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Abstract The paper illustrates a procedure to calculate prediction intervals in case of heteroscedas-
ticity using Holt-Winters methods. The procedure has been applied to the Italian daily electricity
prices (PUN) of the year 2014; then the prediction intervals have compared to those provided by
an ARIMA-GARCH model. The intervals obtained with HW methods have been very similar to the
others, but easier to calculate. Moreover, the HW procedure is more flexible in dealing with periodic
volatility as proved in the case study.
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1 Introduction

The Holt-Winters (HW) methods are forecast methods grounding on recursive formulas for updat-
ing the structural components of time series: the local mean level, Lt ; the local trend, Tt ; the local
seasonal index, It , if the series is affect by periodic effects. According to the composition model of
the structural components, the HW methods can be either additive or multiplicative. In the first case,
when a new observation, yt becomes available, the forecast of yt+k, denoted by ŷt(k), is:

ŷt(k) = Lt + kTt + It+k−hS h = int(k/S)+1 (1)

after having updated the structural components:

Lt = α(Yt − It−s)+(1−α)(Lt−1 +Tt−1) (2)
Tt = β (Lt −Lt−1)+(1−β )Tt−1 (3)
It = γ(Yt −Lt)+(1− γ)It−S (4)

where 0 ≤ α,β ,γ ≤ 1 are smoothing coefficients, and S is the length of the seasonal cycle. The
additive HW provides optimal forecast if the series derives from a SARIMA process of order
(0,1,S+1)(0,1,0)S (Yar and Chatfield, 1990) 1.
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1 Instead, the multiplicative HW is not optimal for any linear process. In case of multiplicative composition of the
structural components, it is worthwhile to apply the additive HW to the log-serie.
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Originally, the HW methods were not thought for prediction intervals (PIs), but over time, some
authors have proposed ways to get PIs. The proposal of Yar and Chatfield (1990) for the additive
method allows to get the same PIs of the equivalent SARIMA model. They define the k-steps-ahead
prediction error as:

et(k) =
k−1

∑
i=0

viet+k−i (5)

where et = yt − ŷt−1(1) is the one-step-ahead (OSA) prediction error, and:

vi =

1 i = 0
α + iαβ i 6= 0,S,2S, ...
α + iαβ +(1−α)γ i = S,2S, ...

(6)

If the OSA prediction errors are uncorrelated and Gaussian N(0,σ2), the k-steps-ahead prediction
intervals, at 1−θ confidence level, is:

ŷt(k) ± z(θ/2)

√
PMSEt(k) (7)

PMSEt(k) = σ
2

k−1

∑
i=0

v2
i (8)

Nevertheless this proposal assumes the OSA prediction errors are homoscedastic, that is not realistic
in some cases like electricity prices (see Section 3).

2 An HW method for heteroscedastic series

Let’s suppose the OSA prediction errors are heteroscedastic, and the volatility level of them, denoted
by Ht , is only locally approximative constant. Following the criterion of the Exponential Smoothing,
the update of the volatility level may be formulated as:

Ht = λe2
t +(1−λ )Ht−1 (9)

where 0≤ λ ≤ 1 is a smoothing coefficient.
According to the criterion: σ̂2

t+1 = Ht , the volatility forecasts are:

σ̂
2
t+1 = λe2

t +(1−λ )σ̂2
t (10)

σ̂
2
t+k = σ̂

2
t+1 k = 2,3, ... (11)

The equation (10) is known in Statistical Process Control as Exponentially Weighted Moving Vari-
ance, EWMV, (Harris, 1993). It is formally similar to the IGARCH model, but there are conceptual
differences: the IGARCH model, as well as all models of GARCH family, shapes the conditional
heteroscedasticity of homoscedastic processes (Engle and Bollerslev, 1986); the method (10) treats
a general heteroscedasticity where the volatility can be viewed as a stochastic process. Then the
method (10) is conceptually more similar to the methods for stochastic volatility (Taylor, 1994).

Taking into account the (11), under the assumption of uncorrelated OSA prediction errors, the
PMSEt(k) becomes:



3

PMSEt(k) =
k−1

∑
i=0

v2
i σ

2
t+k−i (12)

= σ
2
t+1

k−1

∑
i=0

v2
i (13)

where the coefficients vis have been defined in (6).
This formula is very similar to (8), but presents a fundamental difference: now the PMSEt(k)

depends on the last predicted volatility; that means more accurate PIs in case of heteroscedastic e2
t .

Periodic Volatility In case of seasonal data, heteroscedasticity can follow a seasonal pattern (sea-
sonal volatility): e.g. daily electricity prices present seasonal patterns in the price levels and in the
price volatilities. A way to deal with such a case in GARCH framework was proposed by Koopman
et al. (2007) who suggested to scale volatility by means of seasonal factors. According to that idea,
but remaining in HW framework, the method (10) should be changed in the multiplicative following
HW method2:

σ̂
2
t+k = Ht ·Xt+k−hS h = int(k/S)+1

Ht = λ (e2
t /Xt−S)+(1−λ )Ht−1 (14)

Xt = λx(e2
t /Ht)+(1−λx)Xt−S

where Xt represents the seasonal effect on volatility, and 0≤ λx ≤ 1 is the corresponding smoothing
coefficient.

Note that now the formula (12) cannot be reduced into the formula (13) because σ̂2
t+k is only

periodically constant, then PMSEt(k) presents cyclical fluctuations.

The smoothing coefficients The value (1−λ ) can be viewed as the persistence degree of volatility:
when (1− λ ) = 1, volatility (or its level) is constant (max persistence); when (1− λ ) = 0, each
variance/level does not depend on any previous variances/levels (null persistence). Similarly, (1−
λx) = 1 means that the seasonal pattern on volatility is constant, and (1−λx) = 0 means that there
is no seasonal pattern on volatility.

The smoothing coefficients, α , β , γ , λ and λx, could be chosen minimising the following sum:

∑[lnσ
2
t +u2

t ] (15)

where ut = et/σt are the standardised OSA prediction errors.
If ut ∼ N(0,1), the criterion (15) is equivalent to the maximum likelihood, but should not be

viewed as an estimation method. Indeed, according to the theory of HW methods, the smoothing
coefficients are not process parameters, but instruments to perform time series forecasting. Never-
theless, in case of financial prices, the prediction standardised errors are generally leptokurtic/heavy
tailed like standardised Student’s t-distributions: tv

√
(v−2)/v. In that case, it is more appropriate to

minimise the following sum:

∑[ln(σ2
t )+ ln(1+

u2
t

v−2
)v+1] (16)

where v are the degrees of freedom of the Student’s distribution3.

2 Here the multiplicative HW should be preferred to the additive one because it avoids negative values for volatility
forecasts.
3 Minimizing the sum (16) is nearly equivalent to the maximum likelihood in case of Student’t distribution (Bollerslev,
1987).
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3 Prediction Intervals for the Italian PUN

We have considered the series of the daily electricity price (PUN), cleared by the Italian wholesale
electricity market in 2014. As all daily electricity market prices, Italian PUN is characterized by
strong seasonality affecting the price level and price volatility too (Figure 1). On the series we have
calculated one step ahead prediction intervals using the method described in the previous sections,
and using a suitable ARIMA-GARCH model. Then we have compared the results obtained with both
approaches.

Fig. 1 The Italian PUN in 2014

3.1 The HW approach

Since the presence of spikes and jumps makes the standardised prediction errors of electricity prices
strongly leptokurtic, the smoothing coefficients of the HW method have been chosen minimising the
sum (16). Table 1 reports the optimal values of the smoothing coefficients, the degree of freedom
and the standard deviation of the OSA prediction errors (RMSE)4.

We can note that the smoothing coefficients present some interesting features: β = 0 means that
the price level does not present any locally persistent drift; γ = 0 means that the seasonal effects on
the price level are periodically constant (deterministic seasonality); λx = 0 means that the seasonality
on the volatility is deterministic too5. Finally, the low value of the degree of freedom (7.4) confirms
the assumption of leptokurtic standardised prediction errors.

We have compared the standardized prediction errors, ut , to the standardised Student’ t-distribution
with 7.4 degrees of freedom by means of the quantile-quantile plot (Figure 2).

4 The optimal values are reported without inferential information (standard errors, p-values, etc.) because the coeffi-
cients are not interpreted here as process parameters.
5 The daily effects on PUN have become quite constant since 2013, but it was not in the previous years (Chirico, 2016)
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Table 1 Smoothing coefficients

α β γ λ1 λx v RMSE

0.272 0.000 0.000 0.037 0.000 7.40 5.066

Fig. 2 Q-Q plot of the standardised errors vs standardised Student’s t

We can note that the uts correspond almost well to the theoretical distribution except some errors
at the distribution extremities. That is due to the presence of spikes and jumps which cannot be
consistent with the other data.

Therefore the one-step ahead prediction intervals (at 1−θ confidence level) have been calculated
with the following formulas:

LB : ˆPUNt(1)− t∗
θ/2

√
PMSEt(1) (17)

UB : ˆPUNt(1)+ t∗
θ/2

√
PMSEt(1) (18)

where t∗
θ/2 is the θ/2-th percentile of the standardised Student’s t distribution with 7.4 degrees of

freedom.

3.2 The ARIMA-GARCH approach

We have repeated the study in 3.1 using an ARIMA-GARCH model. Similar to the method illustrated
in the previous subsection, we have fitted the PUN series with an ARIMA-EGARCH model6 with
daily regressors (d j) and Student’s standardised errors (ut ):

6 We have chosen an EGARCH model to avoid the risk of negative variance because that risk is high including seasonal
regressors in classic GARCH model.
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zt = ∆
dPUNt = µt + εt

εt = σtut ut ∼ tv
√
(v−2)/v

µt = δ +
p

∑
j=1

φ jzt− j +
q

∑
j=1

θ jεt− j +
6

∑
j=1

s1, jd j

lnσ
2
t = ω +

P

∑
j=1

β j lnσ
2
t− j +

Q

∑
j=1

(α j|εt− j|+ γ jεt− j)+
6

∑
j=1

s2, jd j

(19)

More specifically awe have identified an ARIMA(6,1,0)-EGARCH(1,1) model with daily regres-
sors, that we have estimated using the GIG package of Gretl (Lucchetti and Balietti, 2016). For space
reasons, we don’t report here all the estimation output of the model, but only the standard deviation
of the OSA prediction errors, RMSE = 5.062. This statistic is practically equal to one of the HW
approach, that means the HM method fits the series as good as the ARMA-EGARCH model.

Finally, we have calculated the PIs of PUN series in the period September, 2014-December, 2014
using both methods (Figure 3). Although both intervals capture the 90% of the series in the period,
the intervals may be quite different some days. Actually the interval by ARMA-EGARCH model
(thin line) seem more sensitive to spike and jumps than one by HW methods does (thick line); this
characteristic is typical of EGARCH models because outliers (jumps and spike) produce exponential
effects on volatility. On the other hand, the HW procedure provides an interval whose width is quite
regular: the seasonality on volatility is periodically constant (λx = 0), and the non-seasonal volatility,
Ht , is quite smoothed (λ = 0.037).

Fig. 3 Prediction intervals



7

4 Final Considerations

The presence of heteroscedasticity is one of the reasons for preferring ARIMA-GARCH models to
HW methods. Nevertheless heteroscedasticity can be treated by HW methods, if some adjustments
are taken; the paper illustrates a method to do it. The method has been applied to a case study, and
the PIs obtained with this method have been similar to the those provided by an ARIMA-EGARCH
model; some days the HW procedure seems to work better than ARIMA-EGARCH model too. The
most considerable strengths of using HW methods are the ease-of-use and the ability of dealing with
several type of heteroscedasticity: stochastic volatility, periodic stochastic volatility, periodically
constant volatility. On the other hand, the weakness is that the HW methods are optimal only for
specific ARIMA processes although works quite well with a lot of real processes; moreover the HW
procedure does not deal with the issue of asymmetry. Nevertheless other versions of the method
above-illustrated are possible, and it is our intention to check them.
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