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High throughput screening identified the pyridothienopyrimidinone 1 as a ligand for the metabotropic
glutamate receptor 1 (mGluR1 = 10 nM). Compound 1 has an excellent in vivo profile; however, it dis-
plays unfavorable pharmacokinetic issues and metabolic stability. Therefore, using 1 as a template, novel
analogues (10i) were prepared. These analogues displayed improved oral exposure and activity in the
Spinal Nerve Ligation (SNL) pain model.

� 2012 Elsevier Ltd. All rights reserved.
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hmGluR1 IC50 = 10 nM

hmGluR5 IC50 = inactive at 10µM
hmGluR2 IC50 = inactive at 10µM
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Glutamate is the principal excitatory neurotransmitter in
mammalian brains. Glutamate receptors can be divided into two
subtypes: ionotropic and metabotropic. Ionotropic receptors have
been associated with the opening of cationic channels,1 and are
responsible for rapid neuronal excitation of glutamate transmis-
sion.1b Metabotropic G-protein receptors (mGluR) indirectly regu-
late electrical signaling by influencing intracellular metabolic
processes via G-proteins.1c Eight metabotropic G-protein coupled
receptors have been reported1 which have been divided into three
groups: Group I (mGluR1 and mGluR5), Group II (mGluR2 and
mGluR3) and Group III (mGluR4, mGluR7 and mGluR8).1 It has
been reported that mGluR1 is essential for motor coordination,2

perception of pain,3 and may play an important role in seizures
and related disorders.4 mGluR1 knock out mice exhibit lower pain
sensitivity and are also more receptive to morphine than the wild
types.5 Thus an mGluR1 receptor antagonist would be beneficial
for the treatment of neuropathic pain.3 Our goal for this project
was to develop a compound that would have a potency of less than
10 nM in our binding assay, oral exposure6 at six hours and activity
in the Spinal Nerve Ligation (SNL) animal model 7.

The SNL7 animal model is done by ligating the L-5 spinal nerve
in rats and then observing the sensitivity of the hind paw of the
animal to mechanical stimulation with von Frey filaments. As a
point of comparison there is a second group of rats that undergo
a similar surgery but not the ligation of the spinal nerve. This is
done to rule out the effects of surgery in the neuropathic pain mod-
el. Our goal was to obtain an inhibitor that would equal the re-
ll rights reserved.
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sponse to stimulus with the von Frey filaments of the rats that
had undergone the surgery but not the ligation.

The commercially available compound 1 exhibited potent bind-
ing at mGluR1.8 However, further testing showed that the oral
exposure for this compound was relatively poor. (AUC = 679 ngh/
mL, Fig. 1) Compound 1 did show activity in the SNL disease model
with an 87% reversal of tactile allodynia at 10 mg/kg. This com-
pound also was prone to rapid demethylation of the N,N-dimethyl
amine moiety which contributed to the activity in the SNL animal
model. Two of the possible metabolites were then tested in the
binding and pharmacokinetic assays (Fig. 2). These two potential
metabolites were potent at mGluR1, but showed similar oral expo-
sure to the parent.

The goal was therefore to improve the oral exposure and main-
tain the mGluR selectivity of analogue 1 and develop molecules
with improved metabolic stability. It was our hope that by replac-
ing the A ring with a pyrimidine moiety, we would improve the
RR AUC0-6h
6 @ 10 mpk 679

ngh/mL

Figure 1. Initial lead from high throughput screening.
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Table 1
In vitro data for pyrimidinone N-1 modifications
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Entry R hmGluR1 IC50

(nM)
hmGluR5 IC50

(nM)
RR AuC0–6h

(nM h)

9a

O
2 1000 1313

9b 1 10,000 0

9c

Cl
1 ND 0

9d

Br
1 ND 0

9e

F
4 ND 0

9f

O
CF3

14 10,000 0

9g
CF3

16 10,000 166

9h

S
8 10,000 950

N S

N
N

NH

O

O

1a
hmGluR1 IC50 = 1 nM

RR AUC0-6h
6 @ 10 mpk 429

gh/mL

N S

N
N

NH2

O

O

1b
hmGluR1 IC50 = 12 nM

RR AUC0-6h
6 @ 10 mpk 442 ngh/mL

Figure 2. Metabolites of Compound 1.
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metabolic stability of the core. Modifications to the peripheral
functional groups of the tricyclic core would also be investigated.

To access these analogues, a versatile synthetic route was devel-
oped8e, exemplified by the preparation of analogue 9a (Scheme 1)
These modifications not only generated potent, selective com-
pounds but provided analogues with improved pharmacokinetic
profiles relative to 1. Starting with readily available 4,6-dihydroxy
pyrimidine (2), Vilsmeier conditions were used to effect two trans-
formations: installation of a formyl handle at the pyrimidine 5-po-
sition and transformation of both hydroxyl moieties into chlorides.
Exposure of the formyl group to hydroxyl amine hydrochloride un-
der acidic aqueous conditions followed by thionyl chloride yielded
the nitrile 4. This step installs the expected oxime and dehydrates
to the corresponding nitrile; however, unwanted monohydroxyla-
tion also occurs. Resubjecting 4 to refluxing phosphorus oxychlo-
ride in the presence of a small amount of triethylamine yields
the requisite dichloropyrimidine. Treatment of 5 with two equiva-
lents of methyl thioglycolate followed by exposure to refluxing tri-
ethylamine provided bicycle 6. This moiety proved to be a versatile
intermediate in that the modification to the C-4 thioether allows
for the installation of a variety of functional groups to facilitate
SAR investigation. In this instance, displacement of the methyl thi-
oglycolate using a solution of dimethylamine in THF provided 7.
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Scheme 1. Reagents and conditions: (a) POCl3, DMF, reflux, 24 h; (b) H2NOH, AcOH,
reflux, 12 h. Then SOCl2 reflux, 12 h; (c) POCl3, reflux, 3 h. (d) HSCH2CO2Me, TEA,
THF, RT, 1 h; (e) TEA, toluene, reflux 24 h; (f) HNMe2, THF, reflux, 12 h; (g)
(MeO)2CHNMe2, reflux, 5 h R3NH2, HOAc, toluene, reflux, 12 h.

9i 7 200 ND

9j

N
204 ND ND

9k

N O
20 10,000 45

9l

O

15 ND 1380

9m

F

O
5 ND 0

9n

F

O

7 10,000 15,431

The IC50 data is an average of at least three measurements, performed on human
mGluR1/5. The standard error was 10%, and variability was less than twofold from
assay to assay.
Reaction of 7 with dimethyl amine dimethyl acetal generated
intermediate 8. Exposure of 8 to a variety of amines under acidic



Table 2
Modification of the 4-position of the pyrimidine A-ring
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Entry R hmGluR1
IC50 (nM)

hmGluR5
IC50 (nM)

RR AuC0–6h

(nM h)

10a N
H

5 10,000 778

10b N
H

7 10,000 4018

10c N 3 10,000 934

10d
H
N 19 ND 1905

10e F3C NH 24 ND 5405

10f
HO

N
H

86 ND ND

10g HO N
H

12 ND 1174

10h N
H

HO
9 ND 1973

10i
H
N 6 10,000 9614

10j N
H

154 ND ND

10k N 5 ND 443

10l
H
N 60 ND ND

10m
N
H

277 ND ND

10n

N

N
H

>1000 ND ND

10o

F

N
H

>1000 ND ND

10p
N
H

>1000 ND ND

10q

NC

N
H

>1000 ND ND

10r

N

N
H

>1000 ND ND

10s

N
H

F

192 ND ND

Table 2 (continued)

Entry R hmGluR1
IC50 (nM)

hmGluR5
IC50 (nM)

RR AuC0–6h

(nM h)

10t

Cl

N
H

>1000 ND ND

The IC50 data is an average of at least three measurements, performed on human
mGluR1/5. The standard error was 10%, and variability was less than twofold from
assay to assay.
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conditions proceeded smoothly to give the target compounds (9a–
n, Table 1).

From the data shown in Table 1 it can be seen that most mod-
ifications at the pyrimidinone N-1 position were successful in
yielding compounds that were both potent and selective mGluR1
inhibitors. Modifications to the para position of the pendant aro-
matic ring were well tolerated (entries 9a–9h), while replacement
of the phenyl ring with a 3-pyridine substituent (entry 9j) led to a
significant decrease in potency. This activity could be restored
upon the addition of a suitably disposed methoxy. Disubstitution
Table 3
Pyrimidinone N-1 modifications of 10i

N

N S

N
N

NH

O

R

11

Entry R hmGluR1 IC50

(nM)
hmGluR5 IC50

(nM)
RR AuC0–6h

(nM h)

10i

O
6 10,000 9614

11a 9 10,000 890

11b

Cl
3 10,000 4540

11c

F
82 ND ND

11d 70 ND ND

11e

F

O
19 ND 8599

11f

F

O

30 ND 948

The IC50 data is an average of at least three measurements, performed on human
mGluR1/5. The standard error was 10%, and variability was less than twofold from
assay to assay.
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Figure 3. Pharmacokinetic comparisons of two potent mGluR1 antagonists.
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of the aromatic ring also appeared to be well tolerated. (entries 9l–
9n) The 2-fluoro-4-methoxy substitution pattern (9n) on the right
hand side aromatic ring yielded not only a potent, selective inhib-
itor of mGluR1 but also gave an analogue with oral exposure that
was superior to any of the other compounds examined. Compound
9n exhibited a rat Ki of 13.4 nM and turned out to be fairly effica-
cious in the rat SNL model. At 10 mg/kg dose there was almost a
complete reversal of allodynia with an ED50 of 3.8 mg/kg at the
2 h time point.

Subsequent metabolite studies showed that both 9n and 1 were
readily demethylated at the N,N-dimethylamino moiety. In order
to further improve the oral exposure of 9n and thus lower the
ED50, a second round of investigations focused on identifying a
suitable replacement for the N,N-dimethyl substituent (Table 2).

Amino substituents possessing small alkyl groups generally
gave rise to analogues with slightly improved potency relative to
9n (entries 10a–10d). Several of these analogues had reasonable
levels of oral exposure; curiously, none offered any improvement
compared to 9n. Likewise, analogues bearing hydroxyl alkyl substi-
tuted amines were also tolerated (entries 10f–h) Hydroxypropyl
(10g) and hydroxybutyl (10h) analogues exhibited comparable
mGluR1 inhibitory activity to 9n. Unfortunately the pharmacoki-
netic profiles for all three of these compounds were modest. Ana-
logues possessing aminocycloalkyl substituents were generally
equipotent to the dimethylamino analogue 9n (entries 10i–10l).
Notably, the cyclopropylamino species 10i exhibited exposure lev-
els similar to 9n. Arylamino analogues were all significantly less
potent that 9n (entries 10m–10t).

The SAR of the pyrimidinone ring substituent was then reinves-
tigated, using a fixed cyclopropylamino group appended to the
pyrimidine (Table 3). It was anticipated that this group would pro-
vide analogues with improved pharmacokinetic profiles relative to
the initial lead 9a. This was not the case. Although analogues pos-
sessing a 4-methylphenyl (11a) and 4-chloro substituent (11c)
were equipotent to 4-methoxyphenyl species 10i, their corre-
sponding rat AUC values were approximately 10 fold and twofold
less, respectively. Replacing the chloro substituent in compound
11b with a fluoro group led to 30-fold decrease in activity (11c).
Likewise, an analogue in which the phenyl ring had been replaced
with a cyclohexyl group was not potent enough to warrant further
investigation.

The addition of a fluoro substituent to the pendant aromatic
ring, as in entries 11e and 11f, gave no improvement in oral expo-
sure when compared to their non-fluoro counterpart 10i. This
stands in contrast to what had been observed in the dimethyl-
amino series outlined in Table 1.

Compound 10i, when compared to 9n, has a similar pharmaco-
kinetic profile, but carries the advantage of a more metabolically
stable cyclopropylamino substituent. Further, 10i exhibits a three-
fold increase in brain:plasma ratio (Fig. 3).

The favorable pharmacokinetic profile of 10i translates into an
orally efficacious compound in the rat SNL model for the treatment
of tactile allodynia. 10i exhibited a rat Ki of 14.5 nM and at 3 mg/kg
there is almost a complete reversal of allodynia with an ED50 of
2.0 mg/kg at the 2 h time point.

In conclusion, modifications to the peripheral functional groups
of the tricyclic core of 9a led to the identification of potent, selec-
tive mGluR1 inhibitors with good oral exposure. The two high-
lighted compounds (9n, 10i) also exhibited desirable
pharmacological properties, as well as efficacy in the rat SNL
model.
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