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The paper investigates undergraduates’ argumentations to justify their answers to elementary 

calculus problems involving the recognition of relationships among graphs, verbal texts and 

formulas. The examination of the texts produced over more than ten years highlights serious 

language difficulties and suggests that we cannot exclude that language is a key factor for the 

quality of arguments. The main goal of this study is to gain a better understanding of how language 

difficulties (depending on both competence and attitudes) affect argumentations.  
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Introduction 

The paper focuses on how undergraduates justify their answers to elementary calculus problems 

involving relationships among graphs, verbal texts and formulas, in the frame of an introductory 

mathematics course delivered in Italian to biology freshman students. The course is short (48 hours 

of lectures and 24 hours of optional tutoring sessions) and taught by two instructors, one of whom is 

the author. It is usually attended by more than 400 students, coming from various regions of Italy 

and Eastern Europe.The students’ language competence is much varied. Due to the goals, the 

attendance, and the lack of time, I did not develop a standard course moving from the basic 

definitions of Calculus to get to theorems and applications, but focused instead on a few concepts 

such as graph symmetries and slope. Most of the tests administered as working material or 

examination papers require the linking of different representations of functions (symbolic 

expressions, graphs, verbal texts, tables of numbers). Through these activities participants are 

systematically asked to explain and justify their answers in writing, even informally. This 

requirement is aimed at discouraging guessing or rote learning and help the students to better 

understand the concepts involved. Morgan (1998) provides a description and discussion of the 

‘writing-to-learn’ paradigm, and highlights the benefits of the use of writing as a means for 

learning. Very appropriately, she suggests (with the expression ‘learning-to-write’) that nobody 

needs to assume that students of any age have achieved the level of linguistic competence required 

in order to produce texts adequate to their goals, and challenges the assumption, more or less 

implicit in a number of studies, that language naturally develops and there is no need for deliberate 

language teaching (Morgan, 1998, pp. 37-49).  

The scrutiny of the papers written by students over the years highlights serious difficulties with 

language and suggests that we cannot exclude at all that language competence is a key factor for the 

quality of arguments. If we admit that there is a link between language and thought, there is no 

reason at all to rule out the hypothesis that the quality of the texts a subject can produce or interpret 

could deeply affect the quality of her/his thinking, and thus of the arguments s/he can produce.  

An investigation of this topic requires dealing with the texts involved as objects, not only as means 

to develop a discourse within a given context. The focus should be on the organization of the texts, 

not just on the corresponding communication process.  



  

The main goal of my research is to get a better understanding of how language difficulties 

(depending on both competence and attitudes) affect the production of arguments by 

undergraduates. In this specific study I focus on problems involving graphs. 

Theoretical framework 

From  the end of WW2 research on argumentation has produced a large number of papers from a 

wide range of perspectives. Some researchers, such as Crawshay-Williams (1957) and van Eemeren 

et al. (1996), in different ways, have underlined the role of context in argumentation and the links 

between argumentation and language.  Crawshay-Williams (1957, p.3), for example, claims that his 

work on argumentation “enquires how we use language as an instrument of reason ” and argues that 

“[i]t is only possible to determine whether an empirical statement is true or false if the context of 

the statement is known.” On the other hand, van Eemeren et al. (1996) relate the theory of 

argumentation to the pragmatic theory of speech acts (Austin, 1962), which takes into account not 

just the propositional content of a statement (i.e. the part of its meaning, based on vocabulary and 

grammar, that allows the receiver to identify the referents and possibly to establish whether the 

statement is true or false), but also the speech act (i.e., the fact of expressing a proposition in a 

specific context, which conveys also speaker’s (or writer’s) beliefs, attitudes and commitments, 

possibly influencing the hearer’s (or reader’s) ones. Toulmin’s framework (2003), on the contrary, 

although it is widely adopted in research on argumentation in the context of mathematics education, 

seemingly pays very little attention to language and context.  

As far as language is concerned, I adopt Halliday’s (2004) account of the relationship between 

scientific language and science and his Systemic Functional Linguistics (SFL) (Halliday, 1985, 

2004; Leckie-Tarry, 1995; O’Halloran, 2005). Halliday, whose research is in the field of pragmatics 

started by Austin (1962), argues that there is no learning of science without some learning of its 

language (2004, p. 160). The adoption of the SFL framework is justified by the opportunity of 

focusing on the functions of language in mathematics education, where the needs for effective 

representations of concepts and their relationships and  algorithms is unavoidably at odds with those 

of effective communication. Multisemioticy is an important feature too, as the interplay among 

verbal, figural and symbolic representations is stronger in mathematics than in other fields. 

In order to analyze the protocols, I am using the idea of register as a linguistic variety related to use 

(Halliday & Hasan, 1990). An enlightening discussion on registers in an SFL framework has been 

provided by Leckie-Tarry (1995). Morgan (1998) and Ferrari (2004) have applied this idea to 

mathematical language. Any individual has at her/his disposal a range of registers that s/he uses 

according to circumstances. The most relaxed registers, used in spoken (but sometimes also written) 

everyday communication are classified as colloquial, while those adopted in written (but sometimes 

also spoken) communication among educated people, for example in institutional, educational, 

literary, research contexts are referred to as literate. 

Colloquial registers, in short, are characterized by their strong dependence on the context of 

situation (i.e., according to Leckie-Tarry, 1995, the space and time in which the exchange takes 

place, the participants, …), which allows participants to negotiate meanings and makes it 

unnecessary to produce accurate and unambiguous statements from the beginning. Literate registers 

are less related to the context of situation. In colloquial registers the meaning of words is mainly 



  

taken from previous experience, and most often much precision is not required to achieve the goals 

of the exchange, whereas in literate ones words have precise meanings, based on definitions (the so 

called lexicalization). In colloquial registers syntax is customarily relaxed, while in literate ones it is 

tighter. In colloquial registers there is an extensive use of iconicity, i.e. the analogy between the 

form or organization of a representation and its meaning. Iconicity is opposed to arbitrariness and 

can involve factors such as order (the order of facts matches the sequence of the representations). In 

literate registers representations are less iconic and more conventional. As a consequence, the 

interpretation and production of texts and representations in colloquial registers are quite unstable, 

since they depend on factors difficult to control (how the subject is accustomed to use words, how 

s/he interprets images, the mental models s/he uses in place of the definitions, the personal 

experiences s/he tries to recall, …). In literate registers, the lesser dependence on the specific 

situation, the reference to defined meanings (thus more objective and verifiable) and the role of 

syntax (objective and verifiable too) make the interpretation and production of texts more stable. 

Even a quick analysis of what is described above should make it clear that most of the registers used 

in mathematical settings share the features of a literate register in an extreme way: in mathematical 

registers the interpretation of a text depends little on the context of situation in which it is produced. 

Here I am not referring to the processes of learning or communicating mathematics, but on the 

organization of mathematical texts, as they can be found in any mathematics textbook from primary 

to graduate schools. The dependence of mathematical language on the context of culture (any kind 

of systems of knowledge related to the participants and the topics of the exchange), on the contrary, 

is very strong (think of definitions, conventions, theorems, …), as well as lexicalization and 

conventionality (there are not many other semantic domains where definitions play as important a 

role as in mathematics). The same holds for syntax: in a mathematical text, either symbolic or not, a 

minor variation (e.g., the displacement of a parenthesis or of a comma) can deeply change its 

meaning. The interpretation of texts in mathematical registers is stable: in some cases it can be 

performed automatically. The use of colloquial registers is essential for learning as well: nobody 

could ever learn anything if s/he should use literate registers only. So, in learning mathematics the 

trouble is not the use of colloquial registers, but the failure to adopt literate ones when necessary. 

Methodology 

A large number of argumentative texts produced by freshman students to justify their answers to 

problems involving the interpretation of graphs, both in examinations and in tutoring sessions 

(including online ones) have been scrutinized. In this paper I take into consideration only texts 

produced for one specific examination. To understand the argumentations it is necessary to regard 

them related to the problem-solving context they are produced within, considering the solutions 

produced as well. This study is not aimed at testing a particular model but rather at understanding 

the difficulties of a relevant number of students with different backgrounds, cultures, attitudes, and 

levels of competence, also in order to improve our teaching and tutoring strategies. For these 

reasons I have used a large number of protocols taken from a real examination, as most often the 

weakest students are not willing to take part in other activities, such as special tutoring sessions. 

Some of the participants have been interviewed after the test. For each participant I tried to classify 

answers and errors, if any, such as: use of pseudo-rules or of mathematically inappropriate models, 

wrong reading of the data, miscalculations, and language errors. I have also classified the kind of 



  

text produced (basically, the register adopted, by means of the indicators suggested by Leckie-

Tarry, 1995) to see if and how linguistic competence might have affected the answers. In some of 

the excerpts both the original Italian text and an English translation are given. The kind of analysis I 

want to carry out does not allow me to refer to an English translation only, which, even if it may 

convey with fair approximation the ideational component of the text, unavoidably it cannot but fail 

in conveying other aspects of the text, such as register or improper uses. 

It is never easy to understand whether an error depends on the language (e.g., a proper idea wrongly 

expressed), on contents (e.g., a wrong idea truly expressed) or on both. For example, the (wrong) 

claim that function g below is decreasing in [0, 10] might depend on a poor understanding of the 

corresponding definition, or on the improper use of ‘decreasing’, or even on a wrong interpretation 

of the graph. This in turn might be affected by the everyday use of the same words. The analysis of 

cohesive devices (i.e., the linguistic resources used to link the parts of the text), as carried out by 

Alarcon and Morales (2001) is a classical way to deal with argumentation in a SFL setting. In the 

analysis of the protocols, I have applied two criteria: the appropriate use of cohesive devices 

(contrasted to improper use or no use at all) and the vocabulary (lexical vs colloquial use of words). 

The problem 

Here I focus on problems involving graphs, such as problems requiring to associate a formula to a 

graph, or a graph to a formula, or to link the graph of a function to the graph of its derivative. All 

the protocols (about 200) used in this study come from the following problem. 

Consider the graphs A, B, C, D drawn below 

and choose three of them which, in the 

interval displayed, do not correspond to the 

derivative of the function g drawn on the 

right.  

Justify your answer. 

g 

 

A)  

 

B) 

 

C)  

 

D) 

 

Table 1. The problem 

The problem is in negative form, as participants are required to identify three graphs that do not 

correspond to the derivative of the function g. It is manifest that in a problem of this sort it is not 
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possible, from the scrutiny of the graphs only, to decide that a graph does correspond to the 

derivative of a given function. On the other hand, it is possible, in many cases, to decide that a 

graph does not correspond to the derivative of a function. Considerations of this kind hold for a 

great deal of mathematical problems involving graphs. The negative wording of the problem has 

proved a source of trouble although it explicitly refers to the need for excluding three graphs. 

I have regarded as acceptable all the answers excluding the three appropriate graphs with 

appropriate justifications, i.e. argumentations where the properties of g and of the graphs the answer 

is based on are explicitly mentioned. For example, a text like 

(1) “g is increasing in (0, +), so its derivative must be positive in the same interval, so I 

exclude graph A, which is partly negative in the same interval.” 

has been considered a sufficient justification in order to rule out graph A, although the student has 

made no explicit reference to any theorem or rule. Actually, it is uncommon among freshman 

students to find explicit reference to some general property to justify an inferential step.  

Outcomes 

Although this is not a quantitative study, I often give some quantitative indication about the size of 

the groups adopting some behaviors. It might be interesting, from a teaching perspective, to know if 

a behavior is adopted by a small group of students or it is more general. 

Correct answers equipped with acceptable arguments usually range from 20 % to 40 %, according 

to the sample and the task. In this experiment correct answers have been a bit less than 25 %.  

Student A02 marks the graphs A, B, D and gives the following argument: 

“Non corrispondono, perché g è in positivo mentre A, B, C sono sia in positivo che in negativo.” 

[“Do not match, because g is in positive while A, B, C are both in positive and in negative.” ] 

First of all, the argument, which seems aimed at ruling out graphs A, B, C, is inconsistent with the 

marks on the diagram, which rule out graphs A, B, D. The argument adopted seems to fit graph D 

better than graph C, and one can imagine that the subject wrote ‘C’ in the argument by mistake. 

Errors of this kind are quite frequent. Second, the subject only deals with what s/he is looking at and 

makes no reference to mathematical properties connected to the problem, nor any attempt to link to 

each other the data s/he has mentioned. In other words, the argument is completely bounded within 

the context of situation, with no attempt to put it in a framework of knowledge, i.e., in a context of 

culture. Third, the text is inaccurate: the main verb has no subject, the expressions “in positivo”, “in 

negativo”, which are circumstantials of (spatial) location, are used in place of the more correct 

attributes (‘positivo’, ‘negativo’) and the expression “sia in positivo che in negativo” is vague.   

Student A03 marks graphs B, C, D and produces the following argument: 

“in x>0 la fne della derivata dev’essere positiva quindi non è sicuramente la B, in x<0 la fne della 

derivata dev’essere negativa (decrescente) quindi non può essere la D e la C non è sempre 

crescente nell’intervallo (0,+). Penso sia il grafico a.”  

‘fne’ is an informal abbreviation for ‘funzione’ (function). In order to help reading, I translate it as 

the whole word. 



  

 [“in x>0 the {function} of the derivative must be positive so surely it is not B, in x<0 the 

{function} of the derivative must be negative (decreasing) so it cannot be D and C is not always 

increasing in the interval (0, +). I think it is graph a.”] 

In this text some connection is hinted at but not developed, the student states (in her/his way) that 

the derivative must be positive for x>0 and negative for x<0 but s/he does not explain why. S/he 

seemingly identifies “increasing” with “positive” and (explicitly) “decreasing” with “negative”, as 

s/he rules out graph B which is positive for x>0 but not increasing in most part of that interval. 

Moreover, s/he inconsistently does not rule out graph A, which is the only one with negative values 

for some x>0. The identification of “increasing” with “positive” and “decreasing” with “negative” 

may depend on poor understanding of the subject matter, but most likely it has linguistic roots, as 

this student seemingly makes no distinction between the words and most likely s/he refers to 

everyday-life uses, according to which “positive trend” might mean “increasing trend”.  

Student A36 marks graphs A, B, C (with some erasures) and writes: 

 “La funzione tra [0, +[ f(x)>0 quindi la funzione è crescente quindi la B non è crescente. 

[erased words] funzione g(x) è tutta positiva da da ]-,0] è decrescente mentre da [0,+[ la 

funzione è crescente l’unico che cresce sempre di più è la D.” 

 [“The function between [0,+ [  f(x)>0 so the function is increasing so B is not increasing. 

[erased words] function g(x) is all positive from from ]-,0] is decreasing while from [0,+ "[ 

the function is increasing the only one that always increases is D.”] 

The linguistic quality of this text is very poor. There is a bad coordination between the verbal and 

symbolic parts, the given function is referred to as ‘f ’ instead of using its proper name ‘g’, the 

conjunction “quindi” [“so”] is used twice inappropriately, in the second occurrence to introduce 

some data taken from a graph. There are a number of erasures and repetitions, and some of the last 

clauses are linked neither by discourse markers nor by punctuation. 

Student A39 marks graphs A, C, D and writes: 

“Escludo la C perché nell’intervallo (10; 0), la funzione decresce perciò la sua derivata dovrà 

essere negativa. Escludo la D perché la funzione è pari mentre il grafico D è dispari. Escludo la 

A perché la funzione g è crescente nell’intervallo [0;10) e quindi il grafico A dovrebbe essere 

positivo mentre è negativo per x[0;3].” 

[“I rule out C because in the interval (10; 0) the function decreases so its derivative will be 

negative. I rule out D because the function is even whereas graph D is odd. I rule out A because 

function g is increasing in the interval [0; 10) and so graph A should be positive, whereas it is 

negative for x[0;3].” 

In this case the choice of graphs is the correct one. Most likely in the expression (10;0) the subject 

has forgotten to write the sign ‘-’ before ‘10’ (although other participants wrote reversed intervals 

too). The motivation to rule out D is inappropriate, for it would have been necessary to recall that 

the derivative of an even function, if any, is an odd function and that graph D does not correspond 

to an odd function but it is neither odd nor even). On the contrary, the subject proceeds by analogy 

(f even  f’ even), missing the classification of graph A: actually s/he claims it is odd. Maybe s/he 

means that it is not even, but is misguided by the meaning of odd/even in the frame of integers. 



  

Student A17 marks graphs A, C, D and writes: 

“Non corrispondono i grafici A-C-D. Possiamo escludere il grafico C perché per esempio 

nell’intervallo (-10;0), la nostra funzione g risulta decrescente mentre in quel tratto il grafico C 

risulta positivo (dovrebbe invece essere negativo). Possiamo escludere la A perché per esempio 

nell’intervallo (0;3), la funzione g risulta crescente mentre il grafico A in quell’intervallo è 

negativa anzi ché positiva. Escludiamo anche il grafico D perché nella funzione g la concavità è 

verso il basso tra (1;5) quindi nello stesso intervallo il grafico dovrebbe essere decrescente 

mentre la D è crescente.”  

[“Graphs A-C-D do not correspond. We can rule out graph C because, for example in the 

interval (-10; 0), our function g results decreasing while in that stretch graph C results positive (it 

should be negative instead). We can rule out A because, for example in the interval (0;3), 

function g results increasing while graph A in that interval is negative instead of being positive. 

We rule out graph D too because in function g the concavity is downwards between (1; 5) so in 

the same interval the graph should be decreasing, while D is increasing.”] 

This excerpt has been reported in order to underline the difference between those who can use 

language in a mathematical setting and those who cannot. The text of A17 is not perfect, but 

language for her/him is a tool good enough to understand the problem, find a solution and justify it. 

The text is explicitly organized with conjunctions and discourse markers (“while”, “so”, “for 

example”, “instead”) and each statement is equipped with its own domain of validity (“…in the 

interval (-10; 0) …”). The general properties the argument is based on are not explicitly mentioned, 

but the subject adds some remarks that highlight the connections between the parts of her/his 

argumentation and make it unambiguous (“… it should be negative …”, “ … while D is 

increasing.”). Although the subject does not write down some general rule or property, s/he 

underlines the critical points of her/his argumentation and uses language (including grammar) to 

organize and clarify her/his answer. 

In the optional interviews performed in the week following the experiment, subjects A02, A03, 

A36, and A39 were not able to reconstruct their thinking and explain their answers. This is a 

general behavior: a great number of students cannot reconstruct the meaning of the text they have 

produced, even if they have it before them and are given time to read it with no pressure.  

Discussion 

The protocols examined above have been chosen as representatives of diffused patterns of 

argumentation. In particular it is worthwhile to remark: 

The lack or improper use of connectives and discourse markers (i.e., of cohesive devices) is a 

serious problem: the links between the clauses are not made explicit or are expressed in a vague and 

improper way; even if the subjects, while writing down, may have some nice idea in mind, the lack 

of an explicit and effective objectification through language, prevents them from reconstructing and 

developing it afterwards. Behaviors of this kind are common. 

Some students (such as A02) seem not to be able to recall the necessary pieces of knowledge and 

work on the data of the problem by creating pseudo-rules (e.g., g increasing/positive/even  g’ 

increasing/positive/even). Models of this kind are very robust. It is possible that these models are 



  

consequence of the practice of not interpreting the text of a word problem in order to reconstruct the 

problem situation, but to search for keywords that might suggest the proper. 

The difficulties mentioned above all increase the instability of the processes of interpretation and 

production of texts, which might explain some apparently inconsistent behaviors; an example is 

protocol A39: the student answers correctly and correctly rules out graphs A and C reasoning on the 

basis of known properties of functions; to rule out D as well, s/he properly focuses on the evenness 

of g, but, probably in the attempt to apply the pseudo-rule “g even  g’ even” claims that D is odd; 

a number of students (more than 30 % of the sample in this experiment) correctly rule out A and C 

but use wrong or inconsistent arguments to rule out D too; the fact that in order to rule out D some 

‘rule’ different from “g increasing  g’ positive” is required is enough to trouble the subjects and 

induce them to provide wrong answers. 

Although much research is needed to determine the exact role of language in argumentation 

processes, it seems to me that the outcomes of this study suggest that it cannot be disregarded at all, 

in spite of the fact that a number of current studies on argumentation do not take the role of 

language into account. On the other hand, SFL seems a promising framework to better understand 

students’ linguistic behaviors in a mathematical setting, disregarding neither the factors related to 

interpersonal communication nor those related to the specific features of mathematical language. 
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