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ABSTRACT 

 

Introduction 

Epilepsy is one of the most common serious brain disorders characterized by recurrent 

seizures. The current understanding of its pathophysiology is based on the “system 

hypothesis” that goes beyond the classical dichotomy between focal and generalized epilepsy: 

some types of epilepsy may depend on the susceptibility to epileptogenic factors within a 

specific brain system. The mechanism underlying these processes are still obscure. 

To increase understanding into the specific networks involved in the pathophysiology 

of different types of epilepsy, we proposed extensive neurophysiological studies on patients 

with epilepsy. First, we studied patients with photosensitive epilepsy since they represent a 

“model” of system epilepsy. Then, we focused on patients with focal (FE) and generalized 

epilepsies (GE) to unravel the neurophysiological basis of seizure generalization. Finally, we 

explored the motor cortex plasticity in juvenile myoclonic epilepsy (JME), the most common 

subtype of GE in adults. 

   

Methods 

We used the paired transcranial magnetic stimulation (paired-TMS), i.e. a safe, 

painless and non-expensive neurophysiologic tool to investigate the time related changes in 

functional connectivity between primary motor cortex and other distant brain areas. We 

developed a novel methods to examine the functional connection linking visual to the motor 

areas in healthy subjects and in patients with photosensitivity to study the visuomotor 

integration. We also studied the interhemispheric connection involved in seizure 

generalization in FE and GE; to explore the motor cortex synaptic plasticity in patients with 

JME we used the paired associative stimulation.  

 

Results 

The findings support a physiologically relevant visuomotor functional connectivity, 

which likely contributes to visuomotor integration. Substantial physiologic changes in this 

network likely underlies the photosensitivity, which may finally justify the origin of epileptic 

motor phenomena, such as myoclonus.  

We found significant differences in the interhemispheric connection of drug-treated 

patients with FE and those with IGE. Whilst interhemispheric inhibition changes would not be 
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crucial for the IGE pathophysiology, they may represent one key factor for the contralateral 

spread of focal discharges, and seizure generalization. 

As to the patients with JME, we provided evidence of a defective long term 

potentiation-like plasticity, which may be primarily involved in the pathogenesis of 

myoclonus. 

 

Conclusions 

To our knowledge, these are the first studies evaluating the excitability of various 

epileptogenic networks using paired-TMS in patients with focal and generalized epilepsy. We 

documented substantial changes in the epileptogenic networks involved in different types of 

epilepsy. Further investigation into the pathophysiology of these diseases would increase 

understanding into the ictogenesis of human epilepsies and the neural networks involved and 

eventually open new therapeutic targets. 
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INTRODUCTION 

 

Epilepsy is one of the most common serious brain disorders characterized by recurrent 

seizures. In Italy 30000 new cases are diagnosed each year, with an incidence higher in 

infants and elderly people. Around 500000 people are affected. Epilepsy has negative effects 

on quality of life, function, and increases risk of mortality despite available treatments 

(Duncan et al., 2006). It is refractory to the treatment in about one‐third of cases and the 

mechanisms underlying this drug resistance are not understood  (Duncan et al., 2006). 

The pathophysiology of epilepsy rely on the epileptogenic process in which changes at 

the molecular level ultimately translate into an unbalance between excitatory and inhibitory 

neural circuits leading to cortical hyperexcitability in specific networks and maladaptive 

plasticity. The mechanism underlying these processes are still obscure.  

 

The current understanding of the pathophysiology of epilepsies is based on the 

“system hypothesis” that goes beyond the classical dichotomy between focal and generalized 

epilepsy: some types of epilepsy may depend on the susceptibility to epileptogenic factors 

within a specific brain system (Avanzini et al., 2012).  

Photosensitive epilepsy (Verrotti et al., 2005) represents an ideal model of system 

epilepsy because the flickering light stimuli consistently induce an epileptic response. In this 

syndrome, the involvement of a widespread epileptogenic visuomotor network has been 

recently suggested (Koepp et al., 2015). 

Unravelling how the epileptogenic process is affecting the brain networks will 

invaluably advance our understanding of epilepsy and will lead to development of improved 

therapeutic perspectives. 

 

In the following parts we aim to introduce the photosensitivity and then the 

neurophysiological methods that proved to be the most useful to unravel the pathophysiology 

of epilepsy. Later, we aim to discuss the most recent evidences coming from non-invasive 

brain stimulation studies in photosensitivity. 
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PHOTOSENSITIVE EPILEPSY 

 

Photosensitivity is a condition in which epileptic seizures are triggered by natural or 

artificial intermittent lights, such as flickering sunlight (Gowers, 1885), flashes of television 

programs (Livingston, 1952), or computer games (Takada et al., 1999; Hughes, 2008). 

The first scientific description of a “photoconvulsive” response dates back to 1946 by 

Grey Walter and colleagues (Walter et al., 1946). Since then, in EEG laboratories different 

techniques have been used to detect the response to the intermittent photic stimulation (IPS) 

(Harding, 1994). Usually, the sensitivity of the technique increases between 15 and 20 flashes 

per second, with a binocular stimulation of the central visual field and patterned stimuli 

(Harding, 1994). In most cases, a diagnosis of photosensitivity is made in the EEG laboratory. 

However, some patients experience their first seizure while watching TV programs or playing 

video games (Harding, 1994).  

Photosensitive epilepsies came to public attention after December 16, 1997, when 

approximately 700 children were transferred to hospital in Tokyo, Japan, after watching a 

made-for television cartoon called “Pocket Monster”. Immediately after watching the 

program, children experienced the sudden onset of convulsions, headache, nausea and blurred 

vision (Ishida et al., 1998). An official governmental report concluded that low-

luminance/red-blue stimuli alternating at 12 Hz triggered seizures in Japanese children (Ishida 

et al., 1998). 

  Photosensitivity is part of the reflex epilepsy spectrum in which seizures can be 

triggered by external stimuli (Berg et al., 2010). Its most elementary and common form is the 

photoparoxysmal response (PPR) to IPS. 

 

Epidemiology 

A PPR in patients with epilepsy is a relatively common phenomenon, occurring in up 

to 10% of patients (Buchthal & Lennox, 1953; Wolf & Goosses, 1986; Obeid et al., 1991; 

Gregory et al., 1993). It is more common in children (Hughes, 2008), female (Zifkin & 

Kasteleijn-Nolst Trenite, 2000), and Caucasians (Hughes, 2008). Quirk et al. (1995) reported 

that approximately 2% of new diagnosis of epilepsy show a PPRs on their first EEG (Quirk et 

al., 1995). Besides, a PPR may be detected in healthy subjects between 0,5% to 8,9% of cases 

(Kooi et al., 1960; Verrotti et al., 2002).  
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A genetic component in photosensitivity has become clear in the last few decades 

(Italiano et al., 2016). There is an higher occurrence in the same families, in genetic disorders 

and in siblings (Covanis, 2005). The risk of having PPRs in the general population is about 

3%, but it increases at about 20% in siblings of children with generalized PPR (Waltz & 

Stephani, 2000). This phenomenon is characterized by genetic heterogeneity and complexity. 

The highest rate is observed during puberty until the age of 15 years and in female, 

likely because of hormonal differences (Wolf & Goosses, 1986; Kasteleijn-Nolst Trenite, 

1989; Clement & Wallace, 1990). According to some authors (So et al., 1993; Verrotti et al., 

2002), the presence of PPRs is not a risk factor for the development of epilepsy: in fact none 

of the subjects who showed PPRs without any other EEG abnormalities suffered from 

epileptic seizure during the follow-up.  

 

Diagnosis 

The PPR is routinely assessed during standard EEG registration. After the Consensus 

Meeting in Heemstede in 1996 and in Aix-en-Provence in 1999, some guidelines were 

elaborated (Kasteleijn-Nolst Trenite et al., 1999; Rubboli et al., 2004; Kasteleijn-Nolst 

Trenite et al., 2012). Table 1 shows the most recent practical recommendation on IPS 

(Kasteleijn-Nolst Trenite et al., 2012). 

The importance of the eyes closure state is likely related to the interposition of the 

eyelid red filter that has a provocative effect on PPR (Kasteleijn-Nolst Trenite et al., 2012). In 

some cases a PPR can be observed only when the eyes are closed because the light is spread 

over the entire retina and the excitability of the brain increases (Wilkins et al., 1980; 

Kasteleijn-Nolst Trenite, 1989). An important recommendation is to turn off the stimulator 

immediately at the appearance of generalized epileptiform discharges on EEG, to avoid the 

development of a seizure. Subsequently, it is possible to restart the IPS again with a frequency 

of 60 Hz and go down in frequencies to find the upper PPR threshold (Kasteleijn-Nolst 

Trenite et al., 2012).  
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Table 1 

Photostimulator Grass PS22 stimulator 

Lamp Xenon lamp, with circular reflector (diameter 13 cm) 

Flashes intensity At least 0.70 Joule 

Viewing distance 30 cm 

Patient position Upright 

EEG montage 16 channels 

Flash frequencies 

required 
1 - 2 - 8 - 10 - 15 - 18 - 20 - 25 - 40 - 50 - 60 Hz 

Eye conditions Eye closure, eye closed, eye open 

Frequency duration Trains of flashes of 5 s + 5 s rest, each eye condition (30s) 

Total IPS duration 5 ½ min 

Additional requirements 
Electrodes for recording eye movements and surface electrodes 

to detect myoclonus 

 

Summary of the practical recommendation on the photic stimulation technique (Kasteleijn-Nolst 

Trenite et al., 2012).     

 

PPR classification 

The type of PPR are commonly divided into 4 types (Waltz et al., 1992; Doose & 

Waltz, 1993) (Figure 1):  

- type I: occipital spikes within the occipital alpha rhythm; 

- type II: parieto-occipital spikes with a biphasic slow wave; 

- type III: parieto-occipital spikes with a biphasic slow wave and spread to the frontal region;  

- type IV: generalised spikes and waves or polyspikes and waves.  

 

 
 

Figure 1 

Example of PPR type II and type IV according to the classification of Waltz et al., 1992. IPS, 

intermittent photic stimulation. 
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Epileptic syndromes with photosensitivity 

In patients with epilepsy, a PPR can be found in different cases (Covanis, 2005; 

Verrotti et al., 2012): in epilepsies without seizures induced by IPS, in epilepsies with and 

without seizures induced by IPS and in pure photosensitive epilepsies.  

In general, it is known that PPR rates are higher in patients with generalized epilepsy 

than in focal epilepsy (Wolf & Goosses, 1986; Lu et al., 2008). Seizures elicited by IPS are 

usually generalized tonic-clonic, myoclonic and absences (Covanis, 2005). The group of 

epilepsies without seizures induced by IPS is a miscellanea of different epileptic syndromes 

with no importance on the aetiology. The second group, in which seizures both induced and 

not induced by IPS coexists, contains: juvenile myoclonic epilepsy (JME), epilepsy with 

grand mal on awakening, eyelid myoclonia with absences (EMA), progressive myoclonic 

epilepsy (PME), Dravet syndrome, childhood absence epilepsy (CAE) (Verrotti et al., 2012). 

In JME, the most common subtype of idiopathic generalized epilepsy (IGE) in youngsters 

between 8 and 36 years (Banerjee et al., 2009; Camfield et al., 2013), the incidence of 

photosensitivity ranges from 30% (Wolf & Goosses, 1986) to 90% (Appleton et al., 2000). In 

EMA, the presence of photosensitivity, together with eyelid myoclonias with and without 

absences and eye closure induced seizures, is a diagnostic criteria of this syndrome (Covanis, 

2005). In CAE the incidence of photosensitivity is between 17% (Wolf & Goosses, 1986) and 

44% (Lu et al., 2008). In Dravet syndrome, also known as severe myoclonic epilepsy of 

infancy, the PPR is observed in 40-60% of patients (Dravet, 2012; Specchio et al., 2014).  

The group of pure photosensitive epilepsies includes epilepsies with generalized 

seizures only provoked by IPS or flickering lights. According to Jeavons (Jeavons et al., 

1986), 40% of photosensitive patients suffer from this kind of epilepsy; a wide range of IPS 

frequencies (5-60 Hz) are effective (Covanis, 2005).  

Most patients are sensitive at IPS between 10 and 30 Hz (Harding, 1994) and patients 

sensitive to higher frequencies are at risk of having seizures during fluorescent light 

stimulation or during TV programs (Kasteleijn-Nolst Trenite et al., 2012). A PPR at 1-2 Hz, 

is a typical detection in progressive myoclonic epilepsies (Rubboli et al., 1999). In adult 

patients without epilepsy, a late onset PPR at low frequencies (<5 Hz) can be found in the 

context of a severe progressive neurologic deterioration due to encephalopathies (Creutzfeldt-

Jakob disease, MELAS) or neurodegenerative disorders (Lewy body disease) (Guellerin et al., 

2012).   
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Pathophysiology of photosensitivity 

Photosensitivity has always attracted the attention of epileptologists. Indeed, it 

represents an ideal model of network epilepsy (Avanzini et al., 2012), in which adequate 

visual stimuli trigger an epileptic event in the brain. The epileptogenic network underlying the 

PPR is primarily based on a hyperexcitable visual cortex in response to flickering lights 

(Strigaro et al., 2012) and defective cortical mechanisms of contrast gain control (Porciatti et 

al., 2000). The stimuli have two main salient features, the quantity of light (luminance) 

(Harding & Fylan, 1999) and the wavelength (Takahashi et al., 1999), that contribute in 

evoking a PPR. Therefore, the maximal provocative effects can be obtained by either high 

luminance stimuli, like the IPS easily practiced in the EEG laboratories around the world, or 

deep-red colours whose epileptogenicity was highlighted in the Pokémon incident (Ishida et 

al., 1998). However, hyperexcitability of the visual cortex do not explain how the PPR 

discharge propagates from posterior to anterior regions of the brain to generate the allied 

myoclonic jerks (Koepp et al., 2015). Although the involvement of the peri-rolandic area in 

the PPR was showed in the Papio papio baboon, a model of generalized epilepsy with 

photosensitivity (Naquet et al., 1995), human evidence have been scarce until recently.  
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TRANSCRANIAL MAGNETIC STIMULATION (TMS) IN EPILEPSY 

 

Epilepsies are a complex group of syndromes characterized by episodic brain 

dysfunction manifesting as recurrent seizures (Engel, 2006). Admittedly, the underlying 

process is mediated by changes in both excitatory and inhibitory neural circuits leading to 

hyperexcitable seizure networks (Clark & Wilson, 1999). Sometimes, the primary motor 

cortex is a crucial part of these networks. More often, it can be influenced at a distance by 

non-motor epileptogenic areas (Hamer et al., 2005). Besides, cortical area 4 (M1) is easily 

studied by transcranial magnetic stimulation (TMS), i.e. a safe, painless and non-expensive 

neurophysiologic tool (Macdonell et al., 2002; Tassinari et al., 2003; Schrader et al., 2004). 

TMS was initially used to evaluate the integrity of the cortico-spinal tract through conduction 

studies (Barker et al., 1985). Then, it was applied to measuring the excitatory and inhibitory 

properties of the cortex itself. Several TMS protocols were developed to study different 

properties of M1, such as the resting motor threshold (RMT) (Rossini et al., 1999), the 

cortical silent period (CSP) (Cantello et al., 1992) and paired-pulse measures such as short 

intracortical inhibition (SICI) and intracortical facilitation (ICF) (Kujirai et al., 1993). These 

physiologic variables, over the past 25 years, proved much informative in terms of both 

physiology and disease, particularly movement disorders and epilepsy (Cantello et al., 1992; 

Valls-Sole et al., 1992; Kujirai et al., 1993; Wilson et al., 1993; Hallett, 1995; Ziemann et al., 

1998; Macdonell et al., 2002).  

The most robust findings across epilepsy studies came from one of these testing 

protocols, i.e. paired-pulse TMS (Brodtmann et al., 1999; Cantello et al., 2000a; Manganotti 

et al., 2000; Werhahn et al., 2000; Manganotti et al., 2001; Hamer et al., 2005; Badawy et al., 

2007; Badawy et al., 2014). TMS has at a later stage evolved in a tool to study cortical 

plasticity (Ziemann et al., 2008) and functional connectivity (Rothwell, 2011). 

 

Single pulse 

In the context of assessment of excitability of the primary motor area (M1), single 

pulse TMS applied over the cortical representation of a given muscle (usually the first dorsal 

interossesous, FDI) can be used to measure RMT, active motor threshold (AMT) and CSP. 

RMT is defined as the minimum stimulation intensity required to obtain a motor evoked 

potential (MEP) of at least 50 µV in approximately 5 out of 10 trials while the target muscle is 
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at rest (Rossini et al., 1999). RMT is probably dependent on the intrinsic excitability of neural 

elements directly activated by TMS, i.e. cortico-cortical axons, their excitatory synaptic 

contacts with the corticospinal neurons and the initial axon segments of the corticospinal 

neurons (Amassian et al., 1987; Di Lazzaro & Ziemann, 2013). RMT is thus mostly 

dependent on the state of voltage-gated sodium channels (VGSC), which directly regulate 

axon excitability (Hodgkin & Huxley, 1952) and of a-amino-3-hydroxy-5-methyl-4 

isoxazolepropionic acid receptors (AMPA-R), which are responsible for fast excitatory 

synaptic transmission in the neocortex (Ozawa et al., 1998). This is suggested by the 

observation that VGSC blocking agents increase RMT (Ziemann et al., 2015) whereas 

enhancement of AMPA-R transmission reduces RMT (Di Lazzaro et al., 2003). Single pulse 

can also be used to evaluate M1 inhibitory circuitry by measuring the CSP, which is defined 

as a TMS-induced interruption of activity in the EMG of voluntarily contracting muscles. It 

has been hypothesized that the late part of the CSP is caused by a long-lasting cortical 

inhibition mediated by GABAb receptors and thus it can be used to probe inhibitory 

mechanisms within M1 (Nakamura et al., 1997; Siebner et al., 1998). Single pulse TMS can 

also be delivered to the primary visual cortex (V1) to elicit perceptual excitatory phenomena 

called phosphenes (Meyer et al., 1991; Merabet et al., 2003) and to suppress visual perception 

(Amassian et al., 1989); both are used as measures of V1 excitability. 

 

Paired pulse 

It is possible to use TMS to probe M1 intracortical circuitry with paired pulse 

paradigms. Among them, SICI measures the suppression of a suprathreshold TMS stimulus 

by a preceding subthreshold pulse, with an interstimulus interval (ISI) of 1-5 ms (Kujirai et 

al., 1993). It has been hypothesized that the first pulse activates low-threshold inhibitory 

interneurons, which in turn suppress activity in corticospinal neurons through inhibitory post-

synaptic potentials (IPSPs) mediated by GABAa receptors (Ilic et al., 2002; Di Lazzaro & 

Ziemann, 2013). When the two pulses are applied with the same intensity but with an ISI of 

10-15 ms inhibition turns to facilitation. This phenomenon is called ICF and mostly relies on 

glutamatergic neurotransmission (Ziemann et al., 1996b). By contrast, long intracortical 

inhibition (LICI) is tested by applying two suprathreshold stimuli at an ISI between 50 and 

200 ms (Valls-Sole et al., 1992) and is thought to reflect slow IPSPs mediated by GABA-B 

receptors (Werhahn et al., 1999).  
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Functional connectivity 

The mentioned studies using single- or paired-pulse TMS paradigms (delivered with a 

one coil) investigated the excitability of a single brain area, mostly M1 and V1. More 

recently, two coils (“twin coil” approach) have been used to investigate the time related 

changes in functional connectivity between primary motor cortex and other distant brain 

areas. A conditioning stimulus (CS) is first used to activate the interested area, while the test 

stimulus (TS), given at different times afterward, is used to probe the excitability of motor 

cortical projections to contralateral hand muscles. This method has been successfully 

conducted and proved the existence of various pathways in humans (Rothwell, 2011), 

especially the functional connectivity between primary motor cortex and the controlateral M1 

(Ferbert et al., 1992), the cerebellum (Ugawa et al., 1995), the premotor cortex (Civardi et al., 

2001) and the posteriorparietal cortex (Koch et al., 2007a) with a milliseconds time 

resolution.  

 

Cortical plasticity 

Abnormal cortical plasticity has been frequently hypothesized to play a crucial role in 

the pathogenesis of epilepsy (Sutula, 2004; Lopantsev et al., 2009). However, direct 

evidences supporting these hypothesis have been scarce so far in human epilepsy, possibly for 

experimental difficulties. TMS offers the unique opportunity to study non-invasively cortical 

plasticity. A variety of TMS protocols have been developed to probe mechanisms of synaptic 

plasticity in the intact human brain. Between these, paired associative stimulation (PAS) 

(Stefan et al., 2000; Wolters et al., 2003) involves repeated pairing of an electrical stimulus to 

the median nerve with a later TMS stimulus over the contralateral motor cortex inducing 

changes in cortical excitability. The effect depends on the interval between median nerve and 

TMS stimuli: intervals of 25 ms (PAS25) increase excitability whereas intervals of around 10 

ms (PAS10) reduce excitability (Stefan et al., 2000; Wolters et al., 2003; Weise et al., 2006). 

Pharmacological manipulations suggest that the effects involve temporary changes in synaptic 

efficacy that are equivalent to long term potentiation (LTP) and long term depression (LTD) 

described in animal preparations (Muller-Dahlhaus et al., 2010). For example, sensorimotor 

cortex synaptic plasticity is abnormal in patients with progressive myoclonic epilepsy 

(Danner et al., 2011). 
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TMS AND PHOTOSENSITIVITY 

 

TMS proved to be an excellent method to study the cortical excitability in patients 

with epilepsy (Macdonell et al., 2002; Tassinari et al., 2003; Badawy et al., 2014), but it has 

received relatively little attention in the study of photosensitivity in particular.  

 

Single pulse TMS 

Single pulse TMS measures were used by several authors to investigate M1 

excitability in photosensitive patients at rest. Manganotti and coworkers found no difference 

in MEP amplitude and CSP between patients with juvenile myoclonic epilepsy, and healthy 

subjects (Manganotti et al., 2000). However not all the examined patients had 

photosensitivity. Similarly, Groppa and coworkers (Groppa et al., 2008) found no difference 

in MEP amplitude, and CSP duration between PPR-positive patients with idiopathic 

generalized epilepsy (IGE), PPR-negative patients with IGE, and PPR-negative healthy 

controls under resting conditions. This was confirmed by other investigators (Siniatchkin et 

al., 2007) comparing PPR-negative and PPR-positive healthy subjects. While an increase in 

RMT was found in IGE patients with PPR compared with IGE patients without PPR (Groppa 

et al., 2008) and with healthy subjects (Strigaro et al., 2013), this has been attributed to the 

effect of antiepileptic medications on RMT (Ziemann et al., 2015).  

 The same single pulse TMS measures were investigated in relation to IPS. IPS at 

frequencies of 50 and 60 Hz was able to decrease CSP duration in healthy subjects, while IPS 

at 5 and 30 Hz was not effective (Entezari-Taher & Dean, 2000). However, IPS at 50 Hz was 

not able to shorten CSP in PPR-positive and PPR-negative patients with IGE (Groppa et al., 

2008); the authors speculated that patients with IGE had an altered responsiveness of 

GABAergic inhibitory circuits in M1. This result argue against a specific increase in M1 

excitability of M1 due to PPR. Other authors suggested that PPR might be linked to 

excitability alterations in V1. It was found that healthy individuals with PPR propagating to 

frontal regions had lower phosphene threshold, steeper stimulus-response curves and showed 

a stronger suppression of visual perception following TMS pulses compared with healthy 

individuals with PPR with occipital spikes only (Siniatchkin et al., 2007). Subjects with 

propagating PPR also showed no CSP change during IPS, while in subjects without PPR CSP 

was shortened under the same conditions. This last finding was confirmed by our group in a 
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later study, where IPS at 20 Hz failed to modulate CSP only in patients showing type III or IV 

PPR (i.e. with frontal or generalized diffusion) (Strigaro et al., 2013).  

 

Paired pulse 

SICI was smaller in patient with JME treated with antiepileptic drugs (AEDs), while 

the ICF and LICI were normal (Manganotti et al., 2000); unfortunately the patient were not 

stratified according to the presence of PPR. Groppa and coworkers found no difference in 

SICI and ICF between PPR-positive patients with IGE, PPR-negative patients with IGE and 

PPR-negative healthy controls, both at rest and during IPS (Groppa et al., 2008). In our study 

SICI and ICF were normal both at rest and during IPS, and this was true for patients with a 

PPR limited to occipital regions as well as for those having an anterior spread of PPR 

(Strigaro et al., 2013). 

 

Connectivity and plasticity 

The mentioned studies using single- or paired-pulse TMS paradigms mostly 

investigated the excitability of M1 in patients with PPR; however, there are evidences 

suggesting hyperexcitability in the visual cortex of these patients (Porciatti et al., 2000; 

Cantello et al., 2011; Strigaro et al., 2012). How the discharge propagates from posterior to 

frontal cortical regions, to generate the allied myoclonic jerks? We believe that valid answers 

may come from our recent electrophysiological studies on the mechanisms of visuo-motor 

integration presented in this thesis.  

Some other evidences come from recent studies on physiological visuomotor 

integration with visual paired associative stimulation (V-PAS) (Suppa et al., 2015a). This 

novel protocol induces long-term changes in the M1 excitability, which reflect long-term 

potentiation (LTP) and long-term depression (LTD) due to early visuomotor integration 

processes (Suppa et al., 2015a). In patients with IGE and PPR, but not in PPR-negative 

patients, the V-PAS-induced plasticity was abnormal in M1. This may suggest that PPR arises 

from abnormal activity in a complex cortical network physiologically responsible for 

visuomotor integration (Suppa et al., 2015b).  
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AIM OF THE THESIS 

 

The aim of the present thesis was to increase understanding into the specific networks 

involved in the pathophysiology of different types of epilepsy with non-invasive brain 

stimulation (TMS). From this, we aimed to define specific neurophysiological phenotypes and 

translate the findings into clinically useful parameters. 

First, we studied patients with photosensitive epilepsy since they represent a “model” 

of system epilepsy. Then, we focused on patients with focal and generalized epilepsies to 

unravel the neurophysiological basis of seizure generalization. Finally, we explored the motor 

cortex plasticity in juvenile myoclonic epilepsy, the most common subtype of generalized 

epilepsy in adults.  

Further investigation into the pathophysiology of these diseases would increase 

understanding into the ictogenesis of human epilepsies and the neural networks involved and 

eventually open new therapeutic targets. 
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INTERACTION BETWEEN VISUAL AND MOTOR CORTEX: A TMS 

STUDY 

 

Strigaro G, Ruge D, Chen JC, Marshall L, Desikan M, Cantello R, Rothwell JC. 

J Physiol. 2015;593:2365-77. 

 

Abstract 

 

The major link between the visual and motor systems is via the dorsal stream 

pathways from visual to parietal and frontal areas of cortex. Although the pathway appears 

indirect, there is evidence that visual input can reach the motor cortex at relatively short 

latency. To shed some light on its neural bases, we studied the visuo-motor interaction using 

paired transcranial magnetic stimulation (paired-TMS).  

Motor evoked potentials (MEPs) were recorded from the right FDI in sixteen healthy 

volunteers. A conditioning stimulus (CS) was applied over the phosphene hotspot of visual 

cortex, followed by a test stimulus (TS) over left M1 at random interstimulus intervals (ISIs, 

12-40 ms). The effects of paired stimulation were re-tested during visual and auditory 

reaction-time tasks (RT). Finally, we measured the effects of a CS on short-interval 

intracortical inhibition (SICI). 

At rest, a CS over the occiput significantly (p<0.001) suppressed test MEPs at ISIs 18-

40ms. In the visual RT, inhibition at ISI=40ms (but not 18ms) was replaced by a time-specific 

facilitation (p<0.001) whereas in the auditory RT the CS no longer had any effect on MEPs. 

Finally, an occipital CS facilitated SICI with an ISI=40ms (p<0.01).  

We conclude that it is possible to study separate functional connections from visual to 

motor cortices using paired-TMS at ISI=18-40ms. The connections are inhibitory at rest and 

possibly mediated by inhibitory interneurones in motor cortex. The effect at ISI=40ms 

reverses into facilitation during a visuomotor, but not audiomotor RT. This suggests that it 

plays a role in visuomotor integration.  
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Introduction 

Corticospinal excitability is modulated by a variety of sensory inputs, including 

auditory (Furubayashi et al., 2000), somatosensory (Tokimura et al., 2000), visual (Cantello 

et al., 2000b), and even gustatory (Mistry et al., 2006). This likely contributes to the 

sensorimotor integration underlying hand/limb movements (Goodale, 2011). In particular, 

somatosensory input has often been given special prominence, in view of its direct and short 

latency inputs. A large proportion of motor cortex neurones recorded in non-human primates 

respond at short latency to somatosensory inputs (Cheney & Fetz, 1984), and such responses 

are likely to be involved in long-latency transcortical stretch and cutaneous reflexes in 

humans (Macefield et al., 1996). In contrast, visual inputs are classically viewed as relatively 

indirect and weak, with only about 3% neurones in primate motor cortex responding to visual 

stimulation (Lamarre et al., 1983). However, later studies found visually responsive neurones 

in many areas of the cerebral cortex not directly involved in vision (i.e. premotor cortex, 

supplementary motor area, prefrontal cortex, frontal ocular fields) (Fadiga et al., 2000). How 

these areas are involved in visuomotor integration is still largely unknown.  

In humans there have been relatively few direct investigations of the effects of visual input on 

motor cortex (M1), but those that have been done suggest that moderately strong effects can 

be observed at a relatively short latency. The earliest studies were conducted in patients with 

photic reflex myoclonus in whom flashes of light can evoke a generalised myoclonic jerk 

(Shibasaki & Neshige, 1987; Artieda & Obeso, 1993). In a series of investigations on 6 

patients, Artieda and Obeso (Artieda & Obeso, 1993) suggested that visual input was reaching 

the motor cortex rapidly from primary visual areas since transcranial magnetic stimulation 

(TMS) over the occiput during 1 Hz flash stimuli (to increase visuo-motor excitability) 

provoked a muscle twitch some 7 ms later than direct TMS over M1. A later study by 

Cantello et al (2000) in healthy volunteers followed up on these observations by using single 

pulses of TMS to assess the excitability of the motor cortex after a light flash. They found that 

excitability was reduced some 55-70 ms after the flash and pointed out that the response to a 

flash reaches visual cortex at about 40 ms, so that if a cortico-cortical pathway was involved 

from visual (V1) to motor cortex (M1), the transit time would be of the order of 15 ms, at 

least in normal subjects. These effects might be interpreted as the physiological counterpart of 

a pathological visuomotor connectivity seen earlier in patients with photic reflex myoclonus 

(Artieda & Obeso, 1993). Rapid access of visual input to motor areas of cortex is also evident 

from reaction time studies (Thut et al., 2000; Makin et al., 2009) and many event-related 

potential (ERP) studies (Saron et al., 2001; Foxe & Simpson, 2002; Ledberg et al., 2007). Yet 
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the precise neural basis of these phenomena is still largely obscure. Intuitively, the primary 

visual area would be the first cortical relay of the circuit and the primary motor cortex would 

represent the final output. 

The aim of the present study was to devise a method to examine visuo-motor interaction in 

healthy participants. We used a “twin coil” TMS approach to test whether a conditioning 

pulse over the occiput influences the amplitude of the muscle twitches evoked from a later 

TMS pulse applied over M1. Connectivity was tested at rest as well as during the warning 

period prior to a simple visual reaction time task in order to examine whether it showed any 

task-related changes in excitability.  

 

 

Materials and Methods 

Subjects 

A total of 16 healthy volunteers (8 women, 21–51 years old) were recruited. One 

subject was excluded since he reported no phosphenes. All of the remaining 15 participated in 

Exp. 1; 10 of these then participated in Experiments 3-5 (same individuals in all 3 

experiments). All subjects were right-handed based on the Edinburgh Handedness Inventory 

and gave written informed consent. Experiments were approved by the Ethical Committee of 

University College London and were performed in accordance with the Declaration of 

Helsinki. 

 

TMS 

For paired-TMS we used two high-power Magstim 200 machines (Magstim, 

Whitland, UK). The magnetic stimulus had a nearly monophasic pulse configuration with a 

rise time of ~ 100 µs, decaying back to zero over ~ 0.8 µs. The stimulators were connected to 

a figure-of-eight coil (outer winding diameter 70 mm). 

 

Test stimuli 

MEPs were recorded from the first dorsal interosseous (FDI) muscles using 9 mm 

diameter Ag-AgCl surface-cup electrodes, in a typical belly-tendon montage. Responses were 

amplified by a Digitimer D360 device (Digitimer, Welwyn Garden City, UK). Filters were 20 

Hz - 3 kHz, and the sampling rate was 10 kHz. The signal was then recorded by a PC using 

Signal software ver. 4.08 (Cambridge Electronic Devices, Cambridge, UK). The test coil was 

placed tangentially to the scalp at a 45° angle to the midline, to induce a posterior-anterior 



22 

 

(PA) current flow across the central sulcus. The hand motor area of the left M1 was defined as 

the point where stimulation consistently evoked the largest MEP. We defined the resting 

motor threshold (RMT) as the lowest intensity that evoked 5 small responses (~50 µV) in the 

relaxed FDI muscle in a series of 10 stimuli (Rossini et al., 1994). The intensity of the TS was 

finally adjusted to evoke an MEP of ~ 1 mV peak-to-peak amplitude in the relaxed right FDI. 

  

Experiment 1 (n =15).  

Paired-TMS stimulation was conducted as in the pilot trial. The TS alone and CS plus 

TS were randomly intermixed at each ISI. Fifteen responses were collected for TS and 12 

responses for CS plus TS. There was a 5 s (±20%) intertrial interval. For each trial we 

measured the average peak-to-peak MEP amplitude. The conditioned MEP was expressed as 

a percentage of the unconditioned MEP size. The centre of the conditioning coil was placed 

over the phosphene hot spot. This was located and the phosphene threshold (PT) determined 

according to the method of Stewart et al. (Stewart et al., 2001). Subjects wore a blindfold and 

a cap whilst seated in a comfortable chair in a dimly lit room. Three points were marked over 

the occipital midline 2, 3 and 4 cm above the inion. The coil handle pointed upwards and was 

parallel to the subject’s spine. The coil centre was first positioned 2 cm above the inion, then 

moved anteriorly across the marks, to determine the best site to elicit phosphenes (“hot spot”). 

Stimuli were initially applied at 60% of the stimulator output and at a maximum frequency of 

0.2 Hz. The subject was asked about the presence of phosphenes immediately after each 

pulse. If a phosphene was reported 5 or more times out of 10, the pulse intensity was reduced 

by steps of 5%, then stimuli were repeated another 10 times. This protocol progressed until no 

phosphene was reported. The minimum intensity at which the subject perceived a phosphene 

5 times out of 10 was the PT. If the initial intensity of 60% was ineffective, it was increased 

by steps of 5% maximum power, till phosphenes appeared. If the subject still failed to 

perceive a phosphene on the midline, the coil was shifted to a lateral position and the 

procedure was repeated at this location. One subject was excluded since he reported no 

phosphenes. The intensity of the CS was adjusted to be 80% PT or 90% PT. ISIs were 12, 15, 

18, 21, 24, 27, 30, 35 and 40 ms. There were two sessions: one with eyes open and another 

with eyes closed. 

 

Experiment 2 (n =8).  

From Exp.1, 8 subjects were selected because they showed the strongest inhibition at 

ISI 18 and 40 ms. We then studied the effects of changing the CS site, in a setting otherwise 
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identical to Exp. 1. There were two sessions: conditioning stimuli with an intensity of 80% PT 

were applied to the phosphene hot spot or to a site 3 cm lateral to Pz (according to the 10-20 

international system) on the right side. The subjects’ eyes were open.  

 

Experiment 3 (n=10). 

The protocol described in Exp. 1 was then repeated during a visuo-motor RT task. We 

hypothesized that a physiologically relevant connectivity would show time-specific changes 

in such a context. We used a task similar to that of Touge et al (1998). Subjects sat relaxed in 

a chair with their right forearm lying comfortably on a pillow and their right hand on a button 

box. Eyes were open. Surface EMG was recorded from the FDI, APB (abductor pollicis 

brevis) and ADM (abductor digiti minimi) muscles. We ensured that there was no EMG 

activity at baseline. A black screen was placed in front of the subjects at a distance of 50 cm, 

which carried two light-emitting diodes (LEDs) separated by 1.5 cm. The red LED was the 

warning signal (WS) and the green LED was the response signal (RS). Subjects were 

instructed to use the WS to prepare for the upcoming response and to contract their right FDI 

muscle as quickly as possible in order to press the button with their right index finger as soon 

as they saw the RS. Each trial began with a WS followed by a RS given randomly 600±50 ms 

later. The intertrial interval was 5 s (±20%). We had two randomized sessions separated by at 

least one week. In each session we measured the effects of the CS on TS while subjects were 

at rest, outside of the reaction time task. CS was 90% PT. ISIs of 18 and 40 ms (the most 

effective in previous experiments) were randomly intermingled. Subjects also performed 4 

blocks of the RT task. Each block had 4 conditions that were randomised within the block. 

Condition 1: subjects received a WS, followed 600±50 ms later by a RS, to which they had to 

react as quickly as possible. Condition 2: a TS alone given at -300, -150, -50 or +50 ms 

relative to RS (depending on the block, see below). Condition 3: same as condition 2, but the 

TS was preceded by a CS with an ISI of either 18 or 40 ms (depending on the block, see 

below). Condition 4: a TS alone was given in the intertrial interval (Figure 1). Thirty trials 

were recorded for each condition for a total of 120 trials. In one of the experimental sessions, 

the four trial blocks were: (1) TS at -300 ms, CS 18 ms before test; (2) TS at -150 ms, CS at 

18 ms; (3) TS at -300 ms, CS at 40 ms before test; (4) TS at -150 ms, CS at 40 ms. The other 

experimental session contained TS at -50 ms and +50 ms. Before each session, at least 50 

practice trials were given.  

The responses to each single trial were stored on a computer and analysed off-line at 

the end of the experiment. Rejection criteria were: 1) baseline EMG levels ≥ 50 µV; 2) 
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reaction time < 100 ms and > 1000 ms; 3) failure to react. Later we analysed the RMS values 

of baseline EMG in the 100 ms before the TMS pulses in each trial to ensure the task specific 

conditioned MEP data were not contaminated by background EMG activity. 

 

 

 

Figure 1 

A, the setting of Experiment 3. In condition 1, subjects received a warning signal (WS), followed 

600±50 ms later by a response signal (RS), after which they had to react as fast as possible. In 

condition 2, a test stimulus (TS) alone given at one of four different “times” (-300, -150, -50 or +50 

ms). In condition 3, same as condition 2, but the TS was preceded by a conditioning stimulus (CS) 

with an ISI of either 18 or 40 ms. In condition 4 a TS alone was given in the intertrial interval. 

B, typical example of changes in the MEP (grandaverage of the recorded trials) during the reaction 

time task. In this particular subject, a clear MEP increase can be seen 50 ms before the RS at an ISI of 

40 ms (condition 3).  
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Experiment 4 (n=10) 

We tested the paired-TMS protocol during an auditory RT task. The subjects, settings 

and conditions were the same as in Exp. 3. First, we measured the effects of the CS on TS 

with an ISI of 40 ms while subjects were at rest outside of the reaction time task. There 

followed two sessions:  in one we used an auditory RT task, where the first tone (500 Hz, 50 

ms) was the WS and the second tone (1000 Hz, 50 ms) was the RS; in the other, we re-tested 

the visual RT task. We also restricted our timings to TS at -50 ms (i.e. just prior to the RS) 

using an ISI between CS and TS of 40 ms since these parameters had produced large effects 

in Exp. 3.  

 

Experiment 5 (n=10) 

This experiment investigated the effects of a CS over the visual cortex on short 

interval intracortical inhibition (SICI) in the left M1 (Kujirai et al., 1993). We used three 

high-power Magstim 200 machines. The first conditioning stimulus (CS1) was delivered with 

an intensity of 90% PT over the phosphene hot spot and the second one (CS2) over the left 

M1. Finally, the TS was applied over the left M1 with an intensity to elicit a MEP of ~ 1 mV. 

The intensity of CS2 was set to the relatively low value of 70% active motor threshold 

(AMT), to avoid floor effects on the percentage SICI. AMT was defined as the lowest 

intensity that evoked five small responses (about 100 µV) in a series of ten stimuli when the 

subject made a 10% of the maximum voluntary contraction of the right FDI. The ISIs between 

CS1 and CS2 were 18 and 40 ms, whilst the ISI between CS2 and TS was 2.2 ms. A 

randomized conditioning-test design was used. First we tested the effects on the test MEP 

(MEP1) of giving CS1 alone (with an ISI of 40, CS140ms ; or ISI of 18 ms, CS118ms) or CS2 

alone (MEP2). Then, the intensity of the TS was re-adjusted so that when CS118ms +TS or 

CS140ms +TS were applied the combined effect would elicit a MEP of ~ 1 mV (MEP31mV). 

Finally, two conditions were randomly intermingled: CS1(18ms or 40ms) + TS (MEP31mV) and 

CS1(18ms or 40ms) + CS2 + TS (MEP4). Fifteen trials were recorded for each condition. The ratio 

of MEP4/MEP31mV was the amount of SICI in the presence of CS1(18ms or 40ms), whereas the 

ratio MEP2/MEP1 was the baseline SICI.  

 

Data analysis. 

All data were expressed as mean ± standard error of the mean (SEM). Student’s paired 

t tests (two-tailed) were used to compare mean RMT with eyes open and closed obtained from 

all the participants. Spearman's rho was applied to study the correlation between motor and 
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phosphene threshold. In general, the effects of the CS on MEP amplitude were analysed with 

separate one-way ANOVAs for any given stimulation intensity and eyes state, with “ISI” (TS 

alone, CS plus TS at various ISIs) as the main factor. A significant main effect in these 

ANOVAs was followed by post hoc tests with Bonferroni corrections. Based on the 

conditions of the various experiments, we performed preliminary two or three-ways repeated-

measures (rm) ANOVAs that accounted for the various factors to be analysed. Supplementary 

ANOVAs or rmANOVAs were finally carried out as dictated by the specific experiment, to 

assess the effects of additional confounders, e.g. in Exp. 3, a two-way rmANOVA explored 

the “time” (Figure 1) x “ISI” interactions. Mauchley’s test was used to examine for sphericity. 

The Greenhouse-Geisser correction was used for nonspherical data. Occasionally, two-tailed 

paired Student t tests were used (Exp. 5). A p value < 0.05 was considered significant. Data 

were analysed using software (SPSS v. 19.0 for Windows; SPSS Inc.).  

 

 

Results 

Baseline physiological data are shown in Table 1. No differences were found between 

each experimental session. All subjects completed the experiments without complications. 

Mean RMT with eyes open was 41.4% (range, 30–52%), the same as with eyes closed 

(40.6%; range 30-53%) (Student t = 0.50, p = 0.63). The phosphene hotspot was located in the 

midline in all subjects: it was 3 cm above the inion in 10/15 subjects, 2 cm in 4/15 and 4 cm 

in 1 subject (Figure 2, phosphene hotspot in a representative subject). Phosphenes were 

reported across both sides of the visual field. Mean PT was 62.8% (range, 40–76%).  Motor 

and phosphene thresholds did not correlate (Spearman's rho = -0.15, p = 0.62 with eyes open; 

rho = 0.07 p = 0.82 with eyes closed).  

 

Table 1. Physiological data (mean±SEM) 

 

 

 

RMT 

(%) 
PT (%) 

UC MEP 

(mV) 

Experiment 1 (n = 15)  

EO 
80% PT 

41.4±1.9 

62.8±2.6 

1.07±0.08 

90% PT 1.13±0.09 

EC 
80% PT 

40.6±1.9 
0.98±0.08 

90% PT 0.96±0.05 
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AMT, active motor threshold; CS, conditioning stimulus; EO, eyes open; EC, eyes closed; ISI; interstimulus 

interval; MEP, motor evoked potential; PT, phosphene threshold; RMS, root mean square; RMT, resting motor 

threshold; TS, test stimulus. 

 

 

 
 

Figure 2 

MRI reconstruction of a single subject. The red mark indicates the orientation of the magnetic field at 

the phosphene hot spot (striate cortex). The anterior green dot is at the hand area of the left motor 

cortex.  

 

 

Experiment 2 (n = 8)  

  CS over control site 
36.3±1.6 65.7±2.5 

1.11±0.14 

  CS over phosphene hotspot 1.06±0.05 

Experiment 3 (n = 10)  

  TS at rest 

39.1±1.6 62.3±2.7 

1.09±0.07 

  TS -300 ms 1.15±0.09 

  TS -150 ms 1.04±0.07 

  TS at rest 

40.8±2.1 65.2±2.3 

1.13±0.10 

  TS -50 ms 1.10±0.12 

  TS +50 ms 1.17±0.06 

Experiment 4 (n = 10)  

  TS at rest 

39.8±1.5 63.5±2.1 

1.11±0.06 

  Auditory task 0.98±0.08 

  Visual task 1.08±0.05 

Experiment 5 (n = 10) 
AMT 

(%) 
 

 

  TS 

35.8±1.4 66.5±3.4 

1.15±0.08 

  ISI 18 ms 1.14±0.08 

  ISI 40 ms 1.01±0.06 
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Experiment 1 (Conditioning MEPs with stimuli over the phosphene hot spot at rest). 

In this experiment, the CS was placed over the phosphene hot spot. The effect of two 

different intensities of CS was measured on MEPs evoked from the left M1 with eyes open or 

closed throughout the testing (Figure 3a-d). A preliminary three-way rmANOVA showed a 

significant main effect of “ISI” (F (5, 67) = 10.93, p < 0.001), but no effect of “eye state” (F 

(1, 14) = 1.50, p = 0.24) or “intensity” (F (1, 14) = 0.32, p = 0.58) and no significant 

interactions (p > 0.05). Thus the time course of MEP suppression was the same at each 

intensity of CS and was unaffected by eye closure. The graphs also indicate the ISIs in each 

state where post hoc testing revealed significant (p < 0.05) effects compared to control 

(Figure 3a-d). Because ISIs of 18 and 40 ms were effective in all states these two intervals 

were then used in experiments 2-5. 
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Figure 3 

A-D, effects of a conditioning stimulus (CS) applied over the phosphene hot spot at different 

intensities (80% or 90% PT) and eye states (eyes open or closed) on the test MEPs with subjects at 

rest. Amplitude of MEPs (mV) is normalized and expressed as a percentage of control. Errors bars 

indicate SEM. Asterisks indicate a p value < 0.05 on post hoc analysis. 

E, effects of changing the location of the conditioning stimulus (CS, 90% of the phosphene threshold, 

PT) on the test MEPs with subjects at rest. Grey line: CS applied to a scalp site 3 cm lateral to Pz on 

the right side. Black line: CS applied to the phosphene hot spot. Amplitude of MEPs (mV) is 

normalized and expressed as percentages of control. Errors bars indicate SEM. Asterisks indicate a p 

value < 0.05 on post hoc analysis. 
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Experiment 2 (Changing the site of the conditioning stimulus). 

To confirm that the effect of the CS was spatially specific, we compared the effect of 

conditioning over the phosphene hot spot with conditioning over a point 3 cm lateral to Pz. 

Figure 3e shows that stimulation over the parietal site at this intensity had no effect whereas 

there was clear MEP suppression if the CS was over V1. A two-way rmANOVA showed a 

significant main effect of “stimulation site” (F (1, 7) = 37.52, p < 0.001), as well as a 

significant interaction between “stimulation site” and “ISI” (F (8, 56) = 2.475, p = 0.02), 

indicating that the time course of the effect on MEPs differed between sites. Follow up one-

way ANOVAs revealed a significant main effect of ISI (F (9, 63) = 4.73, p < 0.001) at the 

phosphene hot spot but no effect of ISI over the parietal site (F (9, 63) = 1.65, p = 0.12). On 

post hoc analysis, the size of the MEP conditioned from V1 was significantly reduced at ISI 

18 ms (p = 0.001), 21 ms (p = 0.014) and 40 ms (p = 0.002). No subject reported phosphenes 

after the control (parietal) stimulus. 

 

Experiment 3 (Visuomotor functional connectivity during a visual RT task) 

We next tested whether the effect of the CS varied during the course of a warned 

simple visual reaction time task. MEPs were conditioned by stimulation over the phosphene 

hot spot during the warning interval prior to the onset of the RS and at 50 ms following the 

RS prior to onset of movement. The effects were compared with those seen at complete rest 

outside the reaction task. MEPs to the M1 stimulus given alone were the same at rest at all 

intervals tested during the task (one-way rmANOVA, first session of task: (F (3, 27) = 0.62, p 

= 0.61); second session (F (3, 27) = 0.24, p = 0.87). 

Figure 4a plots the size of the conditioned MEP as a percent of the test MEP alone for 

the two ISIs between CS and TS (18 and 40 ms). There are five bars for each ISI 

corresponding to suppression at rest and at -300, -150, -50 and +50 (with respect to the time 

of the RS) during the reaction task. The percentage suppression of MEP at an ISI of 18 ms 

was unchanged during the task whereas suppression at ISI = 40 ms gradually shifted to 

facilitation around the time of the RS. 

This was confirmed by a two-way rmANOVA showing a significant main effect of 

“time” (F (4, 36) = 39.64, p < 0.001), “ISI” (F (1, 9) = 25.40, p = 0.001) and a significant 

“time” x “ISI” interaction (F (2, 18) = 12.20, p < 0.001). Follow up one-way ANOVAs 

showed no effect of “time” with an ISI = 18 ms (F (3, 25) = 0.44, p = 0.73) and no effects of 

“background EMG” both on the unconditioned (F (1, 25) = 0.017, p = 0.90) and conditioned 
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MEPs (F (1, 25) = 0.007, p = 0.93) (Table 2). On the contrary, there was a significant effect at 

ISI = 40 ms (F (3, 25) = 9.44, p < 0.001) and no effects of “background EMG” on the 

unconditioned (F (1, 25) = 0.28, p = 0.60) and conditioned trials (F (1, 25) = 0.32, p = 0.574) 

(Table 2). Post hoc analysis showed that the conditioned MEP was significantly larger 300 ms 

(p = 0.034), 150 ms, and 50 ms before and after the RS (p < 0.001). 
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Figure 4 

A, effects of the conditioning stimulus (CS, phosphene hot spot) on the test MEP amplitude at rest and 

at different times during the behavioural task (-300, -150, - 50 and +50 ms). Left, ISI 18 ms. Right, ISI 

40 ms. Amplitude of MEPs (mV) is normalized and expressed as percentage of control. Errors bars 

indicate SEM.  

B, effects of the conditioning stimulus (CS, phosphene hot spot) with an ISI of 40 ms on the MEP 

amplitude at rest and during a visual and an auditory reaction task 50 ms before the response signal 
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(RS). Amplitude of MEPs (mV) is normalized and expressed as a percentage of control. Errors bars 

indicate SEM.  

C, comparison of the effects on short-interval intracortical inhibition (SICI) of conditioning stimuli 

applied over the visual cortex with an ISI of 18 and 40 ms. Errors bars indicate SEM.  

 

 

Experiment 4 (Visuomotor functional connectivity during an auditory RT task) 

In the visual task the CS (ISI = 40 ms) facilitated the conditioned MEP 50 ms prior to 

the RS. In the same subjects, we compared this with the effect when using the same timing in 

an auditory reaction task. The unconditioned MEP at rest was the same as during the visual 

and auditory task (50 ms before the RS) (F (2,18) = 1.20, p = 0.323). Figure 4b shows that the 

CS suppressed the MEP when subjects were tested at rest. However, during performance of 

the auditory task (-50 ms) there was no longer any effect of the CS on the TS whereas in the 

visual task it was facilitated. A one-way rmANOVA on the data confirmed that the effect of 

the CS differed between the three conditions (F (2, 18) = 49.26, p < 0.001). Follow-up 

analysis showed that although there was a significant difference between the effect at rest and 

at the -50 ms time points in both tasks (visual, p < 0.001; auditory, p < 0.001), the effect was 

larger in the visual task compared with the auditory task (p < 0.001). 

  

Experiment 5 (Effects on SICI) 

A CS over the phosphene hot spot increased the amount of SICI compared to baseline 

(baseline SICI, 77.5%; SICI in the presence of CS, 56%) (Student t = 6.86, p < 0.001) at an 

ISI of 40 ms, but not at 18 ms (t = 0.254, p = 0.80) (Figure 4c). As a result of intensity re-

adjustment, the MEP31mV size was 1.01 ± 0.1 mV (ISI 40 ms) and 1.14 ± 0.1 (ISI 18 ms), i.e. 

it was not statistically different from the MEP1 (1.15 ± 0.1 mV) (F (2, 18) = 1.11, p = 0.35). 

 

 

Discussion 

The present data show that TMS over the occipital region affects excitability of M1 

when tested 18-40 ms later. Since the TMS coil was located over the optimal point to elicit 

stationary phosphenes (Afra et al., 1998; Stewart et al., 2001; Franca et al., 2006), and an 

intensity below phosphene threshold was used, we suggest that the effect depends on 

activation of primary visual cortex (V1). We assumed that both hemispheres were activated 

since the coil position was on the midline in all the subjects and phosphenes were reported 
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across both sides of the visual field. The effect was present at both 80% and 90% phosphene 

threshold (PT) but was not significantly influenced by whether the eyes were open or closed. 

It was not caused by the auditory click made by the coil when discharged (Furubayashi et al., 

2000), as it was no longer present when the site of stimulation was moved 3 cm lateral to Pz.  

Our results confirm the evidence reviewed in the Introduction that activity in visual 

cortex can modulate corticospinal excitability at short latency in subjects at rest. One of the 

limits of previous approaches is that they used natural visual stimuli and there is some 

uncertainty about the precise time at which these arrive in visual cortex. Most studies indicate 

that the first occipital visual evoked potentials begin around 35-40 ms (ffytche et al., 1995), 

while intracranial electrodes recorded a latency of about 31-33 ms (Ducati et al., 1988). Using 

these figures, the earliest TMS effect at ISI = 18 ms is compatible with the data on flash 

evoked suppression of MEPs noted by Cantello and colleagues at 55-70 ms after a flash 

(Cantello et al., 2000b; Makin et al., 2009) but later than the very rapid (7 ms) visuo-motor 

connectivity described in photic reflex myoclonus (Nakashima et al., 1985; Shibasaki & 

Neshige, 1987; Artieda & Obeso, 1993; Kanouchi et al., 1997). The shorter occipitomotor 

conduction time in the patients might well be explained by a pathological exaggeration of the 

normal physiological mechanism, resulting in a shorter latency response and a shift from 

inhibition to excitation of the motor cortex. A similar connection might explain the spread of 

the epileptic discharge from the hyperexcitable visual cortex to the motor cortex in 

photosensitive idiopathic epilepsies (Strigaro et al., 2012; Strigaro et al., 2013). 

The later phase of interaction at ISI = 40 ms is compatible with the earliest signs of 

visual effect on motor cortex excitability described in a number of behavioural studies (e.g. 70 

ms in Makin et al., 2009). Longer latency visuo-motor effects have also been described by 

Suppa et al (2013) who showed that it was possible to induce long-term potentiation (LTP) 

and depression (LTD)-like plasticity in the primary motor cortex in healthy humans after 

repetitive pairing of a patterned visual stimulus and a TMS stimulus at specific time intervals 

around the latency of the P100 evoked potential. These varied between 40 and 140 ms after 

the individual P100 latency (i.e. between 140 and 240 ms after onset of the visual stimulus) 

(Suppa et al., 2013) and are therefore longer than the ISIs we deal with in the present paper.  

Apart from estimates of transit time, our data do not provide any information about the 

possible anatomical pathways that might mediate these functional effects. Connections in the 

dorsal visual stream via parietal and premotor cortex could provide one route. In addition, 

diffusion tensor imaging (DTI) techniques (Catani et al., 2002) and anatomical dissection 

studies (Martino et al., 2010; Sarubbo et al., 2011) demonstrated the existence in humans of 
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the inferior fronto-occipital fascicle (IFOF), a long associative bundle connecting the occipital 

cortex and other posterior areas to the frontal lobe (Martino et al., 2010). Although often seen 

as playing a role in transmitting information from frontal cortex to occiput for the purposes of 

“top down” control, the IFOF might also contain a direct efferent pathway from the occipital 

cortex, which can rapidly transmit visual information to the frontal regions (Martino et al., 

2010).  

Most long range cortico-cortical connections are thought to be excitatory, as in the 

transcallosal pathway (Asanuma & Okuda, 1962; Ferbert et al., 1992). The fact that we 

obtained an overall inhibitory effect in the present experiments would therefore be compatible 

with the idea that these excitatory projections synapse onto inhibitory interneurones in M1 

that suppress corticospinal excitability. This is supported by our findings that a CS over the 

visual cortex increased SICI in the left M1, at least for ISI = 40 ms (not 18 ms). SICI is 

thought to test a GABAa-ergic form of intracortical inhibition in motor cortex (Ziemann et 

al., 1996a). Thus the fact that SICI is made more effective by stimulation over visual cortex 

suggests that occipital input has access to inhibitory circuits in M1 and that this may 

contribute to the MEP suppression we have described. Visuo-motor suppression at 18 ms 

presumably does not depend on activity in the same set of interneurones since it has no effect 

on SICI. However, there are a number of possibilities that can be tested with TMS methods, 

including a GABAb-ergic system (tested with the long interval intracortical inhibition 

paradigm) (Valls-Sole et al., 1992; Werhahn et al., 1999) and a further pathway modulated by 

cholinergic input (tested with short afferent inhibition) (Tokimura et al., 2000). Further work 

could tease apart these possibilities. At the present time, we conclude that the two phases of 

inhibition are caused by activity in two distinct pathways. 

To assess the potential physiological role of this visuo-motor pathway, we examined 

connectivity during a visual RT task using ISIs of 18 and 40 ms since they produced the most 

consistent inhibitory effects. The task had no effect on MEP suppression at ISI = 18 ms at any 

of the time points studied during the task. This was not true for ISI = 40 ms. The inhibitory 

effect at rest (MEP reduced by 30-40%) gradually reversed into facilitation during movement 

preparation. Facilitation appeared to begin about 150 ms prior to the RS and was very clear at 

+50 ms (MEP increased by 40-50%). This contrasts with the results in an equivalent auditory 

reaction task. The usual visuo-motor suppression observed at rest was absent 50 ms prior to 

the RS, but there was no clear facilitation of the MEP as in the visual task. We suggest that 

rapid visuomotor connectivity is suppressed during an auditory task but becomes facilitatory 

during a visual task, perhaps improving access of visual input to motor areas. It is unclear 
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why connectivity at ISI = 18 ms was unaffected in the visual reaction task. Nevertheless, the 

finding does confirm the conclusion that these two effects are mediated by quite separate 

pathways. 

During the RT tasks, we saw no significant changes in the unconditioned MEP at the 

time intervals we studied. In some previous studies, the MEP has been suppressed in the 

interval between the WS and RS (Hasbroucq et al., 1997; Touge et al., 1998; Davranche et 

al., 2007). However, suppression is best observed when the WS-RS interval is constant and 

subjects can anticipate precisely when the RS is about to be delivered (Touge et al., 1998). In 

the present task the timing of the RS was not predictable since it was randomised to come 

550-650 ms after the WS. MEPs also are known to increase following the RS prior to onset of 

EMG. However the effect usually starts more than 50ms after the RS which was beyond the 

time range studied in the present experiments.   

There was one slightly unexpected feature of the present results: the excitability of the 

occipito-motor connection was the same when it was tested with the eyes open or closed. 

Previous work had shown that transient removal of vision increases the amplitude of early 

components of the flash-evoked EEG potential (Cantello et al., 2011), and we had initially 

anticipated that it might also increase the size of any effects we observed. However, the 

amplitude of the VEP may well be influenced by subcortical rather than cortical changes. For 

example, eye closure produces effects on retinal sensitivity which could affect the flash-

evoked input without affecting the excitability of V1 to TMS. We propose that although 

ambient light levels may affect the excitability of inputs to visual cortex, they do not influence 

the excitability of the output elements activated by TMS. One study noted that blindfolding 

increases excitability of M1, as tested by its effect on the amplitude of TMS-evoked muscle 

twitches (Leon-Sarmiento et al., 2005). The effect was larger after 30 min of blindfolding 

than immediately after eye closure. In the present experiments the eyes were only closed for a 

short period and we did not detect any change of RMT or baseline MEPs between open and 

closed eyes. We are less certain why the responses to conditioning stimuli of 80% and 90% 

PT were similar. It seems possible that this was due to a lack of statistical power, given the 

tendency for more inhibition to occur at 90% PT whether the eyes were open or closed.  
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Conclusions 

Our findings support the existence of physiologically relevant occipitomotor 

connections, which can be activated by means of TMS. They may contribute to rapid 

integration of visual input into motor tasks as well as being involved in the spread of a seizure 

from visual to motor areas in certain types of visual epilepsy. 
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Abstract 

 

Objective. The photoparoxysmal response (PPR) involves rapid spread of epileptic activity 

from visual to parietal and frontal areas. We used a transcranial magnetic stimulation (TMS) 

technique to assess the physiological connections between primary visual (V1) and motor 

(M1) areas in patients with idiopathic generalized epilepsy (IGE). We hypothesized that in 

PPR-positive patients, M1 would respond excessively to inputs from V1. 

  

Methods. Eleven photosensitive patients with IGE who had a PPR at the time of the study 

were compared with 10 similar patients without a PPR, and with 11 healthy subjects of 

similar age and sex. The connection between V1 and M1 was assessed in resting participants 

by delivering a conditioning stimulus (CS) over the phosphene hotspot of the visual cortex 

(intensity 90% phosphene threshold, PT) followed at random interstimulus intervals (ISIs) 

(15, 18, 21, 24, 27, 30, 35 and 40 ms) by a test stimulus (TS) over the left motor cortex to 

elicit a motor evoked potential (MEP) of ~ 1 mV from the right FDI.  

 

Results. In healthy subjects, a CS over V1 suppressed M1 at ISIs between 18 and 40 ms. 

Similar effects occurred in IGE patients without a PPR. This was not true in PPR-positive 

IGE patients, in whom this type of physiological inhibition was significantly (p<0.05) 

reduced. 

 

Significance. IGE patients with a PPR have an overactive functional response of M1 to inputs 

travelling from V1. This may represent one core factor for the anterior spread of the PPR 

itself and for the origin of the abnormal epileptic motor phenomenon, such as myoclonus. 
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Introduction 

Epileptic photosensitivity is an exaggerated neural response to visual stimuli. Its most 

elementary and common form is the photoparoxysmal response (PPR) to intermittent light 

stimulation (ILS). Among patients with epilepsy, a PPR is found in about 10–20% of children 

and 5–10% of adults, and it is more common among female patients at any age (Verrotti et 

al., 2005). It is usually associated with idiopathic generalized epilepsies (IGE), notably 

juvenile myoclonic epilepsy (JME), and it is a diagnostic criterion of the syndrome of eyelid 

myoclonia with absences (EMA) (Striano et al., 2009). 

There are few studies of the pathophysiology of PPR. Defective inhibition in the 

visual system has been recently described as one background factor contributing to the PPR 

(Strigaro et al., 2012). A second factor may be exaggerated transmission of visual inputs to 

other brain areas. For example, previous authors have described an exaggerated response of 

M1 to visual inputs that might have a pivotal role in spread of activity during the PPR 

(Artieda & Obeso, 1993; Verrotti et al., 2005). We recently proposed a paired transcranial 

magnetic stimulation (TMS) method to study the time course of visual inputs on M1. 

Conditioning stimuli delivered to the occipital region suppressed M1 activity while the 

subject was at rest, while it reversed into facilitation in the context of a visuomotor reaction 

task (Strigaro et al., 2015c). 

The present study was designed to examine the excitability of these connections in 

epileptic patients with a PPR.  

 

 

Materials and Methods 

Methods were fully described in a previous paper (Strigaro et al., 2015c). Briefly, all 

neurophysiologic studies took place between 2:00 and 6.30 p.m. in a quiet room, at a standard 

temperature of 22°C. Subjects lay comfortably in a dimly illuminated (=ca. 30 Lux) room.  

 

Subjects 

We studied a total of 21 adult patients with IGE referred to the Epilepsy Clinic of the 

University Department of Neurology, Novara, Italy: 11 had IGE with PPR (9 women, mean 

age 36.5 years, standard deviation [SD] 14.3) and 10 had IGE without PPR (7 women, mean 

age 35.1 years, SD 11.4). They were selected because their updated profile, in the Clinic 

database, included the terms “idiopathic generalized epilepsy” with or without 

“photosensitivity” and “PPR”. Eleven normal subjects of similar age and sex acted as controls 
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(6 women, mean age 34.2 years; SD 8.5). They had no family or personal history of 

neurologic disease or epilepsy. Reportedly, both patients and controls had not been taking 

neuroactive drugs (alcohol and caffeine included) for 72 h prior to the study, except for the 

patient antiepileptic treatment. Their general, neurological and ophthalmological 

examinations were normal. All subjects were right-handed based on the Edinburgh 

Handedness Inventory and gave written informed consent. Experiments were approved by the 

local Ethics Committee and were performed in accordance with the Declaration of Helsinki. 

 

Patient features 

These are reported in Table 1. Eleven of the 21 patients were classified as photosensitive 

(IGE+PPR) because they showed a PPR to ILS, which did never entail clinical phenomena. 

Of this group, seven patients had a definite diagnosis of juvenile myoclonic epilepsy (JME) 

and one had a diagnosis of EMA, whereas we labelled the remaining three as (undefined) 

“photosensitive IGE”. Ten of the 21 patients were not photosensitive (IGE-PPR), and just 

three of them had a definite diagnosis of JME. In general, their clinical course was favourable, 

since 19 of the 21 patients reported being seizure-free, whereas one patient from each group 

still had isolated myoclonia exclusively upon awakening (n. 10 and 17). All were on a 

standard antiepileptic treatment. Valproate, alone or in combination with levetiracetam, was 

the most frequent choice.  
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Table 1 

MAIN FEATURES OF THE PATIENTS 

 PPR 

Patient # Age Sex Diagnosis 
Seizure 

frequency 

Current 

Treatment 

(mg/die) 

PPR type  

(1-4)  
Eye state 

Range 

(Hz) 

1 42 F EMA Free 
VPA 1000 

PB 100 
3 EC 1-60 

2 26 F JME Free LTG 400 2-3 EC 12-25 

3 71 F 
Photosensitive 

IGE 
Free LEV 1000 3 EC 8-20 

4 28 M JME Free VPA 300 2 EC 18 

5 48 F JME Free 
VPA 1300 

LEV 1000 
2 EC 8-20 

6 38 F 
Photosensitive 

IGE 
Free PB 115 4 EC>EO 1-25 

7 21 F JME Free VPA 800 2 EO>EC 6-25 

8 22 F JME Free LTG 100 4 EC 8-20 

9 37 F JME Free VPA 600 2 EC 16-20 

10 30 M JME Daily M TPM 100 4 EC>EO 12-25 

11 38 F 
Photosensitive 

IGE 
Free TPM 200 4 EC>EO 3-25 

12 26 M IGE Free OXC 1200 No   

13 29 M IGE Free VPA 900 “   

14 49 F IGE Free OXC 800 “   

15 39 M JME Free 

LTG 300 

PB 50 

ESM 500 

“   

16 54 F IGE Free VPA 1000 “   

17 24 F JME Occasional M LTG 400 “   

18 29 F JME Free 
LEV 2000 

VPA 1000 
“   

19 36 F IGE Free 

LEV 1000 

LTG 300 

PB 25 

“   

20 45 F IGE Free VPA 800 “   

21 20 F IGE Free LEV 2500 “   
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EC: eyes closed; EMA: eyelid myoclonia with absences; EO: eyes open; IGE: idiopathic generalized epilepsy; 

JME: juvenile myoclonic epilepsy; M, myoclonic seizure; ESM: ethosuximide; LEV: levetiracetam; LTG: 

lamotrigine; OXC: oxcarbazepine; PB: phenobarbital; PPR: photoparoxysmal response; TPM: topiramate; VPA: 

valproic acid. 

 

 

Video-EEG recording 

Prior to all experiments, the candidate subjects underwent a 30-min, 24-channel 

routine video-EEG recording without sleep deprivation. ILS was performed according to 

standardized methodology (Rubboli et al., 2004) using a Nihon-Kohden 4421K flash 

stimulator (Nihon-Kohden Co., Tokyo, Japan). The distance between the stimulator and the 

patient nasion was 30 cm. Ten-second trains of flashes were delivered for each frequency, at 

intervals of ≥ 7 s. Eyes were open for the first 5 s, fixating at the centre of the lamp. Then the 

subject was asked to close his or her eyes and remain in the eyes-closed condition for the 

subsequent 5 s of stimulation. We delivered ILS at 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, and 20 

Hz. If a generalized epileptiform discharge occurred, the procedure was stopped. A second 

sequence with frequencies of 60, 50, 40, 30, and 20 Hz was then delivered with the same 

precaution. A subsequent analysis was carried out independently by two routine EEG readers, 

to assess the PPR subtype (Waltz et al., 1992) and any clinical correlate of the PPR itself 

(Table 1). 

 

TMS 

For paired-TMS we used two high-power Magstim 200
2
 machines (Magstim, 

Whitland, UK). The magnetic stimulus had a nearly monophasic pulse configuration with a 

rise time of ~ 100 µs, decaying back to zero over ~ 0.8 µs. The stimulators were connected to 

a figure-of-eight coil (outer winding diameter 70 mm). 

 

Test stimuli 

Motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous 

(FDI) muscle using 9 mm-diameter Ag-AgCl surface cup electrodes, in a typical belly-tendon 

montage. Responses were amplified by a CED 1402 isolated amplifier (CED, Cambridge, 

UK). Filters were 20 Hz - 3 kHz, and the sampling rate was 10 kHz. The signal was then 

recorded by a PC using Signal software ver. 4.08 (Cambridge Electronic Devices, Cambridge, 
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UK). The test coil was placed tangentially to the scalp at a 45° angle to the midline, to induce 

a posterior-anterior (PA) current flow across the central sulcus (Figure 1). The hand motor 

area of the left primary motor cortex (M1) was defined as the point where stimulation 

consistently evoked the largest MEP. We defined the resting motor threshold (RMT) as the 

lowest intensity that evoked 5 small responses (~50 µV) in the relaxed FDI muscle in a series 

of 10 stimuli (Rossini et al., 1994). The intensity of the test stimulus (TS) was finally adjusted 

to evoke a MEP of ~ 1 mV peak-to-peak amplitude in the relaxed right FDI. 

 

Experimental procedure 

Paired-TMS stimulation was conducted as follows (Figure 1). The TS was preceded at 

random interstimulus intervals (ISIs) by a conditioning stimulus (CS). Fifteen responses were 

collected for TS and 12 responses for CS plus TS. There was a 5 s (±20%) intertrial interval. 

For each trial we measured the average peak-to-peak MEP amplitude. The conditioned MEP 

was expressed as a percentage of the unconditioned MEP size. The centre of the conditioning 

coil was placed over the phosphene hot spot, which was located according to the method of 

Stewart et al. (2001). Likewise, the phosphene threshold (PT) was determined (Stewart et al., 

2001). Subjects wore a blindfold and a cap whilst seated in a chair. Three points were marked 

over the occipital midline 2, 3 and 4 cm above the inion. The coil handle pointed upwards and 

was parallel to the subject’s spine. The coil centre was first positioned 2 cm above the inion, 

then moved anteriorly across the marks, to determine the best site to elicit phosphenes (“hot 

spot”) (Figure 1). Stimuli were initially applied at 60% of the stimulator output and at a 

maximum frequency of 0.2 Hz. The subject was asked about the presence of phosphenes 

immediately after each pulse. If a phosphene was reported 5 or more times out of 10, the 

pulse intensity was reduced by steps of 5%, then stimuli were repeated another 10 times. This 

protocol progressed until no phosphene was reported. The minimum intensity at which the 

subject perceived a phosphene 5 times out of 10 was the PT. If the initial intensity of 60% 

was ineffective, it was increased by steps of 5% maximum power, till phosphenes appeared.  

The intensity of the CS was adjusted to be 90% PT. ISIs were 15, 18, 21, 24, 27, 30, 

35 and 40 ms. There were two sessions: one with eyes open and another with eyes closed. 
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Figure 1 

Experimental setting of the study. Coil positions over a skull sketch. TS, test stimulus, delivered over 

the hand motor area of the left M1. CS, conditioning stimulus, delivered over the phosphene hotspot of 

the visual cortex. 

 

 

Data analysis 

All data were expressed as mean ± standard error of the mean (SEM). Student’s paired 

t tests (two-tailed) were used to compare mean RMT with eyes open and closed obtained from 

all the participants. Spearman's rho was applied to study the correlation between motor and 

phosphene threshold.  

A preliminary three-way repeated-measures (rm) ANOVA analysed the effects of 

“ISI”, “eye state” (within-subjects factors) and “group” (between-subjects factor). Separate 

one-way ANOVAs were used for further analyses where necessary. A significant main effect 

in these ANOVAs was followed by Bonferroni’s post hoc tests. Mauchley’s test was used to 

examine for sphericity. The Greenhouse-Geisser correction was used for nonspherical data. A 

p value < 0.05 was considered significant. Data were analysed using software (SPSS v. 19.0 

for Windows; SPSS Inc.). 

 

 

Results 

Baseline physiological measures and p values are shown in Table 2. Briefly, no 

significant differences in the test MEP amplitude and PT were detected between the groups. A 

significantly higher RMT was detected in both groups of patients compared to HS (p < 0.05).  
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Table 2 

DEMOGRAPHIC AND BASELINE TMS FEATURES 

 

 

 

 HS IGE-PPR  IGE+PPR Differences among groups 

# 11 10 11  

Age 34.2 ± 8.5 35.1 ± 11.4 36.5 ± 14.3 n.s. 

Sex 

(women) 
6 7 9 n.s. 

RMT 39.5 ± 6.7 57.4 ± 9.4 51.2 ± 12.5 

IGE+PPR > HS 

(p = 0.018) 

IGE-PPR > HS 

(p = 0.001) 

SI1mV 49.2 ± 11.0 69.2 ± 12.6 62.6 ± 15.2 n.s. 

Test MEP 

(mV) (EO) 
1.19 ± 0.35 1.29 ± 0.53 1.27 ± 0.36 n.s. 

Test MEP 

(mV) (EC) 
1.04 ± 0.26 1.07 ± 0.42 1.27 ± 0.24 n.s. 

PT 65.2 ± 8.0 71.3 ± 7.0 62.8 ± 13.5 n.s. 

90% PT 58.5 ± 7.3 64.3 ± 6.5 56.6 ±12.2 n.s. 

 

EO: eyes open; EC: eyes closed; HS: healthy subjects; IGE: idiopathic generalized epilepsy; ±PPR: 

±Photoparoxysmal response; PT: phosphene threshold; RMT: resting motor threshold; SI1mV: intensity required 

to elicit a 1 mV MEP; n.s.: non-significant. 

 

 

A preliminary three-way rmANOVA using absolute values revealed significant effects 

of “ISI” (F (8, 232) = 6.973, p < 0.001), “group” (F (2, 29) = 4.975, p = 0.014) and “ISI” x 

“group” interaction (F (16, 232) = 2.495, p = 0.002). There was no “eye state” x “group” 

interaction (F (2, 29) = 0.136, p = 0.874) (Figure 2). Thus there was a difference in the effect 

of ISI between the groups, as well as overall differences between groups. The “group” effect 

was due to the fact that there was less suppression in the IGE+PPR than the other two groups 

(Bonferroni post hoc analysis gave a significant difference between the IGE+PPR group and 

both the IGE-PPR group (p = 0.046) and the healthy controls (p = 0.024)). To rule out a 

confounding effect of seizures, two patients (n. 10 and 17) have been excluded and a 

subsequent three-way rmANOVA confirmed significant effects of “ISI” (F (8, 216) = 5.511, p 
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< 0.001), “group” (F (2, 27) = 5.209, p = 0.012), “ISI” x “group” interaction (F (16, 216) = 

2.513, p = 0.001) and no “eye state” x “group” interaction (F (2, 27) = 0.261, p = 0.772).  

Analysis of the “ISI” x “group” interaction was performed after normalising the data 

to baseline values for all the participants. In general there was less suppression at around 18 

and 40 ms in the IGE+PPR group than in the other groups. In the eyes open state, a post hoc 

Bonferroni analysis confirmed a significant difference at ISI 18 and ISI 40 ms between the 

IGE+PPR and the other two groups (IGE+PPR vs HS: p = 0.002 at ISI 18 and p = 0.015 at ISI 

40 ms; IGE+PPR vs IGE-PPR: p = 0.008 at ISI 18 and p = 0.001 at ISI 40 ms) (Figure 2-3). 

Moreover, significant differences were detected at ISI 21 ms between the IGE+PPR and HS 

groups (p = 0.033) and at ISI 35 ms between the IGE+PPR and IGE-PPR patients (p = 0.040). 

In the “eyes closed” state, there was a significant difference at ISI 21 ms between the 

IGE+PPR and IGE-PPR patients (p = 0.011) and at ISI 40 ms between the IGE+PPR and HS 

groups (p = 0.002) (Figure 2).  

 

 

Figure 2 

Effects of a conditioning stimulus (CS, 90% phosphene threshold), at different eye states (EC, eyes 

closed; EO, eyes open) on the test MEP, in subjects at rest. Red line: IGE+PPR patients. Blue line: 

IGE-PPR patients. Black line: healthy subjects. Amplitude of MEPs (mV) is normalized and expressed 

as a percentage of control. Errors bars indicate SEM. Asterisks indicate a p value < 0.05 on separate 

ANOVAs exploring ISIs. 
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Figure 3 

Typical example of changes in the MEP (grand-average of the recorded trials) with an ISI = 40 ms and 

with eyes open. A representative healthy control, a patient with IGE-PPR and a patient with IGE+PPR 

are depicted. In the IGE+PPR patient, a clear MEP increase can be seen at ISI 40 ms. 

 

 

Discussion 

The present study examined the functional connection linking visual to the motor 

areas using a paired pulse TMS method (Strigaro et al., 2015c). We found that patients 

suffering from IGE who had a PPR at the time of the study did not show the usual suppression 

from V1 to M1 at rest, even though this was present in healthy individuals and in patients 

with IGE but without a PPR.  

 

Paired pulse testing of V1-M1 connectivity 

The paired TMS technique allows investigation of time-related changes in functional 

connectivity between M1 and other cortical areas (Ferbert et al., 1992; Ugawa et al., 1995; 

Civardi et al., 2001; Koch et al., 2007a; Rothwell, 2011). A CS is first used to activate the 

area of interest, while a TS, given at different times afterward, evokes a test MEP in 

contralateral hand muscles to probe the excitability of motor cortical projections. If the CS 

changes the amplitude of the test MEP, then there is an influence of the conditioning site on 

the motor cortex (Rothwell, 2011).  

Paired TMS was recently employed to study the interaction between visual and motor 

cortex (Strigaro et al., 2015c). The CS was applied over the optimal point to elicit stationary 
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phosphenes (Afra et al., 1998; Stewart et al., 2001; Franca et al., 2006) and an intensity below 

PT was used. In healthy individuals this suppresses excitability of M1, particularly at ISIs of 

18 and 40 ms. The inhibition is present at both 80% and 90% PT but is not influenced by 

whether the eyes are open or closed (Strigaro et al., 2015c).The effect at ISI 40 ms (but not at 

18 ms), is abolished just prior to movement in auditory or visual reaction time tasks; it even 

reverses into facilitation in a visuomotor reaction task (Strigaro et al., 2015c). Thus the 

functional connection between V1 and M1 appears to be controllable: at rest when individuals 

are explicitly instructed to refrain from movement, the effect is inhibitory and could therefore 

reinforce a state of rest; when movement occurs, the connectivity can become excitatory, 

particularly if vision is actively being used to control the movement. The earliest TMS effect 

at rest (ISI 18 ms) is compatible with the data on flash evoked suppression of MEPs noted at 

55–70 ms after a flash (Cantello et al., 2000b) whereas the later phase (ISI 40 ms) with the 

earliest signs of visual effect on motor cortex excitability described in behavioural studies 

(Makin et al., 2009). 

In the present experiments, the CS intensity was set at 90% PT, a value which was 

previously shown to be the most effective (Strigaro et al., 2015c). We hypothesized that, in 

IGE patients with a PPR, this form of neural inhibition might be deficient in the resting state. 

The consequence would be that activity in V1 would be much more likely to influence distant 

areas than in healthy individuals, and could contribute to the spread of the PPR. We do not 

know whether the abnormal excitability of V1-M1 connections was representative of all 

visuo-frontal connections. Indeed most of the patients with PPR in the present study had a 

diagnosis of JME, which may have a particular involvement of M1. However, it may be that 

V1 access to all frontal areas is controlled in ways that depend on the function of the linked 

areas. Failure to control connectivity in the resting state would increase the probability that 

V1 activity could propagate widely to frontal cortex as in the PPR. 

 

Abnormal visuomotor connectivity in photosensitivity 

The fact that there was significantly less visuo-motor suppression in the PPR-positive 

group than in the healthy controls or the PPR-negative group implies that the defect was 

associated with the photosensitivity. The question is where does the deficit lie, is it in the 

visual cortex or in the connections between V1 and other cortical areas? We adjusted the 

intensity of the CS to be 90% PT to try to ensure that it engaged the same amount of V1 

output to networks involved in perception in all groups. Thus we think that the increased 

effect that it had on M1 in patients with PPR was due to increased access of input from V1 to 
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motor networks in M1. This may involve mechanisms similar to those responsible for the 

task-related changes in processing of visual input to motor cortex described in healthy 

individuals (Strigaro et al., 2015c). In this case, interactions of visual stimuli with the 

GABAa-dependent phenomenon of short-interval intracortical inhibition (SICI) (Ziemann et 

al., 1996a) suggest that the effect of V1 input on M1 is controlled by local circuits in M1. It is 

possible therefore that such control mechanisms are inadequate in patients with PPR and 

contribute to the abnormal spread of activity from V1.  

It should be noted that in healthy individuals, task dependent control of V1-M1 

interactions has only been demonstrated for the functional connection at ISI = 40ms but not at 

ISI = 18ms. This could mean that in patients, spread of the PPR from V1 depends on the 

particular connection studied at ISI = 40ms. However, when we probed the effectiveness of 

V1-M1 connections, we observed reduced inhibition at all ISIs including ISI = 18ms which 

implies a more widespread abnormality in several functional pathways. One possibility is that 

the V1-M1 input at 18ms is controlled by similar mechanisms to that at ISI = 40ms, but that 

we have yet to probe the connection in an appropriate task. If so then a general deficit in such 

systems, may underlie the reduced inhibition we observed. Indeed, in patients with photic 

reflex myoclonus in whom light flashes can evoke a generalised myoclonic jerk, Artieda and 

Obeso (1993) (Artieda & Obeso, 1993) found that input from V1 could reach motor cortex 

very rapidly: TMS over the occiput during 1 Hz flash stimuli (to increase visuo-motor 

excitability) provoked a muscle twitch some 7 ms later than direct TMS over M1. 

The anatomic pathways mediating visuomotor connectivity are unknown. The dorsal 

visual stream, via parietal and premotor cortex, could provide one indirect connection. 

However, a rapid transmission of visual information to the frontal regions might be provided 

by the inferior fronto-occipital fascicle (IFOF), a long associative bundle connecting the 

occipital to the frontal lobe (Martino et al., 2010). This tallies the current understanding of the 

pathophysiology of epilepsy, which relies on the “system hypothesis”. This concept goes 

somewhat beyond the classical dichotomy between focal and generalized epilepsy, implying 

that some types of epilepsy may depend on the susceptibility to epileptogenic factors within 

any of the interconnected structures of a specific brain system (Avanzini et al., 2012). 

 

Combining pathological connectivity with pathophysiology in V1 

Altered excitability in V1-frontal connections at rest is not the only factor that 

contributes to the PPR. A second factor is likely to be hyperexcitability of the visual cortex in 

response to the flickering light (Harding & Fylan, 1999; Porciatti et al., 2000; Wilkins et al., 
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2004; Verrotti et al., 2005). Paired VEP studies (Cantello et al., 2011) show that this relies on 

a mechanism of defective inhibition in the visual system, whose time course would fit some 

of the most “activating” ILS frequencies, such as 16 and 20 Hz (Strigaro et al., 2012). We 

suggest that this abnormal V1 excitability, coupled with defective control over V1 inputs to 

frontal cortex produces the PPR. Thus the paradoxical facilitation of EEG activity evoked 

over central area which is seen in PPR-positive patients with the paired VEP technique would 

be due to a combination of reduced inhibition between stimuli in V1 coupled with excess 

spread of activation to frontal central areas (Strigaro et al., 2012). Finally it should be noted 

that compensatory mechanisms could also co-exist that attempt to offset spread of activation. 

For example, in healthy volunteers, ILS shortens the duration of the cortical silent period 

(Cantello et al., 1992) whereas there is no effect in epileptic patients with PPR (Groppa et al., 

2008; Strigaro et al., 2013). This may imply an enhancement of the GABAb-ergic inhibition 

in the motor cortex of patients (Ziemann et al., 1996a). 

 

Effect of antiepileptic medication 

Medication was a main limitation of the present study because most of the patients 

were undergoing a successful antiepileptic treatment. Only in two patients, equally distributed 

in the two groups, there was a suboptimal control of the seizures with residual isolated 

myoclonia. To rule out a confounding effect of seizures, these patients have been later 

excluded from the statistical analysis and no significant interference with the results has been 

revealed.  

Both patient groups had a significantly higher baseline RMT which presumably results 

from concurrent antiepileptic medication (Reutens et al., 1993; Cantello et al., 2006; Strigaro 

et al., 2011; Badawy et al., 2014). However, in contrast to previous results (Brigo et al., 2013) 

showing higher PT thresholds in treated epileptic patients, we found similar PT in patients 

and controls. It is likely that this apparent difference is due to a statistical sampling problem: 

indeed in the present study there was a tendency for PPR-negative patients to have a higher 

PT threshold than healthy volunteers whereas the PPR-positive patients had the same or lower 

PTs. Since we found similar unconditioned MEP amplitudes and CS intensity in controls, 

PPR-positive and PPR-negative patients, the altered connectivity in PPR-positive patients 

unlikely reflect the influence of chronic antiepileptic treatment. Most importantly, we studied 

the PPR that remained under treatment and we favour the view that our findings were residual 

to the depressing action of the drugs. A group of drug naïve patients would possibly have 
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expressed even more evident changes. However, obvious ethical constraints hindered the 

recruitment of an adequate patient sample.  

 

 

Conclusions 

An overactive functional connection between the primary visual and primary motor 

cortex, as studied by TMS, may contribute to the pathogenesis of PPR, a key feature of 

photosensitive idiopathic epilepsies. An excess response of M1 to visual inputs may underlie 

the fast spread of epileptic activity from posterior to anterior areas of the brain and the origin 

of the abnormal epileptic motor phenomenon, such as myoclonus. 
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DEFECTIVE INTERHEMISPHERIC INHIBITION IN DRUG-TREATED 

FOCAL EPILEPSIES 

 

Strigaro G, Matino E, Falletta L, Pizzamiglio C, Tondo G, Badawy R, Cantello R. 

Brain Stimul. 2016 Dec 9. pii: S1935-861X(16)30384-9. 

 

Abstract 

 

Background. Focal epilepsies (FEs) arise from a lateralized network, while in generalized 

epilepsies (GEs) there is a bilateral involvement from the outset. Intuitively, the corpus 

callosum is the anatomical substrate for interhemispheric spread.  

 

Objective. We used transcranial magnetic stimulation (TMS) to explore whether there are any 

physiological differences in the corpus callosum of drug-treated patients with FE and those 

with genetic GE (GGE), compared to healthy subjects (HS).  

 

Methods. TMS was used to measure the interhemispheric inhibition (IHI) from right-to-left 

primary motor cortex (M1) and viceversa in 16 patients with FE, 17 patients with GGE and 

17 HS. A conditioning stimulus (CS) was given to one M1 10 and 50 ms before a test 

stimulus delivered to the contralateral M1. Motor evoked potentials (MEPs) were analysed 

both as a function of the side of stimulation and of the epileptic focus (left-right).  

 

Results. In HS, IHI was reproducible with suppression of MEPs at ISIs of 10 and 50 ms. 

Similar effects occurred in GGE patients. FE patients behaved differently, since IHI was 

significantly reduced bilaterally. When FE patients were stratified according to the side of 

their epileptic focus, the long-ISI IHI (=50 ms) appeared to be defective only when the CS 

was applied over the “focal” hemisphere. 

 

Conclusions. FE patients had a defective inhibitory response of contralateral M1 to inputs 

travelling from the “focal” hemisphere that was residual to the drug action. Whilst IHI 

changes would not be crucial for the GGE pathophysiology, they may represent one key 

factor for the contralateral spread of focal discharges, and seizure generalization. 

 



53 

 

Introduction 

Epilepsy is a common neurological disorder characterized by an enduring 

predisposition to generate epileptic seizures (Fisher et al., 2014). Its pathophysiology is 

complex and largely related to hyperexcitable neural networks resulting from the imbalance 

between excitatory and inhibitory circuits (Badawy et al., 2014). The classical dichotomy in 

focal (FE) and generalized epilepsy (GE) reflects the origin of the epileptic discharge, 

whether it arises in a lateralized network or it rapidly involves bilateral structures. 

Abnormalities in both excitatory and inhibitory neural circuits not only affect the 

seizure focus, but may also involve distant areas such as the primary motor cortex (M1) 

(Cantello et al., 2000a; Varrasi et al., 2004; Hamer et al., 2005). White-matter bundles 

connecting distant cortical areas are the likely anatomical substrate of seizure propagation 

(Miro et al., 2015). Of these, the corpus callosum represents the largest commissure 

connecting the two hemispheres (Wahl et al., 2007). Its major role in seizure propagation is 

suggested by the efficacy of the palliative corpus callosotomy procedure in severe drug-

resistant epilepsies (Asadi-Pooya et al., 2008). Previous neuroimaging and anatomical studies 

have explored the role of corpus callosum in interhemispheric propagation (O'Dwyer et al., 

2010; Walker et al., 2012). However, its physiological role in FE and GE is still a matter of 

debate (Lappchen et al., 2011; Miro et al., 2015). Changes in cortical excitability in the 

hemisphere ipsilateral and contralateral to the seizure focus (i.e. “focal” and “non-focal” 

hemisphere respectively) may well be a background factor for the propagation of the epileptic 

discharge, and may distinguish FE from GE (Badawy et al., 2007). A second factor may be an 

exaggerated interhemispheric transmission/defective inhibition through the corpus callosum. 

Interhemispheric inhibition (IHI) by means of paired pulse transcranial magnetic stimulation 

(TMS) was first described by Ferbert et al. (Ferbert et al., 1992). This paradigm employs a 

standard single TMS stimulus over the hand area of M1 that evokes a test motor evoked 

potential (MEP) in a muscle of interest. This stimulus can be preceded at different intervals by 

a conditioning stimulus (CS) over the hand area of the opposite hemisphere (Rothwell, 2011). 

The CS changes the amplitude of the test MEP at critical intervals with an “inter-

hemispheric” inhibition with a latency of 6–50 ms (Ferbert et al., 1992; Di Lazzaro et al., 

1999; Daskalakis et al., 2002; Chen, 2004). IHI is mediated by transcallosal fibers since the 

effects were absent in patients with no corpus callosum (Meyer et al., 1995). This method was 

subsequently validated by several studies in the normal subject (Meyer et al., 1998; Di 

Lazzaro et al., 1999; Lee et al., 2007) and patients with different neurological abnormalities 

(Boroojerdi et al., 1996; Hanajima et al., 2001; Murase et al., 2004; Li et al., 2007; Lappchen 
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et al., 2011), including one describing the changes between the M1s following the removal of 

the epileptic focus in FE (Lappchen et al., 2011).  

The present study was designed to examine the excitability of bilateral M1-to-M1 

interhemispheric connections in patients with FE and genetic GE (GGE) compared to healthy 

subjects (HS). In principle, we hypothesized that IHI would be defective in FE patients, 

particularly that the “focal” hemisphere would respond excessively to inputs from the “non-

focal hemisphere”. 

 

 

Materials and Methods 

All neurophysiologic studies took place between 2:00 and 6.30 p.m. in a quiet room, at 

a standard temperature of 22°C.  

 

Subjects 

We studied a total of 33 adult patients with epilepsy referred to the Epilepsy Clinic of 

the University Department of Neurology, Novara, Italy. Sixteen had FE (10 women, mean age 

36.4 years ± 9.3) and 17 had GGE (11 women, mean age 34.2 years ± 12.5). Seventeen 

normal subjects of similar age and sex acted as controls (11 women, mean age 30.1 years ± 

7.9). They had no family or personal history of neurologic disease or epilepsy. Apart from the 

regular antiepileptic medication taken by the patients, both patients and controls had not been 

on neuroactive drugs (alcohol and caffeine included) for 72 h prior to the study. Their general 

and neurological examinations were normal. All subjects were right-handed based on the 

Edinburgh Handedness Inventory. They gave written informed consent to the experimental 

procedures, which were approved by the local Ethics Committee and were performed in 

accordance with the Declaration of Helsinki. 

 

Patient features 

These are reported in Table 1. Thirteen of the 16 patients with FE had temporal lobe 

epilepsy (TLE) and 3 frontal lobe epilepsy (FLE). Magnetic resonance imaging (MRI) 

revealed a brain lesion in 12 out of the 16 patients (Table 1). No abnormalities of the corpus 

callosum have been detected. On the basis of ictal Video-EEG recordings, 8 out of the 16 

patients had a definite left epileptic focus, whilst the remaining 8 were diagnosed with a right 

focus. Nine were seizure-free and the remainder had only focal seizures without secondary 

generalization in the last one year of observation. Eight patients have experienced secondary 
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generalization in the past, 7 became seizure-free and 1 had residual focal motor seizures. All 

of them were taking one or multiple antiepileptic drugs (AEDs); carbamazepine and 

levetiracetam were the most commonly used drugs.  

In the GGE group, the most common subtypes were juvenile myoclonic epilepsy 

(JME) (6/17 patients), epilepsy with tonic-clonic seizures (TCE) (6/17 patients) and juvenile 

absence epilepsy (JAE) (4/17 patients). One patient had eyelid myoclonia with absences 

(EMA). All of them were seizure-free on AEDs, the most common of which were valproate 

and lamotrigine.  
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Table 1 

MAIN FEATURES OF THE PATIENTS WITH FOCAL EPILEPSY 

  

Patient # Age Sex Diagnosis 
Epileptogenic 

focus 
Seizure type 

Seizure 

frequency* 

Current 

Treatment 

(mg/die) 

Serum levels 
Ictal onset 

location/side 
Neuroimaging 

1 46 M TLE R CF 3-4/month 

CBZ 600 

LTG 250 

LEV 1000 

CBZ 7,9 ug/L 

LTG 1,8 mg/L 

LEV 3,5 mg/L 

Temporal/right 
Previous right temporo-parietal 

hematoma 

2 36 F TLE R CF, SG Free 
PB 100 

VPA 1250 

PB 16,5 ug/L 

VPA 53 ug/ml 
Temporal/right - 

3 56 M TLE R CF, SG Free CBZ 400 CBZ 4,2 ug/L 
Frontotemporal

/right  
Right temporo-parietal ischaemia 

4 47 F FLE L 

SF (jerks 

right upper 

limb) 

3-4/month 
LTG 450 

CBZ 800 

LTG 5,3 mg/L 

CBZ 8 ug/ml 

Frontotemporal

/left 
Left frontal cortical dysplasia 

5 27 M FLE R 

SF (jerks left 

upper limb), 

SG 

2-3 SF/day 
CBZ 800 

LEV 3000 
CBZ 6 ug/ml Frontal/right Right frontal cortical dysplasia 

6 30 F TLE L CF 1-2/month 

LEV 2000 

TPM 300 

CLB 15 

LEV 26 mg/L 

TPM 12,8 ug/ml 

Frontotemporal

/left 
Diffuse cortical heterotopias 

7 26 F FLE L 
CF, 

vocalization 
Free CBZ 700 CBZ 9,7ug/ml 

Frontotemporal

/left 
Cortical heterotopias 

8 33 M TLE R CF, SG Free 
LEV 1500 

CBZ 400 

CBZ 6,8 ug/ml 

LEV 24,6 mg/L 

Frontotemporal

/right 
- 

9 44 M TLE L 
CF, 

automatisms 
3/month 

CBZ 1000 

LEV 2500 
CBZ= 11 ug/ml Temporal/left 

Left parahippocampal 

gangliocytoma 
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TPM 200 

10 43 F TLE R 

CF, 

automatisms, 

SG 

Free 

LEV 3000 

LTG 300 

PB 100 

PB 20,6 ug/ml 

LTG 3,6 mg/L 

LEV 47,4 mg/L 

Frontotemporal

/right 
- 

11 23 F TLE L CF Free CBZ 500 CBZ 7 ug/ml 
Frontotemporal

/left 

Previous left fronto-temporal 

encephalitis 

12 43 M TLE R GTC Free CBZ 800 CBZ 6,5 ug/ml 
Frontotemporal

/right 
Right temporal cyst 

13 28 F TLE L CF, SG Free CBZ 600 CBZ 5.8 ug/ml Temporal/left Left temporal cortical dysplasia 

14 35 F TLE R CF 2-3/month 
CBZ 1200 

TPM 300 

CBZ 8.7 ug/ml 

TPM 3.9 ug/ml 
Temporal/right 

Abnormal gyration of the right upper 

temporal gyrus 

15 29 F TLE L CF 1-2/day 
LEV 3000 

LCM 200 
- Temporal/left - 

16 37 F TLE L CF, SG Free 

LTG 200 

LEV 1000 

LCM 400 

LTG 3.1 mg/L 

LEV 11.5 mg/L 

LCM 10.6 

Temporal/left Left mesial hippocampal sclerosis 

 

MAIN FEATURES OF THE PATIENTS WITH GENETIC GENERALIZED EPILEPSY 

  

Patient # Age Sex Diagnosis 
Epileptogenic 

focus 
Seizure type 

Seizure 

frequency 

Current 

Treatment (mg/die) 
Serum levels EEG Neuroimaging 

1 21 M JAE - 
GTC, 

absences 
Free VPA 800 VPA 88 ug/ml Normal Normal 

2 45 F JME - 
GTC, 

absences, My 
Free 

VPA 1600 

TPM 200 

VPA 106 ug/ml 

TPM 6,4 ug/ml 
- - 

3 41 M TCE - GTC Free VPA 1500 VPA 80 ug/ml - - 

4 55 F JAE - 
GTC, 

absences 
Free 

LTG 400 

LEV 1500 

LEV=24,3 mg/L 

LTG=11,4 ug/ml 
- - 
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ESM 500 

5 28 F JME - GTC, My Free LTG 200 LTG 7,2 ug/ml - - 

6 50 F JAE - 
GTC, 

absences 
Free CBZ 800 CBZ 8,4 ug/ml - - 

7 31 M JAE - 
GTC, 

absences 
Free VPA 1500 VPA 77 ug/ml - - 

8 44 F EMA - 

GTC, 

absences, 

palpebral 

myoclonus 

Free LEV 2000 LEV 14,6 mg/L - - 

9 24 F JME - GTC, My Free LTG 100 - - - 

10 55 F JME - GTC, My Free 
PB 200 

LEV 1000 

PB 28 ug/ml 

LEV 17,7 mg/L 
- - 

11 35 F TCE - GTC Free CBZ 600 CBZ 6,5 ug/ml - - 

12 24 F TCE - GTC Free LTG 150 LTG 4,3 ug/ml - - 

13 21 F TCE - GTC Free VPA 800 - - - 

14 21 M TCE - GTC Free VPA 750 VPA 70 ug/ml - - 

15 42 M JME - My, absences Free 
LTG 300 

ESM 500 

LTG 4,1 ug/ml 

ESM 28 ug/ml 
- - 

16 25 F JME - GTC, My Free VPA 800 VPA 57 ug/ml - - 

17 20 M TCE - GTC Free VPA 1000 VPA 77 ug/ml - - 
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CF: complex focal seizure; CBZ: carbamazepine; CLB: clobazam; EMA: eyelid myoclonia with absences; ESM: 

ethosuximide; FLE: frontal lobe epilepsy; GTC: generalized tonic–clonic seizure; JAE: juvenile absence 

epilepsy; JME: juvenile myoclonic epilepsy; LCM: lacosamide; L: left; LEV: levetiracetam; LTG: lamotrigine; 

My, myoclonic seizure; PB: phenobarbital; R: right; SF: simple focal seizure; SG: secondary generalized tonic–

clonic seizure; TCE: epilepsy with tonic-clonic seizures; TLE: temporal lobe epilepsy; TPM: topiramate; VPA: 

valproic acid. 

 

*Average number of seizures per month in the 3 months preceding and the 3 months subsequent to the 

experimental session 

 

 

TMS 

For paired-TMS we used two high-power Magstim 200
2
 machines (Magstim, 

Whitland, UK). The magnetic stimulus had a nearly monophasic pulse configuration with a 

rise time of ~ 100 µs, decaying back to zero over ~ 0.8 ms (Koch et al., 2007b). The 

stimulators were connected to a figure-of-eight coil (outer winding diameter 70 mm). 

 

Test stimuli 

Motor evoked potentials (MEPs) were recorded from the left and right first dorsal 

interosseous (FDI) muscles (Ferbert et al., 1992; Avanzino et al., 2007), using 9 mm-diameter 

Ag-AgCl surface cup electrodes, in a typical belly-tendon montage. Responses were 

amplified by a CED 1402 isolated amplifier (CED, Cambridge, UK). Filters were 20 Hz - 3 

kHz, and the sampling rate was 10 kHz. The signal was recorded by a PC using Signal 

software ver. 4.08 (Cambridge Electronic Devices, Cambridge, UK). The test coil was placed 

tangentially to the scalp at a 45° angle to the midline, to induce a posterior-anterior (PA) 

current flow across the central sulcus (Figure 1C). The hand motor area of the left and right 

M1 was defined as the point where stimulation consistently evoked the largest MEP. We 

defined the resting motor threshold (rMT) as the lowest intensity that evoked 5 small 

responses (~50 µV) in the relaxed FDI muscle in a series of 10 stimuli (Rossini et al., 1994). 

The intensity of the test stimulus (TS) was finally adjusted to evoke a MEP of ~ 1 mV peak-

to-peak amplitude in the relaxed FDI. 

 

Interhemispheric inhibition 

Interhemispheric inhibition (IHI) was measured with a paired-pulse paradigm 

previously described (Ferbert et al., 1992; Avanzino et al., 2014) both from left-to-right 
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(LtoR) and from right-to-left (RtoL) M1s in a randomized order (Figure 1C). Coils were 

positioned at an angle of 45° from the midline with the handles pointing backward and 

laterally. The coils were adjusted over both hemispheres to the hotspot of the contralateral 

FDI and the positions were marked on the scalp so that the angle and coil position was the 

same throughout the investigation (Lappchen et al., 2011). In all patients, the coil position 

was not limited by the shape of the skull. 

A CS was given to one hemisphere 10 (short latency IHI, SIHI) or 50 ms (long latency 

IHI, LIHI) before a TS delivered to the other side. The TS and the CS were adjusted to 

produce a MEP with a peak-to-peak amplitude of ~1 mV (CS1mV; TS1mV) (Ni et al., 2009). 

There were two randomized blocks, i.e. IHI from right-to-left and viceversa. Each block had 

three conditions that were randomized within the block. Condition 1: TS alone (MEP test). 

Condition 2 and 3: the same as condition 1, except that the TS was preceded by a CS with an 

ISI of 10 or 50 ms (conditioned MEP). Fifteen trials for each condition were recorded (total of 

45 trials) in random order for each subject with a 5 s (±20%) intertrial interval. The responses 

to each single trial were stored on a PC and analysed offline at the end of the experiment. For 

each condition, we calculated the average of the single trial peak-to-peak MEP amplitude. The 

conditioned MEP was expressed as a percentage of the MEP test size.  

 

Data analysis 

All data were expressed as mean ± standard error of the mean (SEM). The normality 

of the dataset was proved using the Kolmogorov–Smirnov test. One-way ANOVAs were used 

to compare demographic features and baseline physiological measures between groups (Table 

2). Student’s paired t tests (two-tailed) were used for interhemispheric comparisons. 

A preliminary two-way repeated-measures (rm) ANOVA was used to analyse the 

effects of “ISI” (within-subjects factors) and “group” (between-subjects factor). Separate one-

way ANOVAs were used for further analyses where necessary. A significant main effect in 

these ANOVAs was followed by Bonferroni’s post hoc tests. Mauchley’s test was used to 

examine for sphericity. The Greenhouse-Geisser correction was used for nonspherical data. A 

p value < 0.05 was considered significant. Data were analysed using software (SPSS v. 19.0 

for Windows; SPSS Inc.). 
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Results 

Table 2 shows the demographic features, baseline physiological measures and p 

values. Briefly, all the participants were in their adulthood and the groups were similar for age 

and sex with no statistical differences (p > 0.05). Patients with GGE and FE showed a 

significantly higher baseline rMT compared to controls, for both the left (F (2, 47) = 4.707, p 

= 0.014) and the right hemisphere (F (2, 47) = 4.701, p = 0.014). When considering 

interhemispheric differences, significantly higher rMT in the non-dominant right hemisphere 

compared to the dominant side was detected in both groups of patients as well as in HS (p < 

0.05). Finally, no significant differences in test MEP amplitude were detected between the 

groups. 

 

Table 2 

DEMOGRAPHIC AND BASELINE TMS FEATURES 

 

 

 

HS FE GGE Differences among groups 

# 17 16 17  

Age 30.1 ± 7.9 36.4 ± 9.3 34.2 ± 12.5 n.s. 

Sex (women) 11 10 11 n.s. 

RMT sx 38.0 ± 5.8* 45.6 ± 7.9* 45.0 ± 9.6* p = 0.014 

SI1mV sx 53.2 ± 12.3 59.1 ± 14.0 54.0 ± 15.5 n.s. 

Test MEP 

FDI dx (mV) 
1.06 ± 0.26 0.92 ± 0.32 1.02 ± 0.37 n.s 

RMT dx 40.7 ± 4.6 50.9 ± 9.7 49.8 ± 14.9 p = 0.014 

SI1mV dx 57.2 ± 13.9 65.4 ± 15.5 58.4 ± 18.3 n.s. 

Test MEP 

FDI sx (mV) 
1.25 ± 0.33 1.06 ± 0.47 1.08 ±0.44 n.s 

 

FDI: first distal interosseous; FE: focal epilepsy; HS: healthy subjects; GGE: genetic generalized epilepsy; n.s.: 

non-significant; RMT: resting motor threshold; SI1mV, intensity required to elicit a 1 mV MEP. * The within-

group comparison left versus right hemisphere is significant (p < 0.05). 

 

 

IHI from right to left 

A preliminary two-way rmANOVA, using absolute values, revealed significant effects 

of “ISI” (F (2, 94) = 99.358, p < 0.001) and “ISI” x “group” interaction (F (4, 94) = 5.377, p = 

0.001). There was no “group” effect (F (2, 47) = 0.287, p = 0.752). Analysis of the “ISI” x 

“group” interaction was performed after normalising the data to baseline values. In general, 
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there was less suppression at ISI 10 and 50 ms in the FE group than in the other groups. A 

post hoc Bonferroni analysis confirmed a significant difference at ISI 10 and ISI 50 ms 

between the FE and the other two groups (FE vs HS: p = 0.001 at ISI 10 and p = 0.029 at ISI 

50 ms; FE vs GGE: p = 0.017 at ISI 10 and p = 0.024 at ISI 50 ms) (Figure 1A).  

 

 

 

Figure 1 

Interhemispheric inhibition (IHI) in subjects at rest. Panel A, IHI from right to left (RtoL). Panel B, 

IHI from left to right (LtoR). Black columns: healthy subjects. White columns: patients with FE. Grey 

columns: patients with GGE. Amplitude of MEPs (mV) is normalized and expressed as a percentage 

of control. Errors bars indicate SEM. Asterisks indicate a p value < 0.05 between the FE and the other 

two groups. Panel C, experimental settings. Coil positions over a skull sketch. TS, test stimulus, 

delivered over the hand motor area of one hemisphere. CS, conditioning stimulus, delivered over the 

homologous contralateral area.  

 

 

IHI from left to right 

In general, results were similar to IHI from right to left. A preliminary two-way 

rmANOVA using absolute values revealed significant effects of “ISI” (F (2, 94) = 50.960, p < 
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0.001), “ISI” x “group” interaction (F (4, 94) = 2.551, p = 0.044) and no “group” effect (F (2, 

47) = 0.890, p = 0.417). A post hoc Bonferroni analysis confirmed a significant difference at 

ISI 10 and ISI 50 ms between the FE and the other two groups (FE vs HS: p = 0.010 at ISI 10 

and p = 0.009 at ISI 50 ms; FE vs GGE: p = 0.008 at ISI 10 and p = 0.014 at ISI 50 ms) 

(Figure 1B).  

 

Focus side 

The FE group was stratified according to the side of the epileptogenic focus in two 

groups, i.e. right (n = 8) and left FE (n = 8). Both where then compared to the HS group.  

IHI from right to left. A preliminary two-way rmANOVA using absolute values 

revealed significant effects of “ISI” (F (2, 60) = 35.401, p = 0.001) and “ISI” x “group” 

interaction (F (4, 60) = 5.589, p = 0.001). There was no “group” effect (F (2, 30) = 1.072, p = 

0.355) (Figure 2A). Analysis of the “ISI” x “group” interaction was performed after 

normalising the data to baseline values. At ISI 50 ms, but not at 10 ms, there was less 

suppression in the right FE than in left FE group, which was similar to HS (Figure 2A, 3). A 

post hoc Bonferroni analysis confirmed a significant difference at ISI 50 ms between the right 

FE and the other two groups (right FE vs HS: p = 0.002; right FE vs left FE: p = 0.027) 

(Figure 2A, 3).  

IHI from left to right. A preliminary two-way rmANOVA using absolute values 

revealed significant effects of “ISI” (F (2, 60) = 18.345, p = 0.001), “ISI” x “group” 

interaction (F (4, 60) = 3.382, p = 0.015) and no “group” effect (F (2, 30) = 0.500, p = 0.611) 

(Figure 2B). At ISI 50 ms, but not at 10 ms, there was less suppression in the left FE than in 

right FE group which was similar to HS. A post hoc Bonferroni analysis confirmed a 

significant difference at ISI 50 ms between the left FE and the other two groups (left FE vs 

HS: p < 0.001; left FE vs right FE: p = 0.023) (Figure 2B). 
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Figure 2 

Interhemispheric inhibition as a function of the side of the epileptogenic focus (right FE versus left 

FE). Black columns: healthy subjects. White columns: patients with left FE. Dashed columns: patients 

with right FE. Asterisks indicate a p value < 0.05 between right or left FE and the other two groups. 

 

 

 

Figure 3 

IHI from right to left: typical example of changes in the MEP (grand-average of the recorded trials) 

with an ISI = 50 msec. A representative healthy control, a patient with left FE and a patient with right 

FE are depicted. In the right FE patient, a clear MEP increase can be seen at ISI 50 msec. 
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Secondary generalization 

The FE group was then stratified based on whether the seizures became secondarily 

generalized or not into two homogeneous groups, i.e. patients with (n = 6, right focus) and 

without secondary generalization (n = 6, left focus). Then, IHI from the focal hemisphere to 

the non-focal hemisphere was compared between these two groups and with HS.  

A one-way ANOVA using normalized values confirmed a significant “group” effect 

(p < 0.001) related to a significant difference at ISI 10 and ISI 50 ms between the FE groups 

and HS (p < 0.02) as showed by post hoc Bonferroni analysis. However, there was no 

difference between patients with and those without secondary generalization (p > 0.05).  

 

 

Discussion 

To our knowledge, this is the first TMS study evaluating IHI in patients with drug-

treated focal and generalized epilepsy. We found that patients with FE had a bilateral 

defective IHI at short and long ISIs (i.e. 10 and 50 ms), whilst IHI in patients with GGE was 

similar to healthy individuals. We selected these two intervals (i.e. 10 and 50 ms) from a wide 

range of ISIs (6–50 ms) (Ferbert et al., 1992; Daskalakis et al., 2002) because they showed 

the maximum inhibitory effects in previous studies (Ni et al., 2009). IHI is deficient in 

patients with abnormalities of the corpus callosum, therefore it is likely transmitted through 

this large structure (Meyer et al., 1995). IHI is absent in children (Heinen et al., 1998) and 

develops during later childhood and adolescence (Sommer et al., 2012) because myelination 

of callosal fibers is completed at around 18-20 years of age (Pujol et al., 1993). This is why 

we only included adults (>30 years) in the present study (Table 2). If so, our main finding of a 

defective IHI in FE might be primarily explained by some abnormalities in this commissure, 

tackling the classical view of epilepsy as a grey matter disorder (O'Dwyer et al., 2010; Miro et 

al., 2015). Furthermore, when FE patients were stratified according to the side of their 

epileptic focus, the long-ISI (= 50 ms), but not the short-ISI (= 10 ms) IHI, appeared to be 

defective only when the CS was applied over the “focal” hemisphere. Namely, inputs arising 

from the M1 ipsilateral to the seizure onset zone elicited an excess excitatory response in the 

contralateral M1 in this group, whether seizures secondarily generalized or remained focal.  

SIHI and LIHI are likely mediated through transcallosal neurons with excitatory 

properties (Lee et al., 2007). The projecting callosal neurons activate inhibitory interneurons 

in the contralateral target M1, which are responsible for the overall effect of IHI (Daskalakis 

et al., 2002; Chen, 2004; Lee et al., 2007) (Figure 4A).  



66 

 

 

 

 

Figure 4 

Model of interactions between intracortical and interhemispheric circuits in healthy subjects (Panel A) 

and in patients with FE (Panel B, C).  

Panel A, the projecting callosal neurons activate inhibitory interneurons in the contralateral target M1 

in HS. In patients with FE, inputs arising from the M1 ipsilateral to the focal-hemisphere elicited an 

excess excitatory response in the contralateral M1. Two possible mechanisms are proposed: Panel B, 

callosal degeneration; Panel C, inhibitory circuits activated by the callosal fibers in the target 

hemisphere are less excitable. 

CS, conditioning stimulus; IHI, interhemispheric inhibition; –, inhibitory connections; +, excitatory 

connections; TS, test stimulus. 

 

 

These connections may differ for SIHI and LIHI (Chen et al., 2003; Kukaswadia et 

al., 2005). If so, our main finding of defective IHI in FE might be primarily explained by two 

possible mechanisms (Figure 4). One explanation is the damage of the involved pathways 

(Figure 4B). Neuroimaging studies on animal models of epilepsy (Otte et al., 2012a), showed 

that white matter damage and decreased connectivity within the corpus callosum was not 
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restricted to bundles close to the epileptogenic focus (Otte et al., 2012a). Similarly, several 

studies showed that patients with TLE had diffuse white matter abnormalities more severely 

involving the focal hemisphere and the tracts closely connected with the affected temporal 

lobe (Otte et al., 2012b). Structural changes in the corpus callosum have also been described 

in patients with bilateral refractory TLE (Miro et al., 2015) and FLE (O'Dwyer et al., 2010). 

The hypothesis that callosal degeneration is the cause of our finding (Figure 4B), is supported 

by the fact that the effect involves both short and long-ISIs. Another possibility is that the 

inhibitory circuits activated by the callosal fibers in the target hemisphere are less excitable 

(Figure 4C). However, this is a remote possibility because there are no studies showing 

reductions in cortical inhibition in the non-focal hemisphere. For example, some previous 

TMS studies evaluated short and long intracortical inhibition (SICI, LICI) in both 

hemispheres in patients with FE and GGE (Cantello et al., 2000a; Badawy et al., 2007; 

Badawy et al., 2014; Badawy et al., 2015). Patients with GGE showed widespread and 

bilateral abnormalities, i.e. decreased intracortical inhibition, whereas alterations were 

lateralized to the affected hemisphere in patients with FE, at least in a cohort of patients with 

newly diagnosed epilepsy (Badawy et al., 2007). However, considering different FE 

syndromes, such lateralization was consistent just in TLE, and if patients were at disease 

onset and drug-naïve (Badawy et al., 2015). In mixed FE syndromes of chronic nature, these 

hemispheric differences got lost (Cantello et al., 2000a; Badawy et al., 2015). 

Finally, it should be noted that we cannot exclude the minor role of subcortical and/or 

spinal structures in the pathogenesis of defective IHI (Gerloff et al., 1998).  

The corpus callosum is involved in the propagation of epileptic activity in animal 

models (Kusske & Rush, 1978; Musgrave & Gloor, 1980; Walker et al., 2012) and in patients 

with drug-resistant epilepsy with a significant reduction in generalized seizures after 

callosotomy (Asadi-Pooya et al., 2008). Thus, a defective inhibitory response of contralateral 

M1 to inputs travelling from the focal hemisphere may well represent one key factor for the 

contralateral spread of focal discharges, and seizure generalization. On the contrary, IHI 

turned out to be normal in the group of patients with GGE. Indeed, the simultaneous 

involvement of bilateral networks from the seizure outset in GGE (Avanzini et al., 2012) 

might suggest a callosal over-activity. This is further corroborated by the reported seizure 

frequency reduction in patients with refractory GGE following corpus callosotomy (Jenssen et 

al., 2006; Cukiert et al., 2009). However, this was not the case in our study, since we 

considered seizure-free patients with GGEs. Thus, it appears that abnormalities of the corpus 

callosum might be involved more in the pathogenesis of drug refractoriness in GGE, rather 
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than GGE itself. The findings also extend the TMS evidence of different pathophysiological 

mechanisms underlying focal and generalized epilepsies (Badawy et al., 2014). Interestingly, 

recent studies have raised the possibility that white matter disruption may be the underlying 

mechanism responsible for myoclonus in JME (Liu et al., 2011), supporting the idea that GE 

subsyndromes have unique anatomic substrates. Our group of GE was heterogeneous and the 

number of patients included is insufficient to make a reliable distinction between 

subsyndromes; therefore, we cannot exclude specific IHI changes in JME compared to other 

patients with GE.  

To our knowledge, the only study addressing IHI in focal epilepsy considered a cohort 

of patients with symptomatic FE, following successful surgical removal of an epileptic focus 

(Lappchen et al., 2011). These authors tested the SIHI at ISI = 8 ms before and after the 

epilepsy surgery and found a stronger inhibitory effect of the non-focal hemisphere after 

surgery (Lappchen et al., 2011). In our study there was a bilateral defective SIHI (at ISI = 10 

ms), which was not correlated with the lateralization of the epileptic focus. These apparently 

conflicting results might be explained by major differences in the patient clinical features. 

Lappchen et al. (2011) indeed studied the effects of the surgical interruption of the 

epileptogenic network in patients with drug-resistant seizures. By contrast, we studied a 

cohort of patients mostly seizure-free, or with a very low seizure frequency, in whom the 

epileptogenic network was still intact.  

 

Generally, TMS proved a valid method to study the epileptogenic network in patients 

(Strigaro et al., 2013; Badawy et al., 2014; Strigaro et al., 2015b). Primary motor cortex (M1) 

is the main target, because it is the most accessible cortical area to TMS. If not directly 

involved in the pathogenesis of epilepsy (e.g. juvenile myoclonic epilepsy (Strigaro et al., 

2015a), it can be influenced at a distance by non-motor epileptogenic areas (Hamer et al., 

2005). Indeed, our cohort of patients had chronic epilepsy, therefore we suggest that the 

defective IHI may be related to a widespread epileptogenic network involving bilateral 

circuits beyond the seizure onset zone. 

Interhemispheric inhibition can also be evaluated with single-pulse TMS on M1 and 

recoding the short attenuation or interruption of ongoing voluntary EMG activity in the 

ipsilateral hand muscle, i.e. ipsilateral silent period (ISP) (Wassermann et al., 1991; 

Giovannelli et al., 2009; Perez & Cohen, 2009). Although both IHI and ISP provide 

information on interhemispheric inhibition, they are due to different neuronal mechanisms 

(Gerloff et al., 1998; Chen et al., 2003). In the present study, we were primarily interested on 
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cortical excitability changes in epilepsy, therefore inhibition of MEPs measured with IHI 

appeared a more useful parameter than inhibition of volitional motor activity measured with 

ISP (Giovannelli et al., 2009). 

 

AEDs may reduce brain excitability and therefore influence several TMS measures 

(Ziemann et al., 1996a; Strigaro et al., 2011; Sommer et al., 2012). As expected, patients with 

epilepsy, both FE and GGE, showed a higher baseline rMT than controls. This is likely 

related to the well-known effects of some AEDs (i.e. carbamazepine, valproate) on voltage-

gated sodium channels, whose function is reflected by the motor threshold (Ziemann et al., 

1996a; Kazis et al., 2006). More interestingly, we detected a higher rMT in the non-dominant 

compared to the left dominant hemisphere, both in patients and controls, as previously 

reported by some (Macdonell et al., 1991) but not all (Civardi et al., 2000) researchers. This 

possibly relates to handedness (De Gennaro et al., 2004) and physiological asymmetries in the 

corticospinal system with a greater number of motoneurons projecting to the right-hand 

muscles (Macdonell et al., 1991). 

 

The present study has some limitations. First, the sample size of the FE group 

prevented any correlation between IHI and important clinical features such as seizure type, 

aetiology, etc... Secondly, all patients were taking AEDs, whose action might have 

confounded the findings of ours. However, to our knowledge, there is only one study on the 

effects of AEDs on IHI showing that a single dose of CBZ reduced IHI at ISI = 8 ms (but not 

at 10 and 50 ms) in HS (Sommer et al., 2012). CBZ is a sodium channel blocker and this 

effect is possibly related to reduced firing rate of inhibitory interneurons mediating inhibition 

(Sommer et al., 2012). We believe, however, that a group of drug naïve patients would 

possibly have ruled out any confounding effect mediated by drugs acting on the IHI neural 

circuits. Obvious ethical constraints hindered the recruitment of an adequate patient sample. 

Finally, ISI 10 ms was bilaterally defective but when we stratified the patients according to 

the focus lateralization, the significant effect disappeared. This is likely related to the small 

sample size and low statistical power. 
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Conclusions 

A disrupted transcallosal inhibition between the focal and the non-focal hemisphere, 

as studied by TMS, may contribute to the pathogenesis of FEs. Particularly, this may 

represent one key factor for the contralateral spread of the epileptic discharge and seizure 

generalization. 
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ABNORMAL MOTOR CORTEX PLASTICITY IN JUVENILE 

MYOCLONIC EPILEPSY 

 

Strigaro G, Falletta L, Cerino A, Pizzamiglio C, Tondo G, Varrasi C, Cantello R. 

Seizure. 2015;30:101-5. 

 

Abstract 

 

Purpose. Abnormal cortical plasticity has been hypothesized to play a crucial role in the 

pathogenesis of juvenile myoclonic epilepsy (JME). To study the motor cortical plasticity we 

used paired associative stimulation (PAS). When a repetitive electrical stimulus to the median 

nerve is paired with a transcranial magnetic stimulus (TMS) pulse over the controlateral 

motor cortex with at an interstimulus interval (ISI) of 21.5-25 ms, a long term potentiation 

(LTP)-like synaptic plasticity is induced in the corticospinal system. 

Aim of this study was to investigate the motor cortex LTP-like synaptic plasticity by means of 

PAS in patients with JME.  

 

Methods. Twelve adult patients with JME were compared with 13 healthy subjects of similar 

age and sex. PAS consisted of 180 electrical stimuli of the right median nerve paired with a 

single TMS over the hotspot of right abductor pollicis brevis (APB) at an ISI of 25 ms 

(PAS25). We measured motor evoked potentials (MEPs) before and after each intervention 

for up to 30 min. 

 

Results. In healthy subjects the PAS25 protocol was followed by a significant increase of the 

MEP amplitude (p < 0.001). On the contrary, in patients with JME, the MEP amplitude did 

not change. 

 

Conclusion. Defective motor cortex plasticity is likely involved in the pathogenesis of JME. 
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Introduction 

Juvenile myoclonic epilepsy (JME) is the most common idiopathic generalized 

epilepsy (IGE), with a presumed genetic aetiology (Camfield et al., 2013). Myoclonic jerks, 

absences and generalized tonic-clonic seizures are the core findings in this syndrome (Serafini 

et al., 2013). So far, motor cortex hyperexcitability (Badawy et al., 2013) and abnormal 

function of fronto-thalamic networks have been involved in the pathophysiology of JME 

(Bagshaw & Cavanna, 2013; Kim et al., 2014; Caeyenberghs et al., 2015). Hyperexcitability 

of primary visual areas and excessive response of the primary motor cortex to visual inputs 

would be another important factor (Strigaro et al., 2012; Strigaro et al., 2013) since the 

presence of a photoparoxysmal response is common (Serafini et al., 2013).  

Abnormal cortical plasticity has been frequently hypothesized to play a crucial role in 

the pathogenesis of epilepsies (Sutula, 2004; Lopantsev et al., 2009), at least in experimental 

models of temporal lobe epilepsy (Artinian et al., 2015). However, considering the clinical 

context, there are no direct evidences to support this hypothesis, possibly because of 

experimental difficulties. Transcranial magnetic stimulation (TMS) is a well-established, safe, 

painless and non-expensive neurophysiologic method for non-invasive measurement of 

cortical excitability (Badawy et al., 2014). It also offers a unique opportunity to study cortical 

plasticity in a non-invasive fashion. In the last few years, a variety of TMS protocols have 

been developed to probe mechanisms of synaptic plasticity in the intact human brain 

(Ziemann, 2004). Among these, paired associative stimulation (PAS) involves repeated 

pairing of an electrical stimulus to the median nerve with a later transcranial magnetic 

stimulus (TMS) over the contralateral motor cortex (Stefan et al., 2000; Wolters et al., 2003). 

This induces changes in cortical excitability, whose sign depends on the interval between the 

median nerve and the TMS stimuli. Intervals of 25 ms (PAS25) have an enhancing effect, 

whereas intervals of around 10 ms (PAS10) reduce excitability (Stefan et al., 2000; Wolters et 

al., 2003; Weise et al., 2006). Pharmacological studies suggest that such changes involve 

temporary modifications in synaptic efficacy, equivalent to long-term potentiation (LTP) and 

long-term depression (LTD), as described in animal preparations (Muller-Dahlhaus et al., 

2010). 

Aim of the present study was to test the effects of PAS25 in patients with JME 

compared to healthy controls. We wanted to explore if, in the complex framework of the JME 

pathophysiology, an abnormal motor cortical plasticity could play a given role. 
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Materials and Methods 

 

Subjects 

We studied 12 consecutive adult patients with JME (10 female, mean age 32.8 years, 

SD 10.7) referring to the Epilepsy Clinic of the University Department of Neurology, Novara, 

Italy. Diagnoses were made by two experienced epileptologists not involved in the present 

study on the basis of the clinical history, seizure type and electroencephalography (EEG) 

findings according to the established diagnostic criteria (1989).  

Thirteen normal subjects of similar age and sex acted as controls (10 female, mean age 

27.9 years; SD 5.6). They had no family or personal history of neurologic disease or epilepsy. 

Reportedly, both patients and controls had not been taking neuroactive drugs (alcohol and 

caffeine included) for 72 h prior to the study, except for the patient antiepileptic treatment. 

Their general and neurological examinations were normal. All subjects were right-handed 

based on the Edinburgh Handedness Inventory and gave written informed consent. 

Experiments were approved by the local Ethics Committee and were performed in accordance 

with the Declaration of Helsinki. 

 

Patient features 

The clinical features of patients are reported in Table 1. Eight of the 12 patients were 

classified as photosensitive because they showed a photoparoxysmal response (PPR) to 

intermittent light stimulation (ILS), which did never entail clinical phenomena. ILS was 

performed according to the international standards (Rubboli et al., 2004). In general, the 

clinical course of the patients was favourable, and all of them reported being seizure-free. All 

patients were on a standard antiepileptic treatment. Valproate, alone or in combination with 

levetiracetam, was the most frequent choice.  
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Table 1 

Table 1. MAIN FEATURES OF THE PATIENTS 

Patient # Age Sex 
Current 

Treatment (mg/die) 
Photosensitivity 

1 26 F 400 LTG Yes 

2 48 F 1300 VPA + 1000 LEV Yes 

3 22 F 100 LTG Yes 

4 49 F 800 VPA No 

5 45 F 800 VPA No 

6 25 M 900 VPA No 

7 42 F 1000 VPA + 100 PB Yes 

8 24 F 400 LTG Yes 

9 28 M 300 VPA Yes 

10 26 F 1000 LEV Yes 

11 38 F 115 PB Yes 

12 21 F 800 VPA No 

 

JME: juvenile myoclonic epilepsy; LEV: levetiracetam; LTG: lamotrigine; PB: phenobarbital; VPA: valproic 

acid. 

 

 

TMS and EMG recordings 

All neurophysiologic studies took place between 2:00 and 6.30 p.m. in a quiet 

laboratory, at a standard temperature of 22°C.  

Subjects sat comfortably in a chair with both arms resting on a pillow placed on their 

lap. Motor-evoked potentials (MEPs) were recorded from the abductor pollicis brevis (APB) 

muscle using 9 mm-diameter Ag-AgCl surface-cup electrodes, in a typical belly-tendon 

montage. Data were collected, amplified (gain, 1000x), and filtered (20 Hz to 3 kHz) through 

a CED 1902 isolated amplifier (CED, Cambridge, UK) that fed signals to an A/D converter 

(CED Micro 1401 Mk II). The sampling rate was 10 kHz. The signal was then recorded by a 

PC using Signal software ver. 4.08 (Cambridge Electronic Devices, Cambridge, UK).  

TMS was delivered through a Magstim 200
2
 stimulator (Magstim) every 4.5–5.5 s. A figure-

of-eight coil (outer winding diameter 70 mm) was held tangentially on the scalp at an angle of 

45 deg to the midsagittal plane with the handle pointing laterally and posteriorly. Stimuli were 

applied to the motor cortex representation of the right APB. The motor hot spot was defined 
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as the point where a magnetic stimulus of constant, slightly suprathreshold intensity 

consistently elicited an MEP of the highest amplitude. Motor cortex excitability was 

measured as the peak-to-peak amplitude of the MEP generated by single pulse TMS. 

 

Paired associative stimulation (PAS) 

PAS consisted of 180 electrical stimuli of the right median nerve at the wrist paired 

with a single TMS shock over the hotspot of right APB muscle at a rate of 0.2 Hz (Stefan et 

al., 2000; Hamada et al., 2012). Electrical stimulation (square wave pulse; stimulus duration, 

0.2 ms) was applied at an intensity of three times the perceptual threshold using a constant 

current generator (Digitimer, Welwyn Garden City, UK). TMS was applied at an intensity 

required to elicit a 1 mV MEP (SI1mV). The effects of PAS given with an interstimulus 

interval of 25 ms between peripheral and TMS stimuli were tested (PAS25). Subjects were 

instructed to look at their stimulated hand and count the peripheral electrical stimuli they 

perceived. The MEPs evoked in the APB were displayed online during the intervention to 

control for the correct coil position and stored for off-line analysis. 

 

Experimental procedures 

The resting motor threshold (RMT) and MEP size were measured. RMT was defined 

as the lowest intensity that evoked a response of about 50 μV in the relaxed APB in at least 5 

of 10 consecutive trials (Rossini et al., 1994). The stimulus intensity was changed in steps of 

1% of the maximum stimulator output (MSO). Thirty MEPs were recorded with a stimulus 

intensity of SI1mV before (baseline) and for up to 30 min (T0, T15 and T30) after PAS25. 

SI1mV was kept constant throughout the experiment. The mean peak-to-peak amplitude was 

calculated for the data obtained before and after PAS in each single subject.  

 

Data analysis 

The baseline physiological parameters are given in Table 2. The between-group 

comparability of these variables was tested by a Student's paired t test (two-tailed).  

MEP amplitudes at each time point were averaged and normalized to baseline. Then they 

entered a two-way repeated measures (rm) ANOVA with factors “GROUP” (patients, 

controls) and “TIME” (T0, T15 and T30). In order to evaluate the effects of PAS in each 

group, a one-way ANOVA was employed with a main factor of “TIME” (baseline, T0, T15 

and T30), using absolute MEP values in each experimental session. The Greenhouse–Geisser 

correction was used if necessary to correct for non-sphericity; P values <0.05 were considered 
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significant. Bonferroni's post hoc tests or paired t tests (two-tailed) were used for further 

analyses. Data were analysed using software (SPSS v. 19.0 for Windows; SPSS Inc.). All data 

are given as mean ± standard error of the mean (SEM).  

 

Table 2 

PHYSIOLOGIC FEATURES 

 

 

 

 HS JME Differences among groups 

# 13 12  

Age 27.9 ± 1.5 32.8 ± 3.1 n.s. 

Sex (female) 10 10 n.s. 

RMT (%) 40.2 ± 1.0 44.7 ± 2.5 n.s. 

PsT (mA) 2.2 ± 0.2 2.6 ± 0.2 n.s. 

SI1mV (%) 51.8 ± 2.5 55.3 ± 3.2 n.s. 

Baseline MEP 

(mV) 
0.94 ± 0.07 1.08 ± 0.08 n.s. 

 

HS: healthy subjects; JME: juvenile myoclonic epilepsy patients; MEP, motor evoked potential; psT: peripheral 

sensory threshold; RMT: resting motor threshold; SI1mV: intensity required to elicit a 1 mV MEP; n.s.: non-

significant. 

 

 

Results 

The procedure was well tolerated and no subjects experienced adverse events or 

seizures during and after the experimental session. Baseline physiological measures and p 

values are shown in Table 2. In brief, no significant differences in the RMT and baseline MEP 

amplitude were detected between the two groups.  

 

A preliminary two-way rmANOVA on normalized to baseline values revealed a 

significant effect of GROUP (F (1, 23) = 14.244, p = 0.001) but no effects of TIME (F (2, 46) 

= 0.251, p = 0.779) nor a GROUP x TIME interaction (F (2, 46) = 0.157, p = 0.855). Post hoc 

paired t tests revealed significant group differences at T0 (p = 0.001), T15 (p = 0.003) and 

T30 (p = 0.013) (Figure 1).  
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Figure 1 

Grand average of normalized MEPs at T0, T15 and T30 to baseline in patients (black) and controls 

(white). Asterisks indicate a significant difference (p < 0.05). 

 

 

One-way ANOVAs separately showed that following PAS25, MEP sizes were 

significantly increased at T0, T15 and T30 compared to baseline MEP values (effects of 

‘TIME’, F (3, 36) = 10.315, p < 0.001) in the control group but not in the patients (effects of 

‘TIME’, F (3, 33) = 0.158, p = 0.924). Post hoc analysis with Bonferroni’s correction showed 

a significant increase of MEP sizes compared with baseline at T0 (p < 0.001), T15 (p = 0.003) 

and T30 (p < 0.001).  

 

 

Discussion 

As in the case of ours, the PAS protocol is usually followed - in healthy subjects - by a 

sustained increase of the MEP size. Admittedly this represents a LTP-like plasticity 

phenomenon (Stefan et al., 2000). On the contrary, in our JME patients, the MEP amplitude 

did not change, suggesting that LTP-plasticity may be definitely altered in this disease.  

PAS is thought to explore the motor cortex synaptic plasticity (Stefan et al., 2000; 

Hamada et al., 2012; Strigaro et al., 2014), that is the ability of neurons to change the efficacy 

of their synaptic transmission (Dan & Poo, 2006). A long-lasting enhancement is called LTP, 

and it has been involved in motor learning (Ziemann et al., 2004; Rosenkranz et al., 2007; 

Jung & Ziemann, 2009; Rajji et al., 2011) whereas its impairment is crucial in the 

pathophysiology of a number of movement disorders (Quartarone et al., 2003; Morgante et 
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al., 2006; Brandt et al., 2014). In contrast, in patients with epilepsy, studies with LTP-like 

plasticity protocols were very limited so far, possibly because epilepsy itself represents a 

relative contraindication to TMS, due to the theoretical risk of seizure induction. However, 

this is a rare event, associated with a crude risk of 1.4% (Bae et al., 2007) and accordingly, 

the most recent guidelines considered repetitive TMS safe in this context (Lefaucheur et al., 

2014). On the contrary, LTD-like plasticity protocols, i.e. low-frequency repetitive TMS, 

have been frequently applied for therapeutic purposes (Cantello et al., 2007; Lefaucheur et al., 

2014).  

We studied patients with JME because the primary motor cortex is both involved in 

the pathophysiology of cortical myoclonus (Serafini et al., 2013) and the most accessible 

cortical area to TMS (Badawy et al., 2014). Furthermore, when the motor cortex is not 

directly involved, it can be influenced at a distance by non-motor epileptogenic areas (Hamer 

et al., 2005). Admittedly, a number of excitability measures have already been studied in 

patients with JME (Badawy et al., 2014). Overall, the most consistent finding is related to 

short-interval intracortical inhibition (SICI) substantially reduced in patients with JME 

compared to healthy controls (Manganotti et al., 2000; Manganotti et al., 2004; Badawy et al., 

2010) and further decreased after sleep deprivation (Manganotti et al., 2006). SICI reduction 

is thought to reflect a defective gabaergic inhibition in the motor cortex and particularly of 

GABAA receptor-mediated effects (Ziemann et al., 1996a; Badawy et al., 2014). Besides, the 

PAS protocol was first applied in a recent study on a small cohort of patients with 

Unverricht–Lundborg disease, i.e. the most common form of progressive myoclonic epilepsy 

(PME). The response to PAS25 was found defective, which was interpreted as disturbed 

motor cortical functions underlying the motor symptoms (Danner et al., 2011). Interestingly, 

our results are in line with these findings and highlight the importance of abnormal motor 

cortical excitability in both PME and JME, although the underlying pathophysiology is most 

likely different (Badawy et al., 2010). 

We suggest three possible mechanisms involved in the disruption of the motor cortical 

plasticity in patients with JME: (1) A pathological form of plasticity may occur during 

epileptogenesis leading into an unbalance between excitatory and inhibitory neural circuits in 

specific networks, i.e. the motor cortex (Pitkanen & Lukasiuk, 2011). In fact, a close relation 

between LTP and epileptogenesis was recently demonstrated in models of hippocampal 

epilepsy (Lopantsev et al., 2009). Additionally, kindling protocols trigger a large number of 

effects, some of which appear similar to LTP (Albensi et al., 2007). In this view, abnormal 

cortical plasticity may be the neurophysiological background for the development of 
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myoclonus both in JME and PME (Danner et al., 2011). (2) Seizures themselves have a 

significant and lasting impact on the brain in animal models of epilepsy (Lopantsev et al., 

2009), leading to structural and functional alterations of neuronal circuits which may be 

accompanied by declining cognitive and behavioural functions (Sutula, 2004), as already 

recognised in JME (Schmitz et al., 2013). The background of these manifestations might 

include an impairment of cortical plasticity. (3) The antiepileptic treatment itself may induce 

long lasting changes in cortical plasticity. Indeed, AEDs may affect cortical excitability 

(Ziemann et al., 1996a) and recent evidences suggest that a single dose of lamotrigine 

(Delvendahl et al., 2013) and levetiracetam (Heidegger et al., 2010) resulted in a significant 

reduction of the LTP-like MEP increase in healthy subjects. It has been suggested that this 

action may contribute to its antiepileptic effects and a successful antiepileptic treatment may 

have to reduce plasticity to be effective (Heidegger et al., 2010).  

Any combination of these mechanisms might be possible, although we favour the 

hypothesis on the role of a defective plasticity as the background for the development of the 

motor features in JME (and PME) such as the epileptic myoclonus. Indeed, the motor cortex 

hereby studied is one of the fundamental elements of a complex fronto-thalamic network 

(Bagshaw & Cavanna, 2013; Kim et al., 2014; Caeyenberghs et al., 2015) which is affected 

by multi-focal disease mechanisms in JME (Koepp et al., 2013) and possibly explains the 

peculiar seizure types, i.e. myoclonic jerks and absences (Bagshaw & Cavanna, 2013). 

Besides, motor cortex itself is part of a visuo-motor network (Strigaro et al., 2015c) which is 

most likely involved in the pathophysiology of the common PPR (Strigaro et al., 2012; 

Strigaro et al., 2013).  

Pharmacological manipulation of PAS-induced LTP-like plasticity in healthy 

volunteers revealed suppressive effects of the antagonists of major neuromodulatory 

neurotransmitters dopamine, norepinephrine and acetylcholine (Korchounov & Ziemann, 

2011). Of these, the dopaminergic signalling appears of greater importance because it is 

necessary for normal motor skill learning and synaptic plasticity within the primary motor 

cortex of animal models (Molina-Luna et al., 2009). Interestingly, a specific alteration of the 

dopaminergic system (Landvogt et al., 2010) and impaired dopamine uptake in the midbrain 

of JME patients (Ciumas et al., 2008; Ciumas et al., 2010; Odano et al., 2012) has been 

revealed with positron emission tomography (PET). Additionally, dopamine itself is 

neuroprotective and have inhibitory properties on seizures (Bozzi et al., 2000; Bozzi & 

Borrelli, 2006), particularly myoclonic seizures (Greer & Alpern, 1977). Therefore, we 

speculate that the disruption of motor cortical plasticity in patients with JME may be the 
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neurophysiological counterpart of a defective dopaminergic signalling. Further studies 

correlating dopaminergic signalling and TMS measures are needed to corroborate this 

hypothesis. 

This study has few limitations. First, the sample size is small and general conclusions 

should be inferred with caution. It prevented useful correlations with the clinical features. 

Secondly, a control group of drug naïve patients with myoclonic seizures would have possibly 

disentangled the confounding role of AEDs on cortical plasticity. However, ethical constraints 

hindered the recruitment of these patients.  

 

 

Conclusions 

The present data provide evidence of a defective LTP-like plasticity in a cohort of patients 

with JME, which may be primarily involved in the pathogenesis of myoclonus in this frequent 

form of epilepsy.  
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CONCLUSIONS  

 

To our knowledge, these are the first studies evaluating the excitability of various 

epileptogenic networks using paired-TMS in patients with focal and generalized epilepsy. We 

developed a novel methods to examine the functional connection linking visual to the motor 

areas in healthy subjects. The latter was applied to study patients with photosensitivity since 

they represent a “model” of system epilepsy. Moreover, we explored the connection involved 

in seizure generalization. Finally, we explored the motor cortex plasticity in JME, the most 

common subtype of IGE in adults. 

 

Here are summarised the most important results of the works selected for this thesis: 

1) We developed a novel paired-TMS method to study the physiological connections between 

primary visual (V1) and motor areas (M1). Conditioning stimuli delivered to V1 

suppressed M1 excitability while the subject was at rest, whereas M1 excitability turned 

from inhibition to facilitation in the context of a visuomotor reaction task (Strigaro et al., 

2015c). These findings support a physiologically relevant visuomotor functional 

connectivity, which likely contributes to visuomotor integration. When studied in patients 

with IGE showing a PPR, the usual suppression at rest was replaced by an overactive 

functional connection between V1 and M1. This excessive response of M1 to visual inputs 

may underlie the fast spread of epileptic activity from posterior to frontal cortical areas and 

the origin of epileptic motor phenomena, such as myoclonus (Strigaro et al., 2015b). We 

propose that abnormal V1 excitability (Strigaro et al., 2012), coupled with some 

substantial physiologic changes in the visuomotor network (Strigaro et al., 2013; Suppa et 

al., 2015b) likely underlies the PPR, as well as the fast spread of paroxysmal activity from 

posterior to anterior areas of the brain, which may finally justify the origin of epileptic 

motor phenomena, such as myoclonus. 

 

2) We explored whether there are any physiological differences in the interhemispheric 

connection of drug-treated patients with FE and those with IGE. FE patients had a 

defective inhibitory response of contralateral M1 to inputs travelling from the “focal” 

hemisphere that was residual to the drug action. Whilst IHI changes would not be crucial 
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for the IGE pathophysiology, they may represent one key factor for the contralateral spread 

of focal discharges, and seizure generalization (Strigaro et al., 2016). 

 

3) Abnormal cortical plasticity has been hypothesized to play a crucial role in the 

pathogenesis of JME. Therefore, the motor cortex LTP-like synaptic plasticity was 

explored by means of PAS in a cohort of patients with JME with and without PPR. The 

present data provided evidence of a defective LTP-like plasticity in patients with JME, 

which may be primarily involved in the pathogenesis of myoclonus (Strigaro et al., 2015a). 

 

In the future, we aim to further increase understanding into the specific networks involved 

in the pathophysiology of different types of epilepsy. We aim to define specific 

neurophysiological phenotypes which may be the expression of unique molecular alterations 

and translate the findings into clinically useful parameters. Further investigation into the 

pathophysiology of these diseases would increase understanding into the ictogenesis of 

human epilepsies and the neural networks involved and eventually open new therapeutic 

targets.  
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