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SUMMARY 

 
 
Injuries or pathological states such as muscular dystrophies trigger regeneration of the adult skeletal muscle. 
Muscle regeneration is mainly sustained by a heterogeneous population of quiescent resident precursors 
called satellite cells (SCs) characterized by the expression of the transcriptional factor Pax7 (Seale et al., 
2000). In consequence of injury, SCs activate, proliferate, and eventually differentiate to repair the damaged 
tissue thus restoring muscle function. A portion of SCs undergoes self-renewal through asymmetric division, 
thus maintaining the quiescent SC pool and allowing the muscle to retain its regenerative potential (Collins 
et al., 2005; Kuang et al., 2007). The asymmetric division generates daughter cells with divergent fates: 
proliferating myoblasts, that express the marker of myogenic commitment MyoD (MyoD+), and MyoD- 
quiescent SCs, preserving stem features. The differential expression of MyoD depends on the asymmetric 
segregation of the Par polarity complex during SC activation that leads to a polarized activation of p38 MAPK 
pathway, triggering MyoD expression in only one daughter cell (Jones et al., 2005; Troy et al., 2012).  
Ghrelin and unacylated ghrelin (UnAG) are circulating peptide hormones mainly produced by the stomach. 
Ghrelin derives from the octanoylation of the preprohormone by the ghrelin-O-acyltransferase (GOAT) 
enzyme (Gutierrez et al., 2008; Yang et al., 2008). Acylation is required for the binding to the growth hormone 
secretagogue receptor-1a (GHSR-1a) to induce growth hormone release and perform multiple endocrine 
functions (Kojima et al., 1999; Müller et al., 2015). UnAG, the main circulating form of the peptide, does not 
bind to GHSR-1a but features several biological activities, including the enhancement of skeletal muscle 
regeneration induced by hindlimb ischemia (Ruozi et al., 2015; Togliatto et al., 2013) and improvement of 
insulin sensitivity in skeletal muscle (Gortan Cappellari et al., 2016; Tam et al., 2015). Besides, UnAG shares 
with ghrelin numerous biological effects, among which the protection of skeletal muscle from atrophy 
(Porporato et al., 2013; Sheriff et al., 2012) and the promotion of myoblast differentiation (Filigheddu et al., 
2007).  
While the mechanisms through which UnAG protects skeletal muscle from atrophy and insulin resistance 
have been described (Gortan Cappellari et al., 2016; Porporato et al., 2013; Tam et al., 2015), the cellular and 
molecular mechanisms mediating UnAG ability to enhance muscle regeneration remain to be elucidated. 
Here we show that UnAG affects multiple stages of muscle regeneration, including SC activation, 
proliferation, and self-renewal, the latter through induction of SC asymmetric division mediated by PKCλ/ι-
Par6 complex formation and asymmetric activation of p38 MAPK. Moreover, UnAG induces the 
differentiation of committed myoblasts, thus promoting the regeneration of an injured muscle. Based on 
UnAG ability to enhance skeletal muscle regeneration, we hypothesized that UnAG could have a therapeutic 
importance for muscle dystrophies.  
Duchenne muscular dystrophy (DMD) is characterized by the absence of the dystrophin protein, whose main 
function is to connect the myofiber cytoskeleton to the extracellular matrix through the dystrophin-
associated glycoprotein complex. In the absence of dystrophin, myofibers are extremely susceptible to 
contraction-induced damage, with the consequent chronic degeneration (Wallace and McNally, 2009). 
Moreover, dystrophin-null SCs display an impairment of self-renewal and asymmetric division that results in 
a faulty myogenic progression and, thus, in a defective regenerative process (Dumont et al., 2015; Jiang et 
al., 2014). We show that upregulation of circulating or local UnAG levels in mdx dystrophic mice improves 
the pathologic phenotype, including muscle architecture and functionality. Moreover, UnAG blunts the self-
renewal defect of dystrophin-null SCs, thus preserving the SC pool at later stages of the pathology. 
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INTRODUCTION  

 

Skeletal muscle regeneration  

Skeletal muscle is the most abundant tissue in the vertebrate body. In human, it comprises the 30-40% of the 

total body mass, and its primary function is to convert chemical energy into mechanical force, allowing 

precise movement, force generation, posture maintenance, and respiration (Frontera and Ochala, 2015; 

Relaix and Zammit, 2012). Besides its mechanical function, skeletal muscle plays a crucial role in regulating 

metabolism, since it is a primary target of insulin-dependent glucose uptake and a huge amino acids 

reservoir, that serves as substrates for protein synthesis and hepatic gluconeogenesis, sustaining survival 

during critical conditions, such as fasting (Jensen et al., 2011; Wolfe, 2006).    

The skeletal muscle is essentially composed of long multinucleated cells, the myofibers, composed of 

hundreds of post-mitotic nuclei and surrounded by the basal lamina. A synchronized framework of myofibrils 

is packed into a single myofiber, and each myofibril is formed by thousands of repeated contractile units 

called sarcomeres (Relaix and Zammit, 2012; Figure 1).  

 

Figure 1. The structure and ultrastructure of 
skeletal muscle and myofiber.  
The satellite cell (SC) is located between the 
basal lamina and the plasmalemma (adapted 
from Relaix and Zammit, 2012). 
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Although the myofiber is a terminally differentiated cell, muscle tissue has an extraordinary ability to 

regenerate. This regenerative capacity is mainly sustained by a pool of myogenic precursors, located 

underneath the basal lamina and intimately associated to the myofiber, called satellite cells (SCs), although 

other cells directly contribute to the regenerative process (Liu et al., 2017). After the first SC observation by 

electron microscopy, it was suggested that these cells were dormant myoblasts, escaped from differentiation 

during embryonic development, able to regenerate muscle following damage (Mauro, 1961). Several studies 

confirmed this hypothesis, demonstrating that SCs can fuse with other muscle precursors and differentiate 

into myofibers (Bischoff, 1975; Konigsberg et al., 1975; Partridge, 1978; Collins et al., 2005). The cell-

autonomous stem property of SCs was then formally demonstrated via single cell transplant (Sacco et al., 

2008).  

In the adult skeletal muscle, SCs are normally quiescent and express the transcription factor paired-box 7 

(Pax7) (Seale et al., 2000). Although other cells participate to muscle regeneration, genetic ablation 

experiments demonstrated that Pax7+ SCs are strictly required for muscle regeneration (Lepper et al., 2011). 

The SC quiescent state is ensured by the complex SC microenvironment (referred to as “SC niche”), which 

consists of extracellular matrix (ECM) components as well as cellular components, such as the myofiber, 

immune cells, and fibro-adipogenic progenitors (FAPs) (Joe et al., 2010; Yin et al., 2013). The connection 

between the SC and its niche is ensured by several SC transmembrane proteins, such as the syndecan 

proteoglycan family members syndecan-3 and syndecan-4 that interact with integrins and cadherins, defining 

both cell-cell and cell-matrix interactions (Cornelison et al., 2001; Rapraeger, 2000). 

SC interactions with its niche translate into an intracellular response that eventually modulates the SC 

behavior. For example, delta-NOTCH interaction and the subsequent cleavage of the NOTCH intracellular 

domain (NICD) results in the induction of Pax7 and others quiescence-associated genes, such as Hes and Hey, 

that inhibit cell cycle entry (Almada and Wagers, 2016; Wen et al., 2012).  

After injury or exercise, several growth factors and cytokines trigger the activation of SCs, inducing the 

expression of myogenic genes, such as the myogenic factor 5 (Myf5) and the myoblasts determination factor 



Introduction 

4 
 

(MyoD), thus SCs enter the cell cycle as a transient amplifying population, referred to as myoblasts (Singh 

and Dilworth, 2013; Figure 2).  

 

 

 

 

Figure 2. SC myogenic progression. 
SCs derive from embryonic progenitor cells that escape from differentiation during muscle development. The 
SC pool comprises muscle stem cells and committed progenitors; after specific stimuli, SCs activates, 
proliferates as myoblasts and differentiates as myocytes; however, a subset of SCs exits the cell cycle and 
maintain the quiescent pool, through the mechanism of self-renewal. At later differentiation stage, myocytes 
fuse to each other, or to existing damaged myofibers, to repair the muscle. The myogenic process is defined 
by the expression of key genes: Pax3 during embryonic development; Pax7 in quiescent SCs and during 
myoblast proliferation; Myf5 and MyoD after SC activation (although transiently expressed in quiescent SCs); 
myogenin (MyoG) and Mrf4 in later stages of differentiation  (from Bentzinger et al., 2012). 
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After several cellular divisions, myoblasts turn off Pax7 expression and start to express other key genes that 

orchestrate the final stages of differentiation, such as myogenin (MyoG). At this stage, myoblasts exit the cell 

cycle and fuse into existing myofibers or to each other to form de novo myofibers (Yin et al., 2013; Figure 2). 

SC activation is a dynamic process that consists in a precise regulation of protein expression at both 

transcriptional and post-transcriptional levels. Curiously, although MyoD and Myf5 are both target genes of 

Pax7 (McKinnell et al., 2008), their protein expression is inhibited in SC quiescent state (Almeida et al., 2016), 

suggesting the involvement of post-transcriptional events underlying SC transition from quiescence to 

activation. Indeed, in the quiescent SC, the RNA-binding protein tristetraprolin (TTP) promotes MyoD mRNA 

decay preventing its translation (Hausburg et al., 2015). During activation, external stimuli induce the 

phosphorylation of the mitogen-activated protein kinase (MAPK) p38α/β that, in turn, inhibits TTP and 

stabilizes MyoD mRNA, thus inducing MyoD expression (Hausburg et al., 2015; Jones et al., 2005).  

 

 

Satellite cell asymmetric division 

After the first cell division of SCs, not all the daughter cells undergo myogenic progression. Indeed, a portion 

of SCs exit the cell cycle exerting self-renewal and maintaining the SC pool (Collins et al., 2005; Kuang et al., 

2007). Self-renewal ensures a continuous source of progenitors that can sustain several rounds of muscle 

regeneration. The divergent fates of the two daughter cell rely on SC asymmetric division, in which several 

cellular components, such as DNA strands, enzymes, and transcriptional factors are asymmetrically 

distributed in the two daughter cells (Kuang et al., 2007; Rocheteau et al., 2012; Troy et al., 2012). In 

particular, using a Cre-recombinase mediated lineage tracing, Kuang and colleagues demonstrated that a 

subpopulation of SCs that had never expressed Myf5 is able to perform apical-basal cell division, generating 

one committed progenitor (Myf5+) and one daughter cell with stem-like features (Myf5-) (Kuang et al., 2007). 

Moreover, the template DNA strand exhibits a non-random segregation and is maintained throughout 

several cell divisions by a subpopulation of Pax7 high-expressing SCs (Rocheteau et al., 2012; Shinin et al., 

2006). The selective segregation of the “immortal” DNA strand prevents the accumulation of replication 
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errors and is a hallmark of stem cells (Cairns, 1975; Karpowicz et al., 2005). Although it is not clear if the Pax7 

high-expressing SCs and the Myf5 never-expressing SCs are two overlapping subpopulations, these 

observations demonstrate that the SC pool is organized in a hierarchical structure of stem cells and 

committed progenitors (Tierney and Sacco, 2016).   

The polarity of stem cells has been extensively studied in Drosophila Melanogaster neuroblasts in which 

several molecular key players define the apical-basal orientation during cell division (Knoblich, 2010).       

 

 

 

 

 

 

Figure 3. Model of activation of Par complex activation in Drosophila Melanogaster neuroblast. 
The phosphorylation of L(2)GL by aurora kinase A in neuroblast during mitosis induces L(2)GL release, thus 
enabling Par3 to binds to Par6-aPKC and generating the Par Complex. See text for details (adapted from 
Knoblich, 2010).  
 

 

 

 

The atypical protein kinase C (aPKC) forms a complex with Partitioning Defective 6 (Par6) and Lethal (2) Giant 

Larvae (L(2)GL). In this context, L(2)GL inhibits aPKC (Knoblich, 2010; Plant et al., 2003; Figure 3). During 

mitosis, aurora kinase A phosphorylates Par6 that, in turn, activates aPKC (Wirtz-Peitz et al., 2008). Activation 

of aPKC leads to L(2)GL release from the complex, exposing the aPKC PDZ domain for the binding with 

Bazooka (the Drosophila homolog of Partitioning Defective 3 – Par3) (Figure 3).  This event generates a protein 

complex between aPKC-Par3-Par6, named Par complex, that orchestrates cell polarization through the 

activation and compartmentalization of several downstream targets, including Numb (an adaptor protein 

that inhibits NOTCH signaling) and the serine/threonine kinase Par1b (Chang et al., 2016). In epithelial cells, 
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the atypical PKC and Par1b are reciprocally regulated and localize in the apical and in the basal side  

respectively and after asymmetric division, the daughter cell receiving the Par complex will differentiate 

(Chang et al., 2016; Goulas et al., 2012). In a subset of dividing SCs, the Par complex segregates 

asymmetrically in only one daughter cell (committed to differentiation), activating p38α/β MAPK and 

inducing MyoD expression (Troy et al., 2012). Accordingly, the atypical PKCλ is required for both MyoD 

expression and myogenic commitment. On the other side, the MyoD negative daughter cell exits the cell 

cycle and displays stem-like features (Troy et al., 2012; Wang et al., 2014; Figure 4). The Par complex-

dependent asymmetric segregation of active p38α/β MAPK and MyoD expression allows the generation of 

committed progenitors that sustain myogenesis and, at the same time, the maintenance of the SC pool (Wang 

et al., 2014).  

  

 

         

 

 

Figure 4. Asymmetric division of the SC.  
After muscle injury, SC activates, and the Par complex (composed by Pard3-PKCλ-Par6) segregates in the 
committed progenitor, inducing phosphorylation of p38α/β MAPK only in one daughter cell. Active P-p38α/β 
MAPK trigger MyoD expression inducing amplification and myogenic progression of the myoblast. The 
daughter cell with the inactive p38α/β MAPK does not express MyoD, and exits the cell cycle, restoring a 
functional quiescent SC pool (adapted from Inaba and Yamashita, 2012). 
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Satellite cell symmetric division 

The asymmetric division ensures the SC pool maintenance during muscle regeneration. However, SCs expand 

through symmetric division. While the apical-basal spindle orientation during SC mitosis defines a divergent 

fate of the two daughter cells, planar SC division generates two putative identical cells (Kuang et al., 2007). 

This cellular mechanism is regulated by the planar cell polarity (PCP) pathway (Le Grand et al., 2009). In 

particular, Wnt7a drives the symmetric SC expansion through the binding to the receptor Frizzled7 (Fzd7) 

and by inducing the polarization of the PCP effector Vangl2 and α7-integrin at the poles of the SC through 

the planar axis (Le Grand et al., 2009). As a direct consequence, both daughter cells will express α7-integrin 

that anchors the SC plasma membrane to the basal lamina, maintaining the stem state (Le Grand et al., 2009; 

Kuang et al., 2008). Moreover, the adhesion of the SC to the basal lamina is ensured by syndecan-4 (Sdc4), a 

Fzd7 co-receptor and binds the ECM protein fibronectin connecting the SC to the basal lamina and regulating 

Wnt7a-mediated symmetric division (Bentzinger et al., 2013; Cornelison et al., 2001, 2004).   

 

The balance between self-renewal and differentiation of SCs is crucial for muscle homeostasis and assumes 

a particular relevance in chronic muscle wasting conditions, including sarcopenia and muscular dystrophies 

(Chang et al., 2016; Sacco and Puri, 2015). Sarcopenia is an age-associated loss of muscle mass and strength 

(Evans and Campbell, 1993), and the mechanisms underlying this disorder comprise both metabolic and 

regeneration defects (Grounds, 1998; Karakelides and Nair, 2005). Interestingly, aged SCs express senescence 

markers and exhibit a reduced capacity to regenerate muscles (Cosgrove et al., 2014; Sousa-Victor et al., 

2014). Moreover, excessive activation of the p38α/β MAPK in SCs from aged mice results in asymmetric 

division defects and subsequent impairment of SC self-renewal ability (Bernet et al., 2014). Other intrinsic 

asymmetric division and self-renewal defects are associated with an impaired myogenesis and a progressive 

depletion of functional SCs in Duchenne muscular dystrophy (Chang et al., 2016; Jiang et al., 2014). 
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Duchenne muscular dystrophy  

Muscular dystrophies are a group of inherited disorders characterized by chronic muscle degeneration that 

leads to progressive structural and functional impairment of skeletal and cardiac muscles (Rahimov and 

Kunkel, 2013). Among this group, Duchenne muscular dystrophy (DMD) is the most common and severe 

disorder (Mercuri and Muntoni, 2013). DMD affects approximately 1 to 5000 males and is caused by 

frameshift or nonsense mutations in the dystrophin gene that result, in almost all the cases, in the complete 

absence of the dystrophin protein (Rahimov and Kunkel, 2013; Straub et al., 2016). Death usually occurs 

around 20-25 years and is mainly due to respiratory and cardiac failure (Wallace and McNally, 2009).  

Dystrophin is a 427 kDa cytoskeletal protein that connects the filamentous actin of the myofiber cytoskeleton 

to the transmembrane protein β-dystroglycan which, through its extracellular domain, is linked to the α-

dystroglycan, forming the dystroglycan complex (Hoffman et al., 1987; Ibraghimov-Beskrovnaya et al., 1992; 

Rybakova et al., 2000; Wallace and McNally, 2009). The binding between α-dystroglycan and laminin 

connects the myofiber to the ECM, stabilizing the muscle structure and preventing contraction-induced 

damage (Gumerson and Michele, 2011). In the absence of dystrophin, myofibers are extremely susceptible 

to damage. In this context, skeletal muscle undergoes continuous rounds of degeneration and regeneration. 

This leads to a gradual depletion of functional SCs and replacement of skeletal muscle with fat and fibrotic 

tissue, resulting in loss of structure and function of skeletal muscle (Jiang et al., 2014; Kharraz et al., 2014). 

Moreover, dystrophin is expressed in activated SCs and is involved in SC asymmetric division (Dumont et al., 

2015). Indeed, dystrophin is connected to the ECM through the dystroglycan complex, thus is localized to the 

basal side of the SC (Figure 5A). During the first SC division, dystrophin is associated with Par1b (Mark2) and 

controls the localization to the opposite side (apical) of the Par complex member Par3 (Dumont and Rudnicki, 

2016; Figure 5A). In dystrophin-null SCs, Par1b is downregulated, and Par3 polarization is impaired. The 

consequent defective asymmetric division leads to the generation of senescent daughter cells (Dumont et 

al., 2015; Figure 5B).  
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Although the contribution of the defective asymmetric division in the DMD progression is not completely 

elucidated yet, this intrinsic defect on SC mitosis could partially explain the parallel impairment of both 

myogenesis and self-renewal presents in DMD (Dumont et al., 2015; Jiang et al., 2014). 

 

 

 

 

Figure 5. Defective asymmetric division in dystrophin-null SC. 
(A) Normal SC (i.e. dystrophin positive) undergoes asymmetric division during which dystrophin localizes in 
the basal side of the SC and co-localizes with Mark2 (or Par1b). Par3 (or Pard3-member of the Par complex) 
is localized in the opposite site (apical). The asymmetric distribution of the polarity determinants, including 
Notch signaling components, defines the opposite cell fate of the daughter cells: one quiescent stem cell and 
one committed progenitor. (B) In dystrophin-null SC, Mark2 is downregulated, and Par3 asymmetric 
distribution is impaired. Dysregulation of the polarity determinants results in a defective mitosis and myogenic 
progression (adapted from Chang et al., 2016). 
 

 

Two corticosteroids, prednisone and deflazacort, are the only drugs that had ultimately demonstrated to 

have beneficial effects on DMD patients and represent the standard of care for this pathology (Straub et al., 

2016). In particular, treatment with corticosteroids improves muscle strength and functional outcomes as 

well as cardiac dysfunction and life expectancy (Angelini et al., 1994; Beytía et al., 2012; Fenichel et al., 1991). 

However, these beneficial effects are associated with several side effects that include excessive weight gain, 

behavioral changes, and osteoporosis (Angelini and Peterle, 2012; Vestergaard et al., 2001). The precise 

mechanisms of action through which corticosteroids ameliorate the DMD phenotype are not yet known. 
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However, they likely include inhibition of fibrotic tissue deposition, increased expression of utrophin (that 

partially compensates for dystrophin function), and reduction of inflammation (Angelini, 2015; Spuler and 

Engel, 1998).   

 

 

Gene therapy 

Although corticosteroid treatment slows down the progression of DMD, the effective cure of the pathology 

requires a full genetic correction of the affected tissues. Gene therapy is an attractive therapeutic approach 

for this monogenic disorder. Several viral vectors have been tested for applications in DMD, including 

adenoviral vector, lentiviral vectors, and adeno-associated viral (AAV) vectors (Guiraud et al., 2015; 

Konieczny et al., 2013).  Considering the extremely large dimension of the dystrophin gene, one important 

issue is the limited packaging capacity of the vectors. However, the expression of a portion of the dystrophin 

protein (mini-dystrophin) is sufficient to ameliorate muscle dystrophic phenotype (Guiraud et al., 2015). In 

particular, AAV vectors expressing the mini-dystrophin gene have been tested in both preclinical and clinical 

studies. These studies reveal an unsatisfactory dystrophin expression and a concomitant T-cell reactivity 

against both the dystrophin and the viral vectors (Konieczny et al., 2013; Mendell et al., 2010). Another 

therapeutic approach regards the use of viral vector-free gene delivery. The full-length dystrophin cDNA 

injection in dystrophic mice results in a relative high dystrophin expression. However, this expression is not 

stable throughout time; this is thought to be related to the low stability of the extrachromosomal DNA 

(Bertoni et al., 2006; Liu et al., 2001; Molnar et al., 2004).  

Currently, promising studies come from the observation that a subset of myofibers in DMD express a 

truncated form of dystrophin that lacks the mutated exon (Wilton et al., 1997). This is due to a spontaneous 

intrinsic exon skipping mechanism that restores the correct reading frame of the dystrophin mRNA (Dowling, 

2016). The development of an antisense RNA against the mutated exon allows a forced RNA exon skipping 

and the expression of a truncated, but still functional, dystrophin (Adkin et al., 2012; Cirak et al., 2012). Most 

of the developed antisense RNA are against exon 51 since the relative majority of the DMD patients (about 
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the 13%) has mutations in this exon (Bladen et al., 2015). These antisense RNAs include the drug eteplirsen 

(Sarepta Therapeutics) that is currently tested in a phase III clinical trial (ClinicalTrials.gov identifier: 

NCT02255552). Previous clinical and pre-clinical studies demonstrate that treatment with this compound 

partially restores dystrophin expression (in about 40% of the myofibers) and moderately improves functional 

muscle performance (Dowling, 2016).  However, since the antisense RNA targets a specific exon, treatment 

with these oligonucleotides must be mutation-, and consequently, patient-specific, thus their future 

application in DMD therapy would require a personalized approach (Kole and Leppert, 2012). 

 

 

Cell therapy 

Pioneering studies reported that intramuscular myoblasts transplant in mdx dystrophic mice, from a wild-

type (WT) donor, results in a consistent dystrophin expression (Partridge et al., 1989). However, the 

translation of this paradigm into the clinical practice revealed several limitations, such as the immune 

response against the donor cells and inadequate engraftment of the myoblasts (Gussoni et al., 1999; Mendell 

et al., 1995). To improves engraftment and long-term survival of transplanted cells, several 

immunosuppressant agents have been tested in animal models (Maffioletti et al., 2014). However, the main 

bottleneck of myoblast transplantation is that these cells do not cross the vessel wall and have a limited 

capacity to migrate. Thus a proper treatment would require a huge number of local intramuscular injections, 

a practice infeasible for the diaphragm and other respiratory muscles (Price et al., 2007). Mesoangioblasts 

are myogenic pericyte-derived progenitor cells with a promising profile for the treatment of DMD since they 

can pass throughout vessels, enabling systemic delivery, and exhibit modulatory activities on the immune 

system (Benedetti et al., 2013; Sampaolesi et al., 2006). Pre-clinical studies reported a partial efficacy of 

mesoangioblast systemic delivery for the treatment of DMD (Konieczny et al., 2013). However, a recent phase 

I/IIa clinical trial failed to recapitulate this effect, suggesting that further studies are required to improve 

efficacy in the clinical practice (Cossu et al., 2015).  
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Gene and cell therapy represent two encouraging therapeutic options for the future cure of DMD. Moreover, 

their combination ideally allows autologous stem cell transplant after dystrophin gene correction. However, 

the investigation of key factors that can modulate transplant efficacy, muscle regeneration, and SC 

homeostasis is still central to boost the efficacy of these treatments and to slow down pathology progression 

(Consalvi et al., 2013; Skuk, 2013).   

 

Ghrelin 

Ghrelin is a 28 amino acid peptide hormone discovered in 1999 as the endogenous ligand of the growth 

hormone (GH) secretagogue receptor (GHSR1a) (Kojima et al., 1999), a G protein-coupled receptor (GPCR) 

mainly expressed in pituitary, hypothalamus, and pancreas. The hormone is produced by the X/A-like 

stomach cells and physiologically controls several metabolic functions, including GH-release, food intake, 

adiposity, glucose homeostasis, and body weight (Müller et al., 2015). The peptide sequence presents a 

biologically rare post-translational modification, consisting in the acylation of the serine-3 residue through 

esterification with octanoic acid (C8) or, to a lesser extent, with decanoic acid (C10) (Gutierrez et al., 2008; 

Yang et al., 2008). Ghrelin gene (Ghrl) encodes for a 117 amino acid precursor named preproghrelin, that, 

after prohormone convertase 1/3-dependent cleavage, generates two biologically active peptides: the 

unacylated form of ghrelin (unacylated ghrelin, UnAG) and obestatin (Nishi et al., 2011). The acylation of the 

prohormone occurs intracellularly and is mediated by the ghrelin O-acyl-transferase (GOAT) enzyme (a 

member of the membrane-bound O-acyltransferase family). Moreover, ghrelin acylation is strictly required 

for the activation of the GHSR1a and for its metabolic function (Gutierrez et al., 2008; Kojima et al., 1999; 

Yang et al., 2008). 

For its central role in food intake regulation and energy expenditure, ghrelin has been named “the hunger 

hormone.” Indeed, its plasma levels increase in fasting condition while decrease immediately after food 

assumption (Cummings et al., 2004; Monteleone et al., 2003), and ghrelin treatment of both mice and human 

induces food intake indicating a direct role in regulating feeding behavior (Tschöp et al., 2000; Wren et al., 
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2001). Consistently with its modulatory effects on energy balance, ghrelin interferes with insulin release and 

glucose homeostasis (Sangiao-Alvarellos and Cordido, 2010). Ghrelin infusion in both mice and human blunts  

insulin secretion, thus impairing peripheral glucose uptake (Dezaki et al., 2008; Tong et al., 2010). Moreover, 

inhibition of the ghrelin-GHSR1a axis results in increased insulin response and glucose tolerance in rats 

(Dezaki et al., 2008; Sangiao-Alvarellos and Cordido, 2010), confirming the negative action of ghrelin on 

insulin function. These effects have been confirmed in genetic ablation experiments, indeed, in GHSR- and 

Ghrl-null mice, insulin secretion, insulin sensitivity, and glucose uptake are increased (Longo et al., 2008; Qi 

et al., 2011; Sun et al., 2008). 

 

In pathological conditions, such as chronic heart failure and cancer cachexia, high plasmatic ghrelin levels are 

associated with long-term energy deficit situations (Müller et al., 2015). The correlation between energy 

deficiency and ghrelin levels observed in several cachectic conditions, may be a consequence of decreased 

food uptake, thus have been considered as a compensation mechanism (DeBoer, 2011; Müller et al., 2015). 

Indeed, treatment with ghrelin or GHSR1a-analogues improves cancer-associated cachectic state in both 

animal models and patients (Garcia et al., 2013; Reano et al., 2014), suggesting that further increase of ghrelin 

levels through its exogenous administration positively modulates energy balance. The positive effects of 

ghrelin in the context of cancer cachexia reside in its primary ability to induce food intake and increase lean 

body mass, by positively regulating GH-IGF1 axis.  

Moreover, ghrelin displays an anti-inflammatory action that contributes to the protection against cachexia 

(Chen et al., 2015; Dixit et al., 2004; Prodam and Filigheddu, 2014). Although ghrelin has anti-inflammatory 

effects in several contexts  (Dixit et al., 2004; Hataya et al., 2003; Li et al., 2004; Waseem et al., 2008), it has 

also been demonstrated that GHSR-1a contributes to the development of experimental colitis (Liu et al., 

2015) as well as to the expression of pro-inflammatory cytokines in macrophages of mice fed with high 

fructose diet (Ma et al., 2013). Consistently, pro-inflammatory cytokine release by macrophage is mediated 

by the GHSR-1a and genetic ablation of GHSR-1a attenuates age-associated increase of pro-inflammatory 

peritoneal macrophages in adipose tissue (Lin et al., 2016). Although opposite activities of ghrelin on 
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inflammation have been reported, several studies on animal model of chronic inflammation and consequent 

fibrosis development demonstrate that ghrelin has an overall protective effect (reviewed in Angelino et al., 

2015, see attached paper in Appendix 1). Notably, in several chronic human pathologies, such as in chronic 

hepatitis, ghrelin plasma levels negatively correlate with the disease severity (Angelino et al., 2015; Moreno 

et al., 2010), suggesting a possible physiological role of this hormone in the attenuation of inflammation and 

fibrosis.   

Interestingly, in both physiological and pathological conditions, the most abundant form of circulating ghrelin 

is the unacylated one (UnAG), that binds GHSR-1a with much lower affinity than acylated ghrelin (in the 

micromolar range compared to the nanomolar) (Gauna et al., 2007) and definitely lacks any GHSR-1a-

dependent activity. For that reason UnAG was initially considered as an inactive catabolism product of 

acylated ghrelin (Chen et al., 2009; Kojima et al., 1999). However, UnAG shares with ghrelin several biological 

activities and common binding sites in cells that do not express GHSR1a, including cardiomyocytes, skeletal 

myoblasts, and pancreatic cells, indicating the presence of a common receptor for the these peptides 

(Baldanzi et al., 2002; Granata et al., 2007). In particular, several studies explored the GHSR1a-independent 

ghrelin/UnAG biological activities and their molecular pathways involved: 

 

- Ghrelin and UnAG protect cardiomyocytes and endothelial cells against apoptosis through activation 

of ERK1/2 and AKT (Baldanzi et al., 2002). 

 

- Ghrelin and UnAG prevent apoptosis of β-pancreatic cells through activation of adenylyl 

cyclase/3’,5’-cyclic adenosine monophosphate (cAMP)/protein kinase A pathway. Moreover, in 

these cells, both peptides activate PI3K/AKT and ERK1/2 signaling (Granata et al., 2007). 

 

- UnAG protects the heart against ischaemic damage and both UnAG and, to a lesser extent, ghrelin 

induce dysfunctional mitochondria removal (mitophagy) and promote ischemia-induced muscle 

regeneration (Ruozi et al., 2015). Moreover, UnAG stimulates autophagy in muscle cells and 
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decreases inflammation and reactive oxygen species (ROS) production (Gortan Cappellari et al., 

2016). These activities result in the prevention of obesity-associated hyperglycemia and to a general 

improvement of insulin sensitivity (Gortan Cappellari et al., 2016). 

 

- Ghrelin and UnAG impair skeletal muscle atrophy in mice in a GHSR1a-independend manner 

(Porporato et al., 2013, see attached paper in Appendix 2). Both ghrelin and UnAG activate the PI3Kβ-

mTORC2-AKT pathway and p38α/β MAPK, thus inhibiting the expression of the atrophy-mediator 

genes Atrogin1 and MuRF1 (Figure 6). These activities are GHSR1a-independent since UnAG protects 

against atrophy even in Ghsr-null mice, giving the genetic proof of the existence of a ghrelin/UnAG 

receptor, different from the GHSR1a (Porporato et al., 2013). Although the identity of this receptor 

is still elusive, several experiments strongly suggest that this receptor is a Gαs protein-coupled 

receptor (GPCR) (Granata et al., 2007; Porporato et al., 2013; Figure 6). 

           

 

Figure 6. Signaling pathway involved in ghrelin/UnAG 
anti-atrophic activity. 

Ghrelin and UnAG act through a Gαs protein-coupled 
receptor (GPCR), activating PI3Kβ/ mTORC2/AKT 
pathway and p38α/β MAPK. The activation of these 
proteins results in the inhibition of FoxO3a-dependent 
induction of muscle atrophy (adapted from Reano et al., 
2014). 
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Altogether these data indicate that skeletal muscle represents a major target tissue of both ghrelin and 

UnAG. Their function in skeletal muscle, however, is not related exclusively to the differentiated myofibers. 

Indeed, both peptides promote differentiation and fusion of C2C12 myoblasts through activation of p38α/β 

MAPK (Filigheddu et al., 2007). Moreover, ghrelin and UnAG share common high-affinity binding sites in 

these cells, which lacks the Ghsr1a, confirming the presence of an unknown common receptor in myoblasts 

(Filigheddu et al., 2007). Also, these data reveal a direct activity of the two peptides in the skeletal muscle, 

that is independent from any endocrine effect (Reano et al., 2014). 

Interestingly, Togliatto and colleagues demonstrated that UnAG, but not ghrelin, protects skeletal muscle 

against hindlimb ischemia thus improving muscle regeneration in mice. The authors also provide evidence of 

a direct effect of UnAG on myoblast proliferation (Togliatto et al., 2013). 

Taken together, the data arising from our and others groups indicate that UnAG could be considered as a 

regulator of myogenesis (Filigheddu et al., 2007; Ruozi et al., 2015; Togliatto et al., 2013). Moreover, UnAG 

promotes muscle regeneration through the activation of p38α/β MAPK, a master regulator of SC activation, 

proliferation, differentiation and self-renewal (Kuang et al., 2008; Troy et al., 2012; Wang et al., 2012), 

suggesting a more complex function of UnAG in the regulation of SC behavior and indicating that exogenous 

administration of UnAG could ameliorate pathologic phenotype of muscle wasting diseases, in which 

degeneration and regeneration processes are involved, such as in dystrophies.  
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AIMS OF THE THESIS 

 

Several experiments indicate that UnAG directly act on the skeletal muscle tissue in both differentiated 

myofibers and myogenic precursors, regulating protein breakdown, autophagy, ROS production, and 

myogenesis  (Filigheddu et al., 2007; Gortan Cappellari et al., 2016; Porporato et al., 2013; Ruozi et al., 2015; 

Sheriff et al., 2012; Togliatto et al., 2013). UnAG effects on myogenesis include induction of both SC 

proliferation and myoblast differentiation and are mediated by p38α/β MAPK activation (Filigheddu et al., 

2007; Togliatto et al., 2013). p38α/β MAPK activity is required in several steps throughout SC lineage 

progression, including activation, proliferation, differentiation, and fusion (Kuang et al., 2008). Moreover, 

during SC activation, the Par complex-dependent localized activation of p38 MAPK controls SC asymmetric 

division, a crucial cellular mechanism through which SCs generate daughter cells with opposite fates: 

committed progenitors and quiescent stem cells, linking a proper myogenesis with the maintenance of the 

SC pool (Troy et al., 2012). These observations indicate that p38 MAPK is a master regulator of myogenesis 

and SC homeostasis, and suggests that UnAG might control other important steps of the myogenesis, such 

as SC asymmetric division and self-renewal. Moreover, we explored the therapeutic potential of UnAG in the 

dystrophic mdx mouse.  

 

In particular, this project aimed at investigation of:  

- the pro-regenerative potential of UnAG in vivo by using a transgenic mouse carachterized by high levels 

of circulating UnAG.  

- the direct effects of UnAG on SC behaviour, in particular on SC asymmetric division and self-renewal by 

ex-vivo UnAG treatment of myofiber-associated SCs. 

- the molecular pathways involved in UnAG activity on SC asymmteric division and self-renewal. 
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- the potential protective effects of UnAG on skeletal muscle of mdx mice analyzing structural and 

functional parameters. 

- the effects of UnAG on dystrophin-null SC defective asymmetric division and self-renewal by ex vivo 

UnAG treatment of mdx-derived SCs.  
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MATERIAL AND METHODS 

 

Animals  

Animal experiments were performed according to procedures approved by the Institutional Animal Care and 

Use Committee at the University of Piemonte Orientale. Male mice, matched for age and weight, were used 

for all experiments. Dystrophin-deficient mdx mice (C57BL/10ScSn-Dmdmdx/J) and C57BL/6-Tg(CAG-

EGFP)131Osb/LeySopJ mice with ubiquitous GFP expression were from The Jackson Laboratory; FVB1-

Myh6/Ghrl and C57BL/6-Myh6/Ghrl transgenic mice were generated as previously described (Porporato et 

al., 2013). Animals were fed ad libitum and had unrestricted access to drinking water. The light/dark cycle in 

the room consisted of 12/12 h with artificial light. To generate dystrophic mice overexpressing the ghrelin 

gene, C57BL/6J hemizygous Myh6/Ghrl male mice were bred to homozygous Dmdmdx/mdx female mice to yield 

an equal proportion of male mdxTg+ and mdxTg– littermate controls. Mdx mice bearing Myh6/Ghrl transgene 

were identified by PCR genotyping. High levels of plasmatic UnAG in mdxTg+ were confirmed by EIA kit (SPIbio 

Bertin Pharma) according to the manufacturer’s instructions. The numbers of mice estimated sufficient to 

detect a difference between two means as large as 1 SD unit with 80% power and a significance level of 95% 

at Student’s T-test were calculated with the program by R.V. Lenth (www.stat.uiowa.edu/ 

~rlenth/Power/index.html).  The investigators conducting the experiments were blind to the experimental 

group assessed. The investigators quantifying the experimental outcomes were maintained blinded to the 

animal group or intervention. Finally, the statistic evaluation of the experimental data was performed by 

another investigator not directly involved in data collection and parameter measurement. 

 

 

Reagents 

 Rat UnAG peptide was purchased from PolyPeptide Laboratories. Media and fetal bovine serum (FBS) were 

from Gibco (Thermo Fisher Scientific), Horse serum (HS) from PAA (GE Healthcare), and media supplements, 
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unless otherwise specified, were from Sigma-Aldrich. 

 

 

CTX-induced muscle regeneration 

Experiments on muscle regeneration were conducted on adult male FVB1 and FVB1-Myh6/Ghrl mice 

matched for age and weight. CTX from Naja mossambica mossambica (Latoxan) was dissolved in sterile saline 

to a final concentration of 10 μM. Mice were anesthetized by isofluorane inhalation and hindlimbs were 

shaved and cleaned with alcohol. TA muscles were injected with 45 μl of CTX with a 30-gauge needle, with 

15 microinjections of 3 μl CTX each in the mid-belly of the muscle to induce a homogeneous damage. The TA 

muscles of the contralateral hindlimbs were injected with saline. After injection, animals were kept under a 

warming lamp until recovery. 

For some experiments, immediately after CTX administration, a single intraperitoneal injection of 5-bromo-

2'-deoxyuridine (BrdU) (6 µg/g mouse) was given, followed by BrdU administered ad libitum in drinking water 

(2.5 mg/ml) for 7 days. 

 

 

Histological analysis 

Muscles were trimmed of tendons and adhering non-muscle tissue, mounted in Killik embedding medium 

(Bio-optica), frozen in liquid-nitrogen-cooled isopentane, and stored at -80 C°. Transverse muscle sections (7 

µm) were cryosectioned from the mid-belly of each muscle. Sections were stained with hematoxylin/eosin 

to reveal general muscle architecture. Images of whole muscle sections were acquired with the slide scanner 

Pannoramic Midi 1.14 (3D Histech) and cross-sectional areas (CSA) of centro-nucleated fibers quantified with 

ImageJ software (v1.49o). Muscle collagen content was assessed with Masson trichromic staining. 

To quantify muscle damage and areas of focal necrosis, 1% w/v Evans blue dye (EBD) was injected 

intraperitoneally (5 µl/g of animal weight). Muscles were collected 20 h after EBD injection. Sections 7 μm 

thick were cryosectioned, and EBD uptake was detected as red epifluorescence and quantified as above. 
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SC isolation and culture 

Primary myoblasts were isolated from the main hindlimb muscles (TA, gastrocnemius, quadriceps, EDL, 

soleus) and diaphragm. Muscles were cut with a lancet into small fragments (about 3 mm3) and further 

inspected to eliminate, as much as possible, any remaining connective tissue. The mass was resuspended in 

3 ml of 0.1% pronase and incubated for 1 h at 37°C for digestion. The suspension was then centrifuged at 400 

x g for 5 min and the pellet resuspended in 10% HS medium, passed several times through a serological 

pipette, filtered through 40 μm strainers, and further centrifuged at 400 x g for 10 min. SCs were separated 

from fibroblasts and other cells using the Satellite Cell Isolation Kit (MACS Miltenyi Biotec) following the 

manufacturer’s instructions. After isolation, SCs were either plated on gelatin-coated dishes or immediately 

used in muscle transplantation experiments. 

Plated cells were cultured in growth medium (GM) with 20% FBS, 10% HS, 1% chicken embryo extract (CEE), 

and 10 ng/ml FGF-2. When cells reached 70-80% of confluence GM was shifted into differentiation medium 

(DM) with 5% of HS for 3 days. UnAG (100 nM) was added simultaneously to DM. 

 

 

SC transplantation 

 To facilitate cell engraftment, one day before muscle transplantation, CTX injection was performed in the 

mid-belly of TA muscles of recipient mice. SCs were isolated from C57BL/6-Tg(CAG-EGFP)131Osb/LeySopJ 

(GFP+) mice and 100,000 cells, resuspended in serum-free DMEM, were injected in the previously injured 

recipient muscles. Contralateral TA muscles were injected with cell-free DMEM. Muscles were harvested 30 

days after injection, fixed in 4% PFA, and analyzed. 

 

 

Myofiber isolation and culture 

EDL muscles were digested in 0.2% collagenase type-I in DMEM for 60–70 minutes at 37°C. Muscles were 

mechanically dissociated, and single fibres liberated. After extensive washing, myofibers were either 
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immediately fixed or cultured in low proliferation medium (LPM, DMEM supplemented with 10% HS and 

0.5% CEE) in suspension. UnAG was added in LPM immediately after fiber seeding. At different time points 

after plating (6-72-96 h) fibers were fixed in 4% PFA for 10 min. 

For experiments with the chemotherapic drug AraC (Cytosine β-D-arabinofuranoside), myofibers were 

cultured for 72 h in F12 medium supplemented with 15% HS and 1 nM FGF-2 in the presence or absence of 

100 nM UnAG and then incubated with or without 100 μM AraC for 48 h and fixed (day 5). 

 

 

Immunofluorescence  

For Pax7 and BrdU detection, tissue sections were fixed in 4% PFA for 20 min, washed, permeabilized with 

cold methanol for 6 min, and then antigen-retrieved with sodium citrate (10 mM, 0.05% Tween in PBS) at 

95°C for 30 min. For blocking the unspecific binding sites, slices were incubated in 4% BSA for 2 h at RT and 

then with M.O.M. blocking reagent (Vector) for 1 h at RT. Sections were stained with an anti-Pax7 antibody 

(1:100; Developmental Studies Hybridoma Bank) and with anti-BrdU antibody (1:300; Biorad) overnight at 

4°C. After washing, sections were incubated with the appropriate Alexa Fluor Dyes-conjugated secondary 

antibody (488-anti-mouse/anti-rabbit or 568-anti-rabbit; Thermo Fisher Scientific) for 1 h at RT. DAPI was 

incubated for 5 min. 

For immunofluorescence with anti-laminin (1:200; Dako), anti-GFP (1:200; Thermo Fisher Scientific) and anti-

embryonic MyHC (1:20; Developmental Studies Hybridoma Bank), after fixing, slices were permeabilized with 

0.2% triton in 1% BSA for 15 min and blocked with 4% BSA. One hour of incubation with primary antibodies 

was followed by 45 min of secondary antibody incubation at RT. 

Images were acquired using the slide scanner Pannoramic Midi Scanner 1.14 (3D Histech) and quantified with 

Pannoramic viewer software. For immunofluorescence on isolated fibres and on cultured SCs, samples were 

fixed in 4% PFA for 10 min, permeabilized with 0.5% triton for 6 min and blocked with 4% BSA for 30 min. 

Primary antibodies to detect Pax7, MyoD (1:500; Santa Cruz Biotechnology), myogenin (1:100; 

Developmental Studies Hybridoma Bank), and MyHC (1:100; Developmental Studies Hybridoma Bank) were 
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incubated overnight at 4°C, and the secondary antibodies for 45 min at RT, followed by 5 min of DAPI. Images 

were acquired with a Leica CTR5500 B fluorescent microscope with the Leica Application SuiteX 1.5 software, 

and quantification was performed with ImageJ v1.49o software. 

To evaluate the asymmetric division events of SC pairs, MyoD levels in each cell were obtained by subtracting 

the background from the nuclear fluorescence intensity (determined by overlap with DAPI staining). Cell pairs 

were scored “asymmetric” when the MyoD nuclear intensity of one daughter cell was ≤ 1% (“MyoD-”) and 

the other one was >1% (“MyoD+”) of the maximal intensity. 

Asymmetric distribution of the proteins was evaluated by SC incubation with rabbit or mouse anti-phospho-

p38T180/Y182 (1:200, Cell Signaling Technology), rabbit anti-p38 (1:200, Cell Signaling Technology), rat anti-CD34 

(1:200; BD Bioscience), rabbit anti-PKCλ (1:200, Santa Cruz Biotechnology), and mouse anti-Pax7 (1:100; 

Developmental Studies Hybridoma Bank). Nuclei were counterstained with TO-PRO-3 iodide (1:100 Thermo 

Fisher Scientific). The appropriate Alexa Fluor Dyes-conjugated secondary antibody (546 or 647 anti-mouse, 

488 anti-rabbit, and 546 anti-rat; Thermo Fisher Scientific). Images were acquired with Leica confocal 

microscope TCS SP2 using a 63X objective, NA=1.32, equipped with LCS Leica confocal software. Asymmetry 

of phospho-p38T180/Y182 and of PKCλ were quantified with ImageJ.  

For the proximity ligation assay (PLA; Duolink from Sigma-Aldrich), myofiber-associated SCs were incubated 

with mouse anti-PKCλ (1:200, BD Bioscience) and rabbit anti-PAR3 (1:200, Merck Millipore) then processed 

according to the manufacturer’s instructions. 

 

 

Gene expression analysis  

Total RNA from muscles was extracted by RNAzol. RNA was retro-transcribed with High-Capacity cDNA 

Reverse Transcription Kit (Thermo Fisher Scientific), and real-time PCR was performed with the StepOnePlus 

Real-Time PCR System (Thermo Fisher Scientific) using Mm00445450_m1 (Ghrl) and Mm00506384_m1 (Ppif) 

TaqMan assays.  
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Hanging test 

A wire-hanging test was employed to assess whole-body muscle strength and endurance. The test was 

performed as previously described (Raymackers et al., 2003). Briefly, mice were subjected to a 180 sec 

hanging test, during which “falling” and “reaching” scores were recorded. When a mouse fell or reached one 

of the sides of the wire, the “falling” score or “reaching” score was diminished or increased by 1, respectively. 

A Kaplan-Meier-like curve was created afterward. Moreover, the longest time between two falls was taken 

as the latency-to-fall value (van Putten et al., 2010). 

 

 

Statistical analysis  

All data were expressed as mean ± SEM, absolute values, or percentages. For continuous variables, the 

variation between groups was compared by means of nonparametric Wilcoxon and Mann-Whitney U tests, 

as appropriate. When analyzing experiments acquired with different instruments, ANCOVA analysis was used 

to determine differences between groups by using the instrument as a covariate. Multiple logistic regression 

was used for trends. Statistical significance was assumed for p<0.05. The statistical analysis was performed 

with SPSS for Windows version 17.0 (SPSS; Chicago, IL). 
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RESULTS 

 

UnAG upregulation in Myh6/Ghrl transgenic mice enhances muscle regeneration  

Muscle damage induces the release, within the muscle, of several factors that activate SCs, 

triggering the expression of myogenic genes, such as Myf5 and MyoD (Crist et al., 2012; Yablonka-

Reuveni and Rivera, 1994) that eventually lead to the terminal differentiation of muscle precursors 

and their fusion among themselves or to the existing fibers. Muscle damage also induces, within the 

muscle, the expression of the ghrelin gene (Supplementary information, Figure S1) and the 

preproghrelin protein (Gurriarán-Rodríguez et al., 2012), suggesting that its products – ghrelin, 

UnAG, and obestatin – may participate in the repair process. Accordingly, exogenously administered 

obestatin and UnAG enhance muscle regeneration in cardiotoxin (CTX)-injured gastrocnemii and in 

hindlimb ischemia, respectively (Gurriarán-Rodríguez et al., 2012; Ruozi et al., 2015; Togliatto et al., 

2013). 

Consistently, high levels of circulating UnAG in Myh6/Ghrl transgenic mice (Tg) (Porporato et al., 

2013) improve muscle regeneration of tibialis anterior (TA) muscle after CTX injury (Figure 7A-C). 

Despite no differences were evident between WT and Tg in non-injured muscle CSA distribution 

(Supplementary information, Figure S2A), at day 7 post CTX injury, improved muscle regeneration 

in Tg mice is evidenced by a shift towards bigger areas of centronucleated (i.e. regenerating) fibers 

(Figure 7B). This regeneration is accompanied by an increment in the number of regenerating fibers 

with ≥2 nuclei (Figure 7C), suggesting an increase in myoblast differentiation and fusion during 

regeneration, in agreement with the pro-differentiative activity of UnAG in C2C12 myoblasts 

(Filigheddu et al., 2007). The shift toward bigger areas and the increased myoblast fusion did not 

translate into a hypertrophic phenotype, as at 15 days post-injury fiber distributions of Tg and WT 

overlapped (Supplementary information, Figure S2B). Consistently with the hypothesis that UnAG 

induces faster recovery, injured Tg muscles displayed more embryonal MyHC (eMyHC)-positive 
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myofibers at day 3 post-CTX, although no significant differences were observed in the number of 

eMyHC-expressing fibers at day 7 (Supplementary information, Figure S3A-C). Also, transient 

collagen deposition during regeneration tended to disappear more rapidly in Tg muscles 

(Supplementary information, Figure S3D and S3E).  

Though basal Tg muscle do not overtly differ from their WT littermates (Porporato et al., 2013), a 

closer examination of their not-injured muscles revealed a larger number of SCs, seen as Pax7+ 

nuclei, in both TA and quadriceps (QUAD) from Tg animals (Figure 7D and 7E). However, this higher 

basal number of SCs does not affect the injury-induced SC proliferation, as, during regeneration, SC 

number in TA muscles from Tg and WT are not different (Supplementary information, Figure S4). 

This finding suggests that a UnAG-rich environment may confer a regenerative advantage, at least 

partially by promoting post-natal SC pool formation. In addition, transplant of SCs from GFP donor 

mice in muscles of Tg or WT recipient mice resulted, 30 days later, in ~80% increase in GFP+ fibers in 

Tg than in WT mice (Figure 7F and 7G), suggesting that UnAG promotes skeletal muscle regeneration 

plausibly by acting on the transplanted SCs.  
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Figure 7. UnAG upregulation in Myh6/Ghrl transgenic mice enhances muscle regeneration, 
increases SC number in non-injured muscles, and improves SC engraftment.  
(A) H&E of WT and Myh6/Ghrl (Tg) TA muscle sections 7 days after CTX injury. Scale bars, 100 μm. 
(B) Cross-sectional area (CSA) frequency distribution of regenerating fibers in TA. Chi-square test was 
used to compare distributions. Trend P<0.01. (CSA mean µm2: Tg 837.02±55.41; WT 559.28±15.81; 
P<0.05). n≥4. (C) laminin-DAPI staining images and percentage of multinucleated fibers (≥2 nuclei) 
over the total of regenerating fibers. Mean±s.e.m. *P<0.05; n≥4. Scale bar, 50 µm. White arrows 
indicate the multinucleated fibers. (D-E) Images of Pax7-DAPI staining and quantification of Pax7+ 
SCs/mm2 in non-injured TA (D) and quadriceps (QUAD) (E) of WT and Tg mice. Mean±s.e.m. *P<0.05; 
TA n=10; QUAD n=5. White arrows indicate Pax7+ nuclei. Scale bar, 50 µm. (F-G) Representative 
images (F) and quantification (G) of GFP+ myofibers in transplanted TA of WT and Tg mice. Scale 
bars, 200 μm. Mean±s.e.m. *P<0.05; n=11 (WT) and 12 (Tg).  
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UnAG promotes SC activity and their asymmetric division 

To explore in detail the effects of UnAG on SCs, we isolated single fibers from WT muscles, thus 

maintaining SCs in an original niche-like environment (Bischoff, 1975), and we cultured them in the 

presence or absence of 100 nM UnAG. When cultured, SCs undergo activation and turn on MyoD 

expression (Pax7+/MyoD+). After 72 h in culture, several clusters of myoblasts originated from a 

single SC are visible on myofibers. During this phase, the majority of activated SCs turns off Pax7 and 

commits to terminal differentiation (Pax7-/MyoD+), while a small subset undergoes self-renewal, 

retaining Pax7 but not MyoD expression (Pax7+/MyoD-) (Olguin and Olwin, 2004; Zammit et al., 

2004). UnAG treatment within 6 h expanded the portion of activated SCs (Figure 8A), within 72 h it 

increased the number of cells in each cluster (Figure 8B), and within 96 h raised the portion of SCs 

that underwent self-renewal (Figure 8C). Altogether, these data indicate that UnAG enhances SC 

activity by promoting their activation, expansion, and self-renewal. 

SCs undergo self-renewal through asymmetric division that gives rise to a proliferating daughter cell 

and a quiescent daughter cell (Troy et al., 2012). In culture, asymmetric division generally occurs 

during the first cellular division. This has been demonstrated by culturing myofibers with cytosine β-

D-arabinofuranoside (AraC), a chemotherapic drug that selectively kills cycling cells and spares 

quiescent cells (Troy et al., 2012). Incubation of isolated myofibers with AraC during the first three 

days kills all myofiber-associated SCs, while the addition of AraC to the culture medium from day 3 

to day 5 allows the detection of AraC-resistant Pax7+ SCs (or, in the case of differentiated SCs, 

Myog+) deriving from cells that divided at least once (Figure 8D, (Troy et al., 2012)). A higher 

number of Pax7+/MyoD- SCs was found in UnAG-treated myofibers after incubation with AraC from 

day 3 to 5 (Figure 8E), suggesting that UnAG acts during SC replications likely regulating SC 

asymmetric division. Asymmetric division can be assessed by the quantification of myofiber-

associated SC doublets, bona fide derived from a single SC after the first cell division, in which only 

one of the two daughter cells is MyoD+ (Troy et al., 2012). UnAG treatment induced a 6-fold 

increase in the percentage of SC doublets in which only one cell is MyoD+ (Figure 8F and 8G), 
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indicating that UnAG actually promotes SC asymmetric division. To verify whether UnAG induces 

self-renewal also in vivo, we administered BrdU to WT and Tg mice during the phase of intense 

myoblast proliferation post-injury (Figure 8H). Since BrdU is incorporated in every cycling cell, when 

muscle regeneration is fully achieved and SC proliferation no longer occurs, any cell positive for both 

BrdU and Pax7 (Figure 8I) is a SC that cycled at least once and then underwent self-renewal (Shea et 

al., 2010). Fifty days post-injury the number of Pax7+/BrdU+ SCs – normalized on SC number in the 

contralateral, non-injured muscle – was higher in Tg than in WT muscles (Figure 8J), demonstrating 

that upregulation of UnAG enhanced SC self-renewal also in vivo. SC self-renewal is of particular 

importance when skeletal muscle is subjected to repeated cycles of degeneration/regeneration that 

could lead to the progressive depletion of the SC pool; therefore, we assessed the impact of UnAG 

on the compartment of Myf5- SCs, a subpopulation of SCs that undergoes depletion in an artificial 

model of SC pool exhaustion, obtained by multiple rounds of muscle injury (Figure 8K, (Buono et al., 

2012)). Extensor digitorum longus (EDL) fibers isolated from injured hindlimbs of WT mice displayed 

a 50% loss of Myf5- SCs, while fibers from Tg mice maintained the number of Myf5- SCs (Figure 8L), 

demonstrating that UnAG helps to maintain the SC pool also upon repeated injuries.  
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Figure 8. UnAG induces activation, proliferation, and self-renewal of SCs.  

(A) Percentage of MyoD+ SCs after 6 h of treatment of isolated myofibers with 100 nM UnAG in low 
proliferation medium. (B) Cells per cluster after 72 h of treatment. (C) Percentage of Pax7+/MyoD- 
SCs after 96 h of treatment. Mean±s.e.m. *P<0.05. ≥25 myofibers/treatment; n=3 independent 
experiments. (D) Schematic of experiments with AraC to identify quiescent daughter SCs. (E) AraC-
resistant Pax7+ cells. Mean±s.e.m. *P<0.05; ≥25 myofibers/treatment; n=3 independent experiments. 
(F) Representative images of SCs that underwent symmetric (top) or asymmetric (bottom) division. 
Scale bar, 20 μm. (G) Percentage of asymmetric division events in SC doublets. Mean±s.e.m. *P<0.05; 
≥22 doublets/treatment; n=3 independent experiments. (H) Experimental design schematic: mice 
were daily treated with BrdU for the first 7 days after CTX injection. Muscles were harvested 50 days 
after injury. (I) Representative images of TA transverse sections, arrow: Pax7+/BrdU+ nucleus. Scale 
bar, 40 μm. (J) Pax7+/BrdU+ nuclei normalized to the contralateral SC number. Mean±s.e.m. 
*P<0.05; n≥8. (K) SC forced exhaustion design schematic: 10 days after three injections of CTX at 5-
days intervals, EDL fibers were isolated from injured hindlimbs and immediately fixed. (L) Number of 
Pax7+/Myf5- SCs in 100 isolated fibers. Mean±s.e.m. *P<0.05 vs. multiple injured WT; §<0.05 vs. not 
injured WT; n≥8.  

 

 

UnAG induces SC self-renewal through activation of atypical PKC/p38 pathway 

UnAG exerts its anti-atrophic and pro-differentiative effects on skeletal muscle through activation of 

p38 MAPK (Filigheddu et al., 2007; Porporato et al., 2013; Togliatto et al., 2013), a master regulator 

of SC activities, as its activation mediates either SC proliferation or differentiation (Jones et al., 2005; 

Palacios and Puri, 2006). The role of p38 MAPK is particularly relevant in SC self-renewal, since the 

asymmetric segregation of phosphorylated p38 MAPK in dividing SCs regulates their asymmetric 

division, triggering MyoD expression in only one daughter cell (Jones et al., 2005; Troy et al., 2012; 

Figure 4). Treatment of myofibers with UnAG for 36h increased the asymmetric distribution of 

phosphorylated p38 MAPK in SCs (Figure 9A and 9B), while the total p38 MAPK was mostly diffuse 

(Supplementary information, Figure S5). Since the asymmetric phosphorylated p38 MAPK 

colocalizes with the atypical PKCλ/ι in the dividing SC (Troy et al., 2012), we hypothesized that UnAG 

could enhance the asymmetric distribution of PKCλ/ι. As expected, UnAG treatment increased 

PKCλ/ι localization in one of the two SC halves (Figure 9C and 9D). Moreover, UnAG enhanced the 

asymmetric colocalization of PKCλ/ι and phosphorylated p38 MAPK, as UnAG treatment increased 
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the percentage of SCs with asymmetric distribution of the two proteins in the same side of the cell 

(Figure 9E).  

Asymmetric localization of PKCλ/ι and phosphorylated p38 MAPK during SC division is closely related 

to the Par complex formation during SC asymmetric division (Troy et al., 2012). The increased 

localization of both PKCλ/ι and phosphorylated p38 MAPK observed in UnAG-treated could be a 

direct consequence of an enhanced Par complex formation. Thus, we performed a proximity ligation 

assay (PLA) to detect and quantify the complexes of the two Par complex members PKCλ/ι and PAR3 

(Figure 3). The UnAG-treated SCs displayed an increased number of PLA dots compared to control 

(Figure 9F and 9G), suggesting that UnAG enhances Par complex assembly, thus increasing SC 

asymmetric localization of the polarity components and, eventually, SC asymmetric division. 

Accordingly, incubation with 10 µM aurothiomalate (ATM), an inhibitor of Par complex formation 

(Stallings-Mann et al., 2006), prevented the effect of UnAG on SC asymmetric division (Figure 10A).  

Par complex assembly during SC division defines the segregation of active p38 MAPK, sustaining SC 

asymmetric division and self-renewal. Incubation of UnAG-treated myofibers with 5 µM of p38 

MAPK inhibitor SB203580, completely abrogated the UnAG effect on self-renewal (Figure 10B), 

suggesting that p38 MAPK activation is required for UnAG-induced SC self-renewal. 

Altogether, these data indicate that UnAG treatment enhances the formation and asymmetric 

localization of the Par complex – and of phosphorylated p38 – within the SC undergoing cell division, 

thus increasing SC asymmetric division and self-renewal. 
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Figure 9. UnAG induces asymmetric localization of active p38 MAPK and PKCλ/ι within the SC and 
increases PAR3-PKCλ/ι complex formation. (A) Representative images and (B) quantification of 
asymmetric distribution of phospho-p38T180/Y182 in UnAG-treated vs. untreated (control) SCs. Cells 
over the dashed line display at least 50% more phospho-p38T180/Y182 in one half of the nucleus 
compared to the other half. Mean±s.e.m. *P<0.05; ≥30 fibers; n=3 independent experiments. Scale 
bar, 5 μm. (C) Representative images of PKCλ/ι and phospho-p38T180/Y182 distribution in control (top) 
and UnAG-treated (bottom) SCs (CD34 positive). Scale bar, 5 μm. (D) Quantification of asymmetric 
distribution of PKCλ/ι in UnAG-treated vs. untreated (control) SCs. Cells over the dashed line display 
at least 50% more PKCλ/ι in one half of the nucleus compared to the other half. **P<0.01; ≥30 fibers; 
n=3 independent experiments (E) Correlation between the asymmetric distribution of PKCλ/ι (x axis) 
and phospho-p38T180/Y182 (y axis) in control (left) vs. UnAG-treated (right) SCs. Each dot denotes a 
single SC. (F) Representative images of the proximity ligation assay (PLA)-detected complexes of 
PAR3 and PKCλ/ι (red) in control (top) vs. UnAG-treated (bottom) SCs (CD34 positive, green). Scale 
bar, 5 μm. (G) Quantification of the PLA dots per single SC in control vs. UnAG-treated SCs. 
Mean±s.e.m. *P<0.05; ≥30 fibers; n=3 independent experiments. 

 

 

 

 

 

 

 

Figure 10. UnAG induces asymmetric division and self-renewal through Par complex formation and 
p38 MAPK activation. (A) Percentage of asymmetric division events in SC doublets after 48h of UnAG 
treatment in the presence/absence of 10 μM ATM, an inhibitor of Par complex formation (see 
material and methods for details). Mean±s.e.m. *P<0.05; ≥22 doublets/treatment; n=4 independent 
experiments. (B) Percentage of Pax7+/MyoD- SCs after 96 h of UnAG treatment in the 
presence/absence of 5 μM p38 inhibitor SB203580. Mean±s.e.m. *P<0.05 vs. DMSO-treated (vehicle) 
control; ≥100 clusters of ≥25 myofibers/treatment; n=2 independent experiments. 
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Up-regulation of UnAG protects dystrophic muscles architecture and functionality 

The improved muscle regeneration in Tg mice and enhanced SC activity within the muscle of Tg mice 

and in response to UnAG treatment suggest that increase in UnAG may be beneficial for muscle 

diseases such as dystrophies, in which the lack of dystrophin impacts both on muscle fragility and on 

SC function, leading to chronic degeneration and impaired regeneration (Chang et al., 2016; Dumont 

et al., 2015). To test the hypothesis that up-regulation of UnAG circulating levels protects dystrophic 

muscles from deterioration, we crossed dystrophin-null mdx mice with heterozygous Myh6/Ghrl (Tg) 

mice, producing mdxTg+ mice and mdxTg– littermate controls. Histological analysis revealed, in mdxTg+ 

mice compared to the mdxTg– littermates, a mild shift toward bigger myofiber CSA in quadriceps of 1-

month- and 3-month-old animals, while no differences were observed in 6-months-old mice 

(Supplementary information, Figure S6A-C). Analysis of the Evans blue dye (EBD) uptake in 

diaphragms of 1-month- and 3-month-old revealed lower fiber damage in mdxTg+ mice compared to 

mdxTg–, while no differences were evident at 6 months of age (Figure 11A and 11B). During mdx 

pathology progression, the gradual collagen accumulation in diaphragms was delayed in mdxTg+ mice 

compared to mdxTg– littermates, becoming significantly lower at 6 months of age (Figure 11C and 

11D). Altogether these data indicate that up-regulation of UnAG ameliorates the dystrophic 

phenotype. Consistently, hanging-wire-test scores and latency-to-fall time, assessments of muscular 

functionality and endurance, were improved in mdxTg+ mice starting from 4 months of age (Figure 

11E and 11F), showing that the differences highlighted by histological analysis translated into 

enhanced functional performance.  

To assess if these UnAG activities could have clinical relevance, as a proof of concept, we 

exogenously administered UnAG to dystrophic mice employing adeno-associated virus (AAV)-

mediated delivery. We used the AAV9-Ghrl vector that has been demonstrated to protect the 

muscle from ischemic injury as the UnAG peptide does (Ruozi et al., 2015). We injected 3.5 x 1011 vg 

of either AAV9-Ghrl or AAV9-LacZ (control) in the tail vein of 3 week-old mdx mice, when the first 

round of muscle degeneration occurs (Grounds et al., 2008), and analyzed the effect on muscles at 3 
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months of age. Ghrelin up-regulation in muscles was confirmed by real-time RT-PCR (Supplementary 

information, Figure S7A and S7B). Analysis of diaphragms revealed less muscle damage (Figure 11G 

and 11H) and collagen deposition (Figure 11I and 11L) in AAV9-Ghrl-injected mice compared to the 

AAV9-LacZ-injected controls. Altogether, these data indicate that UnAG treatment is effective even 

after the onset of muscle degeneration, supporting the idea that UnAG administration could 

represent a potential treatment for muscular dystrophies. 

Altogether, these data show that upregulation of circulating UnAG partially relieves the pathological 

condition of mdx dystrophic mice. 
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Figure 11. UnAG upregulation in mdx mice attenuates the dystrophic phenotype. (A) 
Representative images and (B) quantification of Evan blue dye (EBD) uptake in diaphragms of 1, 3, 
and 6-month-old mdxTg– and mdxTg+ mice. Scale bars, 200 μm. Mean±s.e.m. **P<0.01 vs. mdxTg–; n≥4 
for each group. (C) Representative images of Masson trichrome staining and (D) quantification of 
collagen deposition in the diaphragm of 1, 3, and 6-month-old mdxTg+ and mdxTg– mice. Scale bars, 
200 μm. Mean±s.e.m. *P<0.05; n≥5 for each group. (E-F) Muscular functionality measured by 
hanging wire test scores (E) and average latency-to-fall time (F) of 4-month-old mdxTg– and mdxTg+ 
mice. Mean±s.e.m.; *P<0.05 and **P< 0.01 vs. mdxTg–; n=20. (G) Representative images and (H) 
quantification of Evan Blue Dye uptake in AAV9-LacZ- or AAV9-Ghrl-transduced diaphragms of 3-
month-old mdx mice. Scale bars, 200 μm. Mean±s.e.m. *P<0.05 vs. AAV9-LacZ-transduced muscles; 
n=5. (I) Representative images and (L) quantification of collagen deposition in AAV9-LacZ- and AAV9-
Ghrl-transduced diaphragms of 3-month-old mdx mice. Scale bars, 200 μm. Mean±s.e.m. *P<0.05 vs. 
AAV9-LacZ-transduced muscles; n=5. 

 

 

UnAG enhances dystrophin-null SC self-renewal and myogenic commitment 

To assess the direct effect of UnAG on dystrophic SCs, we isolated EDL fibers from dystrophin-null 

mdx and WT mice, and we cultured them in the presence or absence 100 nM UnAG for 96 h. The 

number of Pax7+/MyoD- SCs was 60% lower in mdx fibers compared to the WT ones, indicating an 

intrinsic self-renewal defect of dystrophin-deficient SCs, in agreement with previously reported data 

(Jiang et al., 2014); however, UnAG significantly raised the Pax7+/MyoD- SC portion in both WT and 

mdx fibers (Figure 12A). The relative increase of quiescent SCs, of about 50%, was the same in both 

WT and mdx fibers, indicating that UnAG promotes SC self-renewal independently from the 

presence of dystrophin. Also, UnAG enhances the number of myogenin-expressing SCs in mdx 

myofibers cultured for 72 (Figure 12B), indicating that the increase on quiescent SCs does not imply 

an unbalance between self-renewal and myogenic commitment.   

Coherently with the concept that UnAG promotes SC self-renewal, we observed that the exhaustion 

of SC pool, characteristic of the advanced pathology (Jiang et al., 2014), was less pronounced in 

diaphragms of 12-month-old mdxTg+ mice compared to mdxTg– mice (Figure 12C). Consistently, after 

96 h in culture, myofibers from mdxTg+ mice displayed twice as much Pax7+/MyoD- SCs, likely 

reflecting an initial higher content of functional SCs (i.e. able to undergo self-renewal) compared to 

mdxTg– mice (Figure 12D).  
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Figure 12. UnAG improves dystrophin-null SCs activity. (A) Percentage of Pax7+/MyoD- SCs after 96 
h of treatment of WT or mdx myofibers with 100 nM UnAG. Mean±s.e.m. **P<0.01 vs. WT control, § 
P<0.01 vs. WT control, and # P<0.01 vs. mdx control. ≥25 myofibers/treatment; single experiment. (B) 
Number of Myog+/Sdc4- SCs per fibers after 72 h of treatment of mdx myofibers with 100 nM UnAG. 
* P<0.01 vs. mdx, ≥45 myofibers/treatment; n=3 independent experiments. (C) Number of Pax7+ 
cells/mm2 in diaphragm sections of 12-month-old mdxTg+ and mdxTg– mice. Mean±s.e.m. §P<0.05 vs. 
WT; *P<0.05 vs. mdxTg–; n=7. (D) Percentage of Pax7+/MyoD- SCs on myofibers isolated from aged 
(12 months) WT, mdxTg– and mdxTg+ cultured for 96 h in low proliferation medium. § P<0.01 vs. WT 
control and * P<0.05 vs. mdxTg–, ≥23 myofibers/treatment, single experiment. 
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SUPPLEMENTARY INFORMATION 

 

 

 

Supplementary Figure 1. CTX injury induces ghrelin gene expression in skeletal muscle. Relative ghrelin gene 
expression was determined by real-time RT-PCR in tibialis anterior muscle after 18 h from CTX injection. 
**P<0.01 vs. non-injured contralateral muscle; n = 10. 
 
 
 

 
 
 
Supplementary Figure 2. Cross-sectional area in basal and regenerating muscle of WT vs. Myh6/Ghrl 
transgenic mice. (A-B) Representative images of laminin and DAPI staining and quantification of cross-
sectional area (CSA) frequency distribution of myofibers in basal (not-injured) conditions (A) and of 
regenerating (i.e. centronucleated) myofibers after 15 days from CTX injection (B) in TA muscles of WT vs 
Myh6/Ghrl (Tg) mice. N=5 for each group. Scale bar, 100 µm.  
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Supplementary Figure 3. Embryonic myosin heavy chain (eMyHC)-positive myofibers and transient collagen 
deposition during muscle regeneration in WT vs. Tg mice. (A) laminin (red), eMyHC (green), and DAPI (blue) 
staining in regenerating muscle of WT and Tg mice at 3 days post-CTX injection. Scale bar, 50 µm. (B-C) 
Representative images (B) and quantification (C) of eMyHC-positive myofibers in regenerating muscle of WT 
and Tg mice at 7 days post-CTX. Mean±s.e.m. N=5 for each group. Scale bar, 50 µm. (D-E) Representative 
images of Masson trichrome staining (D) and quantification of collagen deposition (E) in basal condition (day 
0) and in the regenerating area after 3, 7, and 15 days post CTX-injection in WT vs. Tg animals. Mean±s.e.m. 
N=5 for each group. Scale bar, 100 µm. 
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Supplementary Figure 4. Pax7 positive cells during muscle regeneration in WT vs. Myh6/Ghrl transgenic 

mice. Representative images (A) and quantification (B) of Pax7 positive nuclei in basal condition (day 0) and 

during muscle regeneration (after 3, 7, and 15 days post-CTX) in TA of WT vs. Myh6/Ghrl (Tg) mice. 

Mean±s.e.m. *P<0.05 vs. WT. n=5. Scale bar, 50 µm.  

 

 

 

 

 

 

 

Supplementary Figure 5. Total and phosphorylated p38 MAPK in control vs. UnAG-treated SC. UnAG 

treatment increases the localization of phospho-p38T180/Y182 while maintaining unperturbed the total p38 

uniform distribution. Scale bar, 5 µm.  
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Supplementary Figure 6. Myofiber cross-sectional area in quadriceps of mdxTg- vs. mdxTg+. (A-C) 

Representative images of laminin (green) and DAPI (blue) staining (left) and frequency distribution (right) of 

myofiber cross-sectional area (CSA) in mdxTg- vs. mdxTg+ mice quadriceps at 1 (A), 3 (B), and 6 (C) months of 

age. N=3 for (A); N=5 for (B-C). Scale bar, 50 µm. 
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Supplementary Figure 7. AAV9-Ghrl injection induces ghrelin gene expression in skeletal muscle. Relative 

ghrelin gene expression by real-time RT-PCR in mdx QUAD 2 weeks (A) and 10 weeks (B) after AVV9-Ghrl 

injection. Mean±s.e.m. **P<0.01, *P<0.05; N≥5. 

 

 

 

 

 

 

Supplementary Figure 8. UnAG treatment enhances fusion of primary myoblasts. Fusion index calculated as 
MyHC+ cells with at least two nuclei above the total number of MyHC+ cells of primary myoblast-derived 
myotubes, treated or not with 100 nM UnAG in differentiation medium for 3 days. Mean±s.e.m. **P<0.01; 
n=3 independent experiments. 
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CONCLUSION 

 

The data herein presented demonstrate that UnAG acts on SCs enhancing their activation, differentiation, 

and self-renewal. SC self-renewal depends on either symmetric or asymmetric division of a subpopulation of 

non-committed progenitors. For instance, Wnt7a promotes SC self-renewal through induction of their 

symmetric division via a non-canonical, planar-cell-polarity pathway (Le Grand et al., 2009) and without 

affecting SC differentiation. On the contrary, UnAG promotes SC self-renewal enhancing at the same time 

their terminal differentiation, as shown by the increase of fusion index on cultured SCs (Supplementary 

information, Figure S8). This effect is likely a consequence of UnAG-induced increase on SC asymmetric 

division that simultaneously maintains the stem compartment of MyoD- SCs and expands the number of the 

committed MyoD+ myoblasts able to respond to the pro-differentiative activity of UnAG, in agreement with 

the effect observed on C2C12 (Filigheddu et al., 2007).  

SC asymmetric division is sustained by the Par polarity complex that includes the atypical PKCλ/ι, which 

controls the asymmetric activation of p38 MAPK that, in turn, triggers MyoD protein expression, by inhibiting 

TTP-dependent MyoD mRNA decay (Hausburg et al., 2015; Troy et al., 2012). Phosphorylated p38 MAPK plays 

a key role in asymmetric division (Troy et al., 2012); indeed, loss or reduction of asymmetric segregation of 

phosphorylated p38 MAPK and its diffuse activation within the SC determines a strong decline of asymmetric 

division events and the consequent impairment of SC self-renewal ability in aged mice (Bernet et al., 2014). 

UnAG promotes the asymmetric cosegregation of PKCλ/ι and of phospo-p38 MAPK in myofiber-associated 

SCs and enhances Par complex assembly. Consistently, UnAG induction of asymmetric division and self-

renewal depends on PKCλ/ι-Par6 complex formation and p38 MAPK activity. These results suggest that UnAG 

stimulates SC asymmetric division and self-renewal by promoting the Par complex formation and, thus, the 

PKCλ/ι-mediated asymmetric activation of p38 MAPK.  

The expansion of SCs through asymmetric division and the enhancement of their differentiation elicited by 

UnAG underline the ability of this hormone to enhance skeletal muscle regeneration (Figure 7A and 7C, 

(Ruozi et al., 2015; Togliatto et al., 2013)), consistently with the hypothesis that ghrelin induction in the 
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injured muscle contributes to the repair process. Although muscle damage induces ghrelin expression, 

whether this increase occurs within the muscle fibers or it is due to other cells (e.g. inflammatory infiltrate) 

remains to be elucidated.  

The more efficient engraftment of donor SCs in Tg mice (Figure 7F and 7G) is consistent with a direct effect 

on SC functionality as well. However, the better engraftment may also depend on UnAG anti-inflammatory 

activity. Indeed, in skeletal muscle, UnAG inhibits TNF-α expression following either burn injury or high-fat 

diet (Gortan Cappellari et al., 2016; Sheriff et al., 2012). Furthermore, we cannot rule out that the increased 

engraftment of SCs in Tg muscle may partially be due to an anti-apoptotic effect of UnAG on transplanted 

SCs since UnAG inhibits apoptosis in both cardiomyocytes and myoblasts through activation of autophagy 

(Gortan Cappellari et al., 2016; Ruozi et al., 2015). 

Altogether, these findings indicate that UnAG regulates multiple steps of muscle regeneration by stimulating 

asymmetric division-mediated SC self-renewal and by promoting terminal differentiation and fusion of 

proliferating myoblasts. The capacity of UnAG to induce SC self-renewal also in vivo translates in the ability 

to preserve the quiescent SC pool upon repeated cycles of injury/regeneration.  

UnAG pro-regenerative effect on skeletal muscle and its activity on SCs may account for the less severe 

phenotype observed in dystrophic mice with high levels of circulating or local UnAG in mdxTg+ or AAV-Ghrl-

treated mdx mice, respectively. However, the anti-inflammatory, and, consequently, the anti-fibrotic 

activities of UnAG (Angelino et al., 2015; Prodam and Filigheddu, 2014) could be likewise relevant to explain 

the protection of tissue architecture and the amelioration of muscle performance. In addition, as defective 

basal autophagy contributes to the dystrophic phenotype (Pal et al., 2014; De Palma et al., 2012), UnAG-

enhanced autophagy may likewise contribute to its protective activity in mdx mice. 

In dystrophy, the exhaustion of the SC pool has been assumed to cause the failure of regeneration to keep 

up with muscle damage. However, in both human and mice SC pool exhaustion likely sets in only at late 

stages of the pathology as a consequence of defective SC self-renewal (Jiang et al., 2014). Furthermore, 

dystrophic muscles show an increased overall number of SCs, although, within this figure, the portion of 

quiescent SCs is reduced, reflecting an ongoing regeneration (Dumont et al., 2015; Jiang et al., 2014; Kottlors 
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and Kirschner, 2010). It is plausible that the defect in muscle regeneration of mdx mice resides at least in part 

in the defective asymmetric division of dystrophin-null SC that translates in an imbalance between SCs and 

committed myoblasts able to terminally differentiate and repair the damaged muscle (Chang et al., 2016; 

Dumont et al., 2015). The finding that UnAG, in dystrophin-null SCs, enhances their self-renewal and 

increases the number of committed myoblasts suggests that UnAG promotes SC asymmetric division by 

activating pathways that are independent of dystrophin expression. Thus, we can speculate that the increase 

in the absolute number of functional SCs triggered by UnAG in mdx mice may increase the number of 

committed progenitors, thus sustaining the better muscle regeneration and improved dystrophic phenotype 

observed in mdxTg+ mice.  

Altogether, these data suggest that increase in either circulating or local UnAG levels could delay the 

progression of the disease. A therapeutic approach would presumably involve the chronic administration of 

UnAG to dystrophic patients. Although the receptor through which UnAG exerts its biological activities 

remains elusive, UnAG has been recently used in clinical trials to assess its metabolic effects, and it was 

reported that the peptide was well-tolerated, and no serious adverse events occurred during the studies 

(Benso et al., 2012; Broglio et al., 2004; Kiewiet et al., 2009; Özcan et al., 2014; Tong et al., 2014); therefore, 

UnAG could be a realistic adjuvant treatment in the near future to help to preserve muscles of dystrophic 

patients.  
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FUTURE PERSPECTIVES 

The data presented in this thesis demonstrate that UnAG increases Par complex formation and atypical 

PKC/active p38 MAPK localization during SC activation. However, how UnAG exerts these activities and, most 

importantly, the identity of the receptor that mediates its function are still to be elucidated. Several studies 

on different cell types, including myoblast, strongly suggest that the effects of UnAG are mediated by a Gαs 

protein-coupled receptor (GPCR) (Figure 6; Granata et al., 2007; Porporato et al., 2013; Reano et al., 2014). 

Uncovering the identity of this receptor will allow to define its localization in the SC, its role within the SC 

niche, and its expression profile in the heterogeneous quiescent SC population as well as during SC myogenic 

progression. Moreover, its identification could help to understand the intracellular signaling pathway 

underling Par complex formation and atypical PKC/P-p38 MAPK localization in the active SC.  

The damage-induced upregulation of the ghrelin gene (Ghrl) in the skeletal muscle (Supplementary Figure 

S1) and the increased preproghrelin expression (Gurriarán-Rodríguez et al., 2012) suggest that UnAG could 

be physiologically implicated in the repair process of muscle. In vivo genetic ablation of the ghrelin gene and, 

possibly, of the UnAG receptor will finally define the contribution of UnAG in the physiological response to 

muscle injury. Moreover, the UnAG protective effects on skeletal muscle extend also to cardiac muscle. 

Indeed, after heart ischaemic damage, the in vivo functional selection of protective factors from a library of 

100 different AAV-delivered cDNA, identified ghrelin as the unique protective factor against ischaemia-

induced heart damage, exerting both structural and functional recovery (Ruozi et al., 2015). This suggests 

that UnAG could be a strong protective factor also for DMD-related cardiomyopathies, mainly dependent on 

cardiomyocyte necrosis and apoptosis. A relevant future perspective could imply the investigation of the 

cardioprotective effects of UnAG in dystrophic mice, by the assessment of structural and functional changes 

during the pathology progression. The UnAG effects on cardioprotection could synergize with its positive 

activities on muscle regeneration and SC functionality observed in dystrophic mice (reported in this thesis), 

and this could strengthening its therapeutic potential. 
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 Moreover, the recent finding of a cell-autonomous defect in dystrophin-null SCs (Dumont et al., 2015) 

indicates that the functional recovery of SC asymmetric division and self-renewal exerted by UnAG could 

impact on the dystrophic phenotype, although the relevance of this effect on the structural and functional 

muscle recovery in mdx dystrophic mice remains to be elucidated. More in general, further studies are 

required to assess the involvement of SC intrinsic and extrinsic defects - and the consequent rescue possibility 

- in the progression of muscle wasting-related conditions, such as cancer cachexia, sarcopenia, and 

dystrophies. 
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Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a
major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory
response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated
ghrelin are the main products of the ghrelin gene.The acylated form, through its receptor GHSR-1a, stimulates appetite and growth
hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several
biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they
might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence
regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a
predominant characteristic.

1. Introduction

Repair of damaged tissues is a complex physiological pro-
cess that results in the deposition of extracellular matrix
(ECM) components by resident fibroblasts [1]. Although the
deposition of ECM proteins is normally a transient event,
repeated tissue injuries in chronic pathologies or dysregu-
lation of this process can lead to fibrosis and, eventually, to
organ dysfunction [2]. Fibrosis can affect almost all tissues
and organs, including heart, liver, kidney, lungs, and skin,
therefore representing amajor health issue for which efficient
therapies are needed.

Regardless of the specific fibrotic disease and organs
affected, the mechanisms involved in the progression of this
pathology are very similar. Indeed, damaged tissue repair
can be recapitulated in four overlapping phases, hemostasis,
inflammation, proliferation, and remodeling in which several
cell types, closely interconnected to each other, play an
important role [3]. During the phases of hemostasis and
inflammation, platelets secrete cytokines, including platelet-
derived growth factor (PDGF) and transforming growth
factor-𝛽 (TGF-𝛽) that, in turn, recruit macrophages, neu-
trophils, and natural-killer cells to the site of injury. These
cells, besides removing dead cells, debris, and pathogens,

release cytokines that trigger activation and proliferation of
resident fibroblasts, thus affecting ECM production [4]. For
example, macrophages release TGF-𝛽1 that controls a wide
spectrum of activities, such as promoting fibroblast differ-
entiation into active myofibroblasts, inducing ECM protein
expression [5, 6], and repressing the expression of matrix
metalloproteinases (MMPs), key proteins able to degrade
several ECM components [7]. In addition, macrophages
release tumor necrosis factor-𝛼 (TNF-𝛼) and interleukin-1𝛽
(IL-1𝛽) that promote fibroblast activation and fibrotic tissue
deposition [2]. Tissue damage and inflammation increase
reactive oxygen species (ROS) production, which, in turn,
contributes to fibrosis, enhancing the secretion of fibrogenic
factors [8].

Acylated and unacylated ghrelin are circulating peptide
hormones encoded by the ghrelin gene which are mainly
released from the stomach during fasting [9]. The 117-amino
acid preproghrelin undergoes proteolytic cleavages leading to
the mature ghrelin peptides and to another biological active
peptide named obestatin [10]. The acylated form, through
high affinity binding to the growth hormone secretagogue
receptor type 1a (GHSR-1a), induces GH release and pro-
motes food intake, adiposity, and positive energy balance [11–
13]. Alongside its role in feeding and energy homeostasis,
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Table 1: Changes of acylated ghrelin, unacylated ghrelin, and obestatin blood concentrations in human pathological conditions leading to
organ fibrosis.

Pathological condition Acylated ghrelin Unacylated ghrelin Obestatin Notes Reference

Chronic heart failure
(CHF)

↑ nd nd [46]

↓ nd nd Acylated ghrelin levels positively
correlate with favorable prognosis [47]

Chronic hepatitis C ↓ nd nd Acylated ghrelin levels negatively
correlate with fibrosis severity [48]

Alcoholic hepatitis ↓ nd nd Acylated ghrelin levels negatively
correlate with fibrosis severity [48]

Nonalcoholic fatty liver
disease (NAFLD) nd nd = [90]

Nonalcoholic
steatohepatitis (NASH)

= ↑ = NASH versus non-NASH (among
NAFLD patients)

[50]
↑ = ↑

Severe NASH (fibrosis index ≥2) versus
not severe NASH (fibrosis index <2)

Chronic obstructive
pulmonary disease (COPD) ↑ nd nd Acylated ghrelin levels positively

correlate with inflammation [51]

Systemic sclerosis ↓ ↓ nd [52]

ghrelin exerts also many other biological activities, including
cardioprotection and enhancement of cardiac function [14],
a strong anti-inflammatory activity [15], antioxidant activity
on several cell types and tissues such as liver, heart, and
lung [16–19], and neuroprotective activities [20].The acylated
ghrelin anti-inflammatory function mainly depends on its
direct effect on T lymphocytes and monocytes, in which it
inhibits the expression of proinflammatory cytokines such as
IL-1𝛽, IL-6, and TNF-𝛼 [21].

Acylation of ghrelin is essential for its binding to GHSR-
1a, since the unacylated form does not activate this receptor,
unless administered at very high concentrations, in which
case it acts as a functional agonist [22–25]. However, both
acylated and unacylated ghrelin share high affinity binding
sites in a number of cell lines and tissues, where they mediate
several activities, such as protection from apoptosis and
oxidative injury [26–32], stimulation of cell differentiation
[33–36], induction of proliferation [30, 37–39], and protec-
tion of skeletal muscles from wasting [40–42]. These effects
suggest the presence of a not yet identified common receptor
of both acylated and unacylated ghrelin. In addition, some
biological activities are elicited only by the unacylated but
not the acylated form of ghrelin, suggesting the existence of a
specific receptor for unacylated ghrelin [39, 43–45].

Circulating levels of acylated and unacylated ghrelin are
often altered in pathological states associated with fibro-
sis and this suggests a role for these hormones in tissue
homeostasis and/or in etiology of these conditions ([46–52],
Table 1).

2. Acylated and Unacylated Ghrelin as
Antifibrotic Factors

2.1. Heart. The massive deposition of collagen in the
heart that occurs upon several stimuli, such as cardiomy-
ocyte death, inflammation, hypertension-induced enhanced

workload, hypertrophy, or chemotherapy with doxorubicin,
plays a crucial role in cardiac remodeling after heart injury
and may contribute to ventricular arrhythmias, left ventricu-
lar dysfunction, heart failure, and sudden cardiac death [53].

Together with inflammation, cardiac fibroblasts, themost
abundant cells in the heart, are the main players in cardiac
remodeling: upon injury they undergo proliferation and
synthesize collagen to replace the necrotic or apoptotic
cardiomyocytes [53].

Due to the antiapoptotic and anti-inflammatory activity
of ghrelin, several researchers investigated the antifibrotic
effect of acylated and unacylated ghrelin in different mod-
els of cardiac injury. Doxorubicin, an antibiotic used in
chemotherapy, alters cardiomyocytes energymetabolism and
induces their apoptosis, thus determining myocardial fibro-
sis, which eventually results in cardiomyopathy and conges-
tive heart failure [54]. Accordingly with the in vitro data on
the cardioprotective effect of acylated and unacylated ghrelin
against doxorubicin-induced apoptosis of cardiomyocytes
[26], it has been recently demonstrated that both peptides
are effective in inhibiting the cardiotoxicity of this drug also
in vivo [55, 56]. Unacylated ghrelin displays antiapoptotic
effects on cardiomyocytes through the activation of the
prosurvival ERK1/2 and PI3K/Akt signaling pathways ([26,
55], Figure 1). Acylated ghrelin seems to play an important
role in the regulation of autophagy, a cellular pathway
involved in protein and organelle degradation. Although this
cellular pathway is normally a protective mechanism, exces-
sive autophagy can destroy essential cellular components
and eventually induce apoptosis [57]. Doxorubicin treatment
induces oxidative stress, autophagy, apoptosis, and, finally,
cardiac dysfunction and collagen deposition in the heart
[56, 57]. In this experimentalmodel of cardiac injury, acylated
ghrelin inhibits ROS-induced autophagy and cardiomyocyte
death through the inhibition of AMPK and activation of p38-
MAPK pathway ([56], Figure 1), thus leading to a decrease
of doxorubicin-induced fibrosis and cardiac dysfunction.
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Figure 1: Schematic representation of the molecular pathways involved in the antifibrotic activity of ghrelin and unacylated ghrelin. See text
for details.

The antifibrotic effects of acylated and unacylated ghrelin
have been demonstrated in other experimental models of
cardiac injury, such as isoproterenol administration, myocar-
dial infarction (MI), and spontaneous or diabetes-associated
hypertension [58–62].The subacute injection in rats of the 𝛽-
adrenergic agonist isoproterenol induces myocardial injury
and fibrosis and increases myocardial ghrelin expression and
plasmatic acylated ghrelin levels [58, 59]. In this model,
acylated ghrelin treatment ameliorates myocardial function
and reduces fibrosis, although the mechanisms of such a
protection have not been elucidated [59]. The unacylated
form of the peptide displays similar effects, suggesting that
the antifibrotic activity of ghrelin is mediated by both GHSR-
dependent and GHSR-independent pathways [59].

Ghrelin has a positive effect on cardiac remodeling and
cardiac function also in rats undergoing MI by coronary
artery ligation. MI induces a strong increase in tissutal IL-
1𝛽 and TNF-𝛼 that is inhibited by the chronic administration
of ghrelin [60]. Ghrelin also blunts the induction of MMP-
2 and MMP-9 that could be viewed as an inhibition of
overall fibroblasts activity [60]. However, in spontaneously
hypertensive rats, the synthetic GH-secretagogue hexarelin
prevents cardiac fibrosis by inducing, rather than by inhibit-
ing, MMP-2 and MMP-9 activity [61]. Notably, unacylated
ghrelin, despite reducing cardiac fibrosis in diabetic mice,
has no effect on other MMPs involved in cardiac fibrosis

development such as MMP-8 and MMP-13 [62]. The effect
of unacylated ghrelin treatment was in fact investigated also
in db/db diabetic mice compared to nondiabetic mice [62],
since cardiac fibrosis is also observed in diabetic patients
without hypertension [63]. In this model of diabetic mice,
unacylated ghrelin impairs collagen accumulation by upreg-
ulating adiponectin cardiac expression [62], which is known
to prevent myocardial hypertrophy and fibrosis [64, 65].

2.2. Liver. In liver, hepatitis C or B viral infections, autoim-
mune diseases, alcohol abuse, and nonalcoholic fatty liver
disease (NAFLD) can progress to a severe fibrotic disease
in which parenchymal tissue is replaced by nonfunctional
fibrotic tissue, a condition defined as cirrhosis [66]. Removal
of the causative agent, such as viral infections, could revert
liver fibrosis, but in the case of autoimmune diseases and
NAFLD the causative agent is not clearly defined and the
identification of new agents that could modulate this process
is of pivotal importance [67].

In patients with alcoholic hepatitis and chronic hepatitis
C, plasmatic ghrelin levels are lower than in healthy subjects
and negatively correlate with the severity of fibrosis ([48],
Table 1). Circulating ghrelin levels also correlate with other
hepatic fibrotic diseases; however, in the case of patients
with NAFLD, a worsening of the fibrotic stage is associated
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with high plasmatic concentration of both acylated and
unacylated ghrelin ([50], Table 1). Interestingly, a screening
of miRNAs expression in visceral adipose tissue of NAFLD
patients revealed that miR-132, of which the ghrelin gene is
a predicted target, is downregulated in nonalcoholic steato-
hepatitis (NASH) compared to non-NASH patients [68],
although a biological validation of this relationship still needs
to be performed.

Although the causative relationship between ghrelin cir-
culating levels and NAFLD is not defined, ghrelin might have
a therapeutic potential in this and other hepatic pathologies,
as demonstrated in several experimental models. The most
used models to induce hepatic fibrosis include CCl

4
or

thioacetamide (TAA) administration to rodents, which lead
to oxidative stress-mediated liver cirrhosis [69]. Another
model to induce liver fibrosis consists in bile duct ligation
(BDL), which causes accumulation of hydrophobic bile acids
in the liver, leading to ROS formation, oxidative damage,
inflammatory cell accumulation, and the increase of serum
proinflammatory cytokines [70]. In addition, NAFLD may
be reproduced in rats by feeding animals with a high-fat
diet, thus inducing liver fat accumulation, inflammation, and
cellular necrosis [71]. In this model, ghrelin treatment blunts
the induction of TNF-𝛼 and IL-6 expression, counteracts
hepatic oxidative stress, and inhibits hepatic cell apoptosis
[72]. The beneficial effects of ghrelin on liver injury and
fibrosis have been pointed out by other studies as well.
Indeed, in rats with chronic hepatic fibrosis caused by BDL,
ghrelin administration prevents hepatic damage by blunting
the BDL-induced increase of TNF-𝛼, IL-1𝛽, and IL-6 plasma
levels [73]. Moreover, ghrelin treatment impairs neutrophil
infiltration and diminishes the amount of myofibroblast
accumulation in the injured liver [48, 73]. Accordingly, ghre-
lin downregulates the expression of collagen-𝛼1 and TGF-
𝛽1 in primary hepatic stellate cells (HSC), the main hepatic
fibrogenic cells [48], resulting in a diminished collagen
deposition [48, 73]. Ghrelin features anti-inflammatory and
antifibrotic effects also in TAA-induced hepatic injury in
rats where it attenuates liver injury and collagen deposition
through inhibition of hepatic cell apoptosis and antioxidative
activity, in a way partially mediated by the induction of nitric
oxide (NO) [49].

Finally, the physiological role of the ghrelin gene in the
establishment of liver fibrosis was investigated exploiting
ghrelin knock-out mice that display muchmore severe CCl

4
-

induced liver injury and fibrosis compared to wild type
animals, suggesting that endogenous ghrelin is required for
a proper response to liver damage [48].

2.3. Kidneys. Ghrelin is expressed in kidneys and its expres-
sion is altered in pathological conditions such as glomeru-
lopathies, in particular in the proliferative form, in which
the immunoexpression of ghrelin is abated [74]. Moreover,
the expression of ghrelin negatively correlates with the
profibrotic protein endothelin-1 and interstitial inflammatory
cell infiltration, suggesting that the loss of ghrelin could
contribute to the development of renal interstitial fibrosis,
which is the common feature of different end-stage renal
diseases [74].

The renin-angiotensin system (RAS) is a well-known reg-
ulator of blood pressure and contributes to the development
of target organ damage due to hypertension. Angiotensin-II
(AngII) is themainmediator of RAS-induced chronic kidney
damage through multiple mechanisms, including promotion
of inflammation, fibrosis, oxidative stress, and senescence
[75]. Indeed, in the experimental model of chronic kidney
disease induced by AngII infusion, the kidneys display
increased ROS and an accelerated tissue senescence [76, 77].
In addition, treated mice express higher levels of TGF-𝛽
and plasminogen activator inhibitor-1 (PAI-1) than saline-
infused animals [78]. In this model, ghrelin impairs renal
tubular damage, fibrosis development, and senescence by
both reducing the oxidative stress and maintaining the
redox state. This is mediated by the induction of UCP2 and
PGC1𝛼 that affect ROS production andmitochondriogenesis,
respectively ([78], Figure 1).

The antifibrogenic activity of ghrelin was demonstrated
also in a rat model of renal damage obtained by unilateral
ureteral obstruction (UUO), which results in tubular injury
and cell death, with interstitial macrophage infiltration [79].
In this model, ghrelin protects renal tubular cells from
apoptosis, impairs macrophage infiltration, and reduces the
induction of the proinflammatory cytokines IL-1𝛽, TNF-
𝛼, and monocyte chemoattractant protein-1 (MCP-1) [80].
Moreover, this work demonstrates that ghrelin attenuates
renal fibrosis by inhibiting fibroblast differentiation and
by blocking epithelial mesenchymal transition (EMT), thus
stabilizing the epithelial phenotype [80]. The mechanisms
through which ghrelin elicits its antifibrotic activity involve
the reduction of collagen I/III, fibronectin, and 𝛼-SMA
expression via inhibition of the TGF-𝛽1/Smad3 signaling
pathway [80].

2.4. Lungs. Lung fibrosis occurs as a consequence of acute
lung injury leading to persistent respiratory failure. Lung
fibrosis is usually differentiated into distinct types, includ-
ing diffuse fibrosing alveolitis, diffuse interstitial fibrosis,
and idiopathic pulmonary fibrosis, which is considered the
most common and severe form of pulmonary fibrosis [81].
Currently, there are no therapies to counteract acute lung
injury progression and lung transplantation remains the only
possible intervention in end-stage disease [81].

Acute lung injury is characterized by the damage of
the alveolar capillary barrier, neutrophil accumulation, and
the induction of proinflammatory cytokines, followed by
devastating lung fibrosis [82, 83]. In particular, the exfoliation
of alveolar epithelial cells from alveolar septa leads to the
activation of fibroblasts and the subsequent massive ECM
deposition [82].

Cecal ligation and puncture (CLP), the most used tech-
nique to induce peritonitis and sepsis, also induces lung
injury and fibrosis as direct consequence of hypoxemia,
neutrophilic inflammation, and alveolar edema [83].

In CLP-treated rats, ghrelin attenuates acute lung injury
and mortality through inhibition of nuclear factor- (NF-)
𝜅B activity ([84], Figure 1). NF-𝜅B is a transcription factor
that regulates gene expression of several cytokines, including
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TNF-𝛼, IL-6, IL-1, and IL-8 [85]. Accordingly, treatment with
ghrelin reduces pulmonary levels of TNF-𝛼 and IL-6 in CLP-
treated rats [84].

Another experimental model used to induce acute lung
injury in rodents is the intratracheal injection of bleomycin
that promotes massive cell death, neutrophil and lymphocyte
infiltration, cytokine production, and fibrosis [83, 86]. In
bleomycin-treated mice, ghrelin administration improves
animal survival in a dose-dependent manner and maintains
lung architecture by reducing fibrosis [86]. This antifibrotic
activity is due to the impairment of neutrophil infiltration and
accumulation in bronchoalveolar lavage fluid and through
the inhibition of proinflammatory cytokines and of IGF-1
release, which promotes collagen production by fibroblasts
[86]. In addition, the inhibition of alveolar epithelial cell
death, observed in ghrelin-treated mice, represents another
mechanism that contributes to ghrelin antifibrotic effects,
since the prevention of the denudation of alveolarmembranes
impairs the subsequent fibrosis establishment [86].

In the same model of lung fibrosis, the traditional
Japanese herbal medicine rikkunshito, known to stimulate
a strong secretion of ghrelin, reduces lung fibrosis and
ameliorates the systemic cachectic condition [87]. However,
rikkunshito effects are only partially due to the associated
ghrelin increase, since it maintains its protective effects also
in mice devoid of the ghrelin gene [88].

2.5. Systemic Sclerosis. Systemic sclerosis, or scleroderma, is
an autoimmune chronic connective tissue disease character-
ized by extensive fibrosis of the skin and internal organs,
including lungs, gastrointestinal tract, kidneys, and heart
[52]. Plasmatic levels of acylated and unacylated ghrelin are
lower in systemic sclerosis patients than in healthy controls
and even lower in patients with interstitial lung disease,
suggesting that acylated ghrelin levels inversely correlate with
tissue fibrosis ([52], Table 1). Consistently, acylated ghrelin
treatment of fibroblasts isolated from systemic sclerosis
patients reduces TGF-𝛽1 expression and collagen production
[52].

Skin scleroderma might be experimentally induced in
mice by subcutaneous injections of bleomycin that result
in increased dermal thickness, a higher number of 𝛼-SMA-
positive myofibroblasts, and greater infiltration of inflamma-
tory cells. All these effects are prevented by both acylated and
unacylated ghrelin [89]. Taken together, these data suggest
that restoring normal circulating acylated andunacylated lev-
els might efficiently contrast the fibrosis induced by systemic
sclerosis.

3. Conclusions

Fibrosis is an intrinsic response to chronic injury, main-
taining organ integrity when extensive necrosis or apopto-
sis occurs. With protracted damage, fibrosis can progress
towards excessive scarring and organ failure. To date, no satis-
factory treatments are available. Anti-inflammation strategies
are one of the possible therapeutic approaches to fibrosis.
Acylated ghrelin has a potent anti-inflammatory activity and

its ability to inhibit proinflammatory cytokines expression
and release has been demonstrated by a large number of
studies, both in vitro and in vivo [15]. Most of the studies
on the antifibrotic effects of acylated and unacylated ghrelin
agree that the mechanism of action includes the reduction of
inflammation. However, also their effect on oxidative stress
reduction plays a crucial role in repressing the formation
of fibrosis, and their broad antiapoptotic activity surely
contributes inmaintaining organ structure and function.This
has, however, raised a doubt that if they inhibit apoptosis also
in myofibroblasts, this could help, instead of hinder, fibrosis
[67].

Circulating levels of ghrelin are often altered in patholo-
gies characterized by the presence of fibrosis; however, it is
difficult to discern a causative effect between ghrelin levels
and fibrosis, as it is plausible that alterations in ghrelin
levels reflect body mass and/or body energy metabolism.
This is particularly possible in pathologies co-occurring with
cachexia, such as heart and renal failure, inwhich the increase
of ghrelin may represent a compensatory mechanism of the
organism in the attempt at re-establishing optimal energetic
balance or the establishment of ghrelin resistance [42]. How-
ever, in pathologies such as scleroderma, in which fibrosis
affects the gastrointestinal tract, it cannot be excluded that
the altered levels of ghrelin are a direct consequence of the
altered gut condition.

Based on the studies reviewed herein, ghrelin, both in its
acylated and unacylated forms, acts at least at two different
levels. On one side, ghrelin peptides reduce the infiltration of
inflammatory cells in the injured tissue and the subsequent
release of cytokines responsible for fibroblast activation.
On the other side, they directly affect fibroblast activity by
reducing collagen production through the inhibition of TGF-
𝛽 signaling pathway.

In conclusion, ghrelin peptides and their analogues
appear to be promising in the treatment of fibrosis, although
their safety and efficacy in long-term use still need to be
elucidated.
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Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease 
states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associ-
ated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that 
stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. 
Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG 
share several GHSR-1a–independent biological activities. Here we investigated whether UnAG and AG could 
protect against skeletal muscle atrophy in a GHSR-1a–independent manner. We found that both AG and UnAG 
inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, 
and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle 
atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a–medi-
ated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of 
Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act 
on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.

Introduction
Skeletal muscle atrophy involves massive loss of muscle structural 
proteins, which leads to muscle weight decrease and progressive 
loss of muscle function. Skeletal muscle atrophy is induced by 
muscle denervation and disuse, and it is also the key component 
of cachexia, a catabolic, debilitating response to several diseases. 
Cachectic patients not only sustain a decreased quality of life, but 
also face a worse prognosis of the underlying pathology, making 
cachexia an important target for treatment (1). Ghrelin is a circu-
lating peptide hormone, octanoylated on Ser3, that is mainly pro-
duced by the stomach, which, by acting on the hypothalamus and 
the pituitary, induces GH secretion and stimulates food intake and 
adiposity through binding to its receptor, GHSR-1a (2–5). In addi-
tion to its endocrine activities, ghrelin protects cardiac function 
after heart damage (6, 7). In vitro, ghrelin inhibits the apoptosis 
of cardiomyocytes and other cell types by activating PI3K/Akt and 
ERK-1/2 pathways (8–10). Acylated ghrelin (AG) and unacylated 
ghrelin (UnAG) are generated from the same precursor, which can 
be acylated by the specific intracellular ghrelin-O-acyltransferase 
GOAT (11, 12). UnAG, which is far more abundant in plasma than 
AG, does not bind to GHSR-1a, lacks any GH-releasing activity 
(13), and has been considered for many years to be the inactive 

product of ghrelin catabolism. However, UnAG shares with AG 
common high-affinity binding sites on several cell types lacking 
GHSR-1a, including myocardial and skeletal myocytes, where they 
stimulate survival and differentiation, respectively (8, 9, 14–16). 
Furthermore, UnAG regulates gene expression in fat, muscle, and 
liver independently of GHSR-1a (17).

In both human patients and experimental models, AG ameliorates 
cachexia induced by several pathological conditions (6, 7, 13, 18–21). 
Although AG may inhibit cachexia by stimulating food intake, posi-
tive energy balance, and release of GH and IGF-1, the mechanisms 
underlying its anticachectic activity have not been fully elucidated.

Since we have previously shown that AG and UnAG, indepen-
dently of GHSR-1a, inhibit apoptosis of cardiomyocytes by acti-
vating PI3K/Akt (8), a major antiatrophic signaling pathway (22, 
23), and stimulate C2C12 skeletal myoblast differentiation (16), 
we investigated whether AG and UnAG could protect skeletal mus-
cle from atrophy. Here, we provided evidence in vitro and in vivo 
that AG and UnAG, independently of GHSR-1a and activation of 
the GH/IGF-1 axis, trigger an antiatrophic signaling pathway by 
acting directly on the skeletal muscle, thereby protecting it from 
experimentally induced atrophy.

Results
AG and UnAG prevent dexamethasone-induced atrophy in C2C12-derived 
myotubes via mTORC2. C2C12 myotubes are a widely used model to 
study in vitro skeletal muscle atrophy induced by the synthetic glu-
cocorticoid dexamethasone (24–26). Muscle atrophy was measured 

Authorship note: Paolo E. Porporato and Nicoletta Filigheddu contributed equally 
to this work.

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2013;123(2):611–622. doi:10.1172/JCI39920.

Downloaded from http://www.jci.org on February 13, 2017.   https://doi.org/10.1172/JCI39920



research article

612	 The Journal of Clinical Investigation      http://www.jci.org      Volume 123      Number 2      February 2013

Downloaded from http://www.jci.org on February 13, 2017.   https://doi.org/10.1172/JCI39920



research article

	 The Journal of Clinical Investigation      http://www.jci.org      Volume 123      Number 2      February 2013	 613

both as reduction of myotube diameter and as expression of the 
muscle-specific ubiquitin ligases Atrogin-1 (also known as MAFbx) 
and MuRF1, which drive muscle protein degradation in several 
models of muscle atrophy (24–27). Myotubes were treated with  
1 μM dexamethasone for 24 hours in the presence or absence of  
10 nM AG or UnAG, or with 10 ng/ml IGF-1 as a positive control of 
atrophy protection. Treatment with dexamethasone reduced myo-
tube diameters by 20% and induced Atrogin-1 and MuRF1 expres-
sion. AG and UnAG impaired both these effects (Figure 1, A–C).

Skeletal muscle atrophy and atrogene expression can be opposed 
by the activation of mammalian target of rapamycin (mTOR), which, 
by forming 2 distinct protein complexes, mTORC1 and mTORC2, 
triggers distinct pathways that lead, respectively, to increased pro-
tein synthesis and to inhibited protein degradation (28, 29). To assess 
whether mTOR mediates the signaling triggered by AG/UnAG, myo-
tubes were incubated with rapamycin, an inhibitor of mTORC1, 
which, upon prolonged treatment, also impairs the assembly of 
mTORC2 in several cell types, including C2C12 cells (refs. 30–32 
and Supplemental Figure 1, A and B; supplemental material avail-
able online with this article; doi:10.1172/JCI39920DS1).

Upon 24-hour treatment of atrophying myotubes with 20 ng/
ml rapamycin, the antiatrophic activity of AG/UnAG on myotube 
diameter was fully reverted (Figure 1D), which indicates that acti-
vation of mTOR is indeed required for the antiatrophic activity of 
AG and UnAG. Moreover, in the same assay, the antiatrophic activ-
ity of AG/UnAG was inhibited by 100 nM wortmannin, an inhibi-
tor of PI3K, whose product PI(3,4,5)P3 is essential for the activity 
of Akt, a substrate of mTORC2 that also mediates the activation 
of mTORC1 (29). These findings indicate that AG/UnAG antiat-
rophic activity requires both mTOR and Akt. Thus, we assayed the 
activity of both mTOR complexes. We evaluated mTORC2 activ-
ity as phosphorylation of AktS473, which, in turn, phosphorylates 
FoxO3aT32, thus preventing Atrogin-1 transcription (24, 25). AG/
UnAG, as well as IGF-1, induced phosphorylation of AktS473 and 
FoxO3aT32 (Figure 1, E and F), which indicates that they activate 
mTORC2-mediated pathways.

The activity of mTORC1 was assayed as phosphorylation of 
S6KT389, a direct substrate of mTORC1, and of its substrate 

S6S235/236, a ribosomal protein whose phosphorylation mediates 
protein synthesis (29). AG and UnAG did not induce phosphory-
lation of S6KT389 and S6S235/236 (Figure 1, G and H), nor protein 
synthesis (as measured by [3H]-leucine incorporation; Figure 1I) 
or myotube hypertrophy (Figure 1A). Conversely, IGF-1 induced 
S6KT389 and S6S235/236 phosphorylation, [3H]-leucine incorpora-
tion, and myotube diameter increase, as expected.

By silencing raptor and rictor, specific components of mTORC1 
and mTORC2, respectively (Figure 1J), we observed that down-
regulation of rictor abrogated the protective effect of both pep-
tides on dexamethasone-induced muscle atrophy, measured as 
myotube diameter, while it did not affect the antiatrophic activ-
ity of IGF-1 (Figure 1K). Conversely, raptor silencing impaired 
IGF-1 antiatrophic activity without affecting that of AG/UnAG. 
These results indicate that mTORC2 pathway mediates AG/
UnAG antiatrophic activity in C2C12 myotubes, without involv-
ing mTORC1-mediated protein synthesis.

To identify the signaling pathways differently activated by AG/
UnAG and IGF-1, we investigated the role of p38 serine kinase, 
whose activation by AG/UnAG mediates C2C12 myoblast differ-
entiation (16). In C2C12 myotubes, AG/UnAG, as well as IGF-1, 
induced phosphorylation of p38T180/Y182 (Figure 2A), and its phar-
macological inhibition impaired the antiatrophic activity of AG/
UnAG, but not of IGF-1 (Figure 2B).

Activation of p38 has been reported to downregulate Atrogin-1, 
thereby contributing to the protection of skeletal muscle from 
atrophy (33). On the other hand, p38 mediates induction of Atro-
gin-1 by TNF-α and oxidative stress and of MuRF1 by serum star-
vation (34–37). Inhibition of p38 with SB203580 reduced dexa-
methasone-induced expression of both Atrogin-1 and MuRF1; 
nevertheless, induction of Atrogin-1, but not MuRF1, was still 
significant (Figure 2, C and D). In the presence of SB203580, AG 
and UnAG, but not IGF-1, failed to further reduce the residual 
induction of Atrogin-1, which indicates that p38 mediates AG/
UnAG signaling in regulating Atrogin-1 expression.

To further characterize AG/UnAG antiatrophic activity, we 
treated C2C12 myotubes with NF449, a compound uncoupling 
Gαs from GPCRs, which inhibits antiapoptotic activity of AG and 
UnAG in pancreatic β cells (9, 38). NF449 completely abrogated 
AktS473 phosphorylation and antiatrophic activity of AG/UnAG 
without affecting IGF-1 activities (Figure 2, E and F), which sup-
ports the hypothesis that AG and UnAG act through a GPCR, as 
previously suggested (9).

PI3K α and β isoforms mediate Akt activation upon stimulation 
of tyrosine kinase receptors and GPCRs, respectively (39, 40). We 
dissected the contribution of PI3Kα and PI3Kβ to IGF-1 and AG/
UnAG antiatrophic activity using isoform-specific PI3K inhibitors. 
Whereas inhibition of PI3Kα by PIK-75 abolished IGF-1 antiat-
rophic activity, it did not affect AG/UnAG protection. Conversely, 
inhibition of PI3Kβ by TGX-221 impaired AG/UnAG antiatrophic 
activity while not affecting IGF-1 protection (Figure 2G). The 
involvement of PI3Kβ in AG/UnAG antiatrophic activity was fur-
ther supported by the finding that TGX-221 prevented AG/UnAG 
from reducing dexamethasone-induced Atrogin-1 expression (Fig-
ure 2H). Together, these data strongly suggest that AG/UnAG acts 
through GPCR-dependent signaling pathways involving a PI3K 
isoform distinct from that of IGF-1.

Glucocorticoids induce muscle mass reduction by also upregu-
lating the expression of myostatin, a TGF-β family member that 
acts as a negative regulator of muscle mass. Myostatin reduces the 

Figure 1
AG and UnAG protect C2C12 myotubes from dexamethasone-induced 
atrophy without induction of protein synthesis or hypertrophy. (A) Myo-
tube diameters were measured after 24-hour treatment in differentia-
tion medium (DM) with 10 nM AG, 10 nM UnAG, and/or 1 μM dexa-
methasone (DEXA). In every experiment, 10 ng/ml IGF-1 was used as 
positive control for antiatrophic/hypertrophic activity. (B and C) Atro-
gin-1 and MuRF1 expression analysis upon dexamethasone treatment 
with or without AG and UnAG. (D) Treatment with 100 nM wortman-
nin (W) or 20 ng/ml rapamycin (R) reverted the antiatrophic activity of 
AG and UnAG on myotube diameter. Control myotubes in differentia-
tion medium were treated with DMSO, a vehicle for both wortmannin 
and rapamycin. (E and F) Phosphorylation of AktS473 and FoxO3aT32, 
detected by Western blotting, upon treatment for 20 minutes with 1 μM 
AG or UnAG. Shown are representative blots and quantification of 3 
independent experiments. (G–I) IGF-1, but not AG and UnAG, induced 
protein synthesis, as determined by phosphorylation of S6KT389 (G) or 
S6S235/236 (H) and by incorporation of [3H]-leucine (I). (J) Effect of raptor 
and rictor silencing on protein levels, detected by Western blotting. (K) 
Silencing of rictor, but not of raptor, reverted the antiatrophic activity of 
AG and UnAG on the diameter of myotubes treated as in A. #P < 0.05, 
§P < 0.01 vs. DM control; *P < 0.01 vs. DEXA treatment.
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size of human skeletal muscle cell–derived myotubes by reducing 
mTOR/Akt/p70S6K signaling, while simultaneous treatment with 
IGF-1 restores myotube size, Akt phosphorylation, and protein 
synthesis (41, 42). In C2C12 myotubes, dexamethasone treatment 
actually induced the expression of myostatin, which was signifi-
cantly reduced by IGF-1. However, AG/UnAG had no effect on 
myostatin expression (Supplemental Figure 1C), providing further 

evidence that ghrelin and IGF-1 inhibit muscle atrophy through 
distinct, partially overlapping, mechanisms.

Tg mice with high levels of circulating UnAG are protected from fasting- 
and denervation-induced atrophy. To verify in vivo the relevance of the 
findings described above, we used a strain of Tg mice with cardiac-
specific ghrelin gene (Ghrl) expression. In these mice (referred to 
herein as Myh6/Ghrl), Ghrl overexpression in the heart results in 

Figure 2
AG and UnAG antiatrophic signaling 
is mediated by p38 and acts through a 
GPCR-dependent signaling pathway 
involving PI3Kβ. (A) Phosphorylation of 
p38T180/Y182, detected by Western blot-
ting, after 20-minute treatment with 1 μM 
AG or UnAG. Shown are representative 
blots and quantification of 3 independent 
experiments. (B) Treatment with the p38 
inhibitor SB203580 (5 μM) reverted the 
antiatrophic activity of AG and UnAG on 
myotube diameter upon treatment with 
dexamethasone. (C and D) Atrogin-1 and 
MuRF1 expression analysis upon dexa-
methasone treatment with or without AG 
and UnAG in the presence or absence 
of 5 μM SB203580. (E) AG and UnAG 
phosphorylation of AktS473 was abolished 
upon treatment with 10 μM NF449, a Gαs 
subunit–selective G protein antagonist. 
Shown are representative blots and quan-
tification of 3 independent experiments. 
(F) Treatment with 10 μM NF449 reverted 
the antiatrophic activity of AG and UnAG 
on myotube diameter upon dexametha-
sone treatment. (G) Treatment with 25 
nM PIK-75, an inhibitor of PI3Kα, abol-
ished the antiatrophic effect of IGF-1 on 
myotube diameter upon dexamethasone 
treatment, without affecting AG and UnAG 
activity. The antiatrophic effect was abro-
gated by treatment with 200 nM TGX-221, 
an inhibitor of PI3Kβ. (H) Atrogin-1 expres-
sion analysis upon dexamethasone treat-
ment with AG, UnAG, and IGF-1 in the 
presence or absence of 200 nM TGX-221. 
In experiments with SB203580, NF449, 
PIK-75, and TGX-221, control myotubes 
in differentiation medium were treated with 
DMSO, a vehicle for all these compounds. 
#P < 0.05, §P < 0.01 vs. DM control;  
*P < 0.05, **P < 0.01 vs. DEXA treatment.
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a 50-fold increase of circulating UnAG, without affecting AG lev-
els (Table 1), as previously observed in other Ghrl-overexpressing 
Tg mice (43–45). Ghrl mRNA overexpression was restricted to the 
myocardium of Myh6/Ghrl mice, without leakage in the skeletal 
muscle (Supplemental Figure 2A). Moreover, consistent with the 
inability of UnAG to activate GHSR-1a and to promote GH release 
and adiposity, Myh6/Ghrl mice did not feature any change in cir-
culating IGF-1 concentration, tibial and nasoanal length, BMI, 
or food intake compared with their WT littermates. In addition, 
fasting decreased IGF-1 and increased ghrelin circulating concen-
trations to the same extent in WT and Myh6/Ghrl mice (Table 1). 
These data strongly indicate that the upregulation of circulating 
UnAG in Myh6/Ghrl mice does not activate GHSR-1a in the pitu-
itary and hypothalamus, stimulate the GH/IGF-1 axis, or affect 
endogenous ghrelin regulation. Moreover, tissue expression of 
IGF-1, which in skeletal muscle may act locally in a paracrine/
autocrine manner (46), was not altered in Myh6/Ghrl mice, either 
in fed or in fasted animals (Supplemental Figure 2B).

Although AG and UnAG differently regulate insulin release and 
sensitivity (47), basal insulin level, glucose uptake, and insulin sen-
sitivity were not affected in Myh6/Ghrl mice (Table 1 and Supple-
mental Figure 2, C and D).

Notably, compared with WT animals, fed Myh6/Ghrl mice did not 
feature any difference in heart and gastrocnemius muscle weight 
(Table 1), fiber cross-sectional area (CSA) distribution, or hindlimb 
force (as measured by grasping test; Supplemental Figure 2, E and F), 
which indicates that high levels of circulating UnAG do not induce 
skeletal muscle hypertrophy in vivo, consistent with the inability of 
UnAG to induce hypertrophy in C2C12-derived myotubes.

To investigate whether UnAG might protect 
from muscle wasting, we induced skeletal muscle 
atrophy by food deprivation. After 48 hours of 
fasting, gastrocnemius weight was decreased by 
approximately 14% in WT mice, and by approxi-
mately 9% in Myh6/Ghrl mice, compared with 
fed animals (Figure 3A), which indicates that 
increased circulating UnAG results in 30% protec-
tion from fasting-induced loss in gastrocnemius 
mass. Accordingly, gastrocnemii CSA was reduced 
by 29% in WT mice and by 19% in Myh6/Ghrl mice 
compared with fed animals (Figure 3B), indicative 
of 34% protection. Similarly, extensor digitorum 
longus (EDL) muscle weight and mean fiber area 
of Myh6/Ghrl mice was reduced to a lesser extent 
than in WT animals (Figure 3, D and E). This pro-
tection was reflected by shift in CSA distributions 
of gastrocnemii and EDL — toward fibers with 
wider area — in Myh6/Ghrl compared with WT 
mice under fasting conditions (Figure 3, C and F).

After 48 hours of fasting, Atrogin-1 and MuRF1 
expression in gastrocnemii of WT animals dra-
matically increased. In Myh6/Ghrl mice, the 
induction of Atrogin-1 was significantly reduced 
by one-third, while MuRF1 was only slightly, not 
significantly, decreased (Figure 3, G and H).

Plasma levels of glycerol and FFAs did not 
change in fasted Myh6/Ghrl and WT mice (Sup-
plemental Figure 2, G and H), which indicates 
that fasting did not significantly affect either 
glycerol or FFA concentrations, consistent with 

previous reports in the FVB mouse background (48, 49). Moreover, 
hepatic phosphoenolpyruvate carboxykinase (PEPCK) expression 
was induced to the same extent in fasted Myh6/Ghrl and WT lit-
termates (Supplemental Figure 2I). Together, these data suggest 
that muscle wasting–resistant properties of Myh6/Ghrl mice do not 
depend on effects of UnAG on energy balance.

Furthermore, Myh6/Ghrl mice were protected from denervation-
induced muscle atrophy, an experimental procedure that does not 
affect animal daily food intake (Table 1). At 7 and 14 days after 
denervation, gastrocnemii weight of WT animals was reduced by 
21% and 27%, respectively, while the loss of muscle weight in Myh6/
Ghrl animals was significantly lower (Figure 4A). Consistently, gas-
trocnemii mean fiber CSA of WT animals was remarkably reduced 
at both 7 and 14 days after denervation, whereas CSA in Myh6/Ghrl 
animals was reduced to a lesser extent (Figure 4B). At 7 days after 
denervation, Myh6/Ghrl mice featured a mild shift of gastrocnemii 
CSA distribution that became impressive after 14 days (Figure 4, C 
and D). A strong inhibition of atrophy at 7 days after denervation 
was also evident in EDL (Figure 4, E and F) and tibialis anterior 
(TA) muscles (Figure 4, G and H).

Moreover, in gastrocnemii of Myh6/Ghrl mice, the induction of 
Atrogin-1 was reduced by 40% (Figure 4I). Conversely, MuRF1 was 
only slightly, not significantly, reduced (Figure 4J), consistent with 
the fasting-induced atrophy data. Together, these observations 
indicated that constitutive high levels of UnAG impair experimen-
tally induced atrophy in vivo, likely through a mechanism inde-
pendent of GHSR-1a and activation of the GH/IGF-1 axis.

UnAG pharmacological treatment induces antiatrophic signaling in 
muscle and inhibits fasting- and denervation-induced atrophy. Acute 

Table 1
Phenotypical characterization of Myh6/Ghrl mice

	 WT	 Myh6/Ghrl
UnAG (pg/ml)	 445.4 ± 155	 25,000.5 ± 360A

AG, fed (pg/ml)	 41.7 ± 1.6	 39.3 ± 1.5
AG, fasted (pg/ml)	 75.7 ± 8.8	 68.2 ± 9.5
IGF-1, fed (ng/ml)	 748.5 ± 56	 765.5 ± 120
IGF-1, fasted (ng/ml)	 398 ± 93	 328 ± 37
Insulin (pg/ml)	 571 ± 58	 631 ± 129
Tibial length (mm)	 19.65 ± 0.11	 19.62 ± 0.22
Nasoanal length (mm)	 91.59 ± 0.51	 90.61 ± 0.95
BMI, fed (g/cm2)	 3.32 ± 0.12	 3.33 ± 0.08
BMI, fasted (g/cm2)	 2.93 ± 0.06	 2.92 ± 0.09
Gastrocnemius weight, fed (mg)	 134.86 ± 4.6	 137.2 ± 5.62
Gastrocnemius weight, fasted (mg)	 118 ± 4	 124 ± 3.1
Gastrocnemius weight/tibial length, fed (mg/mm)	 6.86 ± 0.22	 6.99 ± 0.25
Gastrocnemius weight/tibial length, fasted (mg/mm)	 5.89 ± 0.14	 6.36 ± 0.15B

Heart weight, fed (mg)	 117.5 ± 11.8	 122 ± 6.8
Heart weight, fasted (mg)	 103.0 ± 7.1	 105 ± 3.3
Heart weight/nasoanal length, fed (mg/mm)	 1.22 ± 0.12	 1.28 ± 0.08
Heart weight/nasoanal length, fasted (mg/mm)	 1.16 ± 0.07	 1.16 ± 0.03
Daily food intake (g)	 4.66 ± 0.17	 4.73 ± 0.07
Daily food intake, denervated (g)	 4.60 ± 0.17	 4.60 ± 0.18

Measurements were performed as described in Methods. Muscle mass and tibial length 
were calculated as the mean of right and left hindlimbs. n = 7 per group (fed); 4 per group 
(fasted 48 hours); 5 per group (denervated). Data are mean ± SEM. AP < 0.01 vs. WT.  
BP < 0.05 vs. WT.
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administration of exogenous UnAG at 100 μg/kg, a dose previ-
ously used for in vivo studies (6), induced phosphorylation of 
AktS473, FoxO3aT32, and p38T180/Y182 in WT gastrocnemii (Figure 5, 
A–C), which indicates that, in vivo, UnAG activates the same antia-
trophic signaling pathway as it does in C2C12 myotubes.

Repeated administration (every 12 hours) of UnAG protected 
mice from skeletal muscle atrophy induced by either fasting or 
denervation (Figure 5, D–I). UnAG treatment preserved gastroc-
nemii from weight and mean fiber CSA loss (Figure 5, D and E). 
Accordingly, frequency distribution of gastrocnemii CSA of fasted 
mice injected with UnAG showed a dramatic shift toward bigger 
fiber areas compared with saline-injected mice (Figure 5F).

Similarly, UnAG treatment of denervated mice resulted in a 25% 
protection from gastrocnemius weight loss and a significantly 
lower decrease of mean fiber CSA, although the CSA distribution 
of UnAG-injected mice showed only a very mild shift compared 
with saline-injected animals (Figure 5, G–I). Although the plasma 
concentration of UnAG after injection dropped to basal levels 
in about 2–4 hours (Supplemental Figure 3A), these data indi-
cate that repeated acute stimulation is sufficient to protect from 
experimentally induced skeletal muscle atrophy without affecting 
muscular IGF-1 expression (Supplemental Figure 3B).

AG and UnAG induce antiatrophic 
signaling and impair muscle atro-
phy in Ghsr–/– mice. The findings 
reported above, along with pre-
vious data on common binding 
sites for AG/UnAG in C2C12 
lacking Ghsr (16), strongly sug-
gest that AG and UnAG stimulate 
antiatrophic signaling in skeletal 
muscle through activation of a 
receptor distinct from GHSR-
1a. To verify this hypothesis, we 
assayed AG/UnAG antiatrophic 
signaling and activity in Ghsr–/– 
mice, in which AG fails to activate 
the GH/IGF-1a axis or stimulate 
appetite (50). Injection of either 
AG or UnAG induced AktS473 
phosphorylation in gastrocnemii  
of Ghsr–/– mice (Figure 6A). Con-
sistently, treatment of Ghsr–/– 
mice with 100 μg/kg AG or UnAG 
twice daily reduced gastrocnemii 
weight loss induced by 48-hour 
fasting by 30% compared with 
saline-treated animals (Figure 
6B). Moreover, the mean CSA loss 
of AG- and UnAG-injected mice 
strongly decreased compared with 
saline-injected animals, and CSA 
distribution shifted toward bigger 
areas (Figure 6, C and D).

In summary, these findings 
demonstrated that both AG and 
UnAG activate a direct antia-
trophic signaling pathway in 
skeletal muscle and protect from 
experimentally induced muscle 

atrophy, independently of the AG receptor GHSR-1a.

Discussion
Several studies have shown that AG protects from cachexia and 
prevents muscle proteolysis in vivo, supposedly through stim-
ulation of appetite and activation of the GH/IGF-1 axis medi-
ated by AG binding to GHSR-1a (6, 7, 18–21). However, here we 
provided in vitro and in vivo evidence that AG and UnAG exert 
antiatrophic activity by acting directly on the skeletal muscle, 
even in Ghsr–/– mice.

Upregulation of circulating UnAG, which does not bind GHSR-
1a and does not activate the GH/IGF-1 axis, counteracted muscle 
atrophy induced by either fasting or denervation. Consistently, 
UnAG has been reported to reduce burn-induced skeletal muscle 
proteolysis and local TNF-α upregulation (51).

We achieved upregulation of circulating UnAG either by myocar-
dial Ghrl overexpression in Myh6/Ghrl mice or by repeated admin-
istration. The antiatrophic activity of UnAG cannot be mediated 
by its conversion to AG in the plasma, since acylation occurs only 
intracellularly on the ghrelin precursor by the ghrelin-specific acyl-
transferase GOAT (11, 12). The negligible myocardial expression 
of GOAT might explain the increase of only the unacylated form 

Figure 3
Myh6/Ghrl mice are protected from skeletal muscle atrophy induced by 48 hours of fasting. (A–C) 
Effect of fasting on gastrocnemii. Mean percentage of gastrocnemius weight loss (A) and CSA reduc-
tion (B) of fasted Myh6/Ghrl (Tg) mice and WT littermates compared with fed animals. (C) Frequency 
distribution of gastrocnemii CSA of fasted Myh6/Ghrl and WT mice. (D–F) Effect of fasting on EDL 
muscles. Mean percentage of EDL muscle weight loss (D), CSA reduction (E), and CSA frequency 
distribution (F) of fasted Myh6/Ghrl and WT littermates. (G and H) Atrogin-1 and MuRF1 expression 
in gastrocnemii of fed and fasted Myh6/Ghrl mice and their WT littermates, determined by real-time 
RT-PCR. *P < 0.01 vs. WT. n = 7 (fed WT and Myh6/Ghrl); 5 (fasted WT); 6 (fasted Myh6/Ghrl); 3 (CSA 
loss and distribution, WT and Myh6/Ghrl).
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of circulating ghrelin in Myh6/Ghrl mice. This is in agreement with 
other tissue-specific Ghrl Tg mice featuring high UnAG circulating 
levels in the absence of significant changes of AG (43–45).

The observations that Myh6/Ghrl mice did not feature any 
change in circulating and muscular IGF-1 or in tibial or whole 
body length, along with the lack of skeletal muscle hypertrophy, 
further indicate that the GH/IGF-1 axis is not activated in these 
mice. Finally, the finding that both AG and UnAG impaired skele-
tal muscle atrophy in Ghsr–/– mice indicated that their antiatrophic 
activity is mediated by a receptor distinct from GHSR-1a. In these 
mice, AG exerted antiatrophic activity in the skeletal muscle inde-
pendent of its role in modulating GH release and energy balance. 
Nevertheless, these data do not exclude the possibility that in WT 
animals, GHSR-1a may contribute to the antiatrophic activity of 
AG by also regulating the GH/IGF-1 axis and positive energy bal-
ance. For instance, AG has been suggested to prevent downregu-
lation of muscular IGF-1 expression in an experimental model 
of cachexia through an indirect mechanism involving GHSR-1a 
activity on positive energy balance (20).

The hypothesis that AG/UnAG impairs muscle atrophy in vivo 
by acting directly on the skeletal muscle is further supported by 
our finding that UnAG administration rapidly stimulated anti

atrophic signaling in the gastrocnemius. Moreover, AG/UnAG 
activated antiatrophic signaling in cultures of C2C12 myotubes, 
which do not express GHSR-1a, protecting them from dexameth-
asone-induced atrophy and atrogene upregulation. Although AG 
has previously been reported to fail in reducing dexamethasone-
induced Atrogin-1 expression in C2C12 myotubes (20), the 10-fold 
lower dexamethasone concentration used in that study and the 
considerably weaker Atrogin-1 induction may explain the differ-
ent results. Conversely, Sheriff et al. showed that UnAG reduces 
TNF-α/IFN-γ–induced cachexia in C2C12 myotubes in a PI3K/
mTOR-dependent manner (51). The results of our present study 
not only confirmed the involvement of PI3K/mTOR pathways in 
AG/UnAG activity on skeletal muscle, but also showed the spe-
cific contribution of the mTORC2- over the mTORC1-mediated 
signaling pathway, which may explain, at least in part, the ability 
of AG/UnAG to protect from skeletal muscle atrophy without a 
concomitant induction of hypertrophy.

Indeed, the molecular mechanisms underlying AG/UnAG antia-
trophic activity in the skeletal muscle involved the activation of 
mTORC2-mediated signaling pathways, leading to phosphoryla-
tion of AktS473 and of its substrate FoxO3aT32, which eventually 
impaired Atrogin-1 expression and muscle protein degradation. At 

Figure 4
Myh6/Ghrl mice are protected from denervation-induced skeletal muscle atrophy induced by sciatic nerve resection. (A and B) Mean percent-
age of weight loss (A) and CSA reduction (B) of denervated gastrocnemius at 7 and 14 days after denervation, compared with the unperturbed 
side. (C and D) Frequency distribution of gastrocnemii CSA at 7 and 14 days after denervation in Myh6/Ghrl and WT mice. (E–H) CSA reduction 
and fiber area distribution of (E and F) EDL and (G and H) TA muscles at 7 days after denervation. (I and J) Atrogin-1 and MuRF1 expression, 
determined by real-time RT-PCR, in denervated gastrocnemii at 7 days after denervation, compared with the unperturbed side. **P < 0.01,  
*P < 0.05 vs. WT. n = 6 (WT); 5 (Myh6/Ghrl); 3 (CSA loss and distribution, WT and Myh6/Ghrl).
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the same time, in C2C12 myotubes, AG/UnAG failed to stimulate 
mTORC1-mediated phosphorylation of S6KT389 and S6S235/236, pro-
tein synthesis, and hypertrophy. Consistently, chronic upregulation 
of circulating UnAG in Myh6/Ghrl mice did not induce muscle 
hypertrophy. This finding highlights a remarkable difference 
between the antiatrophic activities of AG/UnAG and IGF-1 in 
the skeletal muscle, as IGF-1 stimulates both mTORC2-mediat-
ed impairment of protein degradation and mTORC1-dependent 
stimulation of protein synthesis and hypertrophy (23–26). Consis-
tently, in TNF-α/IFN-γ–treated C2C12 myotubes, UnAG inhibited 
protein catabolism and impaired the induction of Atrogin-1 and 
MuRF1. Moreover, UnAG restored the basal phosphorylation state 
of proteins of mTORC1 and mTORC2 pathways, although the lack 
of UnAG-induced increase in AktS473 phosphorylation observed 
herein may depend on receptor desensitization, given the higher 
concentration of UnAG used and the protracted treatment (51).

The finding that downregulation of the mTORC1-specific 
component raptor did not affect the antiatrophic activity of AG/

UnAG, while impairing IGF-1 antiatrophic activity, further sup-
ports the conclusion that AG/UnAG antiatrophic activity does not 
involve mTORC1-mediated stimulation of protein synthesis. On 
the other hand, the finding that AG/UnAG antiatrophic activity 
was sensitive to downregulation of rictor, the specific component 
of mTORC2, demonstrated the key role of mTORC2 in mediating 
AG/UnAG antiatrophic activity. The finding that ghrelin-induced 
phosphorylation of AktS473 was uncoupled from the activation of 
mTORC1-mediated pathways and hypertrophy may appear con-
troversial, as IGF-1–induced phosphorylation of AktS473 is associ-
ated with the activity of both mTOR complexes (29), and overex-
pression of constitutive active Akt in the skeletal muscle prevents 
denervation-induced atrophy and induces hypertrophy (22, 52). 
The lack of muscle hypertrophy observed in Myh6/Ghrl mice may 
depend on weaker stimulation of the PI3K/Akt pathway by UnAG. 
Indeed, although tissue-specific expression of constitutive active 
Akt in Tg mice induces strong phosphorylation of Akt and of 
its substrates (53), phosphorylation of Akt was not detectable in 

Figure 5
UnAG pharmacological treatment protects skeletal muscle from fasting- and denervation-induced atrophy in WT mice. (A–C) Phosphorylation of 
AktS473, FoxO3aT32, and p38T180/Y182 in gastrocnemii of WT mice treated with 100 μg/kg UnAG or saline. At the indicated time points, gastrocnemii 
were removed and processed for Western blot analysis. Shown are representative blots and densitometric analysis of 3 independent experi-
ments, normalized to untreated animals (not shown). (D–F) Mean percent weight loss (D), CSA reduction (E), and CSA frequency distribution 
(F) of gastrocnemii from fed or 48-hour fasted mice treated twice daily with 100 μg/kg UnAG or saline (n = 5 per group). Frequency distribution 
was measured in 3 mice per group. In D and E, percent reduction shown is between fasted and fed mice. (G–I) Mean percent weight loss (G), 
CSA reduction (H), and CSA frequency distribution (I) of gastrocnemii from mice treated with 100 μg/kg UnAG or saline twice daily for 7 days 
after sciatic nerve resection (n = 5 per group). Frequency distribution was measured in 3 mice per group. In G and H, percent reduction shown is 
between denervated gastrocnemii and gastrocnemii from the unperturbed side. *P < 0.05, **P < 0.01 vs. saline treatment.
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muscles of Myh6/Ghrl mice (data not shown). Indeed, we found 
that 2 distinct PI3K isoforms, namely PI3Kβ and PI3Kα, mediated 
the antiatrophic activity of AG/UnAG and IGF-1, respectively. This 
observation, along with the ability of a Gαs-uncoupling drug to 
abolish the antiatrophic activity of AG/UnAG, but not IGF-1, is 
consistent with the hypothesis that the unknown receptor mediat-
ing the common activities of AG/UnAG is a GPCR (9). Moreover, 
these data further serve to rule out the hypothesis that AG/UnAG 
acts on myotubes by stimulating the autocrine release of IGF-1.

The inability of AG and UnAG to stimulate protein synthesis and 
hypertrophy in the skeletal muscle is consistent with their key role 
in the adaptive response to fasting and negative energy balance 
(13). The molecular mechanisms underlying the uncoupling of 
mTORC2 from mTORC1 remain to be investigated. AG and UnAG, 
which are released during fasting, might shift muscle metabolism 
toward amino acid oxidation, thereby decreasing the intracellular 
pool of free amino acids essential for mTORC1 activity (29). Alter-
natively, activation of PI3Kβ, whose enzymatic activity is lower than 
that of PI3Kα (54), may result in weaker activation of Akt. Finally, 
AMPK, which negatively regulates mTORC1 in skeletal muscle 
(55), may contribute to mTORC1 uncoupling, although AG was 
reported to be unable to stimulate AMPK in rat gastrocnemius (56).

The finding that p38 was required for AG/UnAG antiatrophic 
activity is consistent with previous findings that p38 cooperates 
with PI3K/Akt pathways to induce C2C12 differentiation (16, 57). 
However, the role of p38 in regulating muscle atrophy is complex, as 
its activation mediates muscle atrophy induced by oxidative stress 
and inflammatory cytokines (34, 36, 58). The role of p38 in signal-
ing is determined by its association in distinct signaling complexes  
with different regulators and substrates and by its localization 
(35). Our findings are consistent with evidence indicating that, in 
myotubes, decreased p38 phosphorylation is associated with dexa-
methasone-induced atrophy, and that p38 mediates β-hydroxyl- 
β-methylbutyrate protection from dexamethasone-induced protein 
degradation (59, 60). Moreover, p38 activity can regulate cytoplas-

mic localization of FoxO3a independently of Akt, thereby impairing 
its transcriptional activity and Atrogin-1 induction (33, 61). Fur-
thermore, activation of p38 stabilizes and activates the transcrip-
tional coactivator PGC1α, which represses FoxO3a activity (62, 
63). Although IGF-1 activated p38, this was dispensable for IGF-1 
antiatrophic activity. In addition, IGF-1 and AG/UnAG antiatrophic 
activities differed in the inability of AG/UnAG to downregulate 
myostatin, a TGF-β–like inhibitor of muscle growth, which further 
supports the hypothesis that AG/UnAG and IGF-1 counteract mus-
cle atrophy through distinct molecular mechanisms.

The data presented herein unveiled a novel component of the 
complex role of AG/UnAG, i.e., the direct activation of antia-
trophic pathways in the skeletal muscle, eventually leading to 
reduced muscle wasting. This effect adds to the well-known capa-
bilities of AG to stimulate appetite, regulate lipid metabolism, and 
release GH. Although the identity of the novel AG/UnAG receptor 
is yet unknown, these findings may have important biological and 
therapeutic implications, since they provide proof that UnAG has 
a strong and specific potential for the prevention or treatment of 
muscle atrophy, avoiding the diabetogenic side effects of AG (47) 
and the cancer risk associated with IGF-1 treatment (64).

Methods
Reagents. AG1–28 and UnAG1–28 were purchased from PolyPeptide Laborato-
ries. The PI3K p110α inhibitor PIK-75 hydrochloride was purchased from 
Axon Medchem, and the PI3K p110β inhibitor TGX-221 was a gift from  
U. Galli (Synthetic Medicinal Chemistry group, Università del Piemonte 
Orientale, Novara, Italy). Water-soluble dexamethasone and all other 
reagents, unless otherwise stated, were from Sigma-Aldrich. Anti–phos-
pho-AktS473, anti-Akt, anti–phospho-FoxO3aT32, anti-FoxO3a, anti–phos-
pho-S6KT389, anti-S6K, anti–phospho-S6S235/236, anti-S6, anti-p38T180/Y182, 
anti-p38, anti-raptor, and anti-rictor antibodies were from Cell Signaling 
Technology; anti-actin antibody was from Santa Cruz Biotechnology.

Cell cultures and myotube analysis. C2C12 myoblasts were differentiated in 
myotubes as previously described (16). For measurement of myotube diam-

Figure 6
AG and UnAG pharmacological treatment of 
Ghsr–/– mice induces antiatrophic signaling and 
protects from fasting-induced skeletal muscle 
atrophy. (A) Phosphorylation of AktS473 in gas-
trocnemii of Ghsr–/– mice injected with 100 μg/kg  
AG or UnAG or with saline. 60 minutes after 
treatment, gastrocnemii were removed and pro-
cessed for Western blot analysis. Shown are 
representative blots and densitometric analysis 
of 3 independent experiments. (B–D) Mean per-
centage weight loss (B), CSA reduction (C), and 
CSA frequency distribution (D) of gastrocnemii 
from fed or 48-hour fasted Ghsr–/– mice injected 
s.c. twice daily with 100 μg/kg AG or UnAG or 
with saline (n = 5 per group). Frequency distribu-
tion was measured in 3 mice per group. In B and 
C, percent reduction is between fasted and fed 
mice. *P < 0.05, **P < 0.01 vs. saline treatment.
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blood glucose meter (Roche Diagnostics). For insulin sensitivity determina-
tion, Humulin R (0.75 U/kg body weight; Lilly) was administered i.p., and 
blood samples for glucose concentrations were collected as described above.

RNA extraction and analysis. Total RNA from cultured myotubes and from 
muscles was extracted by TRIreagent (Invitrogen). The RNA was retro-tran-
scribed with High-Capacity cDNA Reverse Transcription Kit (Invitrogen), 
and real-time PCR was performed with the ABI7200 Sequence Detection 
System (Invitrogen) using the following assays: Mm00499518_m1 (Fbxo32, 
Atrogin-1), Mm01185221_m1 (Trim63, MuRF1), Mm00439560_m1 (Igf1), 
Mm00445450_m1 (Ghrl), Mm01254559_m1 (Mstn), Mm01247058_m1 
(Pck1), Mm00446953_m1 (Gusb), and Mm00506384_m1 (Ppif).

Muscle sampling and staining for fiber size assessment. Muscles were embed-
ded in Killik compound (Bio-optica) and frozen in liquid nitrogen–cooled 
isopentane. Serial transverse cryosections (7 μm thick) of the midbelly 
region of muscles were cut at –20°C and mounted on glass slides. The 
sections were air-dried, fixed for 10 minutes in 4% paraformaldehyde, and 
stained with H&E. The number of myofibers in TA, gastrocnemii, and EDL 
was measured from the histological preparations. Muscle fiber CSA was 
assessed as previously described (67). Data are expressed as fiber size dis-
tribution and as percent CSA reduction relative to controls.

Grip strength test. Skeletal muscle force was assessed using the BS-GRIP 
Grip Meter (2Biological Instruments) as previously described (68). Each 
animal was tested 3 times, and the average value of the maximum weight 
that the animal managed to hold was recorded and normalized to the 
mouse’s weight.

Statistics. Data are presented as mean ± SEM. Variation among groups 
was evaluated using nonparametric Wilcoxon and Mann-Whitney U tests. 
Statistical significance was assumed for P values less than 0.05. All statisti-
cal analyses were performed with SPSS for Windows version 17.0.

Study approval. All animal experimental procedures were approved by the 
Institutional Animal Care and Use Committee at Università del Piemonte 
Orientale “Amedeo Avogadro.”
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eters, myotubes were fixed, and diameters were quantified by measuring a 
total of >100 myotube diameters from 5 random fields in 3 replicates at 
×40 magnification using Image-Pro Plus software (MediaCybernetics) as 
described previously (24).

Raptor and rictor silencing. Raptor siRNA (MISSION pre-designed siRNA SASI_
Mm01_00055293; Sigma-Aldrich), rictor siRNA (SASI_Mm01_00137731; 
Sigma-Aldrich), Block-iT, or siRNA negative control sequence (Invitrogen) 
were transfected with Lipofectamine2000 (Invitrogen) in C2C12 myotubes. 
Transfection efficiency was evaluated by the fluorescent siRNA negative 
control Block-iT, and silencing was verified by Western blot.

[3H]-leucine incorporation assay. C2C12 myotubes were maintained for  
24 hours with or without 10 nM AG or UnAG in differentiation medium 
supplemented with 2 μCi/ml [3H]-leucine (Perkin Elmer) to evaluate the 
induction of protein synthesis. At the end of treatments, cells were washed 
with PBS, treated with 5% trichloroacetic acid, and lysed with 0.5 M  
NaOH and 0.5% SDS. The amount of incorporated [3H]-leucine was evalu-
ated by β counter (Tri-Carb 2800TR; Perkin Elmer) analysis. Data are the 
average of 4 replicates.

Western blot. C2C12 myotubes were serum starved overnight and then 
treated as indicated in the figure legends. Western blot was performed as pre-
viously described (16). Unless otherwise specified, after use of anti–phospho-
specific antibodies, membranes were stripped with Re-Blot Plus (Chemicon, 
Millipore) and reblotted with the corresponding total protein antibodies.

Muscles of mice fasted for 6 hours were s.c. injected with 100 μg/kg 
UnAG or AG or with saline solution. At the indicated time points, gas-
trocnemii were removed, homogenized at 4°C in RIPA buffer (1% Triton 
X-100; 1% sodium deoxycholate; 0.1% SDS; 1 mM EDTA; 1 mM EGTA;  
50 mM NaF; 160 mM NaCl; and 20 mM Tris-HCl, pH 7.4) containing  
1 mM DTT, protease inhibitor cocktail, and 1 mM Na3VO4. Homogenates 
were then processed as above.

Tg animal generation and treatment. All experiments were conducted on 
young adult male FVB1 WT, FVB1 Myh6/Ghrl, and C57BL/6J Ghsr–/– mice 
(50), matched for age and weight.

Tg animals were obtained by cloning the murine ghrelin gene (Ghrl) 
under control of the cardiac promoter sequences of the β myosin heavy 
chain 3′ UTR and the first 3 exons of the α isoform Myh6 (65). Transgene 
integration and expression were confirmed by PCR and real-time RT-PCR, 
respectively. Phenotypical characterization and experiments were carried 
out on hemizygote animals and littermate controls.

AG, UnAG, and IGF-1 plasmatic levels were measured by EIA kits (SPIbio 
Bertin Pharma for AG and UnAG; R&D Systems for IGF-1); insulin plas-
matic levels were quantified with the Insulin (mouse) ELISA kit (ALPCO 
Diagnostics); and glycerol and free fatty acid plasmatic levels were evalu-
ated by enzymatic assay kits (Cayman).

BMI was calculated as animal weight divided by the square of the 
nasoanal length.

Fasting-induced atrophy was achieved by 48 hours of food removal (63), 
while denervation-induced muscle atrophy was obtained by resection of 
the sciatic nerve under anesthesia with sevoflurane (Baxter) and evaluated 
7 and 14 days later (66). Muscles were collected, weighed, and normalized 
for tibial length and processed either for RNA extraction or for histology.

Daily food intake was measured over a 12-day period, quantifying the 
food consumption of each mouse every day.

In all experiments with s.c. injection of AG and/or UnAG, controls were 
saline-injected animals.

Glucose and insulin tolerance tests. Glucose tolerance and insulin sensitivity 
tests were performed as previously described (43). For glucose tolerance 
evaluation, mice were injected i.p. with glucose at 1.5 mg/g body weight 
at 9:00 am, after 16 hours of fasting. Blood glucose was determined at the 
indicated time points on tail blood samples using the Accu-Chek Mobile 
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