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Abstract

As a first step in designing relatively-compressed data structures — i.e., such that storing
an instance for one dataset helps us store instances for similar datasets — we consider how to
compresses spaced suffix arrays relative to normal suffix arrays and still support fast access to
them. This problem is of practical interest when performing similarity search with spaced seeds
because using several seeds in parallel significantly improves their performance, but with existing
approaches we keep a separate linear-space hash table or spaced suffix array for each seed. We
first prove a theoretical upper bound on the space needed to store an SSA when we already have
the SA. We then present experiments indicating that our approach works even better in practice.

1 Introduction

DNA sequencing technology has advanced much more rapidly than either computing power or stor-
age, so bioinformaticians now have more data than they can handle using traditional algorithms and
data structures. Fortunately, much of this data is repetitive and, thus, highly compressible. This
raises the question of when, given an instance of a data structure for one dataset — e.g., a suffix
array, FM-index or suffix tree — we can build and store instances of that data structure for similar
datasets using less time or space. In this paper we study how to compress spaced suffix arrays (SSAs)
relative to normal suffix arrays (SAs) and still support fast random access to them. This problem
seems a promising starting point for this line of research because, first, the problem has independent
practical interest and, second, we can prove interesting theoretical bounds with few assumptions
about the data.

In Section 2 we review spaced seeds, spaced suffix arrays and how they are used for similarity
search on DNA sequences. In Section 3 we prove a theoretical bound on the space needed to store
an SSA when we already have the SA, in terms of the text’s length, the alphabet’s size, and the
properties of the spaced seed used to define the SSA. Along the way, we improve the query-time
bound for Barbay et al.’s [1] compressed permutations. In Section 4 we present experiments showing
that in practice our approach works even better than expected. That is, even when we implement our
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data structures using simpler, theoretically sub-optimal components, we achieve better compression
than our upper bound predicts. Finally, in Section 5 we briefly summarize subsequent results we have
obtained for relative FM-indexes and related relative data structures since publishing the conference
version of this paper.

2 Spaced Seeds and Spaced Suffix Arrays

For the problem of similarity search on DNA sequences, we are given two texts and asked to find
each sufficiently long substring of the first text that is within a certain Hamming distance of some
substring of the second text. (We are interested in Hamming distance and not the more general edit
distance since, e.g., insertions and deletions are rarer than substitutions because they throw off the
three-by-three coding of amino acids and are more likely to be deleterious.) Similarity search has
many applications in bioinformatics — e.g., ortholog detection, structure prediction or determining
rearrangements — and has been extensively studied (see, e.g., [24]). Researchers usually first look
for short substrings of the first text that occur unchanged in the second text, called seeds, then try
to extend these short, exact matches in either direction to obtain longer, approximate matches. This
approach is called, naturally enough, “seed and extend”. The substrings’ exact matches are found
using either a hash table of the substrings with the right length, or an index structure such as a
suffix array (SA).

Around the turn of the millenium, Burkhardt and Kärkkäinen [8] and Ma, Tromp and Li [21]
independently proposed looking for short subsequences of the first text that have a certain shape and
occur unchanged in the second text, and trying to extend those. A binary string encoding the shape
of a subsequence, with 1s indicating positions where the characters must match and 0s indicating
positions where they need not, is called a spaced seed. The total number of bits in the binary string
is called the seed’s length, and the number of 1s is called its weight. The subsequences’ exact matches
are found using either a hash table of the subsequences with the right shape, or a kind of modified
SA called a spaced suffix array [19] (SSA).

Peterlongo et al. [22] and Crochemore and Tischler [10] independently defined SSAs, under the
names “bi-factor arrays” and “gapped suffix arrays”, for the special case in which the spaced seed
has the form 1a0b1c. Russo and Tischler [23] showed how to represent such an SSA in asymptotically
succinct space such that we can support random access to it in time logarithmic in the length of
the text. We note, however, that the spaced seeds used for most applications do not have this form.
Battaglia et al. [2] used an idea similar to that of spaced seeds in an algorithm for finding motifs
with don’t-care symbols.

Burkhardt and Kärkkäinen, Ma et al. and subsequent authors have shown that using spaced
seeds significantly improves the performance of seeding and extending. Many papers have been
written about how to design spaced seeds to minimize the number of errors (see, e.g., [7, 12, 17]
and references therein), with the specifics depending on the model of sequence similarity and the
acceptable numbers of false positives (for which the characters indicated by 1s all match but the
substrings are not similar) and false negatives (for which those characters do not all match but the
substrings are still similar) for the application in question. Regardless of the particular application,
however, researchers have consistently observed that the best results are obtained using more than
one seed at a time. A set of spaced seeds used in combination is called a multiple seed.

Multiple seeds are now a popular and powerful tool for similarity search, but they have a lingering
flaw: we keep a hash table or SSA for each seed, and each instance of these data structures takes
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linear space. For example, SHRiMP2’s [11] index for the human genome takes 16 GB for each seed.
In contrast, Bowtie 2’s [20] compressed SA for that genome takes only 2.5 GB. This is because a
normal SA (which supports only substring matching) can be compressed such that the number of
bits per character is only slightly greater than the empirical entropy of the text. Unfortunately, the
techniques for compressing normal SAs do not seem to apply directly to SSAs.

Whereas the normal SA for a text lists the starting points of the suffixes of that text by those
suffixes’ lexicographic order, the SSA for a text and a spaced seed lists the starting points of the
subsequences with the right shape by those subsequences’ lexicographic order. Intuitively, if the seed
starts with many 1s, the SSA will be similar to the SA. In the next section we formalize this intuition
and prove a theoretical upper bound on the space needed to store an SSA when we already have the
SA, in terms of the text’s length, the alphabet’s size, and the seed’s weight and length.

3 Theory

Suppose we want to store an SSA for a text T [0..n− 1] over an alphabet of size σ and a spaced seed
S with length ` and weight w. For i < n, let Ti be the subsequence of T [i..n−1] that contains T [j] if
and only if i ≤ j and S[j − i] = 1. Let T ′i be the subsequence of T [i..n− 1] that contains T [j] if and
only if i ≤ j and S[j− i] = 0. Let SSA be the permutation on {0, . . . , n− 1} in which i precedes i′ if
either Ti ≺ Ti′ , where ≺ indicates lexicographic precedence, or Ti = Ti′ and T [i..n− 1] ≺ T [i′..n− 1].

For example, if T = abracadabra and S = 101 then

T0 = ar T6 = db T ′0 = b T ′6 = a
T1 = ba T7 = ar T ′1 = r T ′7 = b
T2 = rc T8 = ba T ′2 = a T ′8 = r
T3 = aa T9 = r T ′3 = c T ′9 = a
T4 = cd T10 = a T ′4 = a
T5 = aa T ′5 = d

and so, since
T10 ≺ T3 = T5 ≺ T0 = T7 ≺ T1 = T8 ≺ T4 ≺ T6 ≺ T9 ≺ T2

and T [3..10] ≺ T [5..10], T [7..10] ≺ T [0..10] and T [8..10] ≺ T [1..10], we have SSA = [10, 3, 5, 7, 0, 8, 1, 4, 6, 9, 2]
while SA = [10, 7, 0, 3, 5, 8, 1, 4, 6, 9, 2].

If Ti � Ti′ and T ′i � T ′i′ , then i precedes i′ in both SSA and SA. In particular, if Ti = Ti′ or
T ′i = T ′i′ , then i and i′ have the same relative order in SSA and SA. In our example, T3 = T5 = aa
and T [3..10] ≺ T [5..10], so 3 precedes 5 in both SSA and SA; T ′2 = T ′4 = T ′6 = T ′9 = a and
T [4..10] ≺ T [6..10] ≺ T [9..10] ≺ T [2..10], so 4 precedes 6, 6 precedes 9 and 9 precedes 2 in both SSA
and SA.

If we partition SSA into subsequences such that i and i′ are in the same subsequence if and only
if Ti = Ti′ , then we can partition SA into the same subsequences. Since there are at most σw + w
distinct strings Ti, our partitions each consist of at most σw + w subsequences. Similarly, if we
partition based on T ′i and T ′i′ , then our partitions each consist of at most σ`−w + `−w subsequences.

For our example, we can partition both SSA and SA into [4, 6, 9, 2], for T ′i = a; [7, 0], for T ′i = b;
[3], for T ′i = c; [5], for T ′i = d; [8, 1], for T ′i = r; and [10], for T ′i = ε. In this particular case, however,
we can just as well partition both SSA and SA into only two common subsequences: e.g., [10, 7, 0]
and [3, 5, 8, 1, 4, 6, 9, 2].
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Observation 1. Let SA be the suffix array for a text T [0..n − 1] over an alphabet of size σ and
let SSA be the spaced suffix array for T and a spaced seed S with length ` and weight w. We can
partition SA and SSA into at most min(σw + w, σ`−w + `− w) common subsequences.

Consider the permutation SA−1 ◦ SSA, which maps elements’ positions in SSA to their positions
in SA, and let ρ be the minimum number of increasing subsequences into which SA−1 ◦ SSA can
be partitioned. Since any subsequence common to SSA and SA corresponds to an increasing sub-
sequence in SA−1 ◦ SSA, we have ρ ≤ min(σw + w, σ`−w + ` − w). In our example, SA−1 ◦ SSA =
[0, 3, 4, 1, 2, 5, 6, 7, 8, 9, 10] and ρ = 2.

Supowit [25] gave a simple algorithm that partitions SA−1 ◦ SSA into ρ increasing subsequences
in O(n lg ρ) ⊆ O(nmin(w, `− w) lg σ) time. When applied to SA−1 ◦SSA in our example, Supowit’s
algorithm partitions it into [0, 3, 4, 5, 6, 7, 8, 9, 10] and [1, 2]. Barbay et al. [1] showed how, given
a partition of SA−1 ◦ SSA into ρ increasing subsequences, we can store it in (2 + o(1))n lg ρ ≤
(2 + o(1))nmin(w, ` − w) lg σ bits and support random access to it in O(lg lg ρ) time. We now
improve their query-time bound to O(1).

Lemma 2. Given a partition of a permutation π on {0, . . . , n − 1} into ρ increasing subsequences,
we can store π in (2 + o(1))n lg ρ bits and support random access to it in constant time.

Proof. For i ≤ ρ, we replace each element in the ith subsequence by a character ai and store the
resulting string R such that we can support random access to it and partial rank queries on it in
constant time. We then permute R according to π and store the resulting string R′ such that we can
support fast select queries on it. The partial rank query R.p rank(i) returns the number of copies of
R[i] in R[0..i], and the select query R′.selecta(i) returns the position of the ith copy of a in R′. If we
use the data structures by Belazzougui and Navarro [4], then we use a total of (2 + o(1))n lg ρ bits.

Barbay et al. noted that, for i < n,

π[i] = R′.selectR[i](R.p rank(i)) .

For example, if π = [0, 3, 4, 1, 2, 5, 6, 7, 8, 9, 10] — i.e., SA−1 ◦ SSA from our running example — then
R = a1a1a1a2a2a1a1a1a1a1a1 and R′ = a1a2a2a1a1a1a1a1a1a1a1 and

π[4] = R′.selectR[4](R.p rank(4)) = R′.selecta2(2) = 2 .

In summary, by Observation 1 and Lemma 2, we can store SA−1 ◦ SSA in (2 + o(1))nmin(w, `−
w) lg σ bits such that we can support random access to it inO(1) time. Since SSA = SA◦(SA−1◦SSA),
this gives us the following result:

Theorem 3. Let T [0..n − 1] be a text over an alphabet of size σ and let S be a spaced seed with
length ` and weight w. If we have already stored the suffix array SA for T such that we can support
random access to SA in time tSA, then we can store a spaced suffix array SSA for T and S in
(2+o(1))nmin(w, `−w) lg σ bits such that we can support random access to SSA in tSA +O(1) time.
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4 Practice

Theorem 3 says we can store SSAs for the human Y-chromosome chrY.fa in FASTA format (about
60 million characters over an alphabet of size 5) and SHRiMP2’s three default spaced seeds — i.e.,
11110111101111, 1111011100100001111 and 1111000011001101111 — in about 560 MB, in addition
to the SA, whereas storing the SSAs using four bytes per entry would take about 720 MB. Storing
the SSAs packed such that each entry takes dlg 60 000 000e = 26 bits would reduce this from to about
580 MB.

To test our approach, we built the SSAs as described in Section 3; computed SA−1 ◦ SSA,
and the strings R and R′ from Lemma 2 for each SSA; and stored each copy of R or R′ as a
wavelet tree. We chose wavelet trees because they are simple to use and often more practical
than Belazzougui and Navarro’s theoretically smaller and faster data structures mentioned in Sec-
tion 3. We ran all our tests described in this section on a computer with a quad-core Intel Xeon
CPU with 32 GB of RAM, running Ubuntu 12.04. We used a wavelet-tree implementation from
https://github.com/fclaude/libcds and compiled it with GNU g++ version 4.4.3 with optimiza-
tion flag -O3.

The uncompressed SA took 226 MB, and the six wavelet trees took a total of 215 MB and
performed 10 000 random accesses each in 7.67 microseconds per access. That is, we compressed the
SSAs (including the uncompressed SA) into about 60% of the space it would take to store them using
four bytes per entry, or about 75% of the space it would take to store them packed. Although our
accesses were much slower than direct memory accesses, they were fast compared to disk accesses.
Thus, our approach seems likely to be useful when a set of SSAs is slightly larger than the memory
and fits only when compressed.

Using the same test setup, we then compressed SSAs for the ten spaced seeds BFAST [16, Table
S3] uses for 36-base-pair Illumina reads, which all have weight 18:

1. 111111111111111111

2. 11110100110111101010101111

3. 11111111111111001111

4. 1111011101100101001111111

5. 11110111000101010000010101110111

6. 1011001101011110100110010010111

7. 1110110010100001000101100111001111

8. 1111011111111111111

9. 11011111100010110111101101

10. 111010001110001110100011011111 .

Since the first seed consists only of 1s, the SSA we would build for it is the same as the SA. The
uncompressed SA again took 226 MB and the 18 wavelet trees for the other nine seeds took a total
of 649 MB — so instead of 2.26 GB, we used 875 MB (about 39%) for all ten seeds — and together
performed 10 000 random accesses to each of the ten SSAs in about 7 microseconds per access. The
left side of the top half of Figure 1 shows how many bits per character (bpc) of the text each SSA
took, and the average time per access to each SSA.

We also compressed the SSAs for the ten spaced seeds BFAST uses for 50-base-pair Illumina
reads, which all have weight 22:
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1. 1111111111111111111111

2. 1111101110111010100101011011111

3. 1011110101101001011000011010001111111

4. 10111001101001100100111101010001011111

5. 11111011011101111011111111

6. 111111100101001000101111101110111

7. 11110101110010100010101101010111111

8. 111101101011011001100000101101001011101

9. 1111011010001000110101100101100110100111

10. 1111010010110110101110010110111011 .

Again, the first seed consists only of 1s. This time, the 18 wavelet trees for the other nine seeds
took a total of 712 MB; each access took about 8 microseconds. The left side of the lower half of
Figure 1 shows how many bits per character of the text each SSA took, and the average access time
per access to each SSA.

Notice that, if we have a permutation π1 on {0, . . . , n−1} stored and π2 is any other permutation
on {0, . . . , n − 1}, then we can store π2 relative to π1 using the ideas from Section 3. For example,
we can store SSAs relative to other SSAs. Suppose we consider the size of each SSA (except the SA)
when compressed relative to each other SSA (including the SA); view these sizes as edge costs in a
complete graph whose nodes are the SSAs; build a minimum spanning tree rooted at the SA; and
compress each SSA relative to its parent in the tree. This can reduce our space usage at the cost of
increasing the random-access time, as shown for the BFAST seeds on the right side of Figure 1. We
leave further exploration of such tradeoffs as future work.

5 Subsequent Research

In this paper we have shown how to compress spaced suffix arrays relative to normal suffix arrays
while still supporting fast random access to them. Since publishing the conference version of this
paper [14], we have investigated other relative data structures, particularly FM-indexes and related
data structures.

An FM-index [13] for a text T is essentially a rank data structure on the Burrows-Wheeler
Transform [9] (BWT) of T . Intuitively, if T and T ′ are similar texts then in practice BWT(T ) and
BWT(T ′) should be similar as well. In our second paper on relative data structures [3] we showed
how, given a rank data structure for BWT(T ), we can store a rank data structure for BWT(T ′) in
small space. This means that in practice, given an FM-index for T , we can store an FM-index for
T ′ in small space.

Bowe et al. [6] gave a space-efficient implementation of de Bruijn graphs based on a BWT-like
permutation of the edge labels. In addition to rank, they used select to traverse edges backwards.
In our third paper on relative data structures [5], we showed how to implement a relative select data
structure and, building on that, a relative de Bruijn graph data structure. Using these ideas, we are
currently implementing a space-efficient data structure for coloured de Bruijn graphs [18].

We recently implemented and tested [15] a relative compressed suffix tree data structure. We
refer interested readers to that paper for an up-to-date discussion of our continuing work in this area.
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space time
seed (bpc) (µs)

1 32.00 0
2 11.29 9
3 4.41 4
4 9.75 8
5 11.54 9
6 13.77 11
7 13.14 10
8 3.85 3
9 10.10 7

10 13.91 11

space time
seed reference (bpc) (µs)

1 - 32.00 0
2 8 9.71 11
3 1 4.41 4
4 8 9.22 10
5 4 9.23 19
6 8 12.27 14
7 3 12.58 14
8 1 3.85 3
9 1 10.10 7

10 7 12.59 26

space time
seed (bpc) (µs)

1 32.00 0
2 9.03 8
3 12.30 10
4 13.86 11
5 8.13 7
6 10.80 9
7 11.14 8
8 11.09 8
9 11.77 9

10 12.54 10

space time
seed reference (bpc) (µs)

1 - 32.00 0
2 1 9.03 6
3 1 12.30 10
4 2 12.59 18
5 1 8.13 6
6 1 10.80 8
7 1 11.14 8
8 1 11.09 9
9 8 11.34 18

10 8 8.94 17

Figure 1: The space usage of the SSAs of the spaced seeds BFAST uses for Illumina reads, in bits per
character of the text, and the average time for a random access. Above, the seeds are for 36-base-pair
reads; below, the seeds are for 50-base-pair reads. On the left, all the SSAs are compressed relative
to the SA; on the right, some of the SSAs are compressed relative to other SSAs.
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