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Abstract—Epistemic uncertainty analysis accounts for inac-
curate input parameters and evaluates how such uncertainty
propagates to output measures. In this work we will focus
on Weibull distributions, in particular the one related to the
reliability of multi-core systems-on-chips. We focus on a two-
core system in which, when one of the cores fails, the other
can take care of all the systems’ tasks. However, this results in
an increased operational temperature that leads to a reduced
lifetime. We first discuss the epistemic uncertainty distribution
that we expect when we estimate the scale parameter of a Weibull
distribution from a limited set of samples. We then extend the
procedure to consider the epistemic uncertainty in the two core
system-on-chip when we can measure the failure times of the
first and of the second core.

Index Terms—Epistemic uncertainty, Uncertainty propagation,
Weibull distribution, Min/Max Weibull distributions, Multi-Core
System-on-Chip

I. INTRODUCTION

The modeling process of a technological system can be
affected by many sources of uncertainty, that are usually
categorised as either aleatory or epistemic [9]. The aleatory
uncertainty is due to the inherent variability or unpredictable
knowledge of the system behavior (e.g. failure and repair
times, arrival and service times, etc...), the epistemic un-
certainty results from lack-of-knowledge or some level of
ignorance about the parameter values characterizing the system
behavior [11].

The aleatory uncertainty is commonly considered by re-
sorting to stochastic modeling techniques that are well doc-
umented in safety [5] and dependability analysis [19]. The
appropriate incorporation and presentation of the epistemic
uncertainty is now widely recognized in safety and risk
assessment as surveyed in the opening paper [4] of a special
issue devoted to the topic of epistemic uncertainty [7]. On the
other hand, the epistemic uncertainty has generally received
a moderate attention in the area of dependability in the past,
even if the appropriate incorporation of uncertainty into the
dependability analyses of complex systems is a topic of grow-
ing interest [21]. The challenge is to model the uncertainty in
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the input parameters, via subjective evaluation or experimental
measures, and to propagate such uncertainty to the output mea-
sures, given the underlying stochastic model of the system. The
propagation of the uncertainty in a model has been generally
studied by resorting to a simulation approach [1], [10], [14]. A
closed-form analytic approach is developed in [12], where it
is assumed that the probability distribution of the uncertainty
that affects the measures can be inferred from the problem,
and that measures are available to estimate the value of the
input parameters. Then, the uncertainty is propagated along
the model to evaluate how the input uncertainty influences
the output quantities, and how the confidence intervals of
the output quantities are affected by the number of samples
available for the input parameters. The underlying stochastic
model in [12] is a Homogeneous Continuous Time Markov
Chain (HCTMC), so that the failure times, are bounded to
be exponential and the input parameters are constant fail-
ure rates. In [17], the same approach is followed, but it
is extended to Non-Homogeneous Continuous Time Markov
Chains (NHCTMC) with time-dependent failure rates and the
system structure is represented by a Fault tree. Further in
[17] a sensitivity analysis is carried out in conjunction with
uncertainty propagation [3] showing a correlation between the
two methods of investigation. Sensitivity analysis provides an
assessment of the contributions of individual input parameters
to the total variability in the outcomes, and can be evaluated
by simulation [3] or analytically [17].

The present paper applies the uncertainty propagation ap-
proach to a multi-core system-on-chip whose reliability char-
acteristics have been the object of several studies [2], [6],
[18]. The development of the uncertainty propagation model
is particularly challenging because the lifetime of any single
core is Weibull distributed and is influenced by the operating
conditions of all the other cores. The time dependent rate of
wear caused by the progressive aging is primarily related to
the core temperature and utilization level. Hence, the present
paper extends the approach in [12] in two directions: i) -
The components are subject to wear and the time to failures



are Weibull distributed and ii) - the time to failure of any
component depends on the load and on the working conditions
of the other components. In this preliminary work we restrict
our analysis to a two-core system.

II. RELIABILITY OF A TWO-CORE SYSTEM-ON-CHIP

The increasing shrinking in transistor dimension in IC’s
causes the devices to operate at high temperatures making
them more exposed to ageing and wear-out phenomena (such
as time-dependent dielectric breakdown, thermal cycling, and
electromigration), that are exponentially dependent on the
temperature. High operating temperatures have a detrimental
effect on the device lifetime [16], [20].

Multi-core systems are formed by a matrix of cores inte-
grated on a single chip and the total load is shared among
the cores. The temperature of each core, aside from the
technological properties of the chip, depends on the power
consumption (i.e., caused by the execution of the load) and
on the heat exchanged with the adjacent cores. According to
[8], the time to failure of each core is Weibull distributed so
that its reliability can be written as:

R, T) = ¢ (5tm)° (1)

where [ is the temperature-independent shape parameter and
A(T) the scale parameter. In Eq. (1) we have explicitly
included the dependence on the operating temperature 7' of
the core. The MTTF of a single core at a temperature 7T’ is:

MTTF(T) = \T)T (1 + ;) )

Since we know that the degrading mechanisms in IC’s are
thermally accelerated according to the Arrhenius law [8], the
MTTF(T) and consequently the scale parameter A(7") can be
considered inversely proportional to the Arrhenius exponential:

Eq
MTTF(T) ~ Zett  NT)~Z " (3)
r (1 + %)

where Z is a proportionality constant that depends on the
process and on the aging mechanism, F, is the activation en-
ergy of the thermally accelerated mechanism, k the Boltzmann
constant and 7" the absolute temperature in K.

Since the focus of this study is on the epistemic uncertainty
propagation, we restrict our analysis to a two-core system.
The two cores are statistically identical and share initially the
same load, thus at ¢ = 0 they have the same (low) temperature
T7,. When the first core fails, the remaining core takes all the
load and its operating temperature raises to a value Ty > T7.
From the literature, we assume that the shape parameter does
not depend on the temperature and has a value § = 2. Since we
are mainly concerned with the acceleration mechanism rather
than the absolute values, we normalize A(77) = 1 and we
derive A\(Ty) from Eq. (3). Assuming an activation energy
of &, = 0.48eV (typical for electromigration in Al films),
Tr = 323 K and a temperature increment 7 — 17, = 10 K
we obtain A(Ty) ~ 0.6.
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Fig. 1.

The state-space of the model is reported in Fig. 1. The labels
inside the states represent the number of operating cores. The
transition time from state 2 to state 1 represents the time to
failure of the first core that fails and its distribution Fy(¢,77)
is given by the minimum between two Weibull distributions
at a temperature 717, (1).

F[(t,TL> =1- 6_2 (M%L)) (4)

which is again Weibull distributed with scale parameters
BVRA(TL). Frpr(t,Ty) is the failure distribution of the
second component given that the first has already failed: notice
that the core operating temperature, in this case, is Ty. The
second core must account for the ageing it has accumulated
up to the failure time of the first core. In particular, we have
that:
2

_ (t—tlﬁ»tfl(tI‘TL,TH))B
Frog(t, Tltr, Ty) =1 — ¢ e (5)

where ¢5;(¢7, Ty, Ty ) represents the time instant when a core
working at temperature Ty would have reached the same
reliability of a core working at temperature 77, at time instant
ty, that is:

Rrr (t77(t1,Tp, Tr ), Ta) = Ry(t1,Tr) (6)

After inserting the expression of the Weibull distribution we

obtain:
MTg)

MTTL)
The distribution of the second failure can then be computed
by deconditioning Eq. (5):

t7;(tr, T, Te) = tr )

¢
Frr(t,Tp,Ta) = / Fri(t, Tgltr, Tp)dFr(tr, To)  (8)
0

In this work we are interested in determining the system
parameters, A\, = A(7.) and Ay = A (Ty) from a set
of samples that accounts for the first and second failure.
Let us call u; the samples from the distribution of the first
failure, and v; the ones from the second failure. As it can
be seen in Fig. 2, neither u; nor v; belong to any of the
two distributions we would like to fit. For what concerns
the first failure (u;), it matches the minimum of two Weibull
distributions with parameter Ar, i.e., Eq. (4). Matching the
distribution of the second samples (Eq. (8) with v;), would
be quite complex due to deconditioning. Instead, we can
rescale the samples by computing v, = v; — u; + uii—’;:
samples from v, correspond to the time the core would have
failed if it had worked the whole time at temperature 1’y
instead of switching from 77, to Ty after the failure of the
first core. This sample (addressed as 2nd F.S.R.” in Fig. 2)



matches the maximum of two Weibull distributions of scale
parameter Ag. The maximum of two Weibull distributions
belongs to a family of distributions addressed as Exponentiated
Weibull Distributions [15], characterised by many interesting
properties and analytical results [13] that will be exploited in
the following.
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Fig. 2. Two failures model reliability.

III. EPISTEMIC UNCERTAINTY IN A WEIBULL
DISTRIBUTION

The input parameter values of a dependability model have
uncertainty associated with them because they are inferred
from subjective evaluation or are derived from a finite number
of observations. The uncertainty in the input model parameters
may be expressed with a probability distribution associated
with them, so that the output measures of the model can be
viewed as a random function of the given parameters.

In the present case, we assume that uncertainty is asso-
ciated only with the scale parameter that is assumed to be
a random variable A of CDF G, (\) and density ga(A). In
the previous notation we have omitted the dependence of
the scale parameter on the temperature 7. The model output
measures can be seen as a random function of the input
parameters and the measures computed at a specific value of
the input parameters can be considered to be conditional upon
the used parameter values. To propagate the uncertainty the
output measures must be unconditioned using the theorem
of total probability. Thus, Eq. (2) is the conditional value
MTTF(AJ)N), and the unconditional expected MTTF is:

E[MTTF) = / MTTF(AJA) ga(N) dA

In order to clarify such approach, let us consider a single-
core system whose failure process is represented by a random
variable X of CDF Fx(¢|\) and density fx(¢|\) following
a Weibull distribution with normalized scale A\(T) = 1 and
shape 8 = 2. To estimate the scale parameter, we observe
a sample of n independent and identical distributed (iid)
random realizations of X, i.e. x1,%s,...,2,. Given the set
of observations, the maximum likelihood estimate for the
parameter A can be computed as in [15]:

B

n

©))

Aajx =

where 5\A| x represents the estimated value of A conditioned
on the observations x1, xa, ..., T,; to simplify the notation in
the following we will omit the subscript. By iterating such
experiment k — oo times, we can estimate the CDF G ()
and the density ga(A) of the random variable A.

The CDFs computed with an increasing sizes n of the
sample set are shown in Fig. 3. The accuracy of the estimated
scale parameter increases with the size of the sample set, thus
the probability mass of the CDFs tends to be concentrated
around the real scale value A = 1.
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Fig. 3. Epistemic uncertainty on the scale parameter.

Using the indicator function 1(¢) that returns 1 if predicates
¢ is true and zero otherwise, we can compute the distribution
of the expected MTTF due to the epistemic uncertainty as:

Pr{MTTF <z} = /1(/ (1— Fx(t]\) dt < x) :
ga(A) dA (10)

As shown in Fig. 4, also the CDFs of the conditional MTTF
given the epistemic uncertainty focus around the real value of
MTTF =1-T(1+ %) = 0.88623.
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Fig. 4. CDF of the conditional MTTF of a Weibull distribution given the
epistemic uncertainty on the scale parameter.

IV. EPISTEMIC DISTRIBUTION OF THE SYSTEM

In order to compute the Epistemic distribution of the system,
first we must define how the parameters of the model, \;, and
Mg can be determined from a set of n measurements. For what
concerns the first failure, since the minimum of two Weibull



distributions is still a Weibull distribution, we could use the
same techniques introduced in Section III, and estimate it as:

AL = ZT (11)

As introduced in Section II, the maximum of two Weibull
distributions is distributed according to an Exponentiated
Weibull Distribution, which is characterised by the following
CDF F'(t) and PDF f(t):

(1 — ef(i)ﬂ)a
B—1 1
(L SO T e
= —_— - 1 - A A 1
o = 5 ( A) (1- (3 a3
where a is the second shape parameter of the Exponentiated
Weibull. In [15], a maximum likelihood estimator for param-

eter A of this distribution is given. In particular, it is shown
that the log-likelihood function can be expressed as:

L(a,$,\) = klna+kIng—kBlogh+(8—1)) a;+
z; i\ B

_ _ ()7 T

+ (a I)Zhl{l e\ } Z()\)
Since parameters a and [ in this case are both known

(a = B = 2), only the partial derivative about X is needed
to determine the scale parameter Ay of the distribution:

1
,(Li)Z 2
e \u

oL

Ti
5‘H

F(t) = (12)

—_
[\

Ay =|= 7 (14)

i 1_6_(

Equation (14) is an implicit expression since Py appears on
both sides. However in [15] it has been proven that it has very
nice properties: in particular it can be solved with a fixed point
algorithm in very few iterations (in our experience, usually
10 iterations have been enough to determine b up to the
machine double floating point precision). In particular, we can
estimate parameters 5\L and \ g from a set of n samples u;
and v; of the failure times of the first and second cores using
the following procedure P:

1) Determine S\L from w; using Eq. (11).

2) Initially set Ay = Az

3) Until Ay convereges to a fixed point solution:

o Compute v, = v; — u; (1 — ’/\\H>
L

o Determine an improvement of Mg from v} using Eq.
(14).

In the previous procedure, v, computes the rescaled failure
time of the second core, which has been shown to correspond
to the maximum of two Weibull distributions of parameter g
in Section II. Fig. 5 shows the marginal epistemic uncertainty
distributions of the two parameters that we can obtain by using
the proposed estimation method. As expected, especially for
a reduced number of samples, the uncertainty on the high
temperature parameter Az is much higher than the one on Ay.
Moreover, since the estimation of Ay depends on the value
computed for AL, the two parameters are not independent. Fig.
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Fig. 5. Epistemic uncertainty on the two scale parameters.

6 shows the correlation of the two values. It is interesting to
see that \ g 1s almost never estimated at a value that is less than
about A 1./4. As expected, as the number of samples increases,
the epistemic distribution of the two parameters approaches a
bi-variate normal distribution centred in their exact value. Note
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Fig. 6. Correlation of the two scale parameters.

that when the number of samples is very low, the previous
procedure might not work, since the inner-most summation
might become negative, and thus produce a complex number
when powered to 1/2. Table I reports the percentage of times
the procedure did not find a solution as function of the number
of samples. As it can be seen, with a reasonable number
of samples (i.e., k = 50) we could find only one case out
of 500K experiments where the procedure did not converge.
By applying the proposed procedure we can compute the

TABLE 1
PERCENTAGE OF TIMES PROCEDURE P FAILS TO FIND A SOLUTION
Kk 2 5 10 20 50 100 | 500

%err || 17.5% | 73% | 21% | 02% | 2-1079%% 0 0

epistemic density fa(Ap,Apy) of the two parameters. The
epistemic distribution can be used to propagate the uncertainty
to output measures such as the MTTF of the system. In
particular, we can compute the average value of the MTTF
(shown in Fig. 7) as:

MTTF :///(1 (I ) Fa(hn i) d dAs dAs



Notice that the distribution F;;(¢| A, Ag) can be estimated by
simulation of the state-based model, the results shown in Fig.
7 and 8 were computed in such a way.

With a simple extension of the approach used to derive Eq.
(10), we can compute the distribution of the expected MTTF
due to the epistemic uncertainty (shown in Fig. 8) as:

Pr{MTTF <z} = //1(/(1 — Fri(tAp, A)) dt < a:)

fa(AL, Am) dAr dAg

The previous expression can also be used to compute more
accurate confidence intervals: for example, the 98% confidence
interval can be computed by finding the values ¢, and ¢;; such
that:

Pr{MTTF < t;} =001, Pr{MTTF <ty}=0.99

The evolution of the 90%, 95%, 98% and 99% confidence
intervals for the MTTF are also reported in Fig. 7. Such plots
can help determine the optimal number of samples required to
have a given accuracy, with a given confidence level, on the
output measures.
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Fig. 7. Uncertainty propagation.
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Fig. 8. CDF of the conditional MTTF of a Weibull distribution given the
epistemic uncertainty on the scale parameter.

V. CONCLUSIONS

In this paper we considered uncertainty propagation applied
to a two-core system-on-chip embedded system. In particular,
we considered the epistemic distribution caused by parameters
estimated from a reduced number of samples, and propagated

its effect on the evaluation of the MTTF of the system. Future
works will consider more complex systems, composed of
m cores, and n-out-of-m redundancy, and the estimation of
the shape parameter. We will also consider how uncertainty
propagates to more sophisticated measures, such as percentiles
of the time to failure distribution.

REFERENCES

[1] P. Baraldi and E. Zio. A combined monte carlo and possibilistic
approach to uncertainty propagation in event tree analysis. Risk Analysis,
28(5):1309-1326, 2008.

[2] C. Bolchini, M. Carminati, M. Gribaudo, and A. Miele. A lightweight
and open-source framework for the lifetime estimation of multicore
systems. In Proc. Int. Conf. Computer Design, pages 166—172, 2014.

[3] J.C. Helton. Uncertainty and sensitivity analysis in the presence of

stochastic and subjective uncertainty. Journal of Statistical Computation

and Simulation, 57(1-4):3-76, 1997.

J.C. Helton and W.L. Oberkampf. Alternative representations of epis-

temic uncertainty. Reliability Engineering & System Safety, 85(1):1 —

10, 2004.

E.J. Henley and H. Kumamoto. Reliability Engineering and Risk

Assessment. Prentice Hall, Englewood Cliffs, 1981.

L. Huang and Q. Xu. Lifetime reliability for load-sharing redundant sys-

tems with arbitrary failure distributions. Trans. Reliability, 59(2):319—

330, 2010.

Special Issue. Epistemic Uncertainty Workshop. Reliability Engineering

& System Safety, 85(1), 2004.

JEDEC Solid State Tech. Association. Failure mechanisms and models

for semiconductor devices. JEDEC Publication JEP122H, 2016.

[9]1 A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it
matter? Structural Safety, 31(2):105 — 112, 2009.

[10] Y.F Li, E. Zio, and Y.H. Lin. Methods of Solutions of Inhomogeneous
Continuous Time Markov Chains for Degradation Process Modeling,
pages 3—16. John Wiley & Sons, Ltd, 2013.

[11] Swiler L.P,, Paez T.L., and Mayes R.L. Epistemic uncertainty quan-
tification tutorial. In Proceedings of the IMAC-XXVII. Society for
Experimental Mechanics Inc., 2009.

[12] K. Mishra and K. S. Trivedi. Closed-form approach for epistemic
uncertainty propagation in analytic models. In Stochastic Reliability
and Maintenance Modeling, volume 9, pages 315-332. Springer Series
in Reliability Engineering, 2013.

[13] G.S. Mudholkar and D. K. Srivastava. Exponentiated weibull family for
analyzing bathtub failure-rate data. IEEE Transactions on Reliability,
42(2):299-302, Jun 1993.

[14] W. L. Oberkampf, J. C. Helton, C. A. Joslyn, S. F. Wojtkiewicz, and
S. Ferson. Challenge problems: uncertainty in system response given
uncertain parameters. Reliability Engineering & System Safety, 85(1):11
- 19, 2004.

[15] Manisha Pal, M. Ali, and Jungsoo Woo. Exponentiated weibull distri-
bution. Statistica, 66(2):139-147, 2007.

[16] A. M. Rahmani, M. H. Haghbayan, A. Miele, P. Liljeberg, A. Jantsch,
and H. Tenhunen. Reliability-aware runtime power management for
many-core systems in the dark silicon era. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 25(2):427-440, Feb 2017.

[17] R.Pinciroli, K. Trivedi, and A. Bobbio. Parametric sensitivity and
uncertainty propagation in dependability models. In /0-th International
Conference on Performance Evaluation Methodologies and Tools (Val-
uetools 2016), 2016.

[18] J. Srinivasan, S.V. Adve, P. Bose, and J.A.Rivers. The case for lifetime
reliability-aware microprocessors. In Int. Symp. Computer Architecture,
pages 276-287, 2004.

[19] K. Trivedi and A. Bobbio. Reliability and Availability Engineering:
Modeling, Analysis, and Applications. Cambridge University Press,
2017.

[20] Y. Xiang, T. Chantem, R.P. Dick, X.S. Hu, and L. Shang. System-level
reliability modeling for MPSoCs. In Conf. Hardware/Software Codesign
and System Synthesis, pages 297-306, 2010.

[21] L. Yin, M. A. J. Smith, and K. S. Trivedi. Uncertainty analysis
in reliability modeling. In Annual Reliability and Maintainability
Symposium. 2001 Proceedings. International Symposium on Product
Quality and Integrity (Cat. No.01CH37179), pages 229-234, 2001.

[4

=

[5

=

[6

—

[7

—

[8

[t}



