc(Λ̂(β)), ûk = lim
Λ→Λ̂(β)

Uk = Uk(Λ̂(β)),

b̂kc = lim
Λ→Λ̂(β)

Rkc = Rkc(Λ̂(β)), b̂k = lim
Λ→Λ̂(β)

Rk = Rk(Λ̂(β)),

q̂kc = lim
Λ→Λ̂(β)

Qkc = Qkc(Λ̂(β)), q̂k = lim
Λ→Λ̂(β)

Qk = Qk(Λ̂(β)),

∀k 6∈ d(β).

(11)

5.1 Resource-level constraints

Constraints on resources (either per class, or aggregate) can be computed with
closed form expressions. Let us denote with umc, bmc, qmc, the maximum utiliza-
tion, the response time, and the mean queue length allowed for a class c job at
resource m, and with um, bm and qm the corresponding thresholds at resource
m regardless of the class.
Constraints are automatically satisfied if they are based on thresholds that
are greater than the maximum values determined in Eq.11: that is if either
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umc > ûmc, bmc > b̂mc, qmc > q̂mc, um > ûm, bm > b̂m or qm > q̂m.
Let us consider a non-trivial case, and let us initially focus on the response time
of a class c job at resource m. The constraint is not trivial if bmc < b̂mc. In this
case we have that:

Dmc

1− ΛDm(β)
< bmc. (12)

Since we consider that the system must be stable, we know that Um < 1 ∀r,
which implies that 1 − ΛDm(β) > 0 (since we have that Um = ΛDm(β)). We
can then multiply both sides of the equation by the denominator obtaining:

Dmc < bmc (1− ΛDm(β)) . (13)

We can thus derive Λ from Eq. 13:

Λ < Λ∗ =
bmc −Dmc

bmcDm(β)
, (14)

that expresses the maximum total arrival rate Λ∗ allowed for the population mix
β to ensure that the mean response time is Rmc < bmc.
The expressions for the maximum arrival rate that satisfies the other type of
resource level constraints can be derived with similar computations, and they
are shown in Table 2.

Utilization Response time Mean queue length

Class c,
res. m

Λ <
umc

βcDmc

Λ <
bmc −Dmc

bmcDm(β)
Λ <

qmc

qmcDm(β) + βcDmc

Res. m Λ <
um

Dm(β)
Λ <

bm −Dm(β)

bmDm(β)
Λ <

qm

Dm(β) (qm + 1)

Table 2. Maximum throughput to assure resource-level constraints as function of the
control parameters

5.2 System-level constraints

The maximum throughput for system-level constraints does not have a closed
form expression, and it must be computed numerically. However, it is easy to
show that the considered indices are monotone with respect to Λ, and have a
closed form expression for their first derivative. These features allows the use of
efficient numerical solution techniques that can obtain the maximum throughput
with an iterative procedure. In particular, the Newton-Raphson method [17] is
able to converge to the solution in very few iterations.
The tchnique requires an initial guess x0 for the unknown that has to be com-
puted. This initial solution should be greater than the actual value, in order to
keep the guess decreasing (and thus always included in the stability region of the
model). Let us focus on limiting the mean number of jobs in the system below a
threshold qs. From Eq.7 we know that lim

Λ→Λ̂(β)
QS = ∞, which means that it is

always possible to find an initial guess greater than the threshold in an interval
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close to x0. We can then set x0 = Λ̂(β)− δ, where δ > 0 is a small number such
that QS(x0) > qs (i.e the corresponding performance index computed in x0 is
greater than the required threshold). This parameter δ can be efficiently com-
puted with an exponential scaling step. The procedure to compute the maximum
throughput satisfying QS < qS , is the following:

δ = 1;
do {

δ = δ · δ0;

x = Λ̂(β) · (1− δ);
} while (QS(x) < qS);

while (
∣

∣

∣

QS(x)−qS
qS

∣

∣

∣
> ǫ);

x = x− QS(x)−qS
Q′

S
(x) ;

}
Λ = x;

(15)

where ǫ is a term that represents the relative precision of the solution, δ0 is a
constant 0 < δ0 < 1 corresponding to the exponential scaling factor and Q′

S(x)
is the first derivative of the mean number of requests in the system (as defined
in Table 3). In the experiments presented in this paper we used δ0 = 0.1 and
ǫ = 10−6.

Response time Mean queue length

Class c
∂R⋆c

∂Λ
=
∑

m

DmcDm(β)

(1− ΛDm(β))2
∂Q⋆c

∂Λ
= βc

∑

m

Dmc

(1− ΛDm(β))2

System
∂RS

∂Λ
=
∑

m

Dm(β)2

(1− ΛDm(β))2
∂QS

∂Λ
=
∑

m

Dm(β)

(1− ΛDm(β))2

Table 3. First derivative of system-level indices

5.3 Constrained Maximum Throughput

Also for constrained systems, we can determine the population mix for which the
maximum arrival rate could be achieved without violating the given performance
constraints. This can be done by solving an Optimization Problem (OP), similar
to the one proposed in Section 4, where extra constraints are added to account
for the desired performance requirements:

Variables: λc, 1 ≤ c ≤ C

Objective: maximize
∑

c

λc

Constraints:
∑

d

λdDmd ≤ 1, 1 ≤ m ≤ M

λc ≥ 0, 1 ≤ c ≤ C
Performance constraints1
...
Performance constraintsn

(16)
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Utilization Response time Mean queue length

Class c,
res. m

λcDmc ≤ umc bmc

(

1−
∑

d

λdDmd

)

≥ Dmc
qmc

(

1−
∑

d

λdDmd

)

≥

λcDmc

Res. m
∑

d

λdDmd ≤ um

bmc

(

1−
∑

d

λdDmd

)

∑

d

λd ≥

∑

d

λdDmd

qm

(

1−
∑

d

λdDmd

)

≥

∑

d
λdDmd

Class c ��
∑

m

Dmc

1−
∑

d
λdDmd

≤ bc λc

∑

m

Dmc

1−
∑

d
λdDmd

≤ qc

System ��

∑

m

∑

d
λdDmd

1−
∑

d
λdDmd

≤

bS

(

∑

d

λd

)

∑

m

∑

d
λdDmd

1−
∑

d
λdDmd

≤ qS

Table 4. Constraints. Equations in gray cells are of non-linear constraints.

Constraint expressions are given in Table 4. For five of the performance in-
dexes shown in Table 4, (the one with the white background), the corresponding
constraints are linear in λc. This means that when only such constraints are
present, Eq. 16 is a LPP which can be efficiently and accurately solved using
the simplex algorithm. In presence of the other constraints (the one with gray
background in Table 4), non linear optimization techniques should be employed.
However, since all the functions are convex, the problem can still be solved using
simple techniques such as Successive Quadratic Programming (SQP) [15].

As an example, we can use the result to investigate the effect of combining
several different constraints on the total throughput of the system described in
Section 4.In particular, we set the following requirements:

S1: The utilizations of the (S1a) Inventory and (S1b) Shipping resources
should be less than 70%.

S2: The requests of the Intranet class should be executed with a mean trans-
fer time less than 650 ms.

S3: We mush have β3 = 0.2.
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The maximum throughput with the given set of constraints corresponds to
the solution of the following OP:

Variables: λc, 1 ≤ c ≤ C

Objective: maximize
∑

c

λc

Constraints:

1) ur3 −
∑

d

λdD3d ≥ 0 2) ur4 −
∑

d

λdD4d ≥ 0

3) b1 −
∑

m

Dm1

1−
∑

d λdDmd

≥ 0 4) λ3 − β3(
∑

d

λd) ≥ 0

5) 1−
∑

d

λdDmd ≥ 0, 1 ≤ m ≤ M

6) λc ≥ 0, 1 ≤ c ≤ C

(17)

The constraints in Eq. 17 are derived from those in Table 4 and expressed
as inequalities greater than or equal to 0 to conform with OP conventions. Con-
stant parameters ur3 and ur4 of the 1) and 2) constraints (which corresponds to
constraints S1a and S1b) are both set to 0.7. In constraint 3) (corresponding
to S2) the Response time requirement of class 1 is set to b1 = 650 ms, while
constraint 4) is corresponds to constraint S3. It is interesting to note that among
all the constraints in Eq.17, 3) (S2) is the only one non-linear. If we exclude it
from the OP, the Eq. 17 becomes a LPP which can be solved very efficiently
with the simplex algorithm. In this case, the maximum Λ is 9.1864 job/s. with
β1 = 0.38857, β2 = 0.41143 and β3 = 0.20006. If we consider the complete set
of constraints, we can use the SQP technique non-linear optimization technique,
to find a maximum Λ = 8.7508 jobs/s. with β1 = 0.35245, β2 = 0.44755 and
β3 = 0.2. Results were computed using GNU Octave [16] on a standard laptop
PC in few seconds.

5.4 Computational complexity

The proposed performance bounds can be computed very efficiently. For a con-
sidered population mix β, the population mix scaled demand Dm(β), for all the
resources 1 ≤ m ≤ M , can be computed with time complexity O(M · C), and
storage complexity O(M). Dm(β) can then be used to compute the population
mix maximum throughput Λ̂(β) with complexity O(M).
Knowing the population mix scaled demand, resource-level constraints can be
obtained in O(1) time, since they do not include any iterative procedure and can
be computed with closed form expressions.
System-level constraints are more complex since they must be computed itera-
tively. However, thanks to the Newton-Raphson, usually less than ten iterations
are enough to reach a solution within the desired precision. During each iter-
ation, both the value of the performance index and of its derivative must be
computed: the complexity of both operation is O(M) since these expressions
iterate over all the system resources.
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The most time-consuming operation is thus the computation of Dm(β), which
however could be cached and reused if several constraints have to be computed
(i.e., a set of J constraints must be satisfied at the same time). The final compu-
tational complexity is O(M ·max{C, J}), which gives the possibility to explore
very large parameter spaces in term of different β, even when considering a large
number of classes, resources and performance objectives.
The convergency to the optimal solution of the LPP to determine either the un-
constrained maximum throughput, or to consider linear constraint is also not an
issue. The LPPs have always C variables and M +#LK + C (LP) constraints,
where #LK is the total number of linear constraints. If the problem includes also
#LK non-linear constraints, then the OP has a total of M+#LK+#NLK+C
(OP) constraints, which can still be handled by todays commodity hardware,
provided that the total number of classes or resources is not extremely high.

6 Experimental results

To show the applicability of the proposed technique in a real scenario, we applied
it to study the maximum throughput of the RUBiS [5] benchmark application.
RUBiS is a prototype of an auction site that mimics eBay, which is available
in three different technologies: Java servlets, PHP, and Enterprise Java Bean.
We used the servlet version of the benchmark, which is organized as a three-tier
architecture using standard HTML, Java Servlet, and SQL technology. RUBiS
comes with Apache server as the web server, JBoss as application server and
MySQL as database. Each tier was deployed on a different physical machine
equipped with a single core Intel Xeon processor running at 2.66 GHz with
Ubuntu 12.04 LTS; the client emulator and the load balancer were deployed on
servers running Microsoft Windows Server 2008 R2. A dedicated gigabit LAN
provided the network functionality.
Since servlets’ execution times are mostly related with the queries sent to the
database, and with the amount of data returned, we focused our study on two
servlets with fixed queries: ViewBidHistory and PutComment. Even though RU-
BiS is composed of a larger set of servlets, we selected these two as representa-
tives of two types of requests: the application server intensive and the database
intensive type, respectively. We consider this not to be an over-simplification;
on the contrary, it is quite common in other related works as well, where tech-
niques such as K-means clustering are commonly used to group requests into
fewer clusters with similar profiles e.g. [18]. The technique proposed in Sec. 4
and Sec. 5 requires the determination of the demands of the considered classes
at the resources that compose the system. In order to estimate such parame-
ters, we studied the system by performing a set of test workloads. In particu-
lar, we loaded our client emulator with Λ ∈ {150, 200, 250, 350, 400} job/s. and
β1 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. Not all the configurations were stable: in particular
we experienced a large number of requests being dropped for Λ = 350 job/s. and
β1 = 0, and for Λ = 400 job/s. and β1 ≤ 0.6. We then discarded the ones for
which we experienced drops in the system. We used the JBoss’ and database’s
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mean service times to determine the demands that better describes our system
through a simple fitting procedure: we minimized the difference between the
service time expected by the model and the one measured on the real system.
Figure 2a shows both the model and the measures: as it can be seen, we have
very small errors for the JBoss component, while the DB experiences a larger
deviation. Table 5a shows the estimated service times.
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Fig. 2. (a.) Estimated vs. measured mean service demands and (b.) Maximum through-
put of the considered RUBiS application.

D PutComment viewBidHistory

JBoss 0.5855 2.3532
DB 3.2463 2.1959

Λ [job/sec] RV iewBidHistory [ms.] UJBoss Qsys

350 11.0 55% 11.9
400 55.0 74% 373.6

a. b.
Table 5. (a.) Estimated demands of the considered RUBiS servlets (in msec) and (b.)
Performance indices of the RUBiS application at β∗.

By applying the values from Table 5a to Eq. 5, we determined that the
systems is capable of offering a maximum throughput Λ∗ = 443.5 jobs/s for
a population mix of β∗ = |0.0558, 0.9442|. In particular, in Fig. 2b we can
see that the system should be stable for all the possible population mixes for
Λ < 308 jobs/s, while it will present instabilities for some β for Λ > 308.
These results were confirmed by measurements, where we found the system being
unstable at Λ = 350 job/s. for βV iewBidHistory = 1, and at Λ = 400 job/s. for
βV iewBidHistory ≤ 0.4.
We then adds three constraints to the system:

S2: The requests of the ViewBidHisotry class should be executed with a
mean transfer time less than 25 ms.

S2: The utilizations of the JBoss resources should be less than 70%.
S3: The mean number of jobs in the system should be not greater than 20.
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Figure 2b shows the effect of the constraints to the maximum throughput for
various values of the class mix β. Using the optimization procedure described in
Sec. 5.3, we can determine that the maximum throughput is Λ∗ = 358.34 jobs/s.
for a population mix of β∗ = |0.2262, 0.7738|. To check such requirements,
we measured the system at β∗ = |0.2262, 0.7738| for Λlow = 350 job/s. and
Λhigh = 400 job/s. The system was stable for both arrival rates. The results are
shown in Table 5b: as it can be seen, all the constraints are met at Λlow, but
they are all violated for Λhigh, even if the system is still stable.

7 Conclusions

In this paper we described a technique to identify the maximum throughput
that a system can provide, given an SLA for each class of applications. Limiting
values of several performance metrics were considered, i.e., response times, uti-
lizations, and queue lengths, and the maximum throughput for each class was
computed. We demonstrated that the predicted values can be obtained in a real
environment through experiments executed on a commonly adopted benchmark
that simulates an e-commerce web site.
The future work will be concentrated on policies for the performance control
of each node of a large set of interconnected systems in order to maximize the
throughput of the global network.
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