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Chapter 1. Introduction

1. Food safety
Food quality and safety are key topics regarding human nutrition and human

wellbeing. If the last two centuries were fundamentally dedicated to the

improvement of the availability of food and nutrients, starting from the last two

decades of the past century a new concern about food quality and food nutritional

profiles became to open new scenarios in food science area. The attention towards

the presence of food contaminants in foods (both from natural and anthropic

origin) is higher today than it was before, and the development of new robust,

time saving and rapid methods of analysis represents a priority to guarantee food

safety.

1.1. Food safety concept in Europe
The demand of sufficient, safe and nutritious food is now constantly increasing.

Incidents regarding pesticide residues in fruit and vegetables, the accumulation of

process contaminants like acrylamide, the overall environmental pollution and

food-borne illness outbreaks have intensified concerns about healthy nutrition.

The changing life styles, including more adventurous diets (e.g. “novel” foods

like microalgae and insects) and the spread of ready-to-eat foods, the emergence

of newly recognized microbial pathogens and the increasing number of immune-

compromised patients has contributed to rise the attention regarding this topic.

Additionally, the demand for the production and the processing of environmental

and animal friendly food, which also conforms to social and labour standards, has

increased (1). As a result, safety issues, organic productions, animal welfare and

the use of genetically modified organisms (GMOs) have been deeply discussed

by the European Commission, resulting into the drawing of an EU white paper on
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food safety (2) and the foundation of the European Food Safety Agency (EFSA)

(3). In the White Paper, the entire food production chain (including animal feed)

is held responsible for the safety of food. The Governments of the Member States

verify that the producers adequately meet this responsibility to protect the health

and well-being of consumers. The document contains 84 action points that have

to be processed into community laws to strengthen the food safety systems of the

Member States. Within this framework, the EU introduced the General Food

Law in 2002, defining general food safety principles and food safety procedures

(4).

Consequently, European Commission has also set the maximum level of

pathogens, microbial metabolites and chemical substances admitted in each kind

of food. Regulation 1169/2011 reports the new requirements for food labelling,

as well as the rules for the ingredients declarations (also considering allergens

presence) (5), while EU Regulation 1881/2006 reports more properly the

maximum tolerated level of contaminants (from biotic and abiotic origin) in foods

(6). For the most common toxins, like mycotoxins and marine biotoxins, EU set

the sampling methods and the analysis required in the official controls (6 - 8).

1.2 Microbial pathogens in foods
Approximately 30% of all globally emerging infections over the past 60 years

include pathogens commonly transmitted through food (9). A  pathogen  is  an

organism able to cause cellular damage by establishing in tissues, which results

in clinical symptoms (9). Some pathogens regularly caused diseases, while others,

named “opportunistic pathogens”, infect primarily immune-compromised

individuals.

The presence of pathogenic microorganisms in foods can cause different types of

symptoms, principally depending on the viable microorganism or its metabolites

ingestions. Infections occur when harmful microorganisms are ingested via food
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and they can replicate in the intestinal tract causing illness. Some pathogens, like

Shigella spp., require the human host as part of their life cycle, while many others

have primary reservoirs in other animals or in the environment and the infection

of humans is accidental. There are many reasons why foodborne diseases are a

global public health challenge. Food represents an important vehicle for

pathogens causing acute gastroenteritis, and, as some food-borne infections have

been controlled through the application of good manufacturing practices, others

emerge as new threats. With the population getting older, the number of immune-

compromised or susceptible to severe outcomes from foodborne diseases has

increased in many countries. Globalization has promoted the international

distribution of foods and the inadvertent pathogens diffusion into new

geographical areas, as well as the exposition of travellers and immigrants to

unfamiliar foodborne hazards in new environments. Moreover, the diffuse habit

of consuming food prepared outside the home, grows the number of people

potentially exposed to the risks of poor hygiene in commercial food service

settings (10).

All of these new situations led to the evolution of new pathogens, the increasing

isolation of highly opportunistic pathogens, the development of antibiotic

resistances, and changes in virulence of known pathogens. Rapid, sensitive and

reliable methods must be set for the detection of pathogens in food, to improve

the management of microbiological risk. Especially in developing countries,

outbreaks of foodborne diseases often go unrecognized or unreported.

Inexpensive and rapid methods for outbreaks investigation and control need to be

improved too. The development of robust screening and confirmation methods is

a key requirement today, also considering the developing of “multi-array” based

methods of analysis. Significant technical advancements were carried out during

the last decades, particularly concerning the development of sensor-like devices,

even if the classical microbiological methods as well as the classical approach for

toxins determination and quantification are currently largely exploited.
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1.3. Toxins in foods
Industrial food processing is responsible for the contamination of food with

different chemical agents (e.g. metals, plasticisers, plastic monomers, neo-formed

toxic compounds like furan and acrylamide and more), but also some living

organisms can naturally produce toxic “chemicals”. These toxins from biotic

origin are not harmful to the organisms that have produced them, but they may be

toxic to other organisms, including humans, when eaten.

A wide variety of microorganisms can grow and develop in food, some of them

synthesizing toxins. Toxins from marine origin (often produced by

dynoflagellates) are a typical example. These toxins, able to trigger different

health problems, ranging from diarrhea to amnesic or paralytic effects, can easily

accumulates in fish or shells consumed by humans (11). Moreover, toxins from

bacteria and fungi are probably the more common toxins in human diet (12, 13).

The biological mechanisms of toxicity are very different for microbial toxins,

ranging from cytotoxicity to teratogenesis and cancerogenesis (14, 15).

Some toxins can be harmful to human health even if ingested in low amounts,

while others are only toxic whenaccumulated by the organism (16).

Next  to  the  effect  on  health,  the  economic  impact  of  food  contaminations  is

significant when spoiled foods have to be removed from the market (17). The

costs of a contamination can affect both the economy and the environment, so the

best approach is to avoid these contaminants to enter the food chain. This can be

obtained through regulation and monitoring of the possible sources of

contamination in the environment. Therefore, rapid and inexpensive screening

methods are required to detect even low amounts of contaminants. For their part,

the regulators can limit the presence of potentially toxic substances in food to

protect the consumer from reasonably foreseeable problems.

Different methods aimed at removing toxins from foods and feeds have been

suggested, but this is generally difficult to implement; raw cereals or flours with
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high a content of toxins (e.g. mycotoxins) are commonly mixed and diluted with

other with low content, in order to decrease the concentration of toxins to respect

EU rules (18, 19). Prevention of contamination with toxigenic microorganisms

remains the main strategy to contain toxin levels in foods.

Because the removal of some food toxins from foods is unfeasible and other toxic

compounds may be created during processing or cooking, the chronic

consumption of small quantities of food toxins is unavoidable. Therefore, it is

necessary to develop analytical methods for rapid and sensitive detection of the

toxins (and primarily of microorganisms able to produce them) as a form of

prevention of the risk given by the consumption of the toxins.

1.3.1 Bacterial toxins
Bacterial growth on food is responsible for several transformation processes,

affecting both quality (sensorial, texture) and safety aspects. Many GRAS

(Generally Recognized As Safe) non-toxigenic bacterial species (mainly

belonging to the group of lactic bacteria, like Lactobacillus spp.)  are  useful  to

pilot food fermentations, particularly lactic acid fermentation (20).

Besides microbial metabolites useful to some processes (e.g. volatile/non volatile

molecules produced during fermentation by starter cultures), bacteria can also

produce toxins. The ingestion of food containing toxins causes intoxication, while

the ingestion of harmful bacteria that produce toxins in the intestinal tract is

responsible for a toxin-mediated infection (21). The foodborne bacteria that can

cause most common toxin-mediated infections are Shigella spp. and Shiga toxin-

producing strains belonging to Escherichia coli species and Campilobacter jejuni,

while intoxications are caused mainly by Staphylococcus aureus, Bacillus cereus,

Clostridium botulinum and Clostridium perfringens (Table 1) (22).

Bacterial toxins are classified into two categories: i) exotoxins and ii) endotoxins:
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i) exotoxins are proteins primarily secreted by gram-positive bacteria.

Temperatures over 60 °C, animal digesting enzymes and stomach acidity denature

this type of toxins, leading to the decrease/elimination of their toxicity. Being

proteins, they are highly antigenic, consequently they strongly stimulate the

immune response. These features make them good candidates for vaccines. Based

on the target, there are three types of exotoxins: cytotoxins, neurotoxins, and

enterotoxins, classified depending on their mechanism of activity. Cytotoxins kill

the host cell or disrupt its normal functions, like erythrotoxins produced by

Streptococcus pyogenes, which are able to damage red blood cells (23).

Neurotoxins, produced mainly by Clostridium botulinum and Vibrio cholerae,

cause paralysis by binding to nerve cells and preventing the release of the

acetylcholine at the neuromuscular junction. Enterotoxins, like the cholera toxin

or Staphylococcal enterotoxins, bind to the plasma membranes of epithelial cells

lining the small intestine and induce the cells to discharge large amounts of fluids

and electrolytes. This mechanism generally results in severe diarrhea and

vomiting (24).

ii) Endotoxins constitute part of the outer membrane of gram-negative bacteria,

released into the bloodstream after the death of bacteria attacked by the immune

system. Endotoxins are quite stable, even when heated (after cooking or after

industrial process with temperature). The lipid portion inserts into cell membranes

of white blood cells and vascular endothelial tissue, leading to fever, chills,

weakness, aches, blood clots and shock. The pyrogenic response is primarily

attributed to the induction of interleukin-1, which causes the hypothalamus to

increase the body temperature. Septic shock occurs when endotoxins induce the

secretion of Tumor Necrosis Factor (TNF), which increases blood capillaries

permeability. This results in a drop of blood pressure, which causes shock and

damages the kidneys, lung, gastrointestinal tract and the blood-brain barrier from

which bacteria can enter the bloodstream. Among the bacteria that produce
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endotoxins there are Salmonella enterica serovar Typhimurium, Proteus spp. and

Neisseria meningitidis (25).

Table 1. Main foodborne illnesses caused by bacteria and their metabolites (22).

Etiology Signs and symptoms Associated foods
Bacillus cereus

(enterotoxin)

Severe nausea and vomiting. Improperly refrigerated cooked or

fried rice and meat.

Bacillus cereus

(diarrheal toxin)

Adbominal cramps, watery

diarrhea, nausea.

Meat and stews.

Campilobacter

jejuni

Bloody diarrhea, vomiting,

fever and cramps.

Undercooked poultry, unpasteurized

milk and contaminated water.

Clostridium

botulinum (toxin)

Vomiting, diarrhea, blurred

vision, dysphagia and

descending muscle weakness.

Canned foods with a low acid

contents, fermented foods, foods

held warm for extended time.

Clostridium

perfringens (toxin)

Watery diarrhea, nausea,

abdominal cramps.

Meats, poultry, dried or precooked

foods.

E. coli EHEC and

STEC

Severe diarrhea (often bloody),

nausea, abdominal pain and

vomiting. Little or no fever.

Undercooked beef, unpasteurized

milk, raw fruits and vegetables,

salami and contaminated water.

E. coli ETEC Watery diarrhea, abdominal

cramps, some vomiting.

Water or food contaminated by

human feces.

Listeria

monocyogenes

Fever, muscle aches, nausea

and diarrhea. Meningitis in

immunocompromised patients.

Fresh sotf cheeses, unpasteurized

milk, inadequately pasteurized milk,

ready-to-eat foods containing meat.

Salmonella spp. Diarrhea, fever, abdominal

cramps, vomiting. S. Typhi and

S. Paratyphi cause fever,

headache, chills and myalgia.

Contaminated eggs, poultry

unpasteurized milk or juice, cheese,

contaminated raw fruits, vegetables

and water supplies.

Shigella spp Abdominal cramps, fever and

diarrhea.

Food and water contaminated with

fecal materials.

Staphylococcus

aureus

(enterotoxin)

Severe nausea and vomiting,

abdominal cramps. Diarrhea

and fever may be present.

Improperly refrigerated meats,

potatoes, eggs, cream pastries.
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1.3.2 Mycotoxins
In considering chronic health risks from raw food sources, mycotoxins are

recognized as the primary concern. It is widely accepted that filamentous fungi

can produce over 300 toxic secondary metabolites characterized by different

degree and mechanism of toxicity. Nevertheless, scientific attention is focused

mainly on those agriculturally important and that have proven (or suspected) to

have effects on human health, like aflatoxins, fumonisins, ochratoxin A,

deoxynivalenol and zearalenone.

Mycotoxins are chemical compounds toxic to vertebrates and other animal groups

in low concentrations. These metabolites constitute toxigenically and chemically

a heterogeneous group, and they are clustered together only because they can

cause diseases and death in human beings and other vertebrates. In fact, fungi can

also produce other low-molecular-weight toxic metabolites, antibiotics and

phytotoxins, but since they are toxic to bacteria and plants respectively, they are

not considered mycotoxins. Moreover, also mushrooms (phylum: Basidiomycota)

poisons, that can cause diseases and even death in humans and in several animals,

are arbitrarily excluded from the mycotoxin group, due to the size of the

producing fungus and the exposure through intentional consumption (26).

Human exposure to mycotoxins may result from consumption of contaminated

vegetal foods or animal products: it is estimated that one quarter of the world’s

crops are contaminated to some extent with mycotoxins (13, 27- 29).

Mycotoxins can be synthesized at various stages in the food chain: cereals and

other crops can be contaminated both pre-harvest and post-harvest, and in animal-

derived food the presence of mycotoxins can originate from the carryover into the

tissue of exposed animals (26, 30).

Mycotoxin-producing mold species are extremely common in nature, and they

can grow on a wide range of substrates under a wide range of environmental

conditions. Mycotoxin synthesis occurs when fungi mainly belonging to genera
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Aspergillus, Fusarium and Penicillium find certain conditions of temperature,

nutrients and water activity: these parameters strictly affect the production of the

mycotoxins, as secondary metabolites.

High levels of mycotoxins (especially aflatoxins, ochratoxins and fumonisins) in

food and feed commodities may have adverse effects on human and animal health,

including mycotoxicosis and carcinogenic effects. The most dangerous

mycotoxin is aflatoxin B1 (AFB1), which was proved to be hepatocarcinogenic

and genotoxic. In dairy cattle, aflatoxin M1 and M2 (AFM1 and AFM2) can be

found in milk and milk products obtained from livestock that have ingested feed

contaminated by AFB1 and AFB2 (31). Aflatoxins  M1 and  M2 represent the

oxidrilated form of native toxins, depending on the animal metabolism.

Ochratoxin  A  (OTA),  synthesized  by  several  species  of Aspergillus and

Penicillium fungi in a huge variety of foods, including cereals, coffee, cocoa, wine

(namely passito-like wines, produced with dried grapes), dried fruits, as well as

in animal-derived foods, has nephrotoxic and nephrocarcinogenic effects.

Among the toxins produced by Fusarium spp., zearalenone, fumonisins,

trichothecenes T-2/HT-2 toxin and deoxynivalenol are the most toxic and

prevalent in foods and food ingredients. Zearalenone is a field contaminant

implicated in numerous mycotoxicoses of farm animals, especially pigs, having

estrogenic activity. Recently, zearalenone has been suspected to stimulate the

growth of human breast cancer cells (32). Fumonisins are also cancer-promoting

metabolites, of which Fumonisin B1 is the most important. Fumonisin B1, often

recovered in corn and other grains, is hepatotoxic and nephrotoxic.

Trichothecenes, a family of 200-300 related cyclic sesquiterpenoids, are

recognized as gastrointestinal toxins, dermatotoxins, hematotoxins and

immunotoxins. T-2 and HT-2 toxin are the most toxic mycotoxins among the

trichothecene group. Deoxynivalenol, although less toxic, is important because it

frequently occurs at levels high enough to cause adverse effects.
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2. Salmonella as a major pathogen in food
Major outbreaks involving E. coli and Salmonella have highlighted problems with

food safety and increased public anxiety that modern farming systems, food

processing and marketing may not provide adequate safeguards for public health.

The ecology of food poisoning organisms and the environment in which they may

grow and survive has been extensively studied, but the ability to control the

diffusion of some of these organisms still needs to be improved. This may be due

in part to modified production practices, lack of control of hazards at the farm

level, industry difficulties in controlling hazards during production, the trend

towards minimal processing of foodstuffs and longer shelf-life for many

foodstuffs.

In Europe, the most commonly reported foodborne pathogens are Salmonella

spp., Listeria monocytogenes and Campylobacter jejuni (33). Salmonella is the

second cause of food poisoning and its incidence has slightly increased in the last

seven years, with 88,715 confirmed cases in 2014. Among the Salmonella

serovars, the two most commonly reported in 2014 were Salmonella ser.

Enteritidis and Salmonella ser. Typhimurium, representing 44.4% and 17.4%,

respectively, of all reported serovars in confirmed human cases (33). In particular,

the DT104 phago-type Salmonella ser. Typhimurium is widely distributed in

cattle herds and it carries several chromosomally located genes conferring the

ACSSuT resistance type (resistance to ampicillin, chloramphenicol,

streptomycin, sulfonamides, and tetracycline). The incidence of multidrug

resistant strains is increasing, and more than one third of people infected by this

organism requires hospitalization (34). Antimicrobial resistance increases the

morbidity, mortality, length of hospitalization and healthcare costs. The

unfeasibility of reversing antimicrobial resistance back towards susceptibility and

the critical need to treat bacterial infections in modern medicine have forced
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researchers and pharmaceutical companies to develop new effective

antimicrobials against difficult-to-treat multidrug-resistant pathogens (35). Last

available data about drug-resistant bacteria in EU showed isolates of Salmonella

and E. coli, especially from poultry, resistant to ampicillin, (fluoro)quinolones,

tetracyclines and sulphonamides, whereas resistance to third-generation

cephalosporins and colistin was uncommon (36). High proportions of human

Salmonella isolates were resistant to tetracyclines (30.3%), sulfonamides (28.6%)

and ampicillin (28.2%). Multi-drug resistance (MDR) was high overall (26.0%)

in the EU, and some of the investigated serovars exhibited very high MDR, such

as S. enterica serovar Kentucky (74.6%), monophasic variant of S. enterica

serovar Typhimurium 1,4,[5],12:i:- (69.4%) and S. enterica serovar Infantis

(61.9%) (36). However, more than half (54.8%) of all isolates from humans were

susceptible to the complete range of antimicrobial classes tested. The proportions

of Salmonella isolates resistant to the clinically important antimicrobials

ciprofloxacin and cefotaxime was overall relatively low (8.8% resistant to

ciprofloxacin and 1.1% to cefotaxime). Other multidrug resistant bacteria, like

Methicillin-Resistant Staphylococcus aureus (MRSA), multidrug-resistant

Mycobacterium tuberculosis and extended-spectrum beta-lactamase (ESBLs)-

producing bacteria have become a major global healthcare problem in the 21st

century.

2.1 Biology of the genus Salmonella
Bacteria belonging the genus Salmonella are Gram-negative, non-spore forming

and predominantly motile bacilli belonging to the family Enterobacteriaceae.

Salmonella are facultative anaerobic microorganisms, negative to oxidase test and

positive to catalase test. The majority of Salmonella species do not ferment lactose

but they can grow on citrate as a sole carbon source, decarboxylate lysine,

hydrolyse urea and produce hydrogen sulphite (Fig. 1) (37, 38).
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Figure 1. On the left: Salmonella grown on Xylose Lysine Deoxycholate agar at 37 °C

for 24 hours. Typical colonies are red with black center, due to the fermentation of xylose

and the decarboxylation of lysine, which cause the alkalinization of the medium allowing

the formation of the black center by hydrogen sulfide forming organisms. On the right:

Salmonella grown on Brilliant Green agar at 37 °C for 24 hours. Typical colonies are

pink and opaque surrounded by brilliant red zones in the agar.

Salmonella are facultative intracellular bacteria, and their ability to survive in

different host cells is crucial to exert his pathogenic action. Thanks to the adaptive

acid tolerance response (ATR), which is characterized by the induction of several

proteins upon exposure to mildly acidic conditions, Salmonella can survive to the

acid environment of the stomach. In the gut, Salmonella adheres to enterocytes,

M cells and dendritic cells of intestinal epithelium through fimbriae, and starts the

invasion of host cells. The invasion activates different metabolic pathways in the

host cells, which lead to the release of arachidonic acid, prostaglandins and

leukotrienes, the induction of phospholipase A2 and the increase of intracellular

Ca2+. These modifications influence electrolytes transport and cause diarrhea.

When the bacteria arrive to lymphatic vessels, they can be phagocytized by

resident macrophages, disseminate through the blood stream and cause

bacteremia. Microorganisms included in the phagosomes of the macrophages can
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survive thanks to virulence factors encoded by SPI-2, that allow resisting to

activated lymphocytes T and spread the bacteremia to several organs, included

the cholecyst and, finally, in the spleen (39).

There are different routes that Salmonella can use to penetrate in host cells.

Salmonella can be recognized and phagocytized by macrophages. Phagocytosis

of Gram-negative bacteria involves multiple receptors, which recognize microbial

molecules including lipopolysaccharide and flagellin and the binding to ligand,

can affect the phagosome maturation (40). Salmonella can also actively enter into

host cells using a type III secretion system (T3SS1), a system of almost 20

proteins organized in a needle-shaped structure that release effector proteins in

host cells and facilitate the process of invasion. The T3SS1-mediated invasion is

regulated by at least 15 effector proteins, including SipA, SipC, SopB/SigD,

SopD, SopE2 and SptP, which induce rearrangement of the actin cytoskeleton,

promote the formation of membrane ruffles and the rapid internalization of the

bacteria and modulation of the inflammatory response. Several other T3SS1 and

T3SS2 effector proteins interact with ubiquitin pathways of the host cell (41). In

addition, Salmonella can adhere through fimbriae and non-fimbrial adhesins on

the surfaces and can be internalized via a T3SS1-independent process (42). Once

in cells, Salmonella survives and replicates within a modified phagosome, termed

the Salmonella-containing vacuole (SCV), which initially expresses on its surface

early endosome markers (Fig. 2). These markers are degraded within 60-90 min

post invasion and replaced by lysosomal glycoproteins, typical markers of late

endosomes and lysosomes (43). Interactions with the host cell endocytic pathway

mediated by a variety of T3SS1 and T3SS2 effector proteins regulate the

movement of the SCV from the cell periphery to the microtubule-organizing

centre, in the perinuclear area, where the SCV-enclosed bacteria replicate (44,

45). Then, when intracellular replication has started, Salmonella induces the

formation of filaments from the SCV’s surface (46). Subsequently, the T3SS2 and
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other factors involved in nutrient acquisition and limitation of antibacterial

mechanisms are induced.

Figure 2. Invasion of a cell of the gut endothelium by Salmonella through adhesion or

through receptor mediated endocytosis. In the last case, several effectors drive actin-

mediated ruffling and internalization of the bacteria into a modified phagosome or SCV,

which relocate to a juxtanuclear location where intravacuolar replication happens (43).
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2.2 Virulence factors of Salmonella
Infection of human host by Salmonella is a complex process involving

components of both the pathogen and the host. To colonize a host, the pathogen

must survive to the resident microbiota present on host surfaces, as well as to the

host innate immune system. Several factors, mainly proteins, facilitate the process

of invasion and are necessary for the colonization of host cells. These specific

virulence factors are still poorly understood (47). Amongst these factors,

Salmonella have two T3SSs necessary for active internalization in host cells, a

type  I  secretion  system  and  other  factors  such  as  fimbriae,  flagella  and  ion

transporters that have important roles in establishing and maintaining the

intracellular niche. The Salmonella Pathogenicity Islands (SPI) on the

chromosome encodes many virulence factors. Salmonella has two SPI: the first

encoding genes involved in the surviving in the intestinal environment and the

colonization of host cells, the latter involved in the intracellular replication and in

the diffusion of the bacteria in the bloodstream. Invasion and early post-invasion

processes are regulated by T3SS1, flagella, fimbriae and non-fimbrial adhesins.

Flagellar-based motility increases the invasiveness (48), even if flagellin is a

potent inducer of innate immunity, since it is translocated into the cytosol by

T3SS1, resulting in activation of the inflammasome and caspase-1-mediated cell

death (49 - 51).

The survival of Salmonella in the eukaryotic host cells is permitted by the

expression or the down-regulation of several factors. Once in host cells, flagella

are usually down-regulated, although inside macrophages they may be induced

with T3SS1 and used for escape (52). To survive the reactive oxygen species

produced by the phagosome NADPH oxidase of host cells in response to the

bacterial invasion, Salmonella uses a superoxide dismutase (53). Moreover, in the

host, iron availability is limited due to the activity of iron-binding proteins such

as transferrin and Nramp1 (Natural resistance-associated macrophage protein
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one), a divalent metal-proton symporter found in macrophages, neutrophils and

dendritic cells (54). Salmonella, which needs iron for growth, produces two

siderophores, enterobactin and salmochelin (55). Salmochelin is a glucosylated

derivative of enterobactin resistant to lipocalin-2, which prevents bacterial iron

acquisition in the inflamed intestinal (56). Other metal ions, Mg2+, K+ and Zn2+,

are required for intracellular survival. Salmonella has three distinct systems for

uptake  of  Mg2+:  CorA,  MgtA and MgtB,  each  essential  for  virulence (57), the

ZnuABC high-affinity Zn2+ uptake system, and the Trk system, a multiunit

protein complex that functions as a low-affinity K+ transporter (58).

Several serotypes of Salmonella, including Salmonella ser. Typhimurium, are

known to harbour a virulence plasmid of variable sizes, although not all isolates

belonging to these serotypes carry the virulence plasmid (59, 60). All plasmids

contain the 7.8 kb salmonella plasmid virulence (spv) locus, which harbours five

genes designated spv RABCD. Two genes, spvB and spvC, encode the principal

factors for plasmid-mediated virulence of serovar Typhimurium (61). Both are

translocated via the T3SS2 into host cells (62, 63). SpvB ADP-ribosylates actin,

destabilizes the cytoskeleton, and is associated with host cell cytotoxicity (62).

SpvC has phosphothreonine lyase activity and can inactivate the mitogen-

activated protein kinases Erk1/2, JNK and p38 in mammalian cells (63).

Salmonella ser. Enteriditis and Salmonella ser. Typhymurium produce exotoxins

including a heat-stable cytotoxin, which act by inhibiting the protein synthesis,

leading to the host cell lysis and to the dissemination of the bacteria. The cell lysis

can also be due to chelating properties of the toxin, observed in Caco-2 and Hep-

2 cells, respectively from heterogeneous human epithelial colorectal

adenocarcinoma and human epithelial type 2 of human laryngeal carcinoma (64).

In addition to the cytotoxin, Salmonella ser. Typhimurium produces a heat-labile

enterotoxin (Stn) that causes the increase of intracellular cAMP, the consequent
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increase of sodium and chlorine ions and the efflux of water and electrolytes into

the intestinal lumen (65). This important virulence factor is encoded by the gene

stn, located in an 800-bp ClaI-EcoRI genomic DNA fragment and highly

conserved in S. enterica serotypes, while S. bongori lacks the stn gene, that is

therefore exploited to discriminate the two species (66). The Stn enterotoxin (29

kDa), is structurally and immunologically similar to both cholera toxin and the

heat-labile enterotoxin (LT-I) of E. coli, being constituted by two subunits A

(Active) and B (Binding),  in a 1:5 ratio.  The B subunit  of  the toxin binds to a

component of the cell membrane known as glycolipid globotriaosylceramide,

causing the induction of tubular membrane invaginations for the bacterial uptake

into the cell. When the protein is inside the cell, the A subunit interacts with the

ribosomes to inactivate them and stop the protein synthesis, leading to the death

of the cell.

2.3 Occurrence of Salmonella
In industrialised countries, the main reservoir of Salmonella is the intestinal tract

of farm animals. The microorganisms, excreted in faeces, may contaminate soil,

bedding, feedstuffs and water, and continue the cycle of contamination (67, 68,

69). Live poultry at all stages of the farming process can be carriers of Salmonella.

Salmonella can colonize eggs both through transovarial transmission in infected

poultry and through broken or weak eggshell membranes, and dairy products can

get contaminated through poor handling practices at the farming level (such as

milking of animals) (70, 71). Despite other sources, like contact with infected or

carrier animals, environment or person-to-person, foodborne salmonellosis is the

most relevant one with a high global impact in human health. Hence, there are

many ways that allow Salmonella to enter into the food chain: during the

processing of raw meat, bacteria of the digestive tract can colonize surfaces or

meat, while fresh fruit and vegetables can be contaminated through contaminated
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freshwater and soil or through fertilization with contaminated animal manure.

Human usually are infected through the consumption of contaminated food and

water. It is estimated that 95% of Salmonella infections are due to the

consumption of contaminated foodstuffs and low numbers of organisms, as low

as 10 cells, are able to cause infections especially in infants and elderly (72, 73).

Contamination often occurs when organisms are introduced into preparation areas

and are allowed to replicate in food, due to inadequate storage temperatures and/or

cooking or cross-contamination of ready-to-eat food (74).

The major symptom caused by Salmonella is gastroenteritis, however, a few

serotypes belonging to typhoidal serotypes, like Salmonella ser. Typhi,

Salmonella ser.  Paratyphi  A, Salmonella ser.  Paratyphi  B  and Salmonella ser.

Paratyphi C, can cause enteric fever. Usually salmonellosis is self-limiting,

resolving in few weeks, but occasionally the infection becomes systemic (5-10%

of infected persons), causing other extra-intestinal infections especially in the risk

groups (infants, young children, older people and the immune-compromised

patients) (75). It was estimated that non-typhoidal Salmonella causes around 93.8

million of illnesses and 155.000 deaths each year worldwide (76).

2.4 Taxonomy of the genus Salmonella
The genus Salmonella is composed of two species, S. enterica and S. bongori,

with S. enterica divided into the subspecies enterica, salamae, arizonae,

diarizonae, houtenae, and indica based on biochemical and genomic

modifications (Table 2) (77). Each subspecies is further divided into serotypes

based on the presence of specific surface molecules, namely O antigen, H antigen

and to a lesser extent the Vi antigen (78). The O antigen, or somatic antigen, is

the carbohydrate component attached to the core oligosaccharide of the

lipopolysaccharides molecule. Each O antigen has been designated a number for

identification and strains that do not express O antigens are referred to as rough
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in the antigenic structure details, having outer membrane more penetrable by

hydrophobic antimicrobial (79). All O antigens are listed sequentially following

the White-Kauffmann-Le Minor scheme (80). The H antigen is the filamentous

portion of the flagellar component of the bacterium and the antigenic

differentiation is related to differences in the middle portion of the flagellin

protein. Most Salmonella cells can express two different H antigens (diphasic).

The phase 1 antigen is encoded by the fliC gene and the phase 2 antigen is encoded

by the fliB gene. Most cells only express 1 antigen at a single time. Cells that can

only express 1 antigen are referred to as monophasic, they can occur naturally in

some serovars or through loss of either the fliC gene or fliB genes in serovars that

are usually diphasic, such as Salmonella ser. Typhimurium. The lack of a phase 1

or phase 2 antigen is denoted by a “-“ in the antigenic structure, as described in

some Salmonella ser. Typhimurium. Non-motile strains do not express phase 1 or

phase 2 antigens and are denoted with two “-” in the antigenic formula. The Vi

antigen, or capsular antigen, is present only in few serotypes, like S. Typhi, S.

Paratyphi C and S. Dublin. Serotyping is achieved by agglutination test on glass

slides with the corresponding anti-sera. To date, there are over 2,500 serovars

identified within S. enterica, but they do not all frequently cause diseases in

humans and domestic animals (80).

Strains of Salmonella spp. resistant to antimicrobial drugs are now widespread in

both developed and developing countries, due to the use of growth promoters in

livestocks and the incorrect use of antimicrobial agents for treatment in humans

and animals (81 - 83). Therefore, the occurrence of Salmonella strains resistant to

quinolones, fluoroquinones, and third generation cephalosporins has increased in

food animal sources (84, 85). Since 1990s, the isolation of the multi-resistant

strain of Salmonella ser. Typhimurium definitive phage type (DT) 104 has

increased. This strain displays resistance to six commonly used antimicrobials:

ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracyclines (R-

type ACSSuT) (86).
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Table 2. Classification of Salmonella species (77).

Species Subspecies Subgenus Number of serotypes

enterica enterica

salamae

arizonae

diarizonae

houtenae

indica

I

II

IIIa

IIIb

IV

VI

1454

489

94

324

70

12

bongori - V 20

2.5 Methods for Salmonella detection and subtyping
With the arising of multi-drug resistant strains, the simple identification of the

Salmonella species is no longer sufficient to establish the risk to which consumers

are exposed, and genotyping is required. Current testing of food and

environmental samples for the presence of Salmonella is performed by detecting

the pathogen, identifying the isolate as a specific Salmonella serovar and

subtyping the isolate for the possible association with any clinical cases of

salmonellosis. Detection methods are based on traditional bacterial culture

procedures through serial enrichments of increasing selectivity, which leads to the

isolation of Salmonella on selective-differential agar media, as established by

ISO6579:2002/Cor1:2004 (87). The isolation and identification of Salmonella

from foods through culture-dependent traditional methods requires at least 5 days

to obtain a result, which must be confirmed through biochemical testing. Also,

the confirmation test takes days, if not performed trough automated technologies

that allow simultaneous testing of multiple analytes. Following a non-selective

pre-enrichment for 16-20 hours in buffered peptone water, two selective

enrichments in Tetrathionate broth (Müller Kaufmann) and Rappaport-Vassiliadis

Soy  peptone  (RVS)  broth  are  carried  out  for  18-24  hours.  An  aliquot  of  each

enrichment is then plated on two selective media, Brilliant Green Agar (BGA)
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and Xylose-Lysine-Desoxycholate (XLD) agar, and incubated for 18-24 hours.

After incubation, five suspected colonies of Salmonella from each medium (grey-

reddish-pink and slightly convex colonies on BGA, or slightly transparent red

colonies with a black centre and a pink-red zone around them in XLD) are finally

transferred onto non-selective media, like Nutrient agar plates for biochemical

confirmation of Salmonella and serotyping.

Salmonella presence is confirmed when the bacterium results oxidase negative,

negative to Voges–Proskauer test for the digestion of glucose to

acetylmethylcarbinol, do not produce urease, indole negative, non-lactose

fermenter or O-Nitrophenyl-β-D-galactopyranoside (ONPG) negative, Lysine

Decarboxylase positive (Fig. 3). All these tests can be performed singularly, by

using panels, like API 20E test, or by using automatized instruments.

Figure 3. API 20E strip for the identification of Enterobacteriaceae. The metabolization

by Salmonella of the dehydrated substrate contained in each well cause the turning of

indicator. The positivity to the reactions is reported in the reading table, obtaining a

numerical profile. Each profile identify a certain species.

A faster alternative to the microbiological identification is the fluorescent

quantitative real-time PCR, which is the most sensitive method for detection,

monitoring and measurement of pathogen levels. There are several commercial
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kits that apply genetic methods for the detection of Salmonella. Most  of  them

exploit 16S, hilA, Prot6e, gapA, recA, rpoB genes.

To detect and track foodborne disease outbreaks and to track sources of bacterial

contamination throughout the food system, methods able to allow the

identification at strain level are required. The use of subtyping methods

furthermore provides an opportunity to improve the knowledge about the

population genetics, epidemiology, and ecology of different foodborne pathogens.

Several methods can be used for subtype Salmonella strains. Traditional typing

methods based on phenotypic traits, antibiotic susceptibility profiles, serotyping,

and phage typing, provide insufficient information for epidemiological purposes.

More informative molecular subtyping methods have been developed based on

three main mechanisms of discrimination: i) restriction analysis of bacterial DNA,

ii) Polymerase Chain Reaction (PCR) amplification of specific genetic targets and

iii) the identification of DNA sequence polymorphism at specific loci in the

genome.

Serotyping is performed to determine to which of the 2500 Salmonella serovars a

specific isolate belongs. This is necessary for epidemiological purposes, and it is

the first approach used for looking for evidence of links between cases. Serotypes

of Salmonella are defined based on the antigenic structure of both somatic or cell

wall (O) antigens and flagellar (H) antigens. These antigens are detected using

slide agglutination with commercially produced antisera, using a resuspended

colony from an agar plate in case of the O antigens, while H antigens are identified

using a suspension of broth culture, as described in ISO 6579-3:2014. The

serotype is deduced from the specific pattern of agglutination reactions using the

Kauffmann-White classification scheme.

A further discrimination of Salmonella isolates is achieved by subjecting the

isolates to in vitro antibiotic susceptibility testing against antibiotics of different

classes. Disk diffusion method of Kirby and Bauer is commonly used following

the guidelines of Clinical and Laboratory Standards Institute (88). Antibiotics
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commonly used for Salmonella serovar Thyphimurium are ampicillin,

cefotaxime, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic

acid, streptomycin, sulfonamides, tetracycline and trimethoprim–

sulfamethoxazole. The data about the antibiotic susceptibility profile is also useful

to choose the most effective therapy to give to patients.

Subtyping through phage typing exploits the selective ability of bacteriophages to

recognise particular receptors on the surface of the bacterial wall and to infect and

consequently lyse certain strains of Salmonella. The profile obtained by the

susceptibility of each isolate to the lysis by a panel of different bacteriophages

allows the identification of the phage-type. Phage typing resulted useful in the

description of pandemic clones of Salmonella, such as Salmonella ser.

Typhimurium DT104, but a limited number of phages are avalaible, thus

excluding the discrimination among different untypeable strains (89). A further

drawback of this technique is the need of adequate maintenance of phages, to

assure accurate and reproducible results. Consequently, only suitable well-trained

laboratories like National Reference Centers are able to use this technique.

Among DNA based techniques, the most frequently used is Pulsed-Field Gel

Electrophoresis (PFGE), which is considered the gold standard (90). Other

techniques commonly used for Salmonella genotyping are plasmid typing, ribo-

typing, Amplified Fragment Length Polymorphisms (AFLP) and recently Multi-

Locus Variable number tandem repeat Analysis (MLVA).

PFGE profiles provided a DNA ‘‘fingerprint’’ that reflects the DNA sequence of

the entire bacterial genome. To perform PFGE, an optimal number of cells  are

embedded in an agarose plug and treated with detergents and enzymes, such as

sarcosine and proteinase K, to lyse the embedded cells and release the genomic

DNA (Fig. 4). The plug is then washed and treated with a rare cutting restriction

enzyme, such as XbaI, BlnI, or SpeI (91, 92). The plugs are then inserted into the

wells of an agarose gel, and the DNA separated in alternated electric fields.

Following electrophoresis, the pattern of DNA separation is visualized by staining
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the gel with a fluorescent dye. The gel-banding pattern from one isolate can be

compared with those of other isolates, and information about the relatedness of

the strains can be resolved. PFGE is characterized by a high degree of

reproducibility, both within and between laboratories, and the recent introduction

of computerized gel-based data collection and analysis systems allows better

standardization between laboratories, thus creating the ability to rapidly compare

restriction fragment patterns from isolates analysed from remote locations. Large

databanks that house PFGE patterns from isolates around the world will greatly

enhance Salmonella outbreaks detection. For Salmonella, a PFGE pattern

database, the PulseNet system, has been developed by CDC (Center for Deseases

Control and prevention) and it is commonly used worldwide to examine the

diversity of different pulsotypes (93).

 Figure 4. PFGE workflow (modified from 93).
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Another technique based on restriction fragment analysis is plasmid typing, in

which plasmid DNA digested with enzymes such as HindIII is separated through

gel electrophoresis. If the plasmid lacks restriction sites for a particular enzyme,

the plasmid will not be cut. Variability can occur also among unrestricted

plasmids, depending on the degree of supercoiling. The main drawback of this

approach is that all Salmonella strains that do not carry plasmids show the same

profile. Moreover, plasmids can be gained or lost in response of certain

conditions, limiting the possibility of applying this technique to determine

relatedness of isolates involved in foodborne outbreaks.

Through the digestion of chromosomal DNA by restriction enzymes, followed by

gel electrophoresis, banding patterns are generated. This approach can be coupled

with Southern blotting, using probes for repeated DNA elements, like ribosomal

RNA gene sequences (rRNA) or IS200 sequences. For Salmonella,  the  use  of

IS200 sequences, which are approximately 700 bp in length and are randomly

located around the genome (94), would not be effective in differentiating all

isolates, since some strains lack IS200 sequences.

In ribotyping, frequent cutting restriction enzymes are used to cut total genomic

DNA, then restriction fragments are transferred to nylon membrane and incubated

with a probe homologous to the highly conserved regions of rRNA (95). Sequence

differences in the regions flanking the rRNA gene lead to variability in the size of

the junction fragments, which produce distinct patterns that can be used to

discriminate between related strains. Ribotyping is highly reproducible, produce

relatively few bands, it has been largely automated and other supplemental

enzymes can be used if more discrimination is needed, but it may not adequately

separate unrelated isolates within a particular serotype (96). The disadvantages of

this technique relies on the limited number of rRNA genes in some serotypes and

on the fact that a mutation, or other genetic changes, could alter the size of

fragments containing a portion of the rRNA gene (97).
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A combination of restriction analysis and PCR amplification is employed in

AFLP method. This combination increases the sensitivity, requiring only a small

amount of genomic DNA to determine the relatedness of bacterial strains, and it

results in a high reproducible and accurate technique (98). Following the digestion

with one or more enzymes, known DNA fragments, named linkers, are ligated to

the free DNA ends. These linker oligonucleotides contain sequences

complementary to the restriction sites and are recognized by PCR primers that

allow the selective amplification of the restriction fragments. The separation of

the amplicons by gel electrophoresis leads to characteristic separation profiles,

which can be compared among strains. AFLP shows though some limitations,

since the reaction products are best processed with an automated DNA sequencer,

and the variability among different sequencing platforms could potentially limit

some inter-laboratory data comparison (99).

The Multi-Locus Variable number tandem repeat Analysis (MLVA) is a recent

technique, which through the identification of polymorphic DNA sequences

allows the profiling and molecular subtyping of S. enterica subspecies. Bacterial

genomes have many regions with nucleotide repeats in coding and non-coding

DNA sequences. When these repeats are directly adjacent to each other and their

number at the same locus varies between isolates, the respective genomic regions

are called Variable-Number Tandem Repeat (VNTR) loci. The repeats at the same

locus can be identical or their nucleotide sequences can differ slightly. Multilocus

VNTR analysis (MLVA) allows determining the number of tandem repeat

sequences at different loci in a bacterial genome. The MLVA genotyping method

is based on the amplification of DNA fragments that contain variable copies of

tandem repeats, followed by accurate sizing of the PCR products through agarose

gel electrophoresis. Recently, the use of primers labelled with different

fluorescently coloured dyes and capillary electrophoresis carried out on an

automatic DNA sequencer allows MLVA amplicons to be analysed in one single

run. The different fluorophore molecules incorporated in the amplicons absorb
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the laser energy and release light of different wavelengths, which are then

identified by the detector in the DNA sequencer. Exploiting a specific software,

each locus is distinctly recognised on the electropherograms according to its

colour, and, based on their amplicon sizes, the repeat number per MLVA locus is

automatically calculated (Fig.5). Once the number of repeats in a set of VNTR

loci (alleles) for a bacterial isolate is assessed, an ordered string of numbers

corresponding to the number of repeat units at each locus is provided. The profile

number can be easily compared to the VNTR loci from the complete sequence of

a Salmonella genome that is already present within the database. This choice

resulted useful especially for inter-laboratory comparison, when standardization

is required. Moreover, reduced typing time, high resolution, suitability for large-

scale automation are the main advantages for resolving large and complex

outbreak situations. Their drawbacks include high assay-specificity and the

current lack of standardisation for many bacterial species. In Europe, only the

Salmonella enterica subspecies enterica serovar Typhimurium MLVA assay has

achieved generally accepted standardisation (100).

Different typing techniques have strengths and weaknesses that will affect their

usefulness in determining the source and relatedness of Salmonella isolates. The

use of several methods is often required for the effective discrimination at strain

level, because only the identification based on different parameters can give

complete information. The choice of the molecular method depends on a number

of factors.

Serotyping is an essential first step in characterizing a Salmonella isolate, and can

separate strains to a certain degree; however, isolates within a particular serotype

will need to be further distinguished with techniques such as PFGE, MLVA or

AFLP. An important feature of each of these genotypic techniques is that their

discriminatory  power  can  be  somewhat  suitable  to  the  needs  of  a  situation.  A

recent  work  has  indicated  that  the  ability  of  PFGE  to  separate  among  closely

related isolates can be significantly enhanced when multiple reactions with



Chapter 1. Introduction

28

different enzymes are compared (101). The same happens when multiple loci are

screened and compared through MLVA (100), and when the number of unknown

nucleotides in primer design for AFLP are reduced (102).

Figure 5. MLVA workflow (modified from 93).

Certain typing methods do not work in particular situations; for example, many

strains of Salmonella lack plasmids, repetitive sequences, or useful phage

receptors, or separate as smear patterns in gels and thus cannot be typed.

Therefore, alternative and robust typing methods will be required to distinguish

between these un-typeable isolates.

Another limit of the typing method is linked to the reproducibility. The lack of

reproducibility can be due to minor changes in the amplification conditions that

lead to variability in the profiles generated, or to techniques that rely on visual

interpretation of DNA bands.
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Therefore, techniques that rely on stable, defined markers for typing provide the

most reproducible typing results, however they may not provide enough

discriminatory power for long-term epidemiologic studies, due to their genetic

instability. Additionally, to improve reproducibility and utility of typing results,

it is best to limit the number of times an isolate is transferred on culture media. In

fact, repeated passing of Salmonella on artificial media can lead to genetic

changes (103), and if changes occur in a portion of the genome targeted by a

typing method, such as a restriction site for PFGE, the pathogen causing

foodborne disease may be incorrectly classified. Likewise, the loss of plasmid in

culture would have an effect on an isolate’s plasmid profile, potentially altering

the results of other restriction-based methods where the plasmid DNA makes up

part of the restriction profile.

Additionally, factors such as the time needed to get the results, the cost of the

supplies, and the cost of the equipment to perform the typing method are

important for picking a molecular method. Some techniques, even if

discriminatory, require specialized and expensive equipments, and thus are not

always feasible. For example, to use MLVA or AFLP as a high throughput typing

method, an investigator needs access to an automated DNA sequencer. Therefore,

the selection of the most appropriate molecular typing method for the

characterization of Salmonella in the food chain will rely upon the needed level

of discrimination and the resources that are available to carry out the typing.

Overall techniques such as AFLP, MLST, MLVA, and PFGE have provided the

best levels of discrimination among the Salmonella isolates; however, none of

these methods  appears to be clearly superior to the others. Nonetheless, in a study

carried out by our group, only MLVA has allowed to discriminate adequately

among  closely  related  isolates  and  to  identify  the  source  of Salmonella strain.

Therefore, the careful selection of methods and the order of deployment will help

to maximize the discriminatory power of a typing scheme to characterize

foodborne Salmonella infections.
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3. Staphylococcal Enterotoxins
Staphyloccal Enteroxins (SEs) are short and extracellular proteins produced

mainly by Staphylococcus aureus, although other Staphylococcus species have

also proved to be enterotoxigenic. SEs constitute a family of more than 20

different exotoxins, which share similarities in structure (104). Their mature

length is approximately 220–240 amino acids, depending on the toxin, and their

molecular size is on average ~25 kD and have significant sequence variability,

but, when folded, display similar three-dimensional structures (105). The three

dimensional structure of several SEs has been determined by crystallography

(106). They are elliptical in shape and have two major unequal domains composed

mostly of α strands and a few -helices.  The  two  domains  are  separated  by  a

shallow cavity. The larger of the two domains contains both the amino and

carboxyl termini. Mutational analysis of both SEA and SEB implicated this cavity

in the binding to T cell receptors (TcR) (107). Another region on SEA identified

by mutational analysis, found interacting with the TcR Vα 7 and 8.1, is tyrosine

66, while a stretch of amino acids from 45 to 58 on SEB was found to be involved

in the binding to class II major histocompatibility complex (MHC) molecules that

are expressed by antigen presenting cells (APC). Several of these enterotoxins

have a Zn-binding site that contributes to their interaction with class II MHC

molecules (108).

SEs are resistant to heat as well as to acid and to gut proteases, including pepsin,

trypsin, rennin and papain (109). Therefore, they may not be completely

denatured by mild cooking of contaminated food. Since S. aureus grows over a

wide range of temperatures and pH, the bacteria may grow in a wide assortment

of foods, including meat and meat products, egg products, salads, bakery products

and milk and dairy products. In fact, several SE-outbreaks have been caused by

food contaminated with SE-producing strains left at temperatures that allow rapid
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growth and replication of the bacteria. The main symptoms associated to

staphylococcal enterotoxins are fever, since SEs are pyrogenic, emesis and

gastroenteritis. The ingestion of less than 1 µg of toxin cause vomiting, diarrhea,

prostration, severe dehydration, dizziness and abdominal pain, which are the main

symptoms of food poisoning and toxic shock syndrome (110). In an outbreak due

to Staphylococcal Enterotoxin A (SEA) contaminating chocolate milk, the

amount of toxin infecting the children was reported to be only 200 ng (111). The

disease is usually self-resolving, is rarely lethal and the elderly and young children

are more susceptible.

Although there are more than 20 distinct staphylococcal enterotoxins, only the

most commonly found in foods have been studied. Staphylococcal Enterotoxin A

(SEA) is the most common SE encountered in food poisoning outbreaks; SEB is

associated with food poisoning too, but has been studied for potential use as an

inhaled bioweapon, while Staphylococcal Enterotoxin D (SED) is suggested to be

the second most common staphylococcal toxin associated with food poisoning

worldwide. Staphylococcal Enterotoxin E (SEE) has also been documented in

some cases of food poisoning, while Staphylococcal Enterotoxin F (SEF) has been

implicated in toxic shock syndrome (110, 112). SEA, SED, and SEE share 70–

90% sequence homology, while only 40–60% with Staphylococcal Enterotoxin B

(SEB) and Staphylococcal Enterotoxin C (SEC) (113, 114).

The economic impact of food-borne diseases is substantial. In 2014, 393 food-

borne outbreaks caused by staphylococcal toxins were reported in Europe (115).

This represents 7.5% of all outbreaks, a small increase compared with 2013, when

386 outbreaks caused by staphylococcal toxins were reported by 12 member

States. As in previous years, France reported the majority (89.6%) of the

outbreaks, being correlated to raw milk cheese consumption. S. aureus may occur

in the milk of animals with clinical or sub-clinical mastitis or as the result of poor
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hygienic practices during milk collection. The high incidence of staphylococcal

food poisoning is often due to the insufficient pasteurization/decontamination of

an originally contaminated product source or to its contamination during

preparation and handling by individuals who are carriers of the organism (116).

The ability of S. aureus to produce detectable amounts of enterotoxins in food

depends on whether or not the strain is enterotoxigenic and whether the

environmental conditions necessary for enterotoxin synthesis exist.

3.1. Biology of staphylococcal enterotoxins
S. aureus is an ubiquitous Gram-positive coccus, which usually colonizes skin

and mucosal membrane of humans and domestic animals, becoming an

opportunistic pathogen when the carrier’s immunity system is compromised (117,

118). S. aureus expresses a wide array of cell-associated and secreted virulence

factors, which make it a versatile pathogen capable of a wide range of infections.

The secreted factors include various cytotoxins, exotoxins, exfoliative toxins and

enzymes able to turn host components into nutrients that the bacteria may use for

growth. Among the other secreted factors are exotoxins that include SEs and toxic

shock syndrome toxin.

SEs are globular, single-chain proteins, with molecular weights ranging from 19

to 29 kDa, divided into four phylogenetic groups based on their amino acid

sequences (119). Staphylococcal enterotoxins genes are encoded by pathogenic

islands and are horizontally transmitted (120). SEs have an elliptical shape and

contain two unequal domains, A and B, separated by a shallow cavity, which is

involved in the binding to T cell receptors (107). Several of these enterotoxins

have a Zn-binding site that contributes to their interaction with class II MHC

molecules (108). Even though there are some differences in SE structures, these

toxins share the ability to bind to the major histocompatibility complex proteins

of their hosts.
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SEs exert cytotoxic effect by forming pores and altering the chloride

ion permeability of the membrane of mucosal cells of the intestinal wall. This

mechanism promotes the death of the cells and a secretory diarrhea in few hours

after the ingestion of the toxins. In contrast to the case of many other bacterial

enterotoxins, specific cells and receptors in the digestive system have not been

unequivocally linked to oral intoxication by a SE. It has been suggested that SEs

stimulate the vagus nerve in the abdominal viscera, which then transmits the

signal to the vomiting center in the brain (121, 122).

In addition, SEs act as super-antigens, binding as unprocessed molecules to major

histocompatibility complex (MHC) class II molecules on antigen presenting cells,

and subsequently activate T-cells through interaction with the variable region of

the T-cell receptor a-chain (TCR-Vp) (123). This  results  in  the  activation  of

between 2 and 20% of all T-cells, ultimately leading to proliferation and the

production of a variety of cytokines, which can lead to systemic shock (124). SEs

evolved several modes of interaction with MHC class II molecules. SEA contains

two MHC class II binding sites: a zinc-dependent site, located in domain A, which

presumably binds MHC β chain, and a minor binding site in domain B, which is

not zinc dependent (125). It may be that cooperation between the two binding

sites is responsible for the high affinity of SEA for MHC class II molecules.

The release of inflammatory mediators causes vomiting and gastrointestinal

damage (126). Inflammatory changes are observed in several regions of the

gastrointestinal tract, but the most severe lesions appear in the stomach and the

upper  part  of  the  small  intestine.  The  diarrhea  sometimes  associated  with  SEs

intoxication may be due to the inhibition of water and electrolyte reabsorption in

the small intestine (127).
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3.2. Methods for the detection of staphylococcal

enterotoxins
Heat treatment that is commonly used in food processing can kill Staphylococcus,

but cannot inactivate the staphylococcal enterotoxins (128). Crude SEA was

reduced from 21 μg mL−1 to < 1 μg mL−1 after heating at 100 °C for 130 min, and

purified SEA (0.2 mg mL−1), however, was completely inactivated in buffer after

heating at 80 °C for 3 min or 100 °C for 1 min (129). Thermal stability of SEs is

influenced by the nature of the food, the pH, the presence of NaCl and the type of

toxin. SEA, for instance, is relatively more stable to heat at pH 6.0 or higher than

at pH 4.5–5.5, while SED is relatively more stable at pH 4.5–5.5 than at pH 6.0

or higher (130). Depending on these facts, it is very difficult to predict the real

elimination of the toxins in thermally processed foods. The European

Commission has set the maximum level of coagulase-positive staphylococci in

cheeses and milk-derived products to 105 cfu/g in 25 g of samples, thus not

avoiding the presence of the toxins (131). Currently, the presence of

staphylococcal enterotoxins is searched in dairy products contaminated by S.

aureus at a level higher than 105 cfu/g. Enterotoxins must be absent in 25 g of

these foods (131). European legislation also stipulates the reference procedure for

SE analysis in milk and dairy products, which is based on extraction, dialysis

concentration and immunochemical detection using one of the two approved

assays (Ridascreen® SET Total, VIDAS® SET2) (132). While Ridascreen® SET

Total is a sandwich Enzyme-Linked Immunosorbent Assays (ELISA), VIDAS®

SET2 is  an Enzyme Linked Fluorescent Assay (ELFA).  Both of the assays are

based on the capture of the toxin in the samples by antibodies adsorbed onto a

solid phase before the detection by an enzyme-labelled antibody, which generate

a colorimetric signal in the first case or a fluorescent signal in the latter case. Both

these methods have been considered the most practical and powerful method for

the analysis of SEs in foods because of their sensitivity and reliability.
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Recently, a mouse polyclonal antibody-based sandwich ELISA has been reported

to detect SEA in milk and cheese at concentrations as low as 0.064 ng/mL (133),

whereas a monoclonal antibody-based sandwich ELISA has reached the LOD of

0.0282 ng/mL (134). These findings together with the raise of rapid and high-

throughput adaptable technologies could be exploited for the development of

alternative methods for detection and quantification of enterotoxins. Among the

most promising direct high-throughput methods, the xMAP technology

(http://www.luminexcorp.com/) is a stable and reproducible method, which was

successfully tested for detecting bacterial toxins in foods (135). The  xMAP

technology is based on the principles of flow cytometry and uses microspheres

containing  a  mixtures  of  fluorescent  dyes  that  are  used  to  identify  a  set  of

microspheres characterized by a spectral address. In the sandwich immunoassay

format, microspheres of several sets are coupled with specific binding antibodies,

which bind to the toxin when it is present (Fig.6).

Figure 6. General overview of the Luminex xMAP immunoassay detection scheme.
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Conjugated microspheres of different sets can be mixed to create a multiplex

assay for several desired analytes, up to 500 various tests in each single sample.

The mixtures of microspheres are incubated with the sample and then the

detection of the immunocomplex toxin-antibody is performed using biotinylated

detecting antibodies and streptavidin conjugated with phycoerythrin as

fluorescent dye. The specialized flow cytometer detects each involved spectral

address of microspheres as well as intensity of phycoerythrin fluorescent signal

from each spectral address.

A further innovative approach uses Surface Plasmon Resonance (SPR) for the

detection of antigen-antibody in real-time in a label free environment. Surface

plasmon resonance (SPR) biosensors, like Biacore system

(https://www.biacore.com/lifesciences/index.html) exploit the change of the

refraction angle of polarized light between media of different refractive index. In

Biacore systems, the glass of the sensor chip and the sample solution constituted

the media with different refractive index, while the conducting film is a thin layer

of gold on the sensor chip surface. At a certain combination of angle of incidence

and energy (wavelength), the incident light excites “plasmons” (electron charge

density waves) in the gold film. As a result a drop occurs in the intensity of the

reflected light. A plot of the intensity of reflection against the angle of reflection

produces an SPR curve (or profile). The sensor-chip provides the physical

conditions necessary to generate the SPR signal. Attachment of specific

recognition elements on the gold surface (usually antibodies, but potentially also

other kind of probes, like Peptide Nucleic Acids or Aptamers), and passivation of

the gold surface to non-specific binding, provides a condition for monitoring for

the presence of specific analytes. The interaction takes place on the gold-covered

side of the sensor chip, opposite from the side where the light is reflected (Fig. 7).

Sample containing analyte is supplied in a controlled fashion to the sensor surface

through a microfluidic system. The sensor surface itself forms one wall of a flow
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cell, which is an integral part of the microfluidic system. Protein toxins are of

sufficient size to be detected directly by SPR.

Figure 7. Principle of Surface Plasmon Resonance used in Biacore instrument.

Various other alternative methodologies, based on bioassays or molecular based

assays have been developed to detect SEs, including microbiological and

molecular methods to test for toxin production (136). The PCR approach is known

to provide information about the presence of genes encoding SEs, but it does not

provide information about their expression, resulting inadequate to fulfil the

requirements established by EU.
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4. Aflatoxins and ochratoxins in foods
Contamination of food and agricultural commodities by toxigenic fungi is a

widely neglected problem all around the world. Therefore, mycotoxins can be

produced in a great variety of food commodities, when suitable condition of

temperature, humidity and pH occur in food. The presence of mycotoxins in raw

agricultural products poses severe health and economic concerns. The Food and

Agriculture Organization (FAO) estimates that about 1000 million metric tons of

foodstuffs each year are lost, globally (137).

In the field, airborne spores can germinate on damaged kernels, especially when

drought, flood, insect infestation and delayed harvest occur. During the

processing and the storage of plant foods, conditions such as inadequate drying

and warm humid environment promote mould growth and the potential synthesis

of mycotoxins (138). If animals consume contaminated feeds, mycotoxins can

distribute and accumulate in their tissues and result in animal-derived foods (26,

139). In fact, the crops contaminated above the limit of regulation for human

consumption are directed to animal feed, if they respect the more permissive

limits for animal feed (140). Contamination of feeds with mycotoxins is an

important concern for farmers due to both acute and chronic intoxication in

animals, causing the decrease of productivity and health damages (141).

Aflatoxins and ochratoxins are amongst the most dangerous and frequently

isolated mycotoxins. Aflatoxins are a major issue in cereals notably corn, nuts,

such as peanuts, pistachio and Brazil nuts and oil seeds (142). Other commodities,

like wheat, oats, millet, barley, rice, soybeans, beans and sorghum, are less

susceptible to aflatoxin contaminations in the field and if stored under conditions

of high moisture and temperature.
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Ochratoxin A is often detected in barley, oats, rye, wheat, coffee beans, and other

plant products, with barley having a particularly high likelihood of contamination.

There is also concern that ochratoxin may be present in certain wines, especially

those from grapes contaminated with Aspergillus carbonarius, and in dry-cured

meat. Frequently, crops can be contaminated by different fungal genera, and more

than a mycotoxin can be produced. OTA and AFB1 are among the most frequently

observed combinations of mycotoxins in different plant products (143, 144).

Considering their diffusion and the toxic effect for both humans and animals, the

maximum level of aflatoxins and OTA is subjected to legal regulation both on

national and international bases. Maximum levels of aflatoxins (aflatoxins B1, B2,

G1, G2 and M1) and ochratoxin A are established in Commission Regulation

(EC) No 1881/2006 (6), while provisions for methods of sampling and analysis

for the official control of mycotoxins including aflatoxins and ochratoxin A are

set in Commission Regulation (EC) No 401/2006 (7).

The maximum levels admitted for aflatoxins and ochratoxin A in different

categories of food are showed in Table 3 and Table 4 respectively.
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Table 3. Maximum levels of aflatoxins admitted in each food category by EC No

165/2010 (145).

Foodstuffs Maximu
m level

B1
(µg/kg)

Maximum
level

B1+B2+
G1+G2
(µg/kg)

Maximum
level M1
(µg/kg)

Groundnuts to be subjected to sorting or other
physical treatment before human consumption or
use as ingredient in foodstuffs

8.0 15.0 -

Nuts to be subjected to sorting or other physical
treatment before human consumption or use as
ingredient in foodstuffs

5.0 10.0 -

Groundnuts, nuts and processed products thereof,
intended for direct human consumption or use as
ingredient in foodstuffs

2.0 4.0 -

Dried fruits to be subjected to sorting or other
physical treatment before human consumption or
use as ingredient in foodstuffs

5.0 10.0 -

Dried fruits and processed products thereof,
intended for direct human consumption or use as
ingredient in foodstuffs

2.0 4.0 -

All cereals and all products derived from cereals
including processed cereal products, with the
exception of some foodstuffs (*)

2.0 4.0 -

*Maize to be subjected to sorting or other
physical treatment before human consumption or
use as ingredient in foodstuffs

5.0 10.0 -

Raw milk, heat-treated milk and milk for the
manufacture of milk-derived products

- - 0.05

Following spices: Capsicum spp. (dried fruits
thereof, whole or ground, including chillies, chilli
powder, cayenne and paprika); Piper spp. (friuits
thereof, including white and black pepper);
Myristica fragrans (nutmeg); Zingiber officinale
(ginger); Curcuma longa (turmeric)

5.0 10.0 -

*Processed cereal-based foods and baby-foods for
infants and young children

0.1 - -
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Table 4. Maximum levels of ochratoxin A admitted in each food category by EC No

1881/2006 (145).

Foodstuffs Maximum OTA levels
(µg/kg)

Unprocessed cereals 5.0

All products derived from unprocessed cereals, including
processed cereal products and cereals intended for direct human
consumption with the exception of foodstuffs (*)

3.0

Dried vine fruits (currants, raisins and sultanas) 10.0

Roasted coffee beans and ground roasted coffee, excluded
soluble coffee

5.0

Soluble coffee 10.0

Wine 2.0

Grape juice, grape nectar, grape must 2.0

*Processed cereal-based foods and baby foods for infants and
young children

0.5

*Dietary foods for special medical purposes intended
specifically for infants

0.5

Green coffee, dried fruits other than dried vine fruit, beer, cocoa
and cocoa products, liqueur wines, meat products, spices and
liquorice

-

4.1. Aflatoxins: chemical characteristic, toxicity and

bioavailability
Aflatoxins (AF) were isolated and characterized for the first time after the death

of more than 100,000 turkeys (“turkey X disease”, England, 1960), which were

fed with mould-contaminated peanuts (146). Aflatoxin B1, B2, G1 and G2, which

name were chosen from their fluorescence under UV light (B= blue, or G= green)

and relative chromatographic mobility during thin-layer chromatography, are the



Chapter 1. Introduction

42

most important members of the aflatoxins group, which count over a dozen other

aflatoxins, some coming from bio-transformations (metabolism) that occur in

mammals. Aflatoxin B1 (AFB1) is considered the most potent natural teratogen,

mutagen and carcinogen known for animals and humans and is usually the major

aflatoxin produced by toxigenic strains (26, 147). Aflatoxicoses, the diseases

caused by aflatoxin consumption, can be acute resulting in death, or chronic,

resulting in cancer, immune suppression, and other pathologies. The main route

of exposure to AFs is via the ingestion of contaminated foods, but also the

inhalation of airborne spores and the absorption through the skin can cause hepatic

and gastrointestinal injuries. In 2002, 4 aflatoxins (AFB1, AFG1, AFB2, AFG2)

were confirmed as a Group-1 agent by International Agency for Research on

Cancer (IARC), since they significantly increased risks for hepatocellular

carcinoma (HCC), especially when act synergistically with hepatitis B virus

(HBV) infection, as measured by aflatoxin-specific biomarkers in cohort (148 -

150).

The liver is the primary target organ in all animals including poultry, fish, rodents,

and primates, with differences in species susceptibility: trout, ducklings and pigs

are highly susceptible, with ruminants being less susceptible (151). Moreover,

within a given species, the magnitude of the response is influenced by age, sex,

weight, diet and the presence of other mycotoxins and pharmacologically active

substances (152). Both pre-harvest and post-harvest contamination of cereals,

figs, oilseeds, nuts, tobacco are common, associated in the first case to drought

stress and in the latter to the moisture content of the substrate and the relative

humidity of the surroundings. Presently, it is estimated that human consumption

of aflatoxins ranges between 0 and 30,000 ng/kg/d, with an average intake of 10

to 200 ng/kg/d (153). The  maximum  acceptable  levels  of  AFB1  in  cereals,

peanuts, and dried fruits, either for direct human consumption or as an ingredient

in foods, has been set by the European Committee Regulations (ECR) as 4 ppb

for total aflatoxins (AFB1, AFG1, AFB2, and AFG2) and 2 ppb for AFB1 alone.
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Aflatoxins can be found also in milk products, when cows consume aflatoxin-

contaminated feeds and metabolically biotransform aflatoxin B1 into a

hydroxylated form called aflatoxin M1 (154). Although AFM1 produced by the

hepatic metabolism is less toxic as compared to the parent compound, the

mutagenicity and potential carcinogenicity of AFM1 remains an issue for public

health and strict maximal levels have been set in EU not only for aflatoxins in

animal feeds, but also for AFM1 in milk. The European Community and the

Codex Alimentarius have fixed the limit of AFM1 intake to a maximum of 50

ng/kg.

Aflatoxins are bisdihydrodifuran or tetrahydrobisfuran united to a coumarin

substituted by a cyclopentanone or a lactone (Fig. 8). Aflatoxins can be classified

into two groups: the first consisting of bisfuran-coumarin-cyclo pentanons, which

include AFs of series B and M, AFQ, AFP, and aflatoxicol; the second group

consisting of bisfuran-coumarin-lactones, which contain AFs of series G.

AFB1, AFB2, AFG1 and AFG2 are synthesized by aflatoxigenic fungi, while the

other AFs (M1, M2, P1, Q1, G2a, B2a and AFL) result from microbial or animal

metabolism (155).

Figure 8. Chemical structure of aflatoxin B1.
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Following ingestion with food, AFB1 is absorbed in the intestinal tract, of which

the duodenum appears to be the major site of absorption. Due to its low molecular

weight, AFB1 is passively diffused into cells of the intestinal epithelium and then

in blood and in other organs, especially in the liver, where it is activated. The

activation is due to cytochrome-P450 dependent mono-oxygenase: most of the

metabolic products such as AFM1, AFQ1, and AFP1 are less toxic than the parent

AFB1, but aflatoxin B1-8-9-exo-epoxide (AFBO) is toxic and highly reactive.

AFBO alkylates DNA by binding with the N7 position of the guanine residues,

forming the 8,9-dihydro- 8-(N7-guanyl)-9-hydroxy-AFB1 and causing

irreversible damage in DNA (156, 157). If this modification is not repaired before

DNA replication, it may cause GC to TA transversions, DNA strand breaks and

point mutations, which lead to hepatocarcinogenesis. Mutations in the p53 tumor

suppressor gene, resulting for example in the R249Sp53 protein expression, may

lead to inhibition of apoptosis, inhibition of p53-mediated transcription and

stimulation of liver cell growth in vitro (158, 159). AFB1-related  HCC  was

demonstrated associated to p53 gene mutation. Studies made in China and Brazil,

areas with high exposure to AF, revealed that a conversion of G to T at the codon

249 in exon 7 of of the p53gene in HCC patients results in R to S mutation in the

p53 protein (160, 161).

In presence of water AFBO is hydrolized into AFB1-8,9-dihydrodiol, and

becomes available to link serum proteins like albumin. Other reactions like

hydroxylation and demethylation are performed in order to limit the toxicity of

AFBO. AFBO, which represent the most reliable urinary biomarker for aflatoxin

recent exposure, can be also conjugated by glutathione S-transferase (GST), β-

glucuronidase and sulfate transferase, in order to facilitate the excretion through

bile liquid, urine and milk, in the case of lactating animals (162). Aflatoxin B1

(AFB1)-glutathione (GSH) conjugation is the major pathway for the

detoxification of aflatoxin metabolites.
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4.2. Ochratoxins: chemical characteristic, toxicity and

bioavailability
Ochratoxins (A, B, and C) are secondary metabolites produced by Penicillium and

Aspergillus filamentous fungi and in particular the A form (OTA) exerts

hazardous effects in animals and in humans (163). OTA was isolated for the first

time and chemically characterized in 1965 in South Africa, when some corn meal

was intentionally inoculated with Aspergillus ochraceus (164, 165). In further

studies, OTA was proved to be nephrotoxic, hepatotoxic, embryotoxic,

teratogenic, neurotoxic, immunotoxic, genotoxic, and carcinogenic for many

animal species with differences in the effects between species and sex: in pigs the

amount of absorbed toxin is about 60%, in rodents it is much lower, while humans

have the highest oral bioavailability (93%) (166 - 168). Considering its effects,

OTA has been classified as a group 2B by the International Agency for Research

on Cancer (IARC) and World Health Organization (WHO), meaning possibly

carcinogenic for humans, and it has been putatively implicated in the aetiology of

Balkan endemic nephropathy (BEN) and related to urinary-tract cancer (169,

170). Chronic exposure to low OTA doses could be even more dangerous than

acute exposure to a high dose (171). Humans are normally exposed to OTA

through several routes, dietary intake being the most prominent. Dermal contact

or inhalation exposures are of a minor importance with respect to the general

population, although occasionally these routes may also play a role. The European

legislation estimated the TDI for OTA at 5.8 ng OTA kg-1 body weight per day.

However, as there are differences in food intake (per unit of body weight) for

children, adolescents and adults, for a given concentration of a contaminant, a

child or an adolescent will receive different exposure than an adult (172).

OTA producing-fungi were found to be a contaminant in a wide variety of

foodstuffs. Ochratoxin A is a main concern in cereals, wine, coffee, spices and

dried fruits, but significant levels can be found also in cocoa, malt and beer, bread
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and bakery products, cheese, poultry meat and kidneys, pig kidneys and pork

sausages (173 - 178).

Chemically, ochratoxin A is a para-chlorophenolic moiety containing a

dihydroiso-coumarin group that is amide-linked to L–phenylalanine. OTA

(C20H18ClNO6; IUPAC name: N-{[(3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-

3,4-dihydro-1H-isochromen-7-yl]carbonyl}-L-phenylalanine) is a white,

odourless, heat stable, crystalline solid agent with poor aqueous solubility (179)

(Fig. 9). Depending on the microenvironment, OTA exists in non-ionic,

monoanionic (OTA-), and dianionic (OTA2-) forms. OTA does not completely

denatured during baking and resists against three hours of high pressure steam

sterilization at 121°C, while at 250 °C or during coffee roasting it is only partially

degraded (180 - 183).

Figure 9. Structural formula of ochratoxin A

The non-ionic and monoanionic forms of OTA are absorbed from the stomach

and the jejunum without known specific transport mechanisms (184). In the small

intestine the Multidrug Resistance efflux transporter (MRP2) might slow down

its absorption, since it acts transporting OTA back to the intestinal lumen. In vitro

studies suggest that OTA alters the intestinal barrier and absorption functions,

without causing effects on chloride secretion (185). In bloodstream, almost all

OTA is bound by albumin. Two binding sites are recognised: the primary is
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located on subdomain IIA (Sudlow’s Site I) and the secondary, with much less

affinity, on subdomain IIIA (Sudlow’s Site II) (186, 187).

The tissue distribution of OTA is species-dependent and it is also largely

influenced by many factors including the amount of toxin, the way of ingestion,

the composition of the diet, and the health status of the body. However, the major

targets of OTA toxicity are kidneys, liver, skeletal muscles and fat tissues (188).

The toxicity exerts in the kidneys and the liver is mainly caused by two special

transport mechanisms responsible for the active cellular uptake of OTA: the

organic anion transporters (OATs) in the kidneys, and the organic anion-

transporting polypeptides (OATPs) in the liver (189, 190). In the kidneys,

basolateral OATs are mainly responsible for the uptake of OTA from blood into

the tubule kidney cells, and the apical OAT4 transporter may be involved in the

urinary reabsorption of OTA, resulting again with its accumulation in tubule cells.

Furthermore,  low  doses  of  OTA can  lead  to  the  increased  expression  of  more

organic anion transporter isotypes in rat kidneys (191).

OTA can be bio-transformed and metabolized not only in the liver, but also in

tissues, blood, and urine of animals and/or humans, exploiting other mechanisms.

Both phase I and phase II enzymes transform OTA in metabolites that show low

or no toxicity. Proteolytic enzymes and enzymes of the microbiota can hydrolyse

part of OTA to Ochratoxin α (OTα), while in alkaline conditions the lactone ring

is opened, resulting in a highly toxic compound called lactone-opened OTA (OP-

OA) (192). The formation of further low toxic hydroxyl metabolites of OTA

product of phase I reactions has been observed in different species (193). Some

studies suggest that after dechlorination OTA is transformed to Ochratoxin B,

which is less genotoxic (194). Among phase II reactions, sulfate, glucuronide,

hexose/pentose (hex/pen-OTA) and glutathione (OT-GSH) conjugations of OTA

are described as well (195).
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The damages produced by OTA in cells are various. OTA acts as an inhibitor of

phenylalanine t-RNA synthase and phenylalanine hydroxylase, resulting in the

inhibition of protein synthesis. In addition to these non-specific ways of protein

synthesis inhibition, OTA may influence the transcription of many proteins

resulting in specific intracellular effects (196). OTA also has a negative effect on

ATP (Adenosine Triphosphate) production. In fact, OTA interferes with the

expression of phosphoenolpyruvate-carboxykinase (PEPCK), a key enzyme in

gluconeogenesis, can penetrate into the mitochondria and probably binds to

proteins involved in the maintenance of the membrane potential and in the

oxidative phosphorylation, by interfering with phosphate transport and by

inhibiting the electron transport (197). OTA also displays genotoxic effect, since

the toxin forms electrophilic products that can covalently bind to DNA causing

mutations, and subsequent formation of tumors (198) as well as oxidative damage

for lipids and proteins (199). OTA can also cause both apoptotic and necrotic cell

death, depending on the amount of toxin. It alters the expression of genes

GADD153, GADD45, clusterin, p53, MAPK-, ERK-, p38, and JNK causing

potentially apoptosis (200). In human kidney cells, OTA was proved to block the

metaphase/anaphase transition, resulting in aberrant mitotic formations, giant

cells and chromosomal instability, which lead to carcinogenesis (201).

4.3. Aflatoxins-producing fungi
Aflatoxins are produced mainly by four Aspergillus species: Aspergillus flavus

Link  ex  Fr, Aspergillus nomius Kurtzman, Horn and Hesseltine, Aspergillus

parasiticus Speare, and Aspergillus tamarii (202). Aspergillus arachidicola,

Aspergillus bombycis, Aspergillus ochraceoroseus, Aspergillus pseudotamari,

Aspergillus toxicarius and Aspergillus parvisclerotigenus are aflatoxin-producing

species too, but they are less frequently found (203 - 205). The agronomically and

economically most important aflatoxin producers are A. flavus, hence the name

afla-toxin, and A. parasiticus. These species usually grow on living and decaying
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plant matter, but they can colonize various commodities, especially corn,

groundnut and cottonseed. A. flavus, the most common species involved in pre-

harvest aflatoxin contamination of crops and groundnuts, is able to produce

aflatoxins B1 and B2, whereas A. parasiticus can produce also aflatoxins G1 and

G2 (202).

Aspergillus are saprophytic soil-borne imperfect filamentous fungi, they can grow

on wide variety of substrates when soil temperature ranges from 12 to 48 °C, with

optimum of 25 to 42 ºC, and water potentials is as low as - 35 MPa. Aspergillus

are ubiquitous in nature and have important roles in natural ecosystems and

human economy because they are able to recycle starches, hemicelluloses,

celluloses, pectins and other sugar polymers and degrade more refractory

compounds, such as fats, oils, chitin and keratin. Both A. flavus and A. parasiticus

reproduce only by asexual means, but can undergo genetic recombination through

a parasexual cycle. There are great qualitative and quantitative differences in the

toxigenic abilities displayed by different strains within each aflatoxigenic species:

about half of A. flavus strains produce aflatoxins (206).  The incidence of non-

toxigenic strains of A. flavus has shown to be variable depending on the

geographical origin (207, 208) and on the substrate (209).

As for the most micro fungi, the species identification belonging the Aspergillus

genus currently is performed through the observation of microscopic

morphological structures, like the conidiophores, cleistothecia, Hülle cells and

sclerotia (26). Morphological identification of Aspergillus mostly follows the

protocols of Raper & Fennell (210),  Pitt  &  Hocking (211) and Samson and

collaborators (212). Molecular tools, especially phylogenetic species recognition,

are increasingly being used with the internal transcribed spacers of the non-

ribosomal DNA (ITS) now accepted as the official DNA barcode for fungi (213).

However, this locus is insufficient for correctly identifying all 180 species

belonging the Aspergillus genus, and thus a secondary identification marker is
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needed. The colonies of genus Aspergillus grow rapidly and consist of a dense

felt of erect conidiophores, which vary from the shade of white, pink and yellow

to brown, green and black. The conidiophores, which bring the reproductive

structure, do not usually present any ramification and end with a vesicle. The

apical vesicle forms the aspergillar head together with phialides, conidia and

metulae, when present. Phialides can originate directly from the vesicle, in the

case of uni-seriate heads, or can originate from metulae in the case of bi-seriate

heads (Fig. 10). Conidia, the asexual spores, can be smooth or rough-walled,

hyaline or pigmented, and are produced in long dry chains, which may be

divergent (radiate) or aggregated in compact columns (columnar). Some species

may produce Hülle cells, single cell or chain of cells with thick smooth wall, or

sclerotia,  irregular  or  round  compact  masses  of  iphae.  Both  Hülle  cells  and

sclerozia are structure resistant to environmental stresses (212).

Figure 10. Reproductive structure of genus Aspergillus: conidiophore with uni-seriate

and bi-seriate heads and conidia (212).
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Hedayati and co-Authors (214) reviewed the A. flavus complex and included 23

species or varieties, including two sexual species, Petromyces alliaceus and P.

albertensis. On Czapek Dox agar, colonies of A. flavus are granular, flat, often

with radial grooves, yellow at first but quickly becoming bright to dark yellow-

green with age. Conidial heads are typically radiate, later splitting to form loose

columns (mostly 300-400 µm in diameter), bi-seriate but having some heads with

phialides borne directly on the vesicle (uniseriate) (Fig. 11). Conidiophore stipes

are hyaline and coarsely roughened, often more noticeable near the vesicle.

Conidia are globose to sub-globose (3-6 µm in diameter), pale green and

conspicuously echinulated. Some strains produce brownish sclerotia.

Figure 11. Typical uni-seriate and bi-seriate heads of Aspergillus flavus. Lactophenol-

cotton blue wet mount. Total magnification: 400x.

A. flavus can be distinguished from A. parasiticus by its smooth spores and

yellow-green colonies on Potato Dextrose agar (PDA) medium. A. parasiticus

produces dark yellow-green conidia with nearly spherical vesicles that produce
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roughened conidia. It can be readily distinguished from A. flavus by its rough-

walled conidia (202).

The synthesis of aflatoxins occurs through a series of highly organized oxidation-

reduction reactions. Each genome of A. parasiticus and A. flavus has an

approximate 70 Kb cluster, which includes 25 enzymes involved in aflatoxins

biosynthesis. Fifteen of the 25 proteins encoded by the cluster are enzymes that

catalyse oxidative reactions, six of which have the structural characteristics of

cytochrome P450 mono-oxygenase. Most of the 25 genes in the aflatoxins

biosynthetic pathway gene cluster are regulated by aflR, which encodes a zinc

cluster motif (Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-Cys-Xaa2-CysXaa6-Cys) similar

to a family of fungal transcriptional activators associated with several metabolic

pathways in fungi (215). AflR binds to the palindromic motif 5′-TCGN5CGA-3′

in the promoter region of aflatoxin structural genes. The aflatoxin genes have one

or two predicted AflR binding sites within 200 bp of the translation start site,

although some binding sites occur further upstream. Some of the promoter regions

of aflatoxin contain consensus-binding sites, involved in ambient pH regulation

(216) and in nitrogen regulation (217). This indicates that aflatoxin biosynthesis

may be responsive to environmental conditions such as pH and nitrogen source.

The regulation of fungal metabolism by pH involves a globally acting

transcription factor encoded by pacC that is post-synthetically modified by a pH-

sensing protease. It has been established that aflatoxin synthesis optimally occurs

in the pH range of 3.4~5.5 (218). In some isolates, nitrate suppresses aflatoxin

synthesis, whereas nitrogen supplied as ammonium in media supports it (219).

The carbon source, and the availability of a precursor unit such as acetyl-CoA,

may also affect aflatoxin biosynthesis.

At least 18 enzyme steps are required for the conversion of acetyl coenzyme A

(acetyl  CoA)  to  its  final  products,  AFB1,  AFB2,  AFG1,  and  AFG2.  Aflatoxin

biosynthesis begins with the conversion of malonyl CoA to a condensed
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polyketide noranthrone, by the products of two fatty acid synthase genes (fas1

and fas2) and a polyketide synthase (PKS) gene. The pksA of A. parasiticus

contains four conserved domains typical of other known PKS and FAS proteins,

but it lacks two reductase domains, which are generally essential for fatty acid

synthesis. The absence of ketoreductase in pksA is consistent with the lack of a

reductive step in the PKS reaction that produces noanthrone. It is unclear whether

the conversion of noranthrone to norsolorinic acid (NOR), the first stable

metabolite, requires a specific enzyme. NOR is converted to averantin (AVN)

mainly by a cytosol oxidoreductase. AVN is hydroxylated to form 5′-

hydroxyaverantin (HAVN) by AVN mono-oxygenase, which shows strict

stereospecificity for the 1′ carbon of AVN. The conversion of HAVN to averufin

(AVR) occurs by two cytosilic enzymes: HAVN dehydrogenase catalyzes the first

reaction from HAVN to a 5′-oxoaverantin (OAVN), and OAVN cylase, catalyzes

the  second  reaction  from  the  OAVN  to  AVR (220). AVR  is  converted  to

hydroxyversicolorone (HVN) by the cypX gene encoding a cytochrome 450

monooxydase, and HVN is converted to versiconal hemiacetal acetate (VHA) by

the moxY gene encoding the HVN monooxygenase (221). VHA is converted to

VAL mainly by the estA gene encoding an esterase. VAL is converted to VERB

by the vbs gene encoding VAL cyclase. This is a key step in aflatoxin formation

since it closes the bisfuran ring of the aflatoxin, which is required for binding to

DNA, and gives aflatoxins their mode of action as mutagens. VERB is desaturated

to  versicolorin  A  (VERA)  presumably  by  verB,  a  homolog  of  stcL  in A.

parasiticus, encoding the desaturase. The VERB contains a tetrahydro-bisfuran

ring in its structure like AFB2 and AFG2, while VERA contains a dihdrobisfuran

ring similar to AFB1 and AFG1. Thus, the branching step between AFB1/AFG1

and AFB2/AFG2 is the desaturation reaction from VERB to VERA (222). The

conversion of VERA to demethylsterigmatocystin (DMST) has a structural

change by more than one reaction, such as a combination of oxidative

decarboxylation, hydrogenation, and two dehydrations. DMST and DHDMST are
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methylated to ST and dihydrosterigmatocystin (DHST), respectively, by omtB,

which is the O-methyltransferase I that catalyzes the transfer of the methyl groups

from S-adenosylmethionine (SAM) to the hydroxyl groups of DMST and

DHDMST.  The  further  methylation  of  ST  and  DHST  by  omtA,

Omethyltransferase II, results in O-methylsterigmatocystin (OMST) and dihydro-

O-methylsterigmatocystin (DHOMST), respectively. The two O-

methtyltransferases, omtB and omtA, show strict substrate specificity, because

omtA cannot methylate DMST or DHDMST in spite of free 7-OH groups being

present in these compounds (223). OMST  and  DHOMST  are  converted  to

aflatoxins B1 and B2 respectively. Ehrlich and colleagues (2004) (224)

demonstrated that the conversion of OMST and DHOMST to aflatoxins G1 and

G2 requires two monooxygenases, ordA and cypA. This is consistent with the fact

that A. flavus producing only aflatoxins B1 and B2 is missing portions of the gene

cypA.

4.4. Ochratoxin-producing fungi
OTA was firstly purified in corn meal intentionally inoculated with Aspergillus

ochraceus. Then, also Aspergillus niger var. niger, Aspergillus foetidus and

Aspergillus carbonarius were found able to produce OTA (225, 226). The OTA-

producing Aspergillus species, A. carbonarius and the closely related A. niger

which produces OTA more rarely,  grow well  at  temperatures above 20 °C and

produce pigmented hyphae and spores, making these species resistant to UV light:

for these reasons these moulds are commonly found in grapes and similar fruits

that mature in sunlight and at high temperatures (227). In 2004 two new OTA-

producing species of Aspergillus section Circumdati, A. westerdijkiae and A.

steynii, were isolated from coffee, and in 2005, some other strains of Aspergillus

tubingensis were found able to produce OTA in grapes (228, 229). OTA can also

be produced by some Penicillium species. In 1969, Walbeek and collaborators
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(230) isolated OTA from Penicillium viridicatum, but due to considerable

revisions in taxonomy of genus Penicillium, that OTA-producing strains of P.

viridicatum corresponds to the current P. verrucosum,  as indicated by Pitt (231).

In 2001, Penicillium nordicum was determined and confirmed as the second

OTA-producing Penicillium species (232). The two OTA-producing Penicillium

species live in different ecological niches: P. nordicum generally contaminates

food rich in NaCl and protein, such as cheeses and dry cured meats, while P.

verrucosum usually contaminates cereals. Under many laboratory conditions, P.

nordicum produces more OTA than P. verrucosum isolates (233).

As for other filamentous fungi, the species identification of Aspergillus and

Penicillium genera is achieved through the observation of reproductive structures.

Aspergillus section Circumdati includes species with rough walled stipes,

biseriate conidial heads, yellow to ochre conidia and sclerotia that do not turn

black (Fig. 12). Twenty species can be distinguished into the Aspergillus section

of Circumdati. The taxonomy of this section remains in progress, and Frisvad and

co-Authors (228) recently proposed the division of A. ochraceus into two species,

A. ochraceus and A. westerdijkiae. Several species in the section Circumdati are

able to produce OTA in culture medium, but the main species responsible for the

presence of OTA in foods are A. ochraceus and A. westerdijkiae (217). A.

westerdijkiae and A. ochraceus are very similar, and several isolates previously

identified as A. ochraceus are now recognized as A. westerdijkiae, including the

original OTA-producing strain (NRRL 3174). Amplification and sequencing of

the ITS1-5.8S-ITS2 region from several Brazilian strains of both species showed

specific nucleotide variations that distinguish A. westerdijkiae and A. ochraceus

(234). In ITS1, all sequences of A. westerdijkiae differed from the A. ochraceus

sequences by possessing a C instead of a T at positions 76 and 80. In addition, A.

ochraceus has a deletion of a T at position 89. In ITS2, specific nucleotides at

position 494–495 (AT) characterized the strains of A. westerdijkiae, compared to

a TC at this position in A. ochraceus. Moreover, a T at position 487 is deleted
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only in A. ochraceus strains. Similarly, Morello and co-workers (235) detected 39

species-specific single nucleotide polymorphisms within the b-tubulin genes from

A. westerdijkiae and A. ochraceus, most of them (97.4%) in intronic regions.

Black aspergilli are one of the more difficult groups concerning classification and

identification, and several taxonomic schemes have been proposed. The black

aspergilli, Aspergillus section Nigri, include species with uniseriate or biseriate

conidial heads, spherical to pyriform vesicles, smooth-walled stipes and black or

near black-coloured conidia (Fig. 12). The differences between some species

belonging to section Nigri are very slight and their discrimination requires

molecular  analysis.  A total  of  16  species  are  recognized  in Aspergillus section

Nigri: A. aculeatus, A. brasiliensis, A. carbonarius, A. costaricaensis, A.

ellipticus, A. ellipsoides, A. japonicus, A. foetidus, A. homomorphus, A.

heteromorphus, A. lacticoffeatus, A. niger, A. piperis, A. sclerotioniger, A.

tubingensis, and A. vadensis, with the latter taxon recently described as a new

species (231). A. niger sensu stricto, A. tubingensis, A. foetidus and A. brasiliensis

are morphologically identical and collectively have been called the A. niger

aggregate. Although the taxa included in the A. niger aggregate are

morphologically indistinguishable, they differ in their ability to produce OTA and

other metabolites. The ability of species other than A. niger “sensu stricto” within

A. niger aggregate to produce OTA remain uncertain, probably due to the

complexity of species identification.
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Figure 12. From the left: Aspergillus ochraceus and Aspergillus niger conidial heads.

Lactophenol wet mount. Total magnification: 400x.

Penicillium taxonomy assignment is not easy for the inexperienced, and

compared to Aspergillus it is a more diverse genus, in terms of numbers of species

and  range  of  habitats.  All Penicillium are characterized by "brush-

like" reproductive structures, with different branching patterns (Fig. 13). The

conidiophores range from being simple to very complex patterns with multiple

levels of branching resulting in overall symmetrical or asymmetrical patterns.

Monoverticillate conidiophores have a terminal whorl of phialides and in some

species, the terminal cell of the conidiophore is slightly swollen or vesiculate.

Biverticillate conidiophores have a whorl of three or more metulae between the

end of the stipe and the phialides; the metulae may be of unequal or equal length,

vary in their  degree of divergence,  are usually more or less cylindrical  but  can

also be clavate or slightly vesiculate. Terverticillate conidiophores have another

level of branching between the stipe and the metulae, often just a continuation of

the stipe axis and one side branch, sometimes a true whorl of three or more
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branches. Quaterverticillate conidiophores are produced by only a few species,

and have one extra level of branching beyond the terverticillate pattern.

Presently, P. verrucosum and P. nordicum are the only OTA producers known

and accepted in this genus, despite some reports on OTA production by other

species. Nevertheless, different examples of incorrect citations of

some Penicillium spp. producing OTA (P. cyclopium, P. viridicatum, P.

chrysogenum) have been recently listed (236). It is worth bearing in mind that in

the last century, OTA producers in this genus were classified as P. viridicatum for

many years. Penicillium verrucosum and P. nordicum have common

morphological characteristics, such as very similar colony diameters on many

culture media or rough stipes. These are slow growing species of the

subgenus Penicillium, which is by far the most difficult taxonomically, both

because there are numerous species and because apparent differences between

species are small. Both species have conidiophores hyaline, terverticillate, with

all element appressed, stipes rough-walled and conidia globose, greenish and

smooth-walled. Most of the isolates of P. verrucosum have a characteristic dark

brown reverse colour on Yeast Extract Sucrose agar (YES), whereas almost all

the P. nordicum strains show a pale, creamy or dull yellow reverse colour in this

culture medium. The colony pattern of P. viridicatum is different on YES. Among

other differences, Frisvad & Samson (219) considered P. verrucosum among the

species always negative (no reaction) or occasionally producing a yellow reaction

for the Ehrlich test, and P. nordicum among the species with a yellow reaction.

These coloured reactions are related to the production of some alkaloids. Many

species classified in this subgenus are morphologically similar, and identification

using traditional morphological techniques remains difficult and a polyphasic

approach, including a combination of DNA sequences, extrolites production and

other phenotypical characters, is suggested for the species identification.
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Figure 13. Reproductive structures of genus Penicillium. Conidiophores: a.b.

monoverticillate; c. biverticillate; d. terverticllate; e. quaterverticillate. (212)

From the structure of OTA, its dihydrocoumarin moiety consists of a polyketide

that is catalyzed by the enzyme polyketide synthethase (PKS). Then the enzyme

non ribosomal peptide synthase (NRPS) links the polyketide moiety to L-

phenylalanine through the carboxyl group (237). In P. nordicum, a putative gene

cluster including a polyketide synthase (otapksPN) and a non-ribosomal peptide

synthetase (npsPN), was recognised as responsible for OTA biosynthesis (238).

OTA biosynthetic pathway had been proposed by Huff and Hamilton (1979)

(239). They supposed that mellein, catalyzed by PKS, was oxidized to OTβ and

then transformed to OTα by a halogenase/chloroperoxidase. Subsequently, OTα

was esterified to ochratoxin C via link with the ethyl ester, and finally

biosynthesized to OTA by a de-esterification reaction. However, they ignored the

putatively ubiquitous intermediate, OTB, in some processes of OTA biosynthetic

pathway. During the study on pks gene involved in OTA biosynthesis in A.

westerdijkiae NRRL  3174,  it  was  found  that  mellein  played  no  role  in  OTA

biosynthesis on analyzing the secondary metabolites (240). This  was  further

supported by 14C-labelled precursor feeding experiments, which did not support
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the intermediary role of mellein confirmed by Harris and Mantle (241). In Harris

and Mantle’s study, they proposed that OTβ to OTα is catalyzed by a

halogenase/chloroperoxidase and eventually to OTA via an amide bond with

phenylalanine. Chlorination of OTα probably preceded the biotransformation

from OTα to OTA. This indicated that chlorination was a penultimate biosynthetic

step in OTA biosynthesis. Moreover, they proposed an alternative pathway in

account of the role of OTB in which OTA was transformed through the synthetic

step from OTβ to OTB via an amide group, but this did not explain the role of

OTα involvement in OTA biosynthesis. It seems to support that OTB was not a

by-product of OTA because the levels of OTA and OTB produced by A.

ochraceus differed from one carbon or nitrogen source to another (242). Gallo

and co-Authors (243) hypothesized a OTA biosynthetic pathway similar to the

alternative pathway of Harris and Mantle, in which OTα was mostly likely to be

derived from the biodegradation of OTA in A. carbonarius ITEM 5010. For the

first time they proved the involvement of an NRPS in the OTA biosynthetic

pathway of an Aspergillus species. The absence of OTA, OTB, and OTα and the

concomitant increase of OTβ concentration in the culture of A. carbonarius ITEM

5010 confirm the hypothesis that the bond between the phenylalanine and the

polyketide dihydroisocoumarin, catalyzed by the synthetase, precedes the

chlorination step, clarifying the order of reactions in the OTA biosynthetic

pathway. Moreover, the non-OTA-producing keeps the capability to degrade

OTA in OTα.

4.5. Analytical methods for the detection of aflatoxins and

ochratoxin A
Aflatoxins and ochratoxin A contaminate different foods and foodstuffs in many

steps of processing. Therefore, their presence in foods and feeds represents a

constant health risk for animals and humans. Regulations relating to mycotoxins
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have been established in many countries to protect the consumer from the harmful

effects of these compounds. In several countries, these contaminants are subject

to legislation that is based on the establishment of an Acceptable daily intake

(ADI) or Tolerable daily intake (TDI). Different factors play a role in the decision-

making process of setting limits for mycotoxins, including the availability of

toxicological data and exposure data on mycotoxins, the knowledge of the

distribution of mycotoxin concentrations within commodity or product lots, the

availability of analytical methods and the legislation in other countries with which

trade contacts exist. For the mycotoxins currently considered the most significant

(AFB1, B2, G1 and G2; AFM1; OTA; patulin; FB1, FB2, and FB3, ZEA, T-2, HT-2

toxins and DON), the Joint Expert Committee on Food Additives (JECFA-

Scientific Advisory Body of the World Health Organization WHO) and the Food

and Agriculture Organization (FAO) has evaluated their hazard in several

sessions (244, 245). The correct evaluation of mycotoxin contamination and

prevalence in foodstuffs depends principally on the degree of accuracy associated

with the individual steps by which this information is obtained. Because the

distribution of mycotoxins in the food matrix is often highly heterogeneous,

taking a representative sample is the most critical stage. Thus, the error associated

with sampling procedures is notably higher than that associated with subsampling

or analysis. In most cases, successful sampling includes two steps: the primary

sampling consists of taking the decision on “why, where and when” to collect the

samples, then the secondary sampling consists of establishing how samples

should be collected in order to be representative of the lot under investigation.

The European legislation has approved a regulation dealing with sampling and

methods of analysis of mycotoxins for official control (2006) to limit the sources

of errors in evaluating the impact of mycotoxins on human health.

A part from sampling, reliable analytical methods are necessary to detect

mycotoxins in daily practice. In addition to reliability, simplicity is desired, as it

will affect the amount of data generated and the practicality of the ultimate
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measures taken. The limits of determination of the methods need to be low enough

for precise and accurate determination of the mycotoxins of interest at regulatory

levels. Methods were also developed and validated for toxin–matrix combinations

for which there were no regulations. In Europe, ten mycotoxin methods have been

standardized by the CEN (European Committee for Standardization), and this

number will grow substantially in the years to come. Although CEN mycotoxin

methods are not mandatory for official food control in the EU, all CEN mycotoxin

methods can be used in the EU for official food-control purposes, because their

performance characteristics fulfill the criteria established by the EU regulation for

sampling and analysis (7). Most mycotoxins are characterized by a low molecular

mass and are soluble in a range of organic and aqueous organic solvents. For this

reason, they can be separated and detected by chromatographic methods such as

thin-layer chromatography (TLC), liquid chromatography (LC) and gas

chromatography (GC) (246).

Before the separation and the detection, mycotoxins must be exhaustively

extracted from sample. The purpose of the extraction step is to remove as much

of the mycotoxin from the solid sample as possible, and distribute it into a liquid

phase. Extraction can be performed by liquid-liquid extraction (LLE) by using

two immiscible phase solvents, or solid phase extraction (SPE) by using a solid

and a liquid phase (246).

TLC is one of the first methods used for detecting mycotoxins. This technique

enables screening of large number of samples, and it is easy to perform and cost-

effective. After extraction and clean-up, each sample is applied to a silica gel

layer, or in alternative to phenyl non-polar bonded, silanized and polyamide

layers, and separated using organic solvent. Mycotoxins are visualized on the

TLC plate by observing under UV light and comparing with a standard, or by

spraying chemicals that react with mycotoxins enhancing their fluorescence (or

producing coloured derivatives). Aflatoxins and ochratoxin A are naturally
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fluorescent compounds; hence, they are identified based on their fluorescent

properties. Semi-quantitative analysis has been carried out for mycotoxins by

TLC; however, this method shows low sensitivity. The TLC method has been

improved in High-Performance Thin Layer Chromatography (HPTLC) to

enhance the resolution and accuracy (247).

HPLC, especially with UV and fluorescence detectors, is the one of the most

frequently used both for routine analyses and as a confirmatory method for novel

or screening techniques. Most mycotoxins are relatively small polar compounds

and can be separated by reverse-phase HPLC using a mobile phase made from the

composition of water, acetonitrile or methanol. The stationary phase is made by

silica particles of small size, modified with a hydrophobic layer, mostly is C18.

Due to selectivity and sensitivity, a fluorescence detector is preferred for

mycotoxin analysis, whereas UV is used for mycotoxins like patulin and

moniliformin, because of their strong UV absorption. Ochratoxin A in wine has

been accurately detected by HPLC following immunoaffinity clean-up, with a

detection limit of 0.01 ng/mL (248). HPLC with fluorescence detector has been

used for detecting aflatoxin B1 and ochratoxin in rice, and a detection limit of

0.07 and 0.08 μg/ kg, respectively, for these mycotoxins was reported by Nguyen

and collaborators (249).

To eliminate the need for sample derivatization for fluorescent activity, methods

of Liquid Chromatography coupled with Mass Spectrometry (LC-MS) were

developed. Spanjer and colleagues (250) had developed an LC-MS/MS method

to detect 33 mycotoxins, including aflatoxin B1, B2, G1 and G2, and ochratoxin

A with a limit of quantification of 1 μg/kg, simultaneously in various food

materials. After separating the sample into chemical compounds by HPLC, a mass

spectrometer will ionize, sort and identify these compounds based on the mass-

to-charge ratio (m/z). Atmospheric pressure chemical ionization (APCI) and

electrospray ionization (ESI) are ionization techniques that are widely used for
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different molecular weights and polarity of compounds. Furthermore, the most

important mass analysers in mycotoxins analysis are Triple Quadrupole, Ion-trap

and  Time  of  flight.  After  selecting  an  appropriate  mass  analyser,  all  MS

parameters such as cone voltage, capillary voltage, nebulizer gas, cone gas flow,

desolvation temperature, mass resolution and collision energies have to be set for

target mycotoxins. Several LC-MS methods for multiple mycotoxin analysis have

been reported, which include extraction, sample pre-treatment and reverse-phase

LC-MS quantification. An ultra-high-performance liquid chromatography

combined with electrospray ionization triple quadrupole tandem mass

spectrometry (UHPLC-ESIMS/MS) has been developed to determine aflatoxin

M1 and ochratoxin A in milk. The limits of quantification of these toxins were

reported to be in the range 0.003 to 0.015 μg/kg (251).

For the detection of mycotoxins volatile at the column temperature (or can be

converted into volatile derivatives), like trichothecenes, Gas Chromatography

(GC) is often exploited. Electron Capture Detection (ECD), Mass Spectrometry

(MS) and flame ionization are the common detectors used with GC. There are a

few disadvantages with this method, such as the need for derivatization and

thermal stability of mycotoxins, where heating degrades the samples.

All these chromatographic methods are time consuming for sample preparation

and need expensive instruments. Therefore, rapid and cheap methods based on

immunoassays, such as the Enzyme-Linked Immunosorbent Assay (ELISA), are

preferred for mycotoxin screening nowadays. The direct competitive ELISA

(252) is commonly used in mycotoxin analysis. Briefly, mycotoxin is extracted

from a ground sample with solvent, a portion of the sample extract and a conjugate

of an enzyme coupled to the mycotoxin are mixed, and then added to the antibody-

coated microtiter wells. After washing, an enzyme substrate is added and colour

develops. The intensity of the colour, in this case, is inversely proportional to the

concentration of mycotoxin in the sample. Due to low sample volume
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requirements and the fact that a clean-up step is not needed, ELISA test kits are

more used than TLC or HPLC. ELISA technique has been used for determining

aflatoxin in a large number of foods: Reddy and co-workers (253) have used

indirect competitive ELISA for detecting aflatoxin B1 in rice with a detection

limit of 0.02 ng/kg.

Alternative methods for the detection of mycotoxins exploit fluorescence

properties characteristic of several mycotoxins. A novel biosensor based on

surface plasmon-enhanced fluorescence spectroscopy has been developed for

detecting aflatoxin M1 in milk with a detection as low as 0.6 pg/mL (254). Also

the use of infrared spectroscopy has proved to be a promising technique for the

fast and non-destructive detection of mycotoxins in food grains. Near-infrared

spectroscopy technique has also been used to detect aflatoxin B1 and ochratoxin

A in red paprika in Spain (255). Lateral flow or dipstick immunoassays,

developed using the principal of ELISA, are successfully used for detecting

mycotoxins. This technique was used for screening aflatoxin B1 and ochratoxin

A simultaneously in chili samples, with limit of quantitation of 2 and 10 μg/kg,

respectively (256).
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Table 5. Advantages and disadvantages of traditional and emerging methods for

mycotoxin analysis (data from 247, 250, 252).

Method Advantages Disadantages

Gas

Chromatography

Simultaneous analysis of

mycotoxins, good sensitivity,

may be automated

(autosampler), provides

confirmation (MS detector).

Expensive equipment, specialist

expertise required, matrix

interference problems, non-linear

calibration curve, carry-over effects

from previous sample.

High Performance

Liquid

Chromatography

Good sensitivity, selectivity and

repeatability, may be automated,

short analysis times, official

methods available.

Expensive equipment, specialist

expertise required, may require

derivatization.

Liquid

Chromatography/

Mass

Spectrometry

Simultaneous analysis of

mycotoxins, good sensitivity,

provides confirmation, no

derivatization required.

Expensive, specialist expertise

required, sensitivity relies on

ionization technique, matrix assisted

calibration curve (for quantitative

analysis), lack of internal standards.

Enzyme-Linked

Immunosorbent

Assay

Inexpensive sample preparation

and equipment, high sensitivity,

simultaneous analysis of

multiple samples, suitable for

screening, limited use of organic

solvents.

Cross-reactivity with related

mycotoxins, matrix interference

problems, possible false

positive/negative results,

confirmatory LC analysis required.

Lateral Flow

Device

Rapid, no clean-up, no expensive

equipment, easy to use, no

specific training required.

Semi-quantitative, cross-reactivity

with related mycotoxins, validation

required for additional matrices.

Biosensors Rapid, no clean-up procedure Cross-reactivity with related

mycotoxins, extract clean-up needed

to improve sensitivity, variation in

reproducibility and repeatability.
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Removal of mycotoxins from all kind of foodstuffs and raw products is currently

not feasible without affecting sensorial and nutritional properties at reasonable

affordable costs. Physical, chemical and enzymatically-based removal work on

grains and cereals, but they are not applicable for many other animal-derived

foods (19, 257). Therefore, prevention (in field and after harvest, as well as during

processing and preservation) remains the most reliable strategy to limit and

manage  risks  for  the  consumers,  also  limiting  economical  losses  due  to  the

destruction of contaminated foods. Approaches for early detection of the

toxigenic fungi colonizing foods is increasingly taken in account to prevent OTA

entering the food chain.

Traditionally, fungi can be recognised by the observation of characteristics

(morphology, phenotypic traits) that are generally developed and exposed

following the cultivation onto certain (specific or not specific) media.

Microscopic characteristics like the hyphal structure, the morphology of

reproductive structures and the presence of particular resistance structures like

sclerotia, are examined under a light microscope. The traditional cultivation-

dependent methods for the isolation and identification of Aspergillus and

Penicillium from food samples are time-consuming and require a high knowledge

of fungal taxonomy. Even with taxonomic expertise, identification is commonly

difficult in some genera of fungi that contain a large number of closely related

species. Therefore, the application of molecular biology techniques is a good

alternative to traditional identification techniques, because it can reduce the time

for fungal detection and identification, it is sensitive and specific and it potentially

allows accurate identification of fungal species without the need for isolating pure

cultures. The selection of target sequence specific for a given mycotoxin-

producing fungus is a key process in the development of a PCR-based diagnostic

assay. These target sequences used for designing PCR primers may be divided

into two groups: i) “anonymous” DNA sequences identification at species level,

and ii) functional genes related to a particular ability of a species (or a group of
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species). Anonymous DNA sequences of genomic DNA may or may not contain

functional genes and can be used ad targets for PCR primers to detect

mycotoxigenic fungi. On the other hand, genes encoding enzymes involved in

mycotoxin synthesis can be used to identify all fungi that share the ability to

produce a mycotoxin.

Real-time Polymerase Chain Reaction (Real-time PCR) significantly reduces

time and manual work, making it appropriate for large-scale analyses. Real-time

PCR is a laboratory technique based on the polymerase chain reaction, amplifying

and simultaneously quantifying a targeted DNA molecule. Unlike classical end-

point  PCR,  real-time  PCR  is  more  sensitive  and  does  not  require  gel

electrophoresis. By using real-time PCR it is possible to detect an increase in

fluorescence emission during the reaction, which is proportional to the initial copy

number of the target sequence. The initial amount of template DNA is inversely

proportional to a parameter measured for each reaction, which is called threshold

cycle (Ct). The Ct value is the PCR cycle when the fluorescence signal increases

above the background threshold. The application of this method to natural

samples can provide an estimate of infection by a given species, but the presence

of a mycotoxigenic fungus in a food sample does not ultimately indicate the

production of OTA. The formation of OTA depends strongly on environmental

conditions such as substrate, water activity, pH, and temperature.

The OTA biosynthetic pathway has not been entirely characterized in any of the

OTA-producing species; consequently, the genes that encode enzymes involved

in the biosynthesis of this secondary metabolite are poorly known. Because of

this, in several PCR-based assays genes that were not associated to the ochratoxin

biosynthesis, such as ribosomal RNA, and in particular ITS (Internal Trascribed

Species) regions, β-tubulin, and calmodulin genes have been employed (235, 258,

259). A  real-time  PCR  system  based  on  the otapksPN sequence  was  used  to

monitor the growth and OTA production of P. nordicum in wheat (260). A strong
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correlation between the copy numbers of the otapksPN gene and colonies forming

units was observed.

Another different molecular approach can be explored for differentiating foods

contaminated by mycotoxigenic fungi from safe food. If there is no information

available about genes common to all mycotoxins biosynthetic pathway, Random

Amplified Polymorphic DNA (RAPD) analysis can be exploited. RAPD proved

to be a suitable molecular technique to study the genetic similarity or diversity

among population, and resulted useful to determine the geographical origin of

certain crops, as well as to identify polymorphism, enhancing the presence of

single base mutations. Instead of using two primers that are designed based on

pre-existing knowledge of the target sequence, RAPD profiles are generated

through the random amplification of genomic DNA using a pool of single short

primers (decamers) and the electrophoretic separation of the obtained fragments.

Therefore, differences in the nucleotide sequence at the site complementary to the

primer, cause the lack of annealing of the primer, and the consequent lack of the

amplicons production, resulting in a different pattern of amplified DNA segments

on the gel. RAPD technique has been exploited since it is simple, rapid and cost-

effective (261, 262).
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5. DNA-based methods for cultivar

identification
Plant variety and cultivar identification is one of the most important aspects in

agricultural systems. The large number of varieties among crop plants has made

difficult to identify and characterize varieties solely based on morphological

characters because they are non-stable since they are an outcome of adaptation to

environmental and climatic conditions. Molecular markers together with

statistical tests and softwares are essential to effectively discriminate between

closely related cultivars and characterize the required plant cultivars or varieties

for cultivation, breeding programs as well as for cultivar-right-protection (263).

Hence, DNA-based techniques have become the main tool for cultivar

genotyping, allowing both appropriate management of reference germplasm

collections and effective varietal traceability during certified production.

Many of molecular markers do not require prior knowledge of genome sequence

for primer design, such as Randomly Amplified Polymorphic DNA (RAPD) and

Amplified Fragment Length Polymorphism (AFLP) markers, while for other

marker systems such as microsatellites, Sequence-Characterized Amplified

Region (SCAR) and Single-Nucleotide Polymorphism (SNP), the target

nucleotide sequences that must be known. Over the last few years, a rapid

improvement occurred due to the development of several new high-throughput

methods for microsatellite analysis and SNP genotyping that are suitable for

automation, including High-Resolution Melting (HRM). These technologies

greatly reduced the operating times and opened new research perspectives by

allowing the analysis of a large number of markers in a large number of samples.

All  the  main  classes  of  molecular  markers  have  been  used  for  cultivar

identification and traceability purposes (264).
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RAPD markers have been broadly employed for cultivar identification and

certification purposes. RAPDs are generated by polymerase chain reaction (PCR)

using 10-mer random primers (265). These primers randomly anneal to several

loci at relatively low temperatures and lead to the amplification of many

sequences, potentially providing many markers per assay. However, the low

annealing temperature may cause problems with reproducibility, necessitating

preliminary selection of the most repeatable primers and regular comparisons of

amplified profiles with reference samples. Fabbri and colleagues (266) screened

17 olive cultivars from the Mediterranean basin using 40 primers and all cultivars

could be differentiated with a few primers, demonstrating the effectiveness of

RAPD markers. Some RAPD-based studies, oriented towards restricted

geographical areas, aimed to determine the origin of specific cultivars, give

insight into local varietals or establish the geographic origin of samples (267-269).

AFLP markers involve the use of restriction enzymes (using a frequent cutter

combined with a rare cutter) to specifically digest sample genomic DNA: the

obtained restriction fragments are then ligated to specific adaptor sequences that

serve as target sites for subsequent PCR amplification with adaptor-directed

primers. The amplicons are separated in gel electrophoresis and the size patterns

are  visualized.  In  spite  of  being  more  laborious  and  less  easy  to  handle  than

RAPDs, AFLPs have been employed in several studies since the end of the 1990s

as an alternative tool for revealing inter- and intra-cultivar variability (Table 6)

(270, 271).

SCARs are specific molecular markers that can be obtained by sequencing

polymorphic amplified fragments generated by other marker systems (such as

RAPD  or  AFLP)  so  as  to  design  specific  flanking  primers.  Though  less

polymorphic than other markers, SCARs are useful for cultivar identification.
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Among the marker which require the knowledge of the genome sequences,

microsatellites or simple sequence repeats (SSRs) are very exploited. This

hypervariable short tandem repeats of DNA can be repeated different times in

different individuals and the polymorphism is due to variations in the number of

repeats. The development of microsatellite markers requires a laborious and

expensive procedure involving the construction of a genomic library, cloning,

sequencing and primer design. These markers, unlike RAPDs and AFPLs, require

specific primers, significantly lowering the risk of non-specific amplifications.

Hence, the advantages of highly reproducible and polymorphic markers largely

compensate for the initial efforts by simplifying the successive analyses. Being

by far the most reproducible class of molecular markers, microsatellites have been

considered the markers of election with the aim of developing a robust method

for cultivar identification. PCR using the unique sequences of flanking regions as

primers and exploiting either dye-based or the fluorescent report probe detection

are used to detect microsatellites.

PCR-based techniques are used also to identify SNPs, variations in a

single nucleotide that occurs at a specific position in the genome. In both plant

and animal genomes the extraordinary abundance of these markers has been

estimated as one SNP every 100–300 bp. They may be found in both the non-

repetitive coding or regulatory sequences and the repetitive non-coding

sequences. While the polymorphism of microsatellite markers is due to length

variations, SNPs occur when a single base pair shows different nucleotide

alternatives in the genomic DNA. The principle of detection is to distinguish a

perfect match from a single base mismatch, at the SNP site, between a probe of

known sequence and the target DNA (272, 273). A  limited  number  of  SNP

markers has been developed in the initial studies, based on known gene sequence

analysis. Since SNP markers need only a plus/minus assay, several more effective

high-throughput approaches suitable for automation have been successively set
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up for their analysis. High-density oligonucleotide arrays on DNA chips have

been developed to analyse genotypes for SNPs. These chips use nucleic acids

immobilized on solid-state surfaces, to be hybridized with the sample, without

requiring the time-consuming and labour-demanding assays that are needed for

most molecular markers (RAPD, AFLP and SSR), essential for size separation of

multiple DNA fragments. Microsatellite analysis can be performed on agarose or

polyacrylamide gels or, more conveniently, by capillary electrophoresis on

automated sequencers.

Table 6. Comparison of selected genetic markers employed in plant identification (data

from 265, 270-272).

Feature SSR RAPD AFLP
Maximum
tumber of
possible loci in
analysis

Limited by the size
of genome and
number of simple
repeats in a genome
(tens of thousands)

Limited by the size of
genome, and by
nucleotide
polymorphism (tens
of thousands)

Limited by the
restriction site
(nucleotide)
polymorphism (tens of
thousands)

Reproducibility Medium to high Low to medium Medium to high

Amount of
sample required
per sample

10–20 ng DNA 2–10 ng DNA 0.2–1 µg DNA

Ease of assay Easy to moderate Easy to moderate Moderate to difficult
Automation/mul
tiplexing

Possible Possible Possible

Development Expensive Inexpensive Moderate
Assay Moderate Inexpensive Moderate to expensive

Equipment Moderate to
expensive

Moderate Moderate to expensive

More recently, HRM closed-tube post-PCR analysis allowed high sample

throughput for varietal certification. HRM is based on monitoring the

fluorescence decrease due to the release of intercalating fluorescent dyes during

thermal denaturation (melting) of double-stranded DNA. This technique allows

the detection of polymorphism between samples based on differences in the

melting temperature of PCR products, as low as in a single base. In the case of
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microsatellites, HMR can reveal more polymorphisms than conventional

electrophoresis owing to its ability to detect SNPs in the flanking region of the

microsatellite repeats. Hence, HRM curves can be different in shape even in the

case of monomorphic markers, and this magnifies the polymorphism degree of

microsatellites (274).
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Chapter 2: Outline
The safety of foods and feeds has become of increasing concern for consumers,

governments and producers, and especially biological hazards pose the greatest

threat. The capacity of foodborne bacteria to cause large outbreaks of acute

illness is a constantly present alarm in the food supply chain. Moreover, the

presence of certain microbial metabolites in food, especially toxins, can cause

acute and chronic diseases.

Salmonella, one of the most studied foodborne pathogen, can be transmitted to

humans through consumption of contaminated animal-derived food, especially

eggs and raw meat from pig, turkeys and poultry. Although a coordinated

approach has reduced human cases of salmonellosis in the EU over 100,000

human cases of salmonellosis are still reported each year, and economic losses

linked to this problem are estimated as high as 3 billion euro a year. Therefore, it

is crucial to distinguish cases of Salmonella infection that have originated from

one source (an “outbreak”) from cases originated from other sources, and to

correlate the food source of infection to the strains isolated from patients, in order

to monitor and track the outbreaks. Traditional typing systems based on

phenotypes, such as serotype or phage-type, have been used for many years.

However, more recent methods that examine the relatedness of isolates at a

molecular level have improved the ability to differentiate among bacterial types

and subtypes.

In addition to the consumption of food contaminated by bacterial pathogens, also

the contamination by bacterial toxins is a major issue. Staphylococcal foodborne

disease is very common worldwide, resulting from the contamination of food

by Staphylococcal Enterotoxins (SEs). Although several SEs have been

identified,  SE  type  A  (SEA),  a  highly  heat-stable  protein  toxic  even  in  few

micrograms, is the most frequently isolated. Currently, the methods for the
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detection of SEs exploit the recognition of the enterotoxin by specific antibodies

in ELISA immunoassays, but alternative high-throughput and rapid methods

seem to be promising.

Considering globally food contaminants from biological origin, also mycotoxins

(toxins produced by different filamentous fungi) have a significant impact on

human and animal health and economies. Among the major mycotoxins,

aflatoxins and ochratoxin A (OTA) are the most studied because of their toxicity

and their impact. Despite efforts to control fungal contamination, when fungal

spores naturally present in the environment have the chance to germinate on

foods, mycotoxins can be synthesized and accumulated. The presence of

mycotoxins above the limits suggested for each food may result in downgrading

or destruction of the contaminated food, because the toxins removal is difficult in

plant foods and unfeasible on many animal-derived foods. The early detection and

identification of fungi growing on foods helps to predict the risk of mycotoxin

contamination, even when the toxin synthesis has not started yet. The detection

of mycotoxin producing fungi achieved through DNA-based methods allow to

recognize whether the isolates are able to produce the toxin, since often not all

strains of the same species possess this ability. These molecular methods provide

faster alternative to the morphological species identification.

Because of the globalization, the import of foods from extra EU countries with

more permissive regulation about mycotoxins is growing. DNA-based approaches

focused on the identification of the geographical origin of foods can be exploited

to recognize crops grown in areas in which warm and humid climate promote the

mycotoxin accumulation, thus preventing them to enter the food chain. The

genetic diversity between crops populations at molecular level is often evaluated

using  Random Amplified Polymorphic DNA (RAPD), for its rapidity and low

cost. This approach could be used to confirm the geographical origin of

hempseeds (Cannabis sativa),  considered  in  this  research  as  model  food  often
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imported from Asia. The consumption of hemp seeds (and derived oil and flours)

has recently increased in Italy, since they are rich in proteins, fibers, omega-3 and

omega-6 fatty acids. Although the cultivation of hemp in Italy has increased too,

the local production do not cover the whole request of the market, leading to the

importation from foreign countries. Several hemp cultivars are currently grown:

DNA analysis can functionally work to establish the origin of the germoplasm

(particularly when coupled with more specific techniques, e.g. isotopic ratio).

Aim of the thesis

The main aims of this research were:

- to investigate the relationship among Salmonella ser. Typhimurium and

monophasic variant of Salmonella Typhimurium strains isolated from 3 pork-

related foodborne salmonellosis outbreaks. This work is inserted within a broader

Project performed in collaboration with the Istituto Zooprofilattico Sperimentale

della Lombardia e dell’Emilia Romagna (IZSLER), Department of Pavia.

- to set up a Real Time PCR system to detect OTA-producing fungi. This method,

together with culture-dependent method and LC/MS, has been applied in a

monitoring study of the presence of OTA and OTA-producing fungi in salami.

This work was performed in collaboration with IZSLER Department of Pavia.

- to select DNA markers useful for the identification and clustering of some Italian

ecotypes of hemp (Cannabis sativa L.) from cultivars grown in China and Canada,

the world-leading hemp producers, considering also the rate of occurrence of

aflatoxins and OTA contamination (evaluated by HPLC-MS in collaboration with

University of Parma).

- to set up a rapid and sensitive method for the detection of SEA in milk and milk

derived products, exploiting Luminex xMAP and SPR-based technologies. The
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work is a part of a project performed in collaboration with the RIKILT

Department of the University of Wageningen (The Netherlands).

Part of the activities of the PhD have been financially supported by two Research

Projects:

i) Progetto Ricerca Corrente, funded by Italian Minister of Health (Rome, Italy)

(PRC 2013021). This project aimed to monitor the presence of OTA and OTA-

producing fungi in salamis manufactured in Northern Italy, also evaluating a

novel PCR-based approach for early detection of OTA producing fungi in salamis.

ii) Ricerca Finalizzata Sanitaria Nazionale, funded by the Italian Minister of

Health (Rome, Italy) (RF-2011-02348684). The main aim of this Project is to

develop rapid methods for the detection of enterotoxins, exploiting different

advanced analytical approaches, comparing them with ELISA method.
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ABSTRACT

Salmonella enterica serovar Typhimurium (STm) and its monophasic variant

4,[5],12:i: (VMSTm) have been responsible for an increased number of foodborne

infections in humans in Europe in recent years. The aim of this study was to

investigate the origin of three foodborne salmonellosis outbreaks that occurred in

Pavia Province (Lombardy region, northern Italy) in 2010. Phenotypic and

genetic characteristics of the STm and VMSTm isolates from patients and from

food that were recovered in the framework of the three outbreaks were evaluated

through serotyping, phage typing, antimicrobial susceptibility testing, pulsed-

field gel electrophoresis (PFGE), and multiple-locus variable-number tandem

repeat analysis (MLVA). Salami from three artisan producers, which had all

purchased meat from the same slaughterhouse, was the food source of infection

in outbreak I. STm isolates were recovered from salami and patients with

symptoms of gastroenteritis. These isolates had the same PFGE type and the same

rare MLVA profile (3-18-9-NA-211). The same molecular profiles were found in

an  STm  isolate  from  a  salami,  which  likely  was  the  source  of  another  family

outbreak (II). A VMSTm strain with common phenotypic and molecular profiles

was isolated from three hospitalized patients and identified as the cause of another

putative outbreak (III). During the following 3 years (2011 through 2013), 360

salami produced in Pavia Province were monitored for the presence of S. enterica.

In 2011, no STm and VMSTm isolates were recovered from 159 salami tested.

During 2012 and 2013, 13.9% of 201 tested salami harbored S. enterica, and half

of  the  isolates  were  VMSTm,  mainly  in  salami  from  those  artisan  producers

involved in the previous outbreaks. These isolates were genetically variable,

especially in terms of MLVA profiles. The data collected suggest that from 2012,

VMSTm  has  replaced  STm  in  the  environments  of  the  salami  producers

monitored in this study, and these data confirm the dominance of this emergent

serovar along the pork supply chain.
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INTRODUCTION

Salmonellosis is the second most commonly reported gastrointestinal infection

and an important cause of foodborne outbreaks in the European Union (EU) and

the European Economic Area (EEA).

Salmonellosis rates have shown a significant five-year decreasing trend in the

EU/EEA, which is largely attributed to the implementation of successful

veterinary control programs in poultry farms. In 2013, Salmonella enterica

Serovar Typhimurium (STm) and the Monophasic Variant of Salmonella enterica

Serovar Typhimurium (VMSTm) were the second and the third most commonly

reported serotypes, respectively, isolated from humans in the EU. The reservoir

of Salmonella enterica is the intestinal tract of wild and domestic animals and

humans are usually infected through the consumption of contaminated raw or

undercooked food (1). Contamination often occurs when organisms are

introduced into preparation areas and are allowed to replicate in food, due to

inadequate storage temperatures and/or cooking or cross-contamination of ready-

to-eat food (2). In Italy, as in other countries, STm have been the highest ranking

cause of human infection since 2001 (3) and VMSTm the second-highest since

2009 (4). Together, these serovars account for more than 50% of the human

Salmonella enterica isolates during the period 2009-2011 (5).

Among all animal-derived strains notified in Italy to the National Reference

Laboratory for Salmonella enterica in the framework of the Enter-vet network

between 2002 and 2010, the proportion of VMSTm increased from 3.5% to

10.3%. In 2010, VMSTm was the most common serovar isolated from food and

animal samples (6). The vast majority of these monophasic strains were recovered

from pigs and pork products (7).
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In Italy, pork products, and in particular salami, are widely consumed. Although

these dry fermented sausages are traditionally considered safe due to their low

pH, low water activity and high salinity, Salmonella enterica can survive

fermentation and drying procedures, especially if the manufacturing process or

fermentation periods are inadequate (8). In Italy, salami contaminated with

different clones of STm have been responsible for a few documented human

outbreaks. Reported cases include an episode caused by STm DT 193 in 1995 (9),

another in 2004 due to STm DT 104A (10), and an outbreak involving Italy and

Sweden in 2005 caused by Not-Typeable (NT) STm (11).

The aim of this study was to investigate three pork-related foodborne

salmonellosis outbreaks caused by STm and VMSTm which occurred in Pavia

Province (Lombardy Region, Northern Italy) in 2010. In addition, we

implemented a three year (2011 – 2013) Salmonella monitoring program in Pavia

Province among salami producers either involved or not involved in the three

outbreaks, in order to monitor contamination over time.

MATERIAL AND METHODS

Outbreak description

Three human salmonellosis outbreaks (hereafter identified as I, II and III)

occurred in Pavia Province, in the Lombardy Region of Northern Italy, in

November 2010. Outbreak I involved about thirty guests from one restaurant over

a period of one month. Guests had become ill with symptoms of gastroenteritis

and the epidemiological investigation revealed that all had eaten salami at the

restaurant. Outbreak II involved the five members of a family who consumed

salami bought from a local  salami producer (p3).  All  five family members had

symptoms of gastroenteritis. Salmonella enterica belonging to the White-

Kauffmann-Le Minor group B was isolated from four family members, among

which, one was hospitalized and Salmonella enterica was serotyped. The

epidemiological investigation of the two outbreaks identified four artisan
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producers of salami (p1, p2, p3 and p6), which had all purchased meat from the

same slaughterhouse A, as potentially responsible for these outbreaks. In both

outbreaks, each guest ate approximately 50 g of pork products, of which, about

half was salami.

In the same period, San Matteo Hospital in Pavia collected three Salmonella

enterica isolates among patients with symptoms of gastroenteritis. In this case,

the epidemiological investigation did not ascertain a correlation between the

foodborne episodes and the exact source of infection. Based on the subtyping

approaches used, which identified these three strains as indistinguishable, they

have beenconsidered as belonging to another, putative, outbreak (III).

Sample collection and Salmonella enterica isolates

Twenty-two samples of salami were collected from four involved producers (p1,

p2, p3, p6) in the context of the epidemiological investigations of outbreaks I and

II from November 2010 to February 2011. All producers hadpurchased raw meat

for salami production from artisan slaughterhouse A; in addition, producer p3 had

purchased meat from industrial slaughterhouse B.

From March 2011 to December 2011, within a Provincial Surveillance Program

carried out to investigate the presence of Salmonella enterica in salami from

different producers, twenty-five salami from producers p1, p2, p5 and p6, which

had purchased meat from slaughterhouse A, were sampled according to the

criterion of one salami per production batch. In the same period, 134 salami were

collected from epidemiologically unrelated artisan producers (91) and

slaughterhouses, other than slaughterhouse A, according to the same sampling

criterion.

In 2012 and 2013, within a Regional Surveillance Program conducted in

Lombardy  for  the  same  purpose,  52  samples  of  salami  were  collected  from  6

artisan producers: the four producers (p1, p2, p3 and p6) involved in the outbreaks

of 2010 and two additional producers (p4 and p5), which had purchased raw meat
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from slaughterhouse A. The sampling plan of the Regional Surveillance Program

was conducted according to the Commission Regulation (EC) No 2073/2005 (12),

collecting five sampling units per batch of salami. Finally, over the same period,

149 additional samples collected from epidemiologically unrelated producers,

both artisan (48) and industrial producers (31), and from slaughterhouses other

than  A  and  B  in  Pavia  Province  were  analyzed  for  the  same  purpose.  The

distribution of Salmonella enterica isolates from salami by scope of sampling,

period, producer, and slaughterhouse is reported in Table 1. In the context of the

three outbreaks, a total of eight Salmonella enterica isolates were recovered from

human feces, namely four from outbreak I, one from outbreak II and three from

outbreak III (Table 2).

Salmonella enterica detection and serotyping

Salmonella enterica was isolated from salami according to method ISO

6579:2002/Cor1:2004 (13) at the Istituto Zooprofilattico Sperimentale della

Lombardia e dell’Emilia Romagna (IZSLER) laboratories. Suspect Salmonella

enterica colonies were tested for biochemical properties with API® 20E micro-

substrate system (bioMérieux). Salmonella enterica serotyping was performed

according to the White-Kauffmann-Le Minor scheme by slide agglutination with

O and H antigen specific sera (Staten Serum Institute, Copenhagen, Denmark).

VMSTm were definitively identified and differentiated from STm using a

previously described PCR protocol (14).

Molecular characterization of ST and VMSTm isolates

Pulsed-field gel electrophoresis (PFGE) was performed according to the PulseNet

standardized protocol using restriction enzyme XbaI

(http://www.cdc.gov/pulsenet/PDF/ecoli-shigella-salmonella-pfge-protocol-

508c.pdf). XbaI digested DNA from Salmonella Braenderup H9812 was used as

molecular size marker (15). Gel images were analyzed by BioNumerics 6.6

software package (Applied Maths, Saint-Martens – Latem, Belgium). PFGE
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pulsotypes differing by one or more fragments were considered as distinct (16).

The  pulsotypes  of  the  isolates  were  named  according  to  the  IZSLER  coding

system. Comparison of the profiles was performed by cluster analysis based on

the Dice’s Similarity Index and a dendrogram was obtained by using the

unweighted pair group method with arithmetic average (UPGMA) (Tolerance:

1%, Optimization: 1%).

Multiple-locus Variable-number Tandem-repeat Analysis (MLVA) was

performed according to the protocol previously described (17). The size

measurements for each locus were estimated using a CEQ™ 8000 Genetic

Analysis System (Beckman Coulter, USA). MLVA profiles were assigned as a

string of five numbers (STTR9–STTR5–STTR6–STTR10pl–STTR3),

representing the Variable Number of Tandem Repeats (VNTR) at the

corresponding locus, or with NA (no amplification) in case of negative PCR

amplification, according to the MLVA nomenclature suggested by Larsson et al.

(18).

For each isolate, the corresponding VNTR profile was imported as character data

into the BioNumerics 6.6 software package (Applied Maths, Saint-Martens –

Latem, Belgium).

Phage-typing and antimicrobial susceptibility testing

The STm and VMSTm isolates were phage-typed by the National Reference

Laboratory for Salmonella (Istituto Zooprofilattico Sperimentale delle Venezie,

Padova, Italy) using the protocol reported by Anderson et al. (19) and following

the interpretative guidelines defined for STm by the Public Health England

(Colindale, London, UK) (6). Isolates that did not react with any of the typing

phages were considered NT.

Antimicrobial susceptibility testing of human and salami STm and VMSTm

isolates was performed using the disk diffusion method according to the criteria

established by the Clinical and Laboratory Standard Institute (20). The
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antimicrobials (Becton Dickinson) tested included the following antibiotic disks:

ampicillin (A, 10 μg), cefotaxime (Ctx, 30 μg), chloramphenicol (C, 30 μg),

ciprofloxacin (Cp, 5 μg ), gentamicin (G, 10 μg), kanamycin (K, 30 μg), nalidixic

acid (Nx, 30 μg), streptomycin (S, 10 μg), sulfonamides (Su, 250 μg), tetracycline

(T, 30 μg), and trimethoprim–sulfamethoxazole (SXT, 1.25 / 23.75 μg).

Escherichia coli ATCC 25922 was used as a control strain in the tests.

Statistical analysis

Fisher’s test was used to evaluate if the difference between the proportions of

positive salami samples from the producers, related and not related to the 2010

outbreaks within the Regional Surveillance Program, were statistically

significant. The level of  significance was set at p < 0.01.
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Table 1: Distribution of Salmonella enterica isolates from salami by scope of sampling,
period, producer, slaughterhouse and serotype.

Epidemiological investigation of the outbreaks (November 2010 – February 2011)

Producer Slaughterhouse Sampled

salami

(n)

Positives for Salmonella enterica

(n)

STm

(n)

VMSTm

(n)

Other

serotypes

 (n)

p1 A 3 2 2 /

p2 A 10 5 3 /

2 (1 Derby; 1

Ohio)

p3 A 6 5 5 /

p3 B 2 2 2 /

p6 A 1 / /

Total 22 14 12 0 2

Pavia Province surveillance program ( March 2011 - December 2011)

Producer Slaughterhouse Sampled

salami

(n)

Positives for Salmonella enterica

(n)

STm

(n)

VMSTm

(n)

Other serotypes

 (n)

p 1 A 6 1 / / 1 (Derby)

p 2 A 17 / / / /

p 5 A 1 / / / /

p 6 A 1 / / / /

Total 25 1 0 0 1

Other

producers

(91)

other slaughter-

houses 134 1 / / 1 (Derby)

Regional  surveillance program in Pavia Province (January 2012 – December 2013)

Producer Slaughterhouse Sampled

salami

(n)

Positives for Salmonella enterica

(n)

STm

(n)

VMSTm

(n)

Other serotypes

 (n)

p 1 A 1 / / / /

p 2 A 36 7 / 6 1  ( NT°)

p 3 B 2 1 / 1

p 4 A 8 2 / 2

p 5 A 3 2 / 1 1 (Infantis)

p 6 A 2 1 / 1

Total 52 13 0 11 2

Other

producers

(79)

Other

slaughterhouses 149 15 / 3

12

(8 Derby, 2

Rissen,

1 Infantis,  1

NT°)
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RESULTS

Salmonella detection and serotyping

The four human isolates from outbreak I were serotyped as STm. From outbreak

II,  the  single  isolate  available  was  serotyped  as  STm.  The  three  isolates  from

outbreak III were serotyped as VMSTm (Table 2).

During the epidemiological investigations of outbreaks I and II, 14 out of 22

(63.6%) salami from producers p1, p2 and p3, connected to slaughterhouse A,

harbored Salmonella enterica. Of these 14 isolates, 12 isolates (85.7%) were

serotyped as STm, while two belonged to different serotypes (Table 1). Within

the Provincial Surveillance Program conducted from March to December 2011

one salami, out of 25 salami from producers p1, p2, p5 and p6, was positive for

Salmonella Derby. In the same monitoring program, one salami harbored

Salmonella Derby out of the 134 salami sampled from producers and

slaughterhouses which were epidemiologically unrelated to the 2010 outbreaks.

In 2012-2013, within the Regional Surveillance Program, the producers involved

in the 2010 outbreaks and/or which purchased meat from the slaughterhouses

involved, were studied. In this program, 13 salami out of 52 (25%) harbored S.

enterica (Table 1). All producers but p1 had at leastone positive sample. Eleven

of the 13 isolates were serotyped as VMSTm. In the same period, 15 out of the

149 salami (10.1%) from other producers and slaughterhouses were S. enterica-

positive, and three isolates proved to be VMSTm. The difference between the

proportions of S. enterica-positive salami from the producers involved and those

not involved in the 2010 outbreak was statistically significant.

Molecular characterization of ST and VMSTm isolates

The PFGE and MLVA profiles of all STm and VMSTm isolates are reported in

Table 2 and the genetic similarity of PFGE profiles is shown in the dendrogram

of Figure 1.
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The  four  human  STm  isolates  from  outbreak  I  were  PFGE  type

STYMXB_BS.0043 and MLVA profile 3-18-9-NA-211. The only human STm

isolate from outbreak II was not available for genotyping, and so for this isolate,

ND (Not Done) is  reported in Table 2.  All  STm isolates from salami,  sampled

during the epidemiological investigation of outbreaks I and II from the producers

involved, had the same PFGE (STYMXB_BS.0043) and MLVA (3-18-9-NA-

211) profiles as the outbreak I human isolates. This corroborated the hypothesis

that salami from these particular producers was involved in the outbreaks. These

findings were also supported by food questionnaires collected during the

epidemiological investigation, from which salami emerged as the suspect food.

The  three  VMSTm  human  isolates  from  outbreak  III  were  PFGE  type

STYMXB_0131 and MLVA profile 3-13-10-NA-211.

With regard to the Regional Surveillance Program of 2012-2013, seven VMSTm

isolates from producers p2 and p6, both of which had purchased meat from

slaughterhouse A, shared the same PFGE (STYMXB_0131) and MLVA (3-14-9-

NA-211) profiles. In addition, three isolates from producers p4 and p5

(slaughterhouse A), were of the same PFGE type (STYMXB_0131), but three

different MLVA profiles (3-13-10-NA-211, 3-11-9-NA-211, 3-14-10-NA-211).

Notably, MLVA profile 3-13-10-NA-211 from producer p4 was the same type as

the isolates from outbreak III, which had occurred two years previously. Three

VMSTm isolates from producers p3, p7 and p8 (slaughterhouses B, C, D) differed

by both PFGE and MLVA profiles: three unique MLVA profiles (3-11-14-NA-

211, 3-12-9-NA-211, 3-12-10-NA-211) corresponded to different PFGE types

(STYMXB_PR.0538, STYMXB_PR.0550, STYMXB_PR.0553). Lastly, for the

single VMSTm isolate of 2013, only serotyping was available.

Phage-types and antimicrobial susceptibility

Detailed results of phage-typing and antimicrobial susceptibility testing are

reported in Table 2. Three out of four human STm isolates, apparently
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representing the same clone, were phage-typed as DT120, while the fourth was

NT. Ten of twelve STm isolates from salami were phage-type DT120, while the

remaining two isolates were phage-type DT29.

Three  human  VMSTm  isolates  were  NT.  VMSTm  isolates  from  salami  were

phage-typed as DT120 (n=3), DT193 (n=5) and NT(n=5).

With regard to antimicrobial resistance, all STm isolates were pansusceptible to

the panel of antimicrobials tested. Eight VMSTm isolates were fully susceptible

and eight showed the resistance to ampicillin, streptomycin, sulfonamides and

tetracycline (R-Type: ASSuT) typical of this serovar, including the three human

isolates of outbreak III and the isolate from salami from producer p4 which had

the same PFGE and MLVA profiles as the outbreak strain. For the only human

STm isolate from outbreak II and for the single VMSTm isolate from the 2013

Regional Surveillance Program, no phenotypic data was available. This is

reported in Table 2 as Not Done (ND).
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DISCUSSION

The epidemiological investigations of three human salmonellosis outbreaks by

STm and VMSTm that occurred in November 2010 in Lombardy, Italy, led to the

isolation of Salmonella enterica from salami. As a consequence, the salami

manufactured by producers in the area were monitored over time for the presence

of Salmonella enterica.

A high proportion of the salami manufactured by the artisan producers involved

in outbreaks I and II harbored S. enterica. More than 60% of sampled salami

contained Salmonella enterica. Eighty-six percent (12 out of 14 samples) were

contaminated with STm sharing the same PFGE and MLVA profiles

(STYMXB_BS.0043 and 3-18-9-NA-211, respectively) as the human STm

isolates recovered within outbreak I.

Interestingly, 3-18-9-NA-211 is a rare MLVA profile, having been found only

among these isolates out of three thousand isolates examined by MLVA in the

IZSLER database (unpublished results) and, to our knowledge, never having been

reported in the literature worldwide so far, reinforcing the evidence of a link

between these salami and the human cases. The fact that STm with a very rare

MLVA profile was recovered from salami manufactured by three different

producers, prepared in different environments and conditions, during a short

timeframe  (four  months),  suggests  a  common  source  of  infection.  In  fact,  the

source of infection was identified as the artisan slaughterhouse A, from where the

producers had purchased the meat. The single finding of STm with that rare

MLVA profile in a batch of salami produced with meat from slaughterhouse B,

by producer p3, could actually have been the consequence of cross-contamination

at the manufacturer’s premises, with meat from slaughterhouse A. This

slaughterhouse also supplied meat to producer 3.

The same PFGE, MLVA and phenotypic profiles were also shared by a STm

isolate recovered from a salami related to outbreak II and purchased from

producer p3. This finding supports the salami as the speculative source of
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outbreak II, although this was impossible to confirm due to the lack of subtyping

data from the one available human isolate associated with this outbreak. The STm

clone identified in outbreaks I and II was susceptible to the antimicrobials

examined, and the isolates shared identical PFGE and MLVA profiles, although

heterogeneity emerged with phage-typing (three phage types were associated with

the clone; Table 2). Furthermore, the main phage-type identified within the clone

(DT120) is quite common among animal-derived STm strains (6). On one hand,

this evidence is indicative of a possible lack of reproducibility of phage-typing.

On the other hand, in the case of outbreaks I and II, the use of phage-typing alone

would not have allowed us to unequivocally link the human cases and the sources

of infection, due to the common occurrence of DT120.

Human strains associated with outbreak III belonged to VMSTm and shared the

PFGE (STYMXB_0131) and MLVA (3-13-10-NA-211) profiles, as well as

resistance pattern (ASSuT). This phenotypic and genetic profile combination is

common among VMSTm isolated during IZSLER surveillance, and it is also quite

common among Italian human VMSTm isolates, as reported by Luzzi et al. (5).

For outbreak III, it was not possible to ascertain the source of infection.

Nevertheless,  a  VMSTm  isolate  with  the  same  PFGE  and  MLVA  profiles

(STYMXB_0131 and 3-13-10-NA-211, 10 respectively), and the same ASSuT

resistance pattern, occurred in a salami manufactured two years after outbreak III.

This suggests that salami or pork meat could have been the source of the three

human outbreak III cases.

In the monitoring conducted during March-December 2011, 1.3% of salami (2

out of 159) from producers related and unrelated to the outbreaks of 2010

harbored Salmonella enterica and no STm or VMSTm were detected. Probably,

the correct application of the Good Manufacturing Practices (GMP) and sanitation

of the different areas of the slaughterhouses and production areas after the

outbreaks was successfully implemented. In particular, the sanitation practices of

slaughterhouses and production areas were improved by increasing the frequency
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of sanitation and by separating the food processing areas. On the contrary, during

the monitoring conducted in 2012 – 2013, 13.9% (28 out of 201) of salami

harbored Salmonella enterica. It is noteworthy that a significantly higher

proportion of the positive findings originated from artisan producers which had

been involved in the 2010 outbreaks and/or purchased meat from artisan

slaughterhouse A (12 out of 50), while only a minor proportion were from other

producers (15 out of 149). Overall, during 2012-2013 monitoring, 50% (14 out of

28) of the isolates were VMSTm and no STm was detected.

In the context of our investigations, the ASSuT antimicrobial resistance pattern

was detected only in VMSTm isolates and not in STm, which is partially in

agreement  with  data  from EFSA and the  ECDC (21), reporting that more than

70% of STm and VMSTm serotypes isolated from pig meat show multiresistant

patterns.

In conclusion, the results obtained in this study confirm that in 2012-2013,

VMSTm has replaced STm in the environments of Pavia salami producers. This

is in keeping with the observation of an increase in the isolation of animal-derived

VMSTm that  occurred  in  Italy  from 2010 (6). The extended sampling method

adopted in our study proved suitable for purpose, enabling us to detect Salmonella

enterica subtypes in salami, thus likely preventing the onset of food-borne

outbreaks due to the correct application of GMP and hygienic measures adopted

as a result. Although the data presented in this study confirm the clear role of the

pig as an important contributor to the burden of human salmonellosis, currently,

a control program for Salmonella in the pig chain has not been implemented yet

in Italy. The evidence collected in the present study and the results of the source

attribution studies conducted in Italy (22-24) strongly support the need to urgently

focus efforts on the swine supply chain through the application of control plans,

as has been already done for the poultry sector, with the aim of further reducing

salmonellosis at the national level. Moreover, further studies would be necessary

to clarify the factors affecting the persistence of serovars including STm and
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VMSTm in pig farms as well as in pig slaughterhouses and pork product

establishments.
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ABSTRACT

Fungi have a crucial role in the correct maturation of salami, but the fungal

metabolite ochratoxin A (OTA) is nephrotoxic, immunotoxic and carcinogenic.

In a monitoring study conducted in Northern Italy, OTA was measured through

liquid chromatography coupled with mass spectrometry above the limit of Italian

regulation in 13 out 133 traditional salamis (9.8% of the total count). From the

same salamis, 247 fungal isolates were collected and identified at a species level.

The most commonly isolated species resulted Penicillium nalgiovense,

Penicillium solitum and Penicillium chrysogenum, while no Penicillium

nordicum, the OTA-producing species most frequently isolated from

proteinaceous food, was found. In 3 cases, Aspergillus westerdijkiae, a recognised

ochratoxigenic mould, was identified. The presence of a target DNA sequence

common to all OTA-producing fungi (otanpsPN) and of a sequence specific for

the ochratoxigenic strains of P. nordicum was evaluated by real time PCR. None

of the tested strains, including the three A. westerdijkiae, showed to possess

otanpsPN, and none of the A. westerdijkiae strains was proved able to produce

OTA, when grown under conditions favourable to OTA biosynthesis. Conversely,

the otanpsPN target gene was amplified from the DNA purified from the 3 salami

casings harbouring both A. westerdijkiae and OTA, but also from other 11 salami

casings where A. westerdijkiae was not isolated, suggesting that OTA-producing

strains  were  no  longer  viable  and  isolable  at  the  end  of  maturation.  The  DNA

sequence P. nordicum-specific  was  also  found  in  11  out  of  19  DNA  samples

purified directly from salami casings.

The amplification of targets specific for OTA-producing strains performed on

DNA purified directly from the salami casing resulted a better approach to predict

the presence of OTA presence than the traditional culture-dependent

microbiology methods.
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Two novel primer pairs  were designed and tested in real  time PCR in order to

implement  the  system  of  monitoring.  Both  primer  pairs  gave  amplicons  in

presence of the species A. westerdijkiae, A. ochraceus and P. nordicum.

Keywords:

Salami, Aspergillus, Penicillium, Ochratoxin A

 INTRODUCTION

The colonization of salami casings by fungi is crucial for the correct maturation

of salami. The growth of fungi on salami surfaces has antioxidative effects,

prevents rancidity and keeps the correct colour. Fungal growth is responsible for

the development of the characteristic salami flavour. In fact, fungi decompose

lipids, allow the β-oxidation of fatty acids, the oxidation of lactate and the

proteolysis (1). Moreover, fungal flora competes with pathogens and spoiling

microorganisms for nutrients, assuring a good microbiological quality (2). On the

other hand, any variation in temperature or humidity at each production stage can

promote undesired and uncontrolled fungal growth, which causes alteration in

appearance, smell and taste (3, 4). Among fungal metabolites produced during

fungal growth, mycotoxins represent a potential health hazard for consumers.

Ochratoxin A (OTA) is the main mycotoxin found in meat (5, 6) and its

accumulation in foods may affect human health, since it is nephrotoxic,

immunotoxic, teratogenic and carcinogenic (7).

OTA is synthesized by fungal species belonging to Aspergillus genus, section

Circumdati (mainly A. ochraceus, A. steynii and A. westerdijkiae), and section

Nigri (A. carbonarius and A. niger), and Penicillium genus section Viridicata (P.

nordicum and P. verrucosum) (8). In meat-derived products, OTA production is

mainly due to the presence of P. nordicum (9 - 11). It can occur at a frequency up

to 11% of the fungal population on the surface of dry-cured ham (5, 12), leading

to OTA accumulation on the surface of the final product (13). The production of
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OTA is strain dependent, and requires ad hoc conditions of temperature, nutrients

and water activity (aw). Each fungal species has different optimal conditions for

producing OTA: for example, OTA-producing strains of A. westerdijkiae

synthesizes OTA when temperatures are between 24°C and 28°C and aw is in the

range of 0.96-0.99 (14, 15). As OTA can be produced on a great variety of crops,

which are downgraded to animal feed when contaminated with OTA, this

mycotoxin can accumulate in swine muscles, resulting in contaminated meat (16).

Therefore, OTA detected in salami can originate both from contaminated meat

and from the metabolism of fungi growing on the casings. To inhibit the undesired

growth of fungal species responsible for the alteration of organoleptic features

and for the production of mycotoxins, specific fungal starters are inoculated in

large-scale before the starting of the maturation (17). In Italy, most of salami are

produced by small and medium-sized factories, mainly located in the Northern

Italy regions of Emilia Romagna and Lombardy (18). These factories usually

follow their traditional recipe for the preparation of salami, so no fungal starter is

added, allowing the proliferation on the salami casings of the mycobiota already

present in the air of maturing rooms.

Currently, OTA is not routinely searched in salami, since its carry-over in animal

products is not considered a major health concern (19). European commission has

not set limits yet for OTA in meat and cheese, but in Italy, where the consumption

of dry-cured meat is widespread, the Italian regulation has established the limit of

1 µg/kg (1 ppb) of OTA in meat and meat-derived products (Italian Ministry of

Health, 1999) (20).

The  aim  of  this  work  was  to  evaluate  the  presence  of  OTA  and  ochratoxin-

producing fungal species in traditional salami produced in Lombardy and Emilia

Romagna. The concentration of OTA in all salami was measured by mass

spectrometry. The identification of fungal species isolated from salami was

carried out through traditional microbiological methods. Molecular methods

based on real time PCR were employed to verify the presence of OTA producing
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strains, by checking for the positivity to non-ribosomal peptide synthetase

(otanpsPN) gene, which encodes for a key enzyme for OTA biosynthesis in OTA-

producing Penicillium and Aspergillus strains. The presence of OTA-producing

strains of P. nordicum was checked by amplifying a species-specific fragment of

polyketide synthase (otapksPN) gene (12, 21- 23).

MATERIAL AND METHODS

Sampling

One hundred and thirty-three salamis ready for the consumption produced from

2013 to 2015 were collected from 37 different producers located in Lombardy and

Emilia Romagna (Fig. 1). Sampling for OTA quantification was performed by

cutting out 20 g of each salami. For the strains isolation, 10 g of salami casing

were homogenized in 90 ml of buffered peptone water 0,1%. Four 10-fold serial

dilutions were subsequently prepared.

Figure 1. Salami contaminated by ochratoxin A and harbouring Aspergillus

westerdijkiae.

Ochratoxin A detection

The OTA presence was evaluated in 133 salamis through an LC-MS/MS (liquid

chromatography- tandem mass spectrometry) method based on a previously

published work (24).
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OTA was also searched and quantified in 50 ml of 7 fungal cultures (2 A.

westerdijkiae isolates from salami, A. westerdijkiae CBS 112803, A. ochraceus

CBS 108.08, A. steynii CBS 112812, P. verrucosum CBS 115508 and P. nordicum

CBS 110769) in 2% Yeast Extract 20% Sucrose broth (25). The Aspergillus

species were incubated at 25±1°C for 15 and 30 days, while the Penicillium

species at 22±1°C for 15 days.

Homogenized salami (20 g) was added to 100 ml of an extraction solution mix

formed by acetonitrile:water (84:16, v/v) acidified with 2.5% of acetic acid. The

mixture was stirred for 60 min. After filtration on a paper filter, an aliquot of 5 ml

was purified through a Mycosep 229 Ochra. An aliquot of 2 ml was transferred in

a  tube  and  n-hexane  (2  ml)  was  added.  After  stirring  on  a  vortex  (1  min)  the

solution was centrifuged at 3000 rpm (5 min). The hexan layer was discharged.

Then the idroorganic (1 ml) layer was transferred in a LC vial and underwent to

LC-MS/MS analysis.

LC-MS/MS analysis was carried out by a 6430 Triple Quad MS (Agilent

Technologies, Santa Clara, CA, USA) equipped with an electrospray interface.

The separation was achieved on a ZORBAX SB-C18 (50 mm, 2.1 mm ID, 1.8

mm) column with a pre-column filter (0.3 mm). Gradient elution was performed

using eluent A (0.1% formic acid in H2O) and eluent B (0.1% formic acid in

CH3CN). The gradient was set as follows: the first step was a linear gradient from

95% A to  95% B in  5  min,  followed by  a  1  min  isocratic  step  at  95% B.  The

column was reconditioned at 95% A for 1.5 min. The total run time was 7.5 min.

The following parameters were set: flow rate 0.4 ml/min, column temperature

40°C and injection volume 10 µl. The retention time of the analyte was 3.41 min.

Quantification was carried out by the external standard method in multiple

reaction monitoring (MRM) mode (ESI-) using the following transitions: 402.1 -

>358.0 (Quantifier) and 402.1 -> 211.0 (Qualifier). MS/MS parameters were set

as follows: capillary 4000 V, gas temperature 300°C, gas flow 10 L/min, nebulizer
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35 psi, dwell time 200 ms, fragmentor 143 V, collision energy 16 V (Quantifier),

collision energy 36 V (qualifier) and cell acceleration voltage 7 V.

Isolation and culture-dependent identification of fungal strains

For the fungi isolation, each homogenate and its serial dilutions were plated on

Dichloran 18% Glycerol (DG18) (26) and Dichloran Rose Bengala

Chloramphenicol (DRBC) (27) agar media, depending on the water activity, as

recommended by ISO 21527-1:2008 and 21527-2:2008. Each homogenate and its

serial dilutions were also plated on Malt Extract Agar (MEA) and incubated at

25±1 °C for 5 days.

The isolates were transferred to Potato Dextrose Agar and incubated at 25±1 °C

for 5 days. The species identification of each isolate was carried out through the

observation of macroscopic and microscopic features expressed on MEA, DG18

and Czapek Yeast Autolysate agar (CYA) media for Aspergillus, while MEA,

CYA, Yeast Extract Sucrose agar (YES) and Creatine sucrose agar (CREA) were

used for Penicillium, as suggested by dichotomic keys (28). To differentiate

certain species of Penicillium, Erlich test was performed (29). For  the

observations of the reproductive structures, microscopic mounts were prepared in

lactic acid from colonies grown on MEA.

DNA purification

The isolates of Aspergillus and Penicillium were transferred to 2 ml of BHI (Brain

Hearth Infusion) broth incubated for 3 days at 25 °C ± 1°C and then pelleted for

10 minutes at 16000 x g. Two grams of 19 salami casings from the total 133 salami

samples (12 positives to OTA and 7 negatives) were washed with physiological

saline, and the suspension of spore was pelleted by centrifugation for 10 minutes

at 16000 x g.

Genomic  DNA  was  purified  using  a  commercial  kit  (Blood  and  Tissue  kit  –

QIAGEN, Milan Italy), with minor modifications. To achieve the fungal wall lysis

all pelleted cultures were incubated with 200 U per sample of Lyticase (Sigma) at
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30 °C for 30 minutes. Genomic DNA was eluted in 200 µl of AE buffer. A single

extraction was performed from each culture or salami casing.

Amplification of ITS regions

The universal primers ITS1 [5’-TCC GTA GGT GAA CCT GCG G-3’] and ITS4

[5’- TCC TCC GCT TAT TGA TAT GC-3’] were used to amplify a fragment of

ITS region, to evaluate the integrity of DNA (30). Five microliters of fungal DNA

(1µg/ml)  were  used  for  the  PCR assay.  The  reaction  was  carried  out  in  a  total

volume of 25 μl, containing 0.4 μM of each primer, 0.2 mM dNTPs (Euroclone,

Milan Italy), 1 U of Hot Start Taq (QIAGEN, Milan Italy) and 1X PCR Buffer

1.5 mM MgCl2 (QIAGEN, Milan Italy). The amplification cycle was as follows:

an initial denaturation step at 94 °C for 1 min, 40 cycles consisting of denaturation

at 94 °C for 1 min, annealing at 55 °C for 1 min, extension at 72 °C for 1 min. A

final extension at 72 °C for 10 min was added. The DNA fragments were length

separated by electrophoresis through 2% agarose gels in Tris Borate EDTA (TBE)

buffer and 0.5 µg/ml of ethidium bromide. Results were documented by using a

UV transilluminator (Alliance 2.7, Uvitec, Cambridge).

Real time PCR on otanpsPN gene

The  amplification  of  a  fragment  of  the otanpsPN gene  conserved  in  all  OTA-

producing strains was performed as described by Rodriguez and colleagues

(2011) (31) on  DNA  samples  isolated  from:  113  cultures  of Aspergillus and

Penicillium spp. strains, considering at least two strains for each species and all

Penicillium strains identified only at genus level; 19 salami casings. The single

reaction mixture was composed of 1.975 μl of RNase free water, 12.5 μl of  Go

Taq PCR Master mix (Promega, Milan Italy), 1 μl of F-npstr (5’-GCC GCC CTC

TGT CAT TCC AAG-3’) (10μM), 1 μl of R-npstr (5’-GCC ATC TCC AAA CTC

AAG CGT G-3’) (10μM), 1.125 μl of NPSprobe (6FAM-CGG CCG ACC TCG

GGA GAG A–BHQ1) (10μM), 0.4 μl of TaqMan Exogenous Internal Positive

Control Mix (Applied Biosystems, Monza Italy), 2 μl of TaqMan Exogenous
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Internal Positive Control (DNA), and 5 μl of DNA (1 µg/ml), in a final volume of

25  μl.  DNA  samples  were  loaded  in  triplicate  on  the  plate.  At  each  working

session, a No Template Control (NTC), a negative control consisting of DNA

from Penicillium nalgiovense and two positive controls consisting of DNA from

P. nordicum CBS 110769 and P. verrucosum CBS 115508 were included. The

amplification was carried out in a CFX96X Touch (BioRad, Milan Italy),

programmed to perform a first denaturing step of 2 min at 95 °C and 35 cycles of

20 sec at 95 °C, 20 sec at 55 °C and 30 sec at 72 °C.

Real time PCR for the identification of OTA-producing strains of P. nordicum

DNA isolates from 39 Penicillium spp. strains, chosen considering at least one

strain of each species plus other strains for which the species was not identifiable

using the culture-dependant method, were also tested in real time PCR using P.

nordicum specific primers and probe, targeting a species-specific fragment of

otapksPN gene as described by Geisen (2004) (32). The same reaction was carried

out also on DNA isolates from 19 salami casings. The reaction mixture was

composed of 3.08 μl of RNase free water, 10 μl of Go Taq Probe qPCR (Promega,

Milan Italy), 1 μl of otapksPN1 (5’-CACGGTTTGGAACACCACAAT-3’)

(10μM), 1 μl of otapksPN2 (5’-TGAAGATCTCCCCCGCCT-3’) (10μM), 1 μl of

otapksPN probe (6FAM-CGTACCAATCCCCATCCAGGGCTC–BHQ1)

(10μM), 0.32 μl of TaqMan Exogenous Internal Positive Control Mix (Applied

Biosystems, Monza Italy), 1,6 μl of TaqMan Exogenous Internal Positive Control

(DNA), and 2 μl of DNA (1 µg/ml) in a final volume of 20 μl. DNA samples were

loaded in triplicate on the plate. In each working session, a NTC, a negative

control consisting of DNA from P. verrucosum CBS 115508 and a positive

control consisting of DNA from P. nordicum CBS 110769 were added. The

amplification was carried out in a StepOne Plus Real Time PCR System (Applied

Biosystems, Monza Italy), programmed to perform 2 min at 95 °C, 35 cycles of

20 sec at 95 °C, 20 sec at 55 °C and 30 sec at 72 °C.
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End point PCR for the identification of A. westerdijkiae

The identification of A. westerdijkiae strains was confirmed by a species-specific

reaction, as described by Gil-Serna and colleagues (2009) (33). The PCR assay

was  performed  using  5  μl  of  the  DNA  template  (1  µg/ml)  in  a  total  reaction

volume of 25 μl.  The reaction mix consisted of PCR buffer  [20 mM Tris -  Cl,

KCl, (NH4)2SO4, MgCl2 1.5mM, pH 8.0] (QIAGEN, Milan Italy), 0.6 µM each

of WESTF (5’-CTTCCTTAGGGGTGGCACAG-3’) and WESTR (5’-

CAACCTGATGAAATAGATTGGTTG-3’) primers for ITS1-5.8S-ITS2 region

of rDNA, 0.2 mM of dNTPs (Euroclone, Milan Italy), and 1 U of Hot Start Taq

DNA  polymerase  (QIAGEN,  Milan  Italy).  The  reactions  were  performed  in  a

thermocycler (Veriti 96 wells thermal cycler, Applied Biosystems). Thermal

program included initial DNA denaturation at 95 °C for 15 min that followed by

40 cycles, consisting of denaturation at 95 °C for 30 sec, annealing at 63 °C for

30 sec, and extension at 72 °C for 40 sec, with a final extension at 72 °C for 5 min

following the last cycle. The DNA fragments were length separated by

electrophoresis through 2% agarose gels in Tris Borate EDTA (TBE) buffer and

0.5 µg/ml of ethidium bromide. Results were documented by using a UV

transilluminator (Alliance 2.7, Uvitec, Cambridge).

Primer design for A. westerdijkiae confirmation

Since A. westerdijkiae was isolated, two specific pairs of primers for real time

PCR were designed in order to detect this species. The available sequences of beta

tubulin region of 10 A. westerdijkiae isolates (Genbank accession no.:

EF150881.1, EF150880.1, EF150879.1, KT253229.1, KP329877.1, KP329876.1,

KP329873.1, EF661329.1, EF661330.1 and JX535306.1) and of other 8 isolates

of Aspergillus species were aligned on MultAlin (34). The sequences considered

for the alignment were: KC433701.1 (A. acidus), KF434634.1 and KF434635.1

(A. carbonarius), M38265 (A. flavus), AY048754.1 (A. fumigatus), FJ828905.1

and FJ828914.1 (A. niger), EF150882.1, EF150878.1, EF150877.1, KJ775051.1,
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AY160979.1, EF661323.1, KJ767724.1, FJ608392.1, EU982088.1 and

KJ136106.1 (A. ochraceus), EF661346.1 (A. steynii) and L49386.1 (A.

parasiticus). The in silico specificity of the primer pairs was checked through

Basic Local Alignment Search Tool (BLAST) (35) within the GenBank database.

Primer sequences are shown in Table 1.

Table 1. Sequences 5’⇓3’ of the two primer pairs and probes designed for Real Time

PCR

Aspergillus westerdijkiae
first pair (beta tubuline)

Awest1F TCTACACGTTGGCATTG
Awest1R AACAAGTATCTAGGATTGAG
Awest1probe 6FAM - TGGGCTATCTGAGATCATCTTTG

– BHQ1
Aspergillus westerdijkiae
second pair (beta
tubuline)

Awest2F AGAGATTGATTGTCTGATGGG
Awest2R TTGTACGGGGCGTTTCG
Awest2probe 6FAM - TCCTCCGACCTTCAGCTGGAGC –

BHQ1

Real time PCR for the identification of A. westerdijkiae

Two microliters of DNA isolated from fungal cultures (1 µg/ml) were used for

the PCR assays, in a total volume of 20 μl, containing 6,2 μl of RNase free water,

10  μl  of  Promega  Go  Taq  PCR Master  mix  (Applied  Biosystems®),  0.4  μl  of

forward (10 μM) and 0.4 μl of reverse primer (10 μM), and 0.6 μl of probe (10

μM). For the first primer pair the thermal cycling was optimised as follows: the

initial denaturation at 95 °C for 2 min was followed by 40 cycles (95 °C, 15 sec;

52 °C, 20 sec; 65 °C, 30 sec). For the second primer pair the initial denaturation

at 95 °C for 2 min was followed by 40 cycles (95 °C, 15 sec; 55 °C, 20 sec; 65

°C, 30 sec). DNA samples were loaded in triplicate on the plate. In each working

session, a NTC was also included.

Both primer pairs were tested on A. westerdijkiae strain CBS 112803 purchased

from CBS KNAW (Utrecht, The Netherlands), A. westerdijkiae FUN LO SPV4

of Biobanking of Veterinary Resource from Istituto Zooprofilattico Sperimentale
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della Lombardia e dell’Emilia Romagna (IZSLER, Brescia, Italy) and on 4 A.

westerdjkiae strains isolated from salamis collected from 2011 to 2015. Aspecific

annealing was evaluated on A. ochraceus CBS 108.08, A. steynii CBS 112812, P.

nordicum CBS 110769 and P. verrucosum CBS 115508, purchased from CBS

KNAW; A. fumigatus FUN LO SPV2, A. terreus FUN LO SPV3, A. candidus

FUN LO SPV1, P. nalgiovense FUN LO SPV7, Penicillium solitum, Penicillium

roquefortii FUN LO SPV8, Penicillium brevicompactum FUN LO SPV6, from

IZSLER’s collection; A. braziliensis ATCC 16414 and A. niger ATCC 6275.

RESULTS

Prevalence of ochratoxin A in salami

Out of 133 salamis, 13 (9.8%) resulted positive to ochratoxin A. In Lombardy

region 12/68 salamis (17,6%) were found positive, while in Emilia Romagna

region only 1 out of 65 salamis tested (1,54%) was positive. In two cases high

concentration of OTA were registered (691 μg/kg and 55,86 μg/kg). The

concentration of OTA in positive samples is shown in Table 2.

Mycobiota of salami surface

From 133 salamis,  a  total  of  247 fungal  strains  were  isolated  and identified  at

species level, in order to investigate the source of OTA. The genus Penicillium

was the predominant one (185 strains), followed by the genus Aspergillus (33

strains). The remaining isolates belonged to species of Mucor (22 strains),

Cladosporium (4 strains), Geotrichum (1 strain), Eurotium (1  strain)  and

Fusarium (1 strain). One hundred and eighty-five Penicillium colonies have been

identified through culture-dependent method. Most of isolates (31.9%) were P.

nalgiovense, followed by P. solitum (15.7%) and P. chrysogenum (12.4%). Other

isolates were identified as P. commune (7%), P. corylophilum (6.5%), P.

citreonigrum (4.9%) and P. crustosum (4.3%) (Fig. 2). For 7 Penicillium isolates

it was not possible to identify the species using the dychotomic key. None of the
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isolates was classified as P. nordicum. Regarding the 33 Aspergillus isolates, 30

(90.9%) were identified as A. candidus and 3 (9.1%) as the A. westerdijkiae (Fig.

3).

Table 2. Ochratoxin A concentration, molecular results about the presence/absence of

otanpsPN gene and P. nordicum-specific otapksPN gene sequence in salami casings and

viable fungal species isolated from 19 salamis.

OTA

(µg/kg)

otanpsPN

gene

P. nordicum-

specific otapksPN

gene sequence

Isolated fungal species

691 + - A. westerdijkiae, P. chrysogenum

7,74 + + A. westerdijkiae, P. crustosum

1,85 + + Penicillium spp.

1,14 + + A. candidus, P. chrysogenum

1,67 + + P. solitum

2,95 - - A. candidus, P. nalgiovense

1,32 + + P. solitum

- + - Penicillium spp., Mucor spp.

12,48 + + A. candidus, P. solitum

1,47 + + P. crustosum, P. nalgiovense, Penicillium

spp.

9,40 + + A. westerdijkiae

1,76 + + A. candidus, P. nalgiovense, P. echinulatum

5,67 - - A. candidus, Mucor spp.

- + - A. candidus, P. rugulosum

- - - P. chrysogenum, Penicillium spp.

- + + Micelia sterilia

- - - -

- - - A. candidus, P. cavernicola, P.

chrysogenum, Penicillium spp.

- + + P. nalgiovense, P. chrysogenum, Mucor spp.
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Figure 2. Distribution of Penicillium species. Percentage relative to the occurrence of

each Penicillium species is shown.

Figure 3. A. westerdijkiae grown on CYA (A), MEA (B) and DG18 (C) at 25±1 °C for 7

days. A. westerdijkiae on CYA was also incubated at 37 ± 1 °C for 7 days and no growth

was observed (D). Conidial heads as visualized at stereomicroscope (E) and after

lactophenol-cotton blue staining at optical microscope (total magnification 400X) (F).
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PCR reactions for the detection of OTA-producing strains, ochratoxigenic P.

nordicum and A. westerdijkiae from fungal isolates

Since only 3 (1.21%) strains of A. westerdijkiae potentially able to produce OTA

were isolated, while 13 salamis (9.8%) presented OTA above the permitted

concentration,  a  real  time  PCR-based  approach  was  employed  to  verify  the

presence of DNA belonging to OTA-producing strains within 113 Penicillium and

Aspergillus fungal cultures. Moreover, a real time PCR was also used to detect

the presence of DNA of ochratoxigenic P. nordicum strains amongst 39

Penicillium strains, considering at least one strain per species and including also

the 7 strains identified as Penicillium spp.

None of the DNA samples purified from the fungi isolated from the salami and

tested in real time PCR confirmed the presence neither of the gene otanpsPN, nor

of the species P. nordicum. The 3 strains microbiologically identified as A.

westerdijkiae were confirmed molecularly through specific end-point PCR.

However, when grown in the optimal conditions for the production of OTA, 2 out

of these 3 strains were unable to produce the toxin, thus confirming the result of

the real time PCR assay, while the remaining strain was impossible to test. Under

adequate conditions for OTA synthesis, only the reference strains P. nordicum

CBS 110769, P. verrucosum CBS 115508 and A. ochraceus CBS108.08 produced

OTA, a positivity confirmed also in real time PCR for the presence of otanpsPN

gene.

PCR reactions for the detection of OTA-producing strains and P. nordicum from

salami casings

Since none of the isolated strains resulted to be the source of OTA in salamis, 19

salami casings, 12 of which belonging to salamis positive to OTA presence, were

tested in real time PCR for the presence of OTA-producing strains and toxigenic

P. nordicum strains.  For  the  target otanpsPN gene, 14 DNA samples purified

directly from the salami casings resulted positive, while for the target otapksPN
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fragment specific for OTA-producing P. nordicum strains, 11 DNA samples out

of 19 were positive (Tab.2).

PCR reactions for Aspergillus westerdijkiae

To test the specificity of the two primer pairs designed for the detection of

Aspergillus westerdijkiae,  6 A. westerdijkiae strains, including the three strains

isolated in this study, as well as 13 strains belonging to other Aspergillus and

Penicillium species frequently isolated in food have been subjected to PCR. All

strains of A. westerdijkiae, A.ochraceus and P. nordicum gave a positive

amplification (Table 3). All other analysed food related fungi gave negative

results.
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Table 3. Positivity shown as Cycle Threshold (CT) to the two Real Time PCR reactions

performed using the two primer pairs designed for A. westerdijkiae. The  mean  of

triplicates of three independent experiments and their standard deviations are shown. The

fungal DNA tested belonged to reference strains obtained from CBS-KNAW, IZSLER

and ATCC collections or isolated during this project (*) or during a previous project (**).

Fungal species CT of Real Time PCR

by  using  the first

primer pair

CT of Real Time PCR

by using the second

primer pair
A. westerdijkiae CBS 112803 33.58±0.16 29.99±0.01

A. westerdijkiae PV1* 33.62±0.44 32.9±0.75

A.westerdijkiae PV2* 33.42±0.72 34±0.19

A.westerdijkiae MB* 35.48 ± 0.12 35.02±0.20

A.westerdijkiae FUN LO SPV4 28.5±0.06 28.13 ±0.32

A.westerdijkiae ** 31.98±0.15 32.3±0.01

A. ochraceus CBS108.08 34.72±0.35 33.17±0.09

A. steynii CBS112812 - -

P. verrucosum CBS 115508 - -

P. nordicum CBS 110769 36.48±1.76 34.3±2.52

A. fumigatus FUN LO SPV2 - -

A. terreus FUN LO SPV3 - -

A. candidus FUN LO SPV1 - -

A. niger ATCC 16414 - -

A. braziliensis ATCC 6275 - -

P. roquefortii FUN LO SPV8 - -

P. brevicompactum FUN LO

SPV6

- -

P. solitum** - -

P. nalgiovense FUN LO SPV7 - -
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DISCUSSION

The risk of OTA ingestion resulting from the consumption of salami is frequently

underestimated, but in this work 9.8% of the salamis analysed were found

contaminated with this toxin at levels higher than the limit of 1 µg/kg suggested

by Italian regulation. In 3 salamis (2.25%) OTA concentration was even higher

than 10 µg/kg, with a sample presenting a concentration 691 times over the limit.

These data are comparable to what observed by other Authors: Pietri and

colleagues (2006) (36) found OTA above the limit in 17% of salamis produced in

Northern Italy, and in the 7% of cases OTA concentration was higher than 10

µg/kg. Armorini and colleagues (2016) (37) found 5 of a pool of 50 (10%) salamis

produced in Veneto region of Northern Italy contaminated by OTA, and one

sample where OTA had reached 103.69 µg/kg.

Even higher percentages of OTA contamination have been observed by several

other Authors: Markov and colleagues (2013) (38), during a monitoring study on

Croatian salamis, found 54% of contaminated samples; Monaci and colleagues

(2005) (39) reported OTA in 46.7% of salamis produced in Southern Italy. The

high prevalence of OTA contamination registered by these studies could be

explained by the climate conditions occurring in the areas investigated. In the

present study, despite the high percentage of contaminated salamis, only 3 strains

out of 247 identified through culture-dependent method confirmed to be A.

westerdijkiae via PCR, a species potentially ochratoxigenic. A. westerdijkiae has

been recently recognized as a major contaminant of meat products (40), even

though it is more known as major risk agent in carbon-rich food matrices of plant

origin (14, 41). This species, together with A. steynii, derives from a taxonomical

revision made within the A. ochraceus group, and it is acknowledged as a relevant

OTA-producing species (42). Scaramuzza and collaborators (2015) (43) found it

present in three Italian meat manufacturing plants, while Iacumin and co-Authors

(2011) (10) reported  in  their  study  that  34%  of  casings  of  Italian  sausages

displaying high levels of OTA were contaminated with A. ochraceus.
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In this monitoring study, performed on artisanal salami produced in Lombardy

and Emilia Romagna regions of Northern Italy, other fungi belonging to the

genera Aspergillus and Penicillium were isolated. Thirty isolates were identified

as A. candidus, a species believed unable to produce ochratoxin A, however the

most frequently isolated fungi were P. nalgiovense, P. solitum, P. chrysogenum

and P. commune.  These species are usually considered safe and are not able to

produce ochratoxin A. P. nalgiovense and P. chrysogenum are even admitted by

Italian legislation as fungal starters, and are commonly used in large-scale

production. P. solitum and P. commune can produce metabolites which effects are

not well known, in particular P. commune produces cyclopiazonic acid, an

inhibitor of Ca2+ ATPase in skeletal muscle and in the sarcoplasmic reticulum

(44).

Data about mycoflora of salami obtained in this work are comparable to what

observed by other Authors, and the most frequently isolated fungal species from

salami  constitute  the  typical  flora  of  this  food  around  the  world.  In  a  study

conducted in Greece (4) Penicillium was the predominant fungal genus in

sausages, and the species most frequently isolated were P. solitum, P.

nalgiovense, P. commune and P.olsonii. Also in other two studies, led respectively

in Spain (45) and in Argentina (46), P. nalgiovense, P. chrysogenum, P. olsonii,

P. solitum and P. griseofulvum resulted the most isolated species. Penicillium

results the predominant genus also in dry-cured meat produced in Italy, with the

species P. nalgiovense, P. chrysogenum, P. olsonii, P. solitum and P. nordicum

(47). The lower occurrence of Aspergillus respect to Penicillium in all studies is

due to the temperature of salami maturing rooms, which ranges 10-22 °C, optimal

for the growth of Penicillium (28).

In order to support the results of the microbiology tests, and to further investigate

the reason of the difference between the high prevalence of OTA in the salamis

analysed in this study and the low occurrence of isolated OTA-producing species,

a  molecular  assay  has  been  set  up  using  real  time  PCR.  All  the  field  isolates
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analysed resulted negative for the otanpsPN gene, and all the Penicillium species

were recognized as not P. nordicum.  This outcome is  in line to what observed

using the culture dependent method. Interestingly, the 3 A. westerdijkiae strains

resulted also unable to amplify the otanpsPN gene. The lacking of this gene,

common to all OTA-producing strains, was also confirmed by the inability of

these fungal cultures to produce OTA after 30 days of incubation at 25 °C. This

is consistent with the fact that not all strains within a recognised potential OTA-

producing species are able to produce OTA. Few data about the percentage of

OTA-producing strains in A. westerdijkiae species  are  available,  while  for  the

most studied ochratoxigenic species contaminating grapes, A. carbonarius, these

data are well known (48). In a study conducted by Gil-Serna and colleagues

(2011) (49), 6 out of 8 A. westerdijkiae strains (75%) isolated from different foods

and their close environment resulted able to produce OTA if grown on CYA

medium. However, the low number of strains considered by both their and our

study does not allow to throw any conclusion regarding the occurring prevalence

of OTA-producing strains within this species. A more complete study should

include a higher number of colonies isolated from the same salami and sharing

the same morphologic characteristics, which should be tested for the presence of

the otanpsPN gene, in order to define the variability occurring among strains

belonging to the same species and growing simultaneously.

In our study the classical microbiological method coupled to the molecular assay

used as confirmation tool failed to identify the origin of the OTA contamination.

This could be due to the fact that the mycoflora of the early maturation stage, that

colonizes the salami when the aw is still high, is different from the flora present at

the end of the maturation, and some of the strains responsible for the production

of OTA might be no longer viable. To verify the presence of OTA-producing

strains  in  any stage  of  salami  maturation,  the  same real  time PCR reaction  for

otanpsPN gene was conducted by testing total genomic DNA purified directly

from the casing of 19 salamis, 12 of which found positive to OTA. Ten salamis
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in  which  OTA was  quantified  above  1  μg/kg of  meat  had  their  salami  casings

positive to otanpsPN gene target. On the contrary, in two salamis positive for

OTA, neither the otapksPN gene target nor its fragment specific for OTA-

producing P. nordicum was amplified (Tab. 2). For these 2 cases either the

molecular test failed at some level, or the toxin could come from the carry-over

in swine tissues used to prepare salami, originating from the contaminated

feeding. Among the 7 salami casings negative to OTA presence, 4 resulted

positive to the amplification of otanpsPN. This discrepancy could be easily due

to the fact that in these samples there have not been the conditions of temperature,

aw, pH and nutrients necessary for the OTA synthesis (Tab. 2). Moreover, in our

study, no strain of P. nordicum was isolated, but 11 salami casings were positive

to the amplification of the otapksPN gene fragment specific for this species. Since

P. nordicum prefers high water activity, it belongs to the flora of early maturation

stages and is probably not viable and isolable in late maturation stages. Finally,

one of the salami casing positive for the two targets, but negative for OTA, was

colonized only by one fungus, which did not show reproductive structures and

was therefore impossible to classify (Tab. 2).

In the 3 salamis where the OTA-producing species A. westerdijkiae were isolated,

high concentrations of OTA were measured (691 μg/kg, 9.4 μg/kg and 7.74

μg/kg), but none of the isolated strains were able to produce the toxin after the

incubation for 30 days at 25 °C. Moreover, despite these isolates proved to lack

the otanpsPN gene, all the DNA purified from the three casings were positive to

this gene. Finally, although in two cases the DNA of P. nordicum was found, the

salami with the highest OTA concentration did not display its presence (Tab. 2):

this leads to the conclusion that most probably more than one strain of A.

westerdijkiae were simultaneously present at some maturation stage, and that the

one that was not isolated was responsible for the production of the toxin. Given

the excess of toxin measured by LC-MS, the chances that the contamination was

due to carry-over in swine tissues are in fact negligible. Moreover, because no
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strains of P. nordicum were  isolated  from  the  environment  of  whole  salami

factory (data not shown), it is unlikely that this species was the primal source of

contamination.

In  this  work,  two  primer  pairs  for  the  identification  through  real  time  PCR of

Aspergillus westerdijkiae, the only potential OTA-producing species isolated in

this monitoring, were designed. All A. westerdijkiae strains tested resulted

positive for both the primer pairs, but both the primer pairs do not resulted

species-specific, since they also work for the only strain of Aspergillus ochraceus

and Penicillium nordicum tested. While aspecific amplification of A. ochraceus

DNA can be caused by the fact the two species are closely related, as proven

through partial beta tubulin sequencing by Frisvad and colleague (2004) (29),

aspecific amplification obtained with P. nordicum DNA was unexpected. Hence,

both the primer pairs could be exploited for the rapid and early detection of the

three species A.westerdijkiae, A. ochraceus and P. nordicum, which are

recognized by literature the main OTA-producing species contaminating salami

(6, 9 - 11, 43).  Further tests are required to verify if these primer pairs are able to

recognise other strains of A.ochraceus and P. nordicum different from the one

tested. Only the knowledge of the whole genome of A. westerdijkiae and all its

closely related species will allow the design of species-specific primer pairs in

other regions of DNA.

CONCLUSION

In this study, about 10% of the tested salamis resulted contaminated by ochratoxin

A. None of the 247 strains isolated was ochratoxigenic, and only 3 belonged to

the ochratoxigenic species Aspergillus westerdijkiae. These data suggest that the

identification of viable strains at the end of maturation is not always predictive

for the presence of OTA, since the information about the mycoflora present at

early stages could be lost. Moreover, the isolation of the strains responsible for

the production of toxins previously identified in a salami does not represent an
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easy task, and often the microbiological search is not able to recognize the

presence of these strains within the multitude of different fungal strains that

colonize salamis at the end of the maturation. Therefore, not only the culture-

dependent identification, but also the molecular tools performed on the fungal

DNA as confirmation, do not result exhaustive indicators of the presence of OTA-

producing strains.

On the other hand, this study highlighted how the use of molecular tools applied

directly on the contaminated matrix, and thus by-passing the standard cultivation

methods, might be more predictive of the presence of OTA, even with some

limitations. In fact, if the molecular tool applied on the DNA purified from

salamis recognised 14 salamis as presumably contaminated by OTA when in 10

salamis OTA was effectively detected, the culture-dependent identification has

highlighted only 3 salamis as likely contaminated by OTA.

Although the amplification of predictive targets in salami casings does not allow

to recognize the risk in salami in which OTA comes from contaminated meat, it

helps foreseeing the production of the toxin in salami colonized by OTA-

producing strains, and gives indications about the risk following the precautionary

principle. Despite this method looks promising for predicting the OTA risk in

salamis, it is worth to highlight the importance of using high yield purified DNA

for  the  amplification  of  the  selected  targets.  Natural  casings  are  used  for  the

manufacturing of traditional Italian salami, and their main component collagen

can inhibit DNA amplification, as Kim and colleagues (2000) (50) reported for

the amplification of bacterial DNA from sausage casings made with pig intestine.

In our study two commercial methods for DNA purification from both the casings

and the suspensions of spores obtained through the washing of casings were

tested, in order to select the method allowing the highest purity (data not shown).

Given the prevalence of OTA found in traditional salami, further wider

monitoring studies, that include small-scale salami production plants as well,

implemented with data about the presence of fungal spores in air and physical
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parameters, like temperature and humidity, should be carried out. The correct

identification of fungal species and strains colonizing salami achieved through

rapid molecular methods is a promising tool for the rapid quality and safety

assessment of food products and for HACCP (Hazard Analysis Critical Control

Point) analysis, in order to avoid the exposition of salami colonized by OTA-

producing fungi to favourable conditions for the synthesis of the toxin.

Even if the amplification of predictive targets in salami casings does not allow to

recognize  the  risk  in  salami  in  which  OTA comes  from contaminated  meat,  it

allows to foresee the toxin production in salami colonized by OTA-producing

strains and gives an indication about the risk following the precautionary

principle. Despite this method is promising for predicting the OTA risk in salamis,

it  is  crucial  to  use  purified  DNA  for  the  amplification  of  the  selected  targets.

Natural casings are used for the manufacturing of traditional Italian salami and

their main component, the collagen, can inhibit DNA amplification as Kim and

colleagues (2000) reported for the amplification of bacterial DNA from sausage

casings made with pig intestine. In fact, in our study two commercial methods for

DNA purification from both the casings and the suspensions of spores obtained

through the washing of casings were tested, in order to choose the method, which

allow the highest purity (data not shown).
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ABSTRACT

The demand for hempseeds (Cannabis sativa L.) has recently increased, due to

nutritional properties of this food, rich in protein, fibres, Omega 3 and 6 fatty

acids. Although the hemp cultivation in Italy has been reintroduced, the Italian

production does not cover the whole request of the market thus requiring the

importation of hempseeds from foreign countries. Fungi can grow on hempseeds

during growth in field, transport and preservation, potentially leading the

production of mycotoxins, entering in the food chain and representing a crucial

risk for human health

Aim  of  this  work  was  to  exploit  DNA  RAPD  markers  to  set  up  a  method  to

recognize and cluster some Italian ecotypes of hemp from hempseeds grown in

China and Canada, which are among the world-leading hempseeds producer.

Twenty decamers were tested for the amplification of the 10 hemp ecotypes. The

Random Amplified Polymorphic DNA (RAPD) technique by using selected 6

primers resulted an inexpensive and useful approach for germoplams

identification at ecotype level. Data on mycotoxins show a low degree of

contamination, both for Italian and Chinese samples. More deep investigation on

larger samples is required to define the risk correlated to this food product.

Finally, the combined DNA analysis for traceability and mycotoxins detection is

a promising tool for the risk assessment of hemp-related products.

INTRODUCTION

Hemp (Cannabis sativa L.) is a source of fibers and cellulose, and its seeds are

considered a heath protecting food. Hempseed typically contains over 30% of oil

and about 20-25% of proteins, with a considerable amount of dietary fiber,

minerals like iron and zinc, and vitamin E and B1 (1). Hempseeds can be pressed

to make oil highly stable to oxidation and particularly rich in linoleic acid (ω-6)

and  α-linolenic  acid  (ω -3) (2). Hempseed oil has a high unsaturated/saturated

fatty acid ratio, and a 3:1 ratio of omega-6 to omega-3 essential fatty acids, which
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matches the balance required by human body, resulting useful to produce

nutraceutical products (3). Recent researches performed on hemp proteins showed

that specific fractions obtained following enzymatic digestion and ultrafiltration

show significant antihypertensive properties. In fact, hemp protein hydrolisate

after digestion by the sequential action of pepsin and pancreatin (to mimic human

gastrointestinal digestion), separated into peptide fraction by ultrafiltration,

showed in vitro inhibition of the activities of angiotensin I-converting enzyme

(ACE) and renin, the two main enzymes involved in hypertension (4). Moreover,

following a consecutive fractionation of this hydrolisate by reverse-phase HPLC

followed by tandem mass spectrometry analysis of active peaks, 23 short-chain

peptides were identified and characterized. Among these, two peptides (Trp-Val-

Tur-Tyr and Pro-Ser-Leu-Ala) showed a significant anthypertensive capacity (5).

Recenlty, the production of the hemp oil is a key strategy to obtain alfa linolenic

fatty acid-rich food products, particularly when cold pressed. This process allow

to obtain a by-product, called hemp “cake”, which can be milled to produce flour,

starting base for products like pasta, cookies and energy bars. The hemp flour

composition depends on the variety and planting locality, and it differs according

to the defatting process (6). High levels of proteins, particularly edestin and

albumin, which are easily digested, characterize the hemp flour, with high

amounts of essential amino acids (7).

The hemp cultivation started in Asia in the Neolithic period and spread to Middle

East and Europe, where some countries like Italy, Russia, France, Poland, Spain

and United Kingdom developed a great tradition (8, 9). Hemp production has

declined in all Europe in the 20th century because of the spread of cheaper

synthetic fibers, but during the second half of the ‘90s the European Community

started to promote crops with low environmental impact, alternatives to crops

produced in excess, and hemp cultivars with a low content of

tetrahydrocannabinol (THC) were reintroduced. Currently, more than 30

Countries worldwide grow hemp, and, according to FAOSTAT, France has been
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the world-leading hemp producer in 2014, followed by China (10). In  Italy

hempseeds are grown on the 0,002% of its agricultural area (11). Despite the weak

spreading of hemp cultivation, the production has been focused on traditional

Italian cultivars like Carmagnola, Carmagnola Selezionata (CS) and Fibranova.

These are high-quality cultivars that had made Italy the second hemp producer in

the world from the 19th century until the beginning of the 20th century.

The traceability of hempseeds, like other crops, has become essential to guarantee

consumers about the geographical origin of a product, as well as to comply with

safety by containing the risks. Contamination of cereal commodities with

mycotoxins during long-lasting storage and transportation represents a significant

hazard for consumer health: changes in temperature and relative humidity, which

may occur during transportation, make these commodities likely to be damaged

by molds growth, and potentially by mycotoxins accumulation, even if the more

significant quantity of mycotoxins is generally formed during the pre-harvest

period (12, 13). Differences  among  the  samples  can  be  also  correlated  to  the

cultivar as well as to environmental or agronomical parameters (pre-cropping).

Within the most frequently isolated mycotoxins in post-harvest phases, aflatoxins

(aflatoxin B1, B2, G1, G2) and ochratoxin A (OTA) are particularly toxic.

Aflatoxin B1 is the most potent chemical liver carcinogens known, and it is also

immunosuppressive, teratogenic and mutagenic (14). Kidney has been identified

as target organ of OTA, but in sufficiently high concentrations also liver can be

damaged by this mycotoxin (15). Ochratoxin is carcinogenic in rats and mice, and

it is suspected as possibly carcinogenic in humans too (16). The maximum level

of aflatoxins and ochratoxin A permitted in hemp oil and hemp flour is set

respectively by European Commission (EC) Regulation No. 165/2010 (17) and

European Commission (EC) Regulation No.1881/2006 (18).

To prevent mycotoxins from entering the food chain, controlled storage

conditions and safety controls aimed at monitoring their levels are required.

Rapid, inexpensive and efficient analytical methods for crops traceability are
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needed to protect products belonging to approved cultivars, which should be free

from diseases, human pathogens, natural toxins and chemicals.

The genetic diversity between populations at molecular level is often evaluated in

crops using various PCR-based techniques. The Random Amplified Polymorphic

DNA (RAPD) technique has been successfully used in crop genetic analysis, to

assess the phylogenetic diversity among 40 rice accessions from Africa (19) and

to estimate the genetic diversity in a set of land rices in comparison to a

representative sample of improved rice varieties (20). Since  RAPD  analysis

performs on both coding and non-coding regions in the genome, RAPD has been

chosen as method to be tested for the classification of different genotypes within

the same species (21, 22). The RAPD is a simple, fast and inexpensive method,

and it does not require the knowledge of genomic sequences. Since it can be

considered as a primary low-budget approach to determine the geographical

origin of crops, RAPD technique was used in this work in order to cluster some

ecotypes of hempseed and particularly to discriminate Italian high-quality

ecotypes intended for human consumption from foreign products, often intended

for other purposes. Finally, we aimed to correlate the geographical origin to the

mycotoxin content, trying to identify if this double approach can be used to

estimate the safety as well as the quality of the hemps seeds.

MATERIAL AND METHODS

Samples

Different ecotypes of hempseeds coming from Canada, China and different parts

of Italy (Alessandria, Asti, Carmagnola, Vezza d’Alba and Verona) were

considered in this study. Seeds were first washed in NaOCl 2% for 2 minutes and

treated with denatured alcohol to eliminate the microbial contamination on their

surface.

DNA extraction
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For each variety, 5 g of seeds were finely ground in liquid nitrogen with mortar

and pestle. Total genomic DNA was then extracted and purified from 1 g of

powdered seeds, using a commercial kit (NucleoSpin Plant II, Macherey-Nagel,

Switzerland). DNA concentration was determined using Qubit fluorometer

(Invitrogen, Thermo Fisher, USA), and only samples displaying 15 to 50 ng/µl

were considered.

RAPD analysis

Preliminary RAPD experiments were performed to standardize DNA polymerase

and Mg2+ concentrations. A set of 20 random decamer oligonucleotides (Table 1)

(Invitrogen) was tested on 10 hemp ecotypes having different origins (5 Italian, 4

Chinese and 1 Canadian). For each primer, the reaction mixture was composed of

30 ng of DNA template, 1 U of DNA polymerase (Biotools), 2.5 mM MgCl2, 0.2

mM dNTPs (Biotools), 1X Buffer (Biotools), 0,6 µM primer, in a final volume of

20 µl. The amplification was carried out in an iCycler thermal cycler (BioRad,

USA), programmed to perform a first denaturing step of 3 min at 94 °C, 35 cycles

of 1 min at 94 °C, 1 min at 37 °C, 1 min at 72°C, and terminating with 7 min at

72 °C.

The RAPD amplicons were separated on agarose gels 2.5% in TBE buffer 1X (8.8

mM Tris-HCl, 8.8 mM boric acid, and 0.2 mM EDTA) for 200 min at 80 V. The

gels were stained with Atlas ClearSight (Bioatlas) and photographed under

ultraviolet light using the Alpha Imager HP detector (Alpha Innotech).
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Table 1. Sequences of the arbitrarily selected random primers used for RAPD-PCR

reactions.

Primer Sequences 5’→3’ Primer Sequences 5’→3’

A10 GTGATCGCAG C4 GATGACCGCC

A11 CAATCGCCGT D2 GGACCCAACC

A12 TCGGCGATAG D5 TGAGCGGACA

A14 TCTGTGCTGG E12 TTATCGCCCC

A15 TTCCGAACCC E18 GGACTGCAGA

B1 GTTTCGCTCC F3 CCTGATACC

B2 TGATCCCTGG F13 GGCTGCAGAA

B6 TGCTCTGCCC J20 AAGCGGCCTC

B12 CCTTGACGCA M11 GTCCACTGTG

B20 GGACCCTTAC U2 CAATCGCCGT

Data analysis

RAPD amplicons were scored in a data matrix for each primer and genotype,

exploiting a previous approach used for the analisys of other matrices (23),

assigning “1” value in case of presence of a visible band (amplicon) and “0” value

when absent. Only clear major bands were scored.

A classification analysis was carried out using Dice’s (24) index of similarity for

all pair-wise comparisons, based on the proportion of shared bands produced by

each primer. Hierarchical cluster analysis of the molecular data sets was

performed using the statistical software R (R Core Team) (25). The hierarchical

cluster analysis uses a set of dissimilarities for the objects to be clustered. Initially,

each object is assigned to its own cluster and then the algorithm proceeds

iteratively, at each stage joining the two most similar clusters, continuing until

there is just a single cluster. At each stage distances between clusters are

recomputed by the Lance–Williams dissimilarity update formula.
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Aflatoxin B1, B2, G1 and G2 determination in hemp samples

- Sample preparation. Ground sample (2 g) was weighted in a 50-mL centrifuge

tube and then blended in a high-speed blender (Ultraturrax T18 Basic; IKA,

Stauffen, Germany) with 8 ml of methanol/water (60:40 v/v) for 3 min. After

centrifugation (4000 rpm, 20 min), 4 ml of the supernatant were diluted with 8 ml

of PBS buffer (10 mM, pH 7.4), until the content of methanol was lower than 20%

(v/v). This solution was filtered through membrane filter (0.45µm) and applied

onto the immunoaffinity column (AflaStar, RomerLabs, Tulln, Austria). After

that the analytes were eluted with 2 ml of methanol. The solvent was dried down

under a gentle stream of nitrogen and the residue was derivatized as follow:

200µL of hexane were added to the vial, mixed by vortex for few seconds and

then 50µL of trifluoroacetic acid was added. The sample was mixed again for 30s.

The reaction time was 5 min. Finally, 500µL of water/acetonitrile (90:10 v/v) was

added, mixed and leaved for about 10 min to be separated well the layers. The

aqueous layer was analysed by HPLC/FLD.

- HPLC/FLD analysis. HPLC-FLD analysis was performed by a 2695 Alliance

separation system (Waters Co., Milford, MA, USA) equipped with a WatersTM

474 Scanning Fluorescence Detector. Chromatographic conditions were the

following: the column  was a Waters C18 XTerra (250 mm × 2.1 mm, 5 μm), The

flow rate was 0.250 mL/min; the column temperature was set at 30°C; the

injection volume was 20 μL; isocratic elution was performed using bidistilled

water (eluent A) and methanol (eluent B) in proportion: 70:30 for 35 min. The

fluorescence detection was obtained with the following conditions:  λex = 365 nm,

λex = 425 nm, gain = ×100, attenuation = 32, band width: 40 nm. For each sample,

the entire procedure was performed in duplicate (n = 2). Calibration curves were

performed in the calibration range 0.25-2 μg/kg.

Ochratoxin A determination in hemp samples
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- Sample preparation. Ground sample (1 g) was weighted in a 50-ml centrifuge

tube and extracted with a solution of 10 ml chloroform acidified with 75 µl of

85% o-phosphoric acid solution, by homogenising with an Ultraturrax

(Ultraturrax T18; IKA-WERKE, Stauffen, Germany) for 2 min. After filtration

on a paper filter, the whole volume was collected in a 15-ml centrifuge tube. Then,

ochratoxin A was extracted by washing the organic phase with 1 ml of 0.2 M Tris-

HCl buffer (pH 8.5). To expedite emulsions breakage and the separation of

aqueous and organic phases, samples were centrifuged at 4000 rpm for 5 min.

Finally, 450 µl of the upper aqueous phase were transferred in a 2-ml septum vial.

To avoid the growth of OTA-degrading microorganisms in the aqueous phase, a

volume of CH3CN was added to achieve a 0.2 M Tris-HCl: CH3CN (90:10, v/v)

ratio. An aliquot (10 μl) of this solution was analysed by HPLC/FLD.

- HPLC/FLD analysis. LC-FLD  analysis  was  performed  by  a  2695  Alliance

separation system (Waters Co., Milford, MA, USA) equipped with a WatersTM

474 Scanning Fluorescence Detector, under isocratic conditions at 30°C, with an

aqueous NH3/NH4Cl (20 mM, pH 9.8):CH3CN (85:15) mobile phase; the column

was a C18 XTerra (250 mm × 2.1 mm, 5 μm), the flow rate was 0.250 ml/min and

the injected volume was 10 μl. The fluorescence detection was obtained with the

following conditions:  λex = 380 nm, λem = 440 nm, gain = ×1, EUFS = 100, band

whidt: 40 nm. For each sample, the entire procedure was performed in duplicate

(n = 2). Calibration curves in 0.2 M Tris–HCl: CH3CN (90:10, v/v) were used

(calibration range 0.5-7 μg/kg).

RESULTS

Six primers to cluster hempseeds depending on their geographical origin

The aim of this work was to verify whether a simple molecular tool like RAPD

could be applied for the easy identification of hempseed samples cultivated in

different countries (Italy, China and Canada).
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Out of the 20 RAPD primers used for the amplification of the 10 hemp ecotypes,

5 primers (A14, B1, E12, E18 and U2) did not give any band for almost all

ecotypes. Among the other 15 primers, 6 primers (A10, A11, B20, C4, F3 and

J20) produced reproducible fingerprints, characterized by the presence of

polymorphic amplicons in some ecotypes. A total of 48 distinct bands were

obtained, 33 of which (68.75%) were polymorphic.

By studying all of the 48 RAPD products, a hierarchical clustering with a good

separation was obtained (Fig. 1); the 10 ecotypes clustered into two major groups,

with Dice’s similarity coefficient ranging from 0.30 to 0.91. The Chinese samples

were clearly separated from samples cultivated in Italy and Canada, with the

Italian ecotypes clustering together. The Canadian ecotype shared the same root

with the Italian samples.

The most similar clustering obtained by using less than 6 primers was obtained

considering 38 bands, corresponding to the amplification of 5 selected RAPD

primers (A11, B20, C4, F3 and J20). The primer A10 appeared to not add

information when used in combination with the other five, but it is essential when

a lower number of primer were used.

Comparisons between ecotypes were calculated considering each combination of

2 primers. Nine pairs of primers out of fifteen possible combinations containing

either primer A10 or A11 resulted useful in separating each ecotype. Amongst

these 9 combinations, 5 combinations (A10 and B20, A11 and B20, A10 and C4,

A10 and F3, A11 and F3) allowed the distinction between Chinese and Italian

ecotypes (Figure 2). On the contrary, none of the primer, when used alone, was

capable to form separate clusters, even if the primers A10 and A11 resulted able

to separate each ecotype from the others. A very clear and distinguishable cluster

for ecotypes/samples obtained from China is recoverable (Fig. 2).
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Figure 1. Hierarchical clustering obtained from the 48 selected polymorphic RAPD-

bands generated by primers A10, A11, B20, C4, F3 and J20; the height is derived from

the distance matrix values. The geographical origin is shown for each ecotype.
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Figure 2. Principal Component Analysis (PCA) plots obtained by using four primers

pairs, which allow the clustering of the 4 Chinese ecotypes from the 5 Italian and the 1

Canadian ecotypes. From the top left to the bottom right: A10 and B20; A10 and C4; A10

and F3; A11 and F3.

Mycotoxin content

Regarding the mycotoxin content, none of the Italian samples had quantifiable

levels of either aflatoxin B1 or aflatoxin G1 (Table 2). In one sample, the aflatoxin

G1 concentration resided below the limits of quantification (LOQ). None of the

Italian sample resulted contaminated by ochratoxin A.
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Concerning hemp samples from China, low amount of AFB1 and OTA were

found in all the considered samples, with the exception of de-hulled seeds. De-

hulling, in fact, is widely considered as a mitigation procedure for seeds and

grains (26). Mycotoxins, on the other side, were not found in the Canadian hemp

sample (Table 2).

Table 2. Aflatoxins and ochratoxin A concentration in hempseed related to the origin.

Origin of the samples [OTA]

µg/Kg

[AFB1+AFG1+AFB2+AFG2]

µg/Kg

Carmagnola, Italy < LOD 0.06±0.01 (AFG1)

Vezza d’Alba,Italy < LOD < LOD

Verona, Italy < LOD < LOD

Asti, Italy < LOD < LOQ (AFB1)

Alessandria, Italy < LOD < LOD

China 1(Dehulled) < LOD < LOD

China 2 0.85±0.01 0.74±0.04 (AFB1)

China 3 1.42±0.02 0.88±0.03 (AFB1)

China 4 < LOQ 1.24±0.05 (AFB1)

Canada < LOD < LOD

OTA: Ochratoxin A; LOD (limit of detection): 0.05 µg/Kg; LOQ (limit of quantification): 0.1

µg/Kg

AF: Aflatoxins; LOD (limit of detection): 0.05 µg/Kg for AFB1; LOQ (limit of quantification):

0.1 µg/Kg for AFB1
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DISCUSSION

The first step in assuring quality and safety of crops is the correct identification

of the origin. In the present paper, 10 ecotypes of Cannabis sativa for food use

(producing very low quantity of tetrahydrocannabinol, not expressed in the seeds)

were analyzed through RAPD technique. To optimize the identification at

genotype/ecotype level, indirectly, testing the capacity to identify the

geographical origin of hempseed, 20 random decamers were tested. The

combined results given by only 6 primers (A10, A11, B20, C4, F3 and J20)

showed the best resolution in clustering the ecotypes depending on where they

were cultivated. This RAPD approach led us to conclude that the minimum

number of RAPD products providing a reproducible clustering was 38, but

considering all 48 bands a higher resolution is achieved, as already observed in

other studies for Brassica and Boesenbergia genera (27, 28).

RAPD  markers  in Cannabis sativa has been proven effective for clustering

cultivars, as observed in other previously published works (29, 30). Considering

primer A10 and A11, other couples of primers where at least one member was

either A10 or A11, all the ecotypes analyzed showed distinguishable RAPD

patterns. Such a degree of polymorphism in C. sativa is explained by its allogamy,

and it is comparable to other allogamous species like potato (Solanum tuberosum)

(31).

It is interesting to notice that 5 primer pairs are enough to group Chinese ecotypes

in an isolated location, indicating that there is a real genetic distance between

Chinese cultivars and cultivars cultivated in other countries that goes beyond the

geographic distance. This result is in accordance with the hypothesis that the

hemp has originated from the Central Asia and has then spread in Europe (32).

Also in previous studies based on morphology (33) and allozyme data (34),

Chinese and European ecotypes resulted separated, and four groups (ecotypes) of

hemp were identified: Northern (Northern Russian, Finland), Central (Central
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Russian, Ukraine), Southern (Mediterranean region, Balkan, Turkey, Caucasus),

and Far Eastern ecotypes (China, Japan and Korea).

The Canadian sample showed genetic association with the Italian genotypes,

suggesting a common genetic origin. Main hemp cultivars cultivated in Canada

are Finola (originating from Finland), Crag (an indigenous ecotype from Canada),

and USO 14 (from Ukraine) (35). To allow a better separation between European

and Canadian ecotypes, a higher number of primers is suggested. This could

permit also the discrimination among the Italian ecotypes according to the

geographic area of growth, which is not feasible using only a set of six primers.

The correlation of genomic clustering with geographical origin can only be

established when ecotypes are associated to a specific known area of cultivation:

DNA analysis can provide the origin at “ecotype” level, but if the same ecotype

is grown in different geographical areas the traceability cannot be reliable. For

this reason, we suggest this DNA-based method to be used as first screening test

to identify the hemp’s germoplasm; more advanced approaches (particularly

Isotopic Ratio Mass Analysis, IRMS) should be a complementary analysis to

assess geographical origin, even if a lot of work needs to be done in order to create

a solid database. This approach has already been used to distinguish marijuana’s

geographic origin exploiting carbon and nitrogen stable isotopes (36).

Mycotoxin contamination on hemp samples from different geographic origin

As reported, some samples of hempseeds analysed in this study showed the

presence of mycotoxins. No specific correlation with original Country of

production can be made, in consideration of the small set of samples considered

for each origin. None of the contaminated samples exceeded the legal limit fixed

in Europe for flours intended as food (Commission Regulation (EC) No

1881/2006) or feed (Directive 2002/32/EC) (37). Moreover, the

conditions/parameters of preservation (and particularly the time that elapses

between the harvest and the drying of the seeds) are critical for the quality and the
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safety of the seeds. In Italy, until today, no industrial advanced protocols of drying

are  used  for  hemp,  often  produced  in  small  lots  by  small  farmers.  This  step

represents perhaps the first criticism for the fungal growth and the mycotoxin

production. The second criticism is surely represented by the transport of the

seeds  as  well  as  the  preservation  before  the  processing  (cold  pressing  and

production of flours). On the other side, the low contamination found in Chinese

seeds may suggest that hemp from China should be carefully monitored. As

already reported for other commodities, this higher incidence of mycotoxins could

be due to multiple factors, such as the environment and the agronomic parameters,

or the storage and transport conditions. In addition, the lack in harmonised control

policies may allow contaminated batches to enter the market.

This fact must to be investigated more deeply, also considering the derived

products (hemp oil and hemp flours), increasing the size of the sampling in order

to obtain robust data.

CONCLUSIONS

The RAPD technique resulted an inexpensive and easy approach to identify and

cluster hemp ecotypes of different geographical origins. Currently, the cultivation

of more that 40 hemp cultivars is allowed in the EU, and the RAPD approach may

help  in  the  control  of  the  commodities  at  the  reception,  to  direct  the  crops  to

suitable management and utilization. More specific DNA markers, such as

sequence characterized amplified regions (SCAR), can be developed in further

studies, as an alternative tool to monitor the origin of hempseeds. The percentage

of mycotoxin contamination of the samples considered for this work was low;

apparently, no correlation between geographical origin and mycotoxin

concentration can be made.
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Chapter 6: Unpublished results.
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following the publication and discussion of this PhD Thesis. The data presented
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validation of the best performing method, also comparing it with the ELISA
detection.
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ABSTRACT

Staphylococcal enterotoxin A (SEA) is the most commonly recovered

staphylococcal enterotoxin in food poisoning outbreaks. Our research objective

was to select different immunoassays, using the high throughput Luminex xMAP

technology and a surface plasmon resonance (SPR-Biacore) biosensor, to detect

SEA in milk, with the final aim to set up a rapid and sensitive method for the

quantification of the toxin. Several antibodies, one polyclonal, one antiserum and

five monoclonal, were tested in several formats (direct, competitive and

sandwich).

Preliminary results confirmed that the SPR technology (Biacore) displays low

sensitivity for all the tested antibodies in the different assays compared to

traditional Luminex xMAP, while the Luminex xMAP sandwich assays in which

a polyclonal antibody was used to trap the toxin result the most promising method,

either using the same polyclonal antibody or using one of the monoclonal

SETJ21310 and SETJ643 for the detection.

INTRODUCTION

Staphylococcal food poisoning is the first leading cause of bacterial food

poisoning in Europe. In 2014, staphylococcal toxins caused 393 foodborne

outbreaks, 7.5% of all foodborne outbreaks reported in Europe, with a small

increase compared to 2013 (1). Staphylococcal Enterotoxins (SEs) are short,

extracellular and very stable proteins, resistant to heat as well as gut proteases.

SEs constitute a family of different serological types of water soluble and single

chain globular proteins, with molecular weight between 27 and 34 kDa (2). To

date, 23 SEs have been identified, and staphylococcal enterotoxin A (SEA), either

alone or together with other SEs, is the most common SE encountered in food

poisoning outbreaks (3 - 4).

Staphylococcus aureus is a common commensal of the skin and the mucosal

membranes of humans, and the major source of food contamination is due to the
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improper handling of cooked or processed food, followed by storage under

conditions that allow bacterial replication and enterotoxins synthesis. A further

source of S. aureus contamination, typical of animal-derived foods and especially

milk, is its presence in cattle, sheep and goats affected by subclinical mastitis (5).

A large variety of foods, such as meat and meat products, egg products, salads,

bakery products, milk and dairy products including cheeses can be contaminated.

The ingestion of less than 1 µg of the preformed toxin causes emesis, diarrhea,

prostration, severe dehydration, dizziness and abdominal pain, which are the main

symptoms of food poisoning and toxic shock syndrome (6). In an outbreak due to

Staphylococcal Enterotoxin A (SEA) contaminating chocolate milk, the amount

of toxin infecting the children was reported to be only 200 ng (7). Elderly and

young children are more susceptible, but the disease is usually self-resolving and

rarely lethal.

The European Commission has set the maximum tolerated level of coagulase-

positive staphylococci in cheeses and milk-derived products (8), therefore the

presence of staphylococcal enterotoxins is currently searched only in dairy

products contaminated by S. aureus at higher levels. In these foods enterotoxins

must be absent in 25 g (8), while foods presenting a level of contamination lower

than the threshold are not even tested. If the toxin is preformed and is present in

the food prior to consumption, a sensitive detection of SE in food is crucial, given

the consequences of staphylococcal foodborne poisoning. European legislation

(Commission Regulation 1441/2007) stipulates the reference procedure for SE

analysis in milk and dairy products, which is based on extraction, concentration

through dialysis and immunochemical detection using one of two approved assays

(VIDAS® SET2, Ridascreen® SET Total) (9). While Ridascreen® SET Total is

a sandwich Enzyme-Linked Immunosorbent Assays (ELISA), VIDAS® SET2 is

an Enzyme Linked Fluorescent Assay (ELFA). Both of the assays are based on

the capture of the toxin in the samples by antibodies adsorbed onto a solid phase
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before the detection by an enzyme-labelled antibody, which generate a

colorimetric signal in the first case or a fluorescent signal in the latter case. Both

these methods have been considered the most practical and powerful method for

the analysis of SEs in foods because of their sensitivity and reliability.

During the last 20 years, several methods have been developed for the

identification of SEA, including mass spectrometry, PCR based methods (10, 11),

biosensor-based techniques, reversed passive latex agglutination (RPLA) (12),

and immunoblotting. Recently, a mouse polyclonal antibody-based sandwich

ELISA has been reported to detect SEA in milk and cheese at concentrations as

low as 0.064 ng/mL (13), whereas a monoclonal antibody-based sandwich ELISA

has reached the LOD of 0.0282 ng/mL (14).

This work aims to set up a rapid and sensitive method for the detection of SEA in

milk and milk derived products, exploiting xMAP and SPR based technologies.

The aim of this work is to choose the best promising xMAP and Biacore assay to

detect  SEA  in  spiked  samples  of  milk,  also  comparing  the  efficiency  with  an

ELISA method, after complete analytical validation.

MATERIAL AND METHODS

Chemicals and Materials

SEA produced by Staphylococcus aureus (1 mg/ml) and anti-SEA defatted whole

antiserum (S7656) (1 mg/ml) were purchased from Sigma. The polyclonal anti-

SEA IgG (LAI101) (1 mg/ml) was purchased from Toxin Technology. Three

peptides contained in SEA, namely peptide 1, peptide 2 and peptide 3, and three

monoclonal anti-SEA antibodies (anti-SEA14, anti-SEA15 and anti-SEA19) were

kindly provided by the Russian group, while two monoclonal antibodies, named

SETJ643 (1 mg/ml) and SETJ21310 (1 mg/ml), were obtained by the Chinese

group of Professor Chuanlai Xu. RPE-goat anti-rabbit (1 mg/ml) and RPE-goat

anti-mouse (1 mg/ml) were purchased by Prozyme.
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Solutions

The following solutions were used in this study: phosphate-buffered saline (PBS,

pH 7.4), phosphate-buffered with Tween 20 (PBS containing 0.05% (v/v) Tween

20). PBS pH 6, 7, 8 and 9 were tested to optimize the reaction between SEA and

anti-SEA defatted whole antiserum, while PBS pH 6 and 8.5 were tested to

improve the sensitivity of the reaction between monoclonal antibodies provided

by the Russian group and SEA.

Luminex xMAP assays

Two variant of competitive assays were tested by Luminex xMAP technology:

the competition between SEA coupled to colour-coded paramagnetic beads and

the free SEA in samples, and the competition between 3 different peptides

contained  in  SEA  and  free  SEA  in  samples  were  evaluated

(https://www.luminexcorp.com/). One set of paramagnetic beads was prepared

through carbodiimide coupling to SEA, and three sets were prepared through

neutravidin coupling to peptide 1, peptide 2 and peptide 3 respectively.

Different concentration of anti-SEA antibody were tested before finding the

optimal concentration to use as capture antibodies in the competitive assay (data

not shown): for the defatted whole antiserum (Sigma) 8.33 ng/ml, for the

polyclonal antibody (Toxin Technology) 83.3 ng/ml, for the monoclonal

antibodies SETJ643 and SETJ21310 8.33 µg/ml and for the monoclonal anti-

SEA19 8 µg/ml.

The estimation of the SEA concentration in an unknown sample depends upon the

creation of a standard curve, prepared by making serial dilutions of SEA in the

range 0.0001 µg/ml to 100 µg/ml. The ELISA plates with 10 μl per well of anti-

SEA antibody diluted in PBS, 10 μL per well of paramagnetic beads coupled

suspension (1000 beads/well) in PBS and 40 μl per well of SEA dilution were

incubated on a plate shaker at room temperature for 1 hour. During incubation,
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the free SEA in the sample compete with the mycotoxin-reporter conjugates for

antibody binding. For each concentration of the toxin, the reaction was evaluated

in duplicate or in triplicate. After incubation, the paramagnetic beads were trapped

by a magnet and the plates were washed with PBS. Eighty microliters of RPE-

labelled goat anti-rabbit immunoglobulin previously diluted in PBST (2 µg/ml)

were added in each well and then the plate was incubated on a plate shaker at

room temperature for 30 minutes. For the detection of monoclonal antibodies, the

secondary antibody was replaced by RPE-labelled protein A/G (3 ng/ml). After

washing, the paramagnetic beads were suspended in 100 μL of PBST and the plate

was  read  on  a  planar  bead  array  analyser  (MAGPIX),  running  on  XPONENT

software (all from Luminex, Austin, USA). In the planar array analyser, the beads

are  magnetically  trapped in  a  flow chamber  to  create  a  monolayer  array.  After

excitation by red light, red and infra-red images are recorded by the CCD camera.

Next, a reporter image is recorded upon green light excitation. A calibration curve

for each reaction was drawn.

The competition between each of the 3 peptides contained in SEA and free SEA

in samples were tested also using the monoclonal antibodies anti-SEA14, anti-

SEA15 and anti-SEA19. The monoclonal antibodies SETJ643 and SETJ21310

were not tested.

To improve the sensitivity, the sandwich format was also tested. To capture the

free SEA present in the samples, a set of coloured paramagnetic beads was

coupled to the purified polyclonal antibody through carbodiimide coupling

reaction. This set of beads was used to trap free SEA spiked in different

concentration. The trapped peptide was subsequently bound by either free

biotinylated polyclonal antibody (4 mg/ml) or by monoclonal anti-SEA antibodies

SETJ643 or SETJ21310 (4 mg/ml). The binding of the free antibody was

highlighted by fluorescence, due to the recognition of the detecting antibody by
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either Streptavidin – Phycoerithrin (SAPE) (4 µg/ml), or RPE-labelled goat anti-

mouse secondary antibody, respectively.

In a 96-wells microplates 10 µl of bead suspension (1000 beads/well) and 40 µl

of a serially 10-fold diluted SEA, ranging from 0.0001 µg/ml to 100 µg/ml, were

added to each well. After incubation on a plate shaker at room temperature in the

dark for 30 minutes, the wells were washed. The addition of the detecting

antibodies was followed by incubation on a plate shaker at room temperature in

the dark for 30 minutes. After another washing step, SAPE or RPE- labelled goat

anti mouse, depending on the detecting antibody used, was added to each well,

and then the plates were incubated for 30 minutes. After the plate was washed,

100 μL of PBST were added to each well, and the emission was measured. All

measurements were performed at least in duplicate.

Biacore assays

Experiments were performed using Biacore 3000 equipped with research-grade

CM5 sensor chips (Biacore AB, Uppsala, Sweden)

(https://www.biacore.com/lifesciences/index.html). The instrument temperature

was set at 20 °C for all analytical steps. Sensor chips and amine-coupling reagents

(N-ethyl-N-(3-dimethylaminopropyl)carbodiimide (EDC), N-

hydroxysuccinimide (NHS), ethanolamine HCl and buffer HBS-EP (0.01 M

HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20) were

purchased from Biacore AB.

Different variants of direct and competitive assays were carried out using a chip

on which the SEA was bound, while for the sandwich format the chip was coated

with the purified polyclonal antibody or the monoclonal SETJ21310. The coating

of the carboxymethylated dextran layer on the sensor surface of the CM5 chip

was performed using the amine coupling kit running the surface preparation

wizard procedure in the Biacore 3000 control software. In short, the biosensor

surface was activated by injecting a mixture of EDC and NHS (1:1, v/v) into a
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flow channel  (Fc)  at  a  flow  of  5L  min−1.  The  protein  to  be  immobilized  was

diluted to 50 µg/mL in coupling buffer (10 mM sodium acetate; pH 4.5) in a final

volume  of  500  µl,  which  were  injected  over  the  activated  surface  until  a  total

immobilization level of 10000 response units (RU) was reached. After coupling,

active groups were blocked by injecting 100 µl of ethanolamine (10 M).

The interaction between SEA and both monoclonal and polyclonal antibodies in

different variants (toxin or antibody on the chip), was tested to decide over the

volume and the concentration of antibodies and SEA to use.

Competitive assays were carried out by mixing 50 µl of sample (blank or serial

dilutions of SEA) to 50 µl of antibody (when polyclonal in concentration of 4

µg/ml, monoclonal anti-SEA19 5 µg/ml, monoclonal SETJ643 and SETJ21310

50 µg/ml) in an empty tube. Seventy-five microliters of this suspension are

injected in the chip. After the reaction, the chip is regenerated by injecting HCl

0.1 M.

For direct assays 50 µl of sample (blank or SEA dilutions) are injected in the chip.

Regeneration is achieved by injecting HCl 0.01 M.

For the sandwich assay the same protocol is used, except for the additional

injection of 20 µl of the polyclonal antibody (5µg/ml) or of 50 µl of the

monoclonal antibody (100µg/ml).

RESULT AND DISCUSSION

Luminex xMAP assays

This preliminary part of the work focused on the optimization of different

Luminex xMAP assays, in order to select some as promising way to quantify the

SEA in the model food milk spiked with different concentration of the toxin.

Parameters like the concentration of each antibody, the incubation time, the

composition and the pH of buffers used were optimized before performing the
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preliminary experiments. Several antibodies, including some monoclonal

described as very sensitive in ELISA (14), were tested. The main parameters

considered in this study were the linearity of the signal and the sensitivity, while

other parameters will be considered only for the validation of the most suitable

method for SEA quantification in milk. The linearity of the signal across the range

of the assay assures that the analyte is detectable within the chosen range, while

the  R2 value, determined by linear regression analysis, confirms that the

quantification is reliable.

The key factor to determine the sensitivity of an assay lies in having an antibody

with high specificity and affinity. The IC50 value, the concentration of standard

solution producing 50% of inhibition, is estimated by using the equation of the

inhibition standard curve.

Among the Luminex xMAP competitive assays tested, the highest sensitivity was

achieved when SEA was coupled to paramagnetic beads and the whole antiserum

was used for the capture (Fig. 1). After having set the best conditions (pH of the

buffer, time of incubation, concentration of the antibody), the ratio between the

fluorescence measured for each sample and the blank (B/B0)  was  linear  in  the

range from 0.01 µg/ml to 100 µg/ml. Although in the same competitive assay

performed using the purified polyclonal antibody the fluorescent signal was as

high as in the assay performed using the whole antiserum, the linearity was

observed only in the range from 0.1 µg/ml to 10 µg/ml. Further experiment should

be performed, changing the conditions and the buffers with the aim of improving

the sensitivity. Both of variants will be considered to test for the detection in SEA

spiked milk. The use of purified polyclonal antibody might in fact assure higher

specificity than the use of the antiserum.

Three more monoclonal antibodies (anti-SEA19, SETJ643 and SETJ21310) were

tested in the competitive assays. None of them provided a satisfying sensitivity,

so further experiments considering lower concentrations of each monoclonal
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antibody should be performed, in order to verify whether the low sensitivity could

be due to the presence of an excess of antibody, causing the saturation of all the

epitopes of the SEA.

As for the reaction between SEA peptides coupled to the beads and the whole

antiserum, the signal and the sensitivity registered were low for the whole range

of concentrations tested, making the beads coupled to the peptides not suitable for

further tests of competition between them and the SEA in foods. Moreover, the

monoclonal antibodies anti-SEA14, anti-SEA15 and anti-SEA19 did not display

reactivity against the three peptides contained in SEA tested; therefore the

reaction between the peptides and the monoclonal antibodies was not tested in

further Luminex xMAP or SPR assays. The reactions between the beads coupled

to each peptide and the purified polyclonal antibody were not tested, considering

that the expected signal is lower than the signal obtained having the whole SEA

coupled to the beads.

Figure 1. Dose-response curve of the competitive assay in which SEA is coupled to the

beads and anti-SEA defatted whole antiserum is used. Points represent the mean value of

the triplicate of the ratio between the fluorescence measured for each sample and the

blank (B/B0), measured by MAGPIX (blue line) and by FLEXMAP (orange line)

instruments. Standard deviation is shown per each concentration.

0

20

40

60

80

100

120

140

0.0001 0.001 0.01 0.1 1 10 100

B/
B0

SEA concentration (µg/ml)

MAGPIX

FLEXMAP



Chapter 6. Unublished Results

189

The xMAP sandwich assays performed using beads coupled to the purified

polyclonal antibody showed the highest sensitivity when the purified polyclonal

antibody was also used for the detection. The calibration curve appeared linear

between the concentration 0.01 µg/ml and 10 µg/ml, but at the highest SEA

concentrations tested the standard deviation was too high, and the quantification

could not be considered as reliable. The same sandwich format was not considered

for the whole antiserum, since the presence of other proteins than the antibodies

can cause unspecific reactions.

The xMAP sandwich assay where the detection was performed by the monoclonal

antibodies SETJ643 and SETJ21310 showed promising sensitivity, especially

when SETJ21310 was used (Fig. 2). Even if the slope of the calibration curve

presented an R2 of 0.96 (further experiments are needed to adjust the sensitivity),

this format of assay where the purified polyclonal antibody is coated on the beads

and the best performing monoclonal antibody is used for the detection is definitely

the most promising one. In fact, the use of the polyclonal antibody as a capture

antibody allows to bind higher amount of toxin, and the use of a monoclonal

antibody as detection antibody should improve the specificity, because the various

staphylococcal enterotoxins share a certain degree of homology. The specificity

of  the  reaction  still  needs  to  be  assessed,  by  measuring  the  degree  of  cross-

reactivity among different enterotoxins, including all other staphylococcal

enterotoxins.

Few works were led to find a sensitive assay for SEs detection thatexploits the

xMAP Luminex technology. Simonova and colleagues determined the LOD of

SEA by xMAP detection in a sandwich assay to be 10 pg/ml (15), while in the

same format Garber and colleagues obtained a LOD of 0.5-2 ng/ml for different

SEs (16). Both studies reached high sensitivity, mainly due to the affinity with the

target of the antibodies used in each study. The monoclonal SETJ21310 and

SETJ643 antibodies used in the present studies showed promising LOD (0.0282
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ng/mL for SETJ21310) when used in an ELISA sandwich assay (14). These

values indicate that the method is sufficiently sensitive to detect SEA

concentrations lower than 0.5 ng/mL, which is still a toxic level in milk (17).

However, three sandwich formats of xMAP immunoassay, in which either the

purified polyclonal antibody or the monoclonal SETJ21310 or SETJ643 serves as

detector, should be tested on spiked milk samples, to demonstrate the applicability

of this format.

Figure 2. Dose-response curve of xMAP sandwich assay when SETJ21310 is used as

detection antibody and anti-SEA polyclonal antibody is coupled to beads for the SEA

capture. Points represent the mean values of triplicate ratio B/B0. Standard deviation is

shown for each concentration.
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as expected. In general, the format where the highest sensitivity was registered

was the sandwich assay, in which the signal (in Response Unit, RU) was linear in

a wider range. Among the SPR Biacore sandwich assays, the highest sensitivity

was obtained when the purified polyclonal antibody was bound to the chip surface

and the same antibody (Fig. 3), or the monoclonal antibody SETJ21310 (Fig. 4),

were employed as detectors. Sandwich assays are expected to be more sensitive

than direct and competitive ones, since in SPR the detector response is

proportional to the mass of the analyte that binds to the ligand and, therefore, the

responses resulting from the binding of small molecules are low. For this reason

the use of a further antibody to detect the toxin bound to the capture antibody

allows the amplification of the signal, especially when the polyclonal antibody,

which recognizes a higher number of epitopes, is used.

The direct assay, where no amplification of the signal occurs, gave lower signal

respect to the other two formats, even if our target has the correct size to be tested

in this format, as showed by Naimushin and colleagues, who performed the direct

detection of Staphylococcal enterotoxin B (SEB) by a SPR sensor system, based

on a prototype two-channel system. That proves that SEs are big enough to

produce significant responses even at low molar concentrations. In this study the

SEB, with molecular weight 28.400 Da, was detected at concentrations above 0.5

nM (18).

However,  the  sensitivity  obtained  in  our  study  using  each  assay  of  SPR  was

anyway lower than the sensitivity showed by both the Luminex xMAP assay as

well as less performing that the European reference methods Ridascreen (R-

Biopharm) or Vidas, (Biomerieux) both based on ELISA format.

The SPR Biacore immunoassay often shows less sensitivity when compared to

ELISA or to other traditional bioassays. Hsieh and collaborators (1998) (19)

showed that the SPR Biacore immunoassays applied to detection of β-toxin of

Clostridium perfringens, display less sensitivity that the same format in ELISA.
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However, in this study the SPR assay lasted only 20 minutes, while the ELISA

one ran for six hours. Low sensitivity is reported also by Liu and colleagues

(2004) (20) for the tetanus toxin. Better sensitivity than what described by Hsieh

(19) and  Liu (20) was obtained by Rasooly (2001) (21) in an SPR sandwich

biosensor assay, where SEB was detected at ~10 ng/ml rapidly in milk and meat,

and by Homola and colleagues (2002) (22), who reported the lowest detection

limit to be 0.5 ng/ml in sandwich detection mode for SEB detection in buffer and

milk samples. Finally, Medina (2006) (23) detected SEA using Biacore from 1 to

40 ng/mL in spiked liquid egg.

Since one of the most important characteristic of Biacore is the regeneration of

the chip and its reuse, a mild regeneration of the biosensor surface is essential for

sustainable and optimal use of the biosensor with large series of samples. Among

the antibodies that we have bound to the chip surface, the binding of the

polyclonal antibody was relatively strong and needed relatively harsher

conditions for the complete recovery of the chip surface. Regeneration conditions

affected the performance, and thus the lifetime, of the biosensor chip. For this

reason, the flow cell in which the purified polyclonal antibody was bound

underwent to washes with a volume of HCl 0.01 M higher than the usual (15 µl

instead of 5 µl). On the other hand, the binding of the monoclonal antibody on the

chip is weaker than the binding between the chip and the polyclonal antibody, and

the regeneration, even if performed with 5 µl of HCl 0.01 M, still represents an

issue, since the maximum signal decreases after every use.

Considering the wideness of the range in which the signal is linear, the IC50 and

the issue related to the regeneration, both the best performing sandwich assay

were  chosen  for  the  test  of  the  detection  of  SEA in  spiked  milk.  Performance

parameters like specificity, accuracy, precision, robustness, LOD and LOQ still

need to be calculated.
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Figure 3. Dose-response curve for the determination of SEA when polyclonal antibody

is used in a SPR Biacore sandwich assay both as capture antibody on the chip and as

detection antibody. Points represent mean values of duplicates. Standard deviation is

shown per each concentration.

Figure 4. Dose-response curve for the SPR Biacore sandwich assay when the purified

polyclonal antibody is used as detection antibody and the monoclonal SETJ21310 is

bound on the chip. Each points represent mean values of duplicates of measurements of

Response Unit (RU). Standard deviation is shown per each concentration.
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CONCLUSION

We have shown in this  preliminary study that the developed xMAP assays are

good candidates for a sensitive method to detect SEA. The time required for

quantifying SEA using this method matches that required by traditional ELISA,

but it requires much less reagents consumption as well as volume of the analyzed

sample. Moreover, the assay has the possibility to be multiplexed in future.

Among the Luminex xMAP assays tested, two competitive ones, performed using

either the antiserum or the purified polyclonal antibody, were considered suitable

for testing the presence of SEA in spiked milk. Regarding the Luminex xMAP

sandwich assays, those employing either the purified polyclonal antibody or the

monoclonal antibodies SETJ643 or SETJ21310 as detectors, will be selected for

testing SEA-spiked milk samples.

Moreover, two sandwich SPR Biacore assays will be tested for SEA detection in

spiked milk. Even if their performance seem less promising, the lack of need for

molecular labelling, the low sample consumption and speed of detection, makes

this technology suitable for fast screening.

Following the setting up in the model food and the selection of the best performing

method, and following a complete analytical validation in order to assess

sensitivity, robustness and repeatability, this protocol must to be compared to a

common ELISA kits, particularly the kits considered “reference standard” in

Europe.
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Chapter 7: Discussion
This PhD Project, carried out in collaboration with Istituto Zooprofilattico della

Lombardia e dell’Emilia Romagna (Pavia Unit), RIKILT Department of

Wageningen University and Research (WUR, Wageningen, The Netherlands) and

University of Parma, aimed to evaluate rapid and sensitive approaches to

guarantee food free from microbiological risks due to the presence of pathogens

and/or their toxic metabolites.

Although generally the safety of the commonly consumed foods has improved

over the last decades, foodborne illnesses continue to be a serious public health

challenge. Even if Companies processing food operate HACCP protocols, certain

risks cannot be totally eliminated, like those involving the steps of preparation or

storage. In order to assure safe food for consumers, national food control systems

control all food produced, processed and marketed within the country, including

imported food. Sampling procedures are ruled by specific EU Regulations, but

not all contaminants are comprised in the controls: microbial pathogens and

mycotoxins are included in this list. The laboratory analyses employed to detect

these contaminants must be rapid, reliable and sensitive. Currently many

limitations regarding the sensitivity, the cost of analysis and the

representativeness of the sample of the methods used still exist. Moreover, some

hazards that used to be major concerns have declined (thanks to controls or

changing situations), while others are emerging or increasing, like for example

multi-drug resistant strains of monophasic variant of Salmonella ser.

Typhimurium 4,[5],12:i:-. Recent advances on the development of more rapid and

sensitive analytical tests have helped to identify hazards that were detected in the

last century without being clearly recognized as a health risk, like mycotoxins.

During  the  first  PhD year,  the  isolates  from human and salami  obtained  in  the

framework of three foodborne salmonellosis outbreaks caused by Salmonella ser.
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Typhimurium and monophasic variant of Salmonella ser. Typhimurium, were

evaluated through serotyping, phage-typing, antimicrobial susceptibility testing,

PFGE and MLVA, in order to investigate their origin. The same approach was

exploited for Salmonella ser.  Typhimurium  strains  isolated  from  360  salami

produced in Pavia Province in the three years following the outbreaks.

This investigation allowed to estimate the prevalence of Salmonella ser.

Typhimurium and its monophasic variant in salamis during the outbreaks and for

the years 2011-2013 in the area of Pavia Province, and to highlight that the

monophasic variant has replaced Salmonella ser. Typhimurium as the major risk

in the environments of the salami producers monitored in this study. These data

confirm the dominance of this emergent serovar along the swine supply chain, as

reported  also  by  EFSA.  Moreover,  this  work  allowed  to  detect  the  ASSuT  (

Ampicillin, Streptomycin, Sulphonamides and Tetracycline) antimicrobial

resistance pattern in 47% of isolates of the monophasic variant of Salmonella ser.

Typhimurium, while no resistant Salmonella ser. Typhimurium were identified.

The use of PFGE and MLVA techniques for genotyping the isolates allowed to

verify the correlation between the isolates from humans and the isolates from

salamis manufactured by three different producers, during a short timeframe. The

salamis were identified as the food source of the first outbreak. In fact, Salmonella

ser. Typhymurium isolates that showed the same PFGE-type and shared the same

rare MLVA profile (3-18-9-NA-211) were recovered from salami and patients

with symptoms of gastroenteritis. The fact that this strain with a very rare MLVA

profile has been found only among these isolates out of three thousand isolates

examined by MLVA in the IZSLER database (and it has never been reported in

the literature worldwide so far) reinforced the evidence of the presence of a link

between this food and the human cases. The probable common source of infection

of the salamis was identified in the slaughterhouse from which all the three

producers had purchased the meat.
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The salamis were identified as the speculative source also of the second outbreak,

since the same PFGE, the rare MLVA profile and the phenotypic profiles were

also found in the Salmonella ser. Typhimurium isolate recovered from a sample

related to outbreak II. For this isolate, the confirmation of the link was impossible

due to the lack of subtyping data from the available human isolate associated with

this outbreak.

The responsible for the third outbreak was the monophasic variant of Salmonella

ser.  Typhimurium.  The  strain  isolated  from  all  human  samples  related  to  this

outbreak was not found in any salami analysed in the same period, but the same

phenotypic and genetic profile combination was detected in a salami

manufactured two years after outbreak III. This suggests that salami or pork meat

could have been the source of the three human outbreak III cases.

This work allowed also to prove that the extended sampling method adopted is

suitable for the monitoring of pathogens in foods, enabling the detection of

Salmonella enterica subtypes in salami, and preventing the onset of food-borne

outbreaks through hygienic measures adopted to manage the risk. Although the

data presented in this thesis confirm the clear role of the pig as an important source

of Salmonella, a control program for Salmonella in the swine meat chain has not

been implemented yet in Italy. As suggested by the evidence collected in this work

and by the results of other studies conducted in Italy, the application of control

plans, as previously done for the poultry sector, is needed to reduce the prevalence

of salmonellosis at the National level.

Another major safety concern considered during this PhD course refers to the

presence of mycotoxins in food, especially aflatoxins and ochratoxin A (OTA),

which are recognized as carcinogenic compounds. During the first year of PhD I

focused my attention on the selection of DNA markers useful for the identification

of foods and raw materials known to be contaminated by mycotoxins. The use of
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Random Amplified Polymorphic DNA (RAPD) has been exploited in this project

in order to identify and cluster some Italian ecotypes of hemp (Cannabis sativa

L.)  from  hemps  imported  from  foreign  countries,  considering  also  the  rate  of

occurrence of aflatoxins and ochratoxin A, evaluated by HPLC-MS in

collaboration with the University of Parma. The cultivation of hemp for drug

unrelated purposes has been recently reintroduced in Italy, with the purpose of

making oil and flour rich in proteins. The Italian hemp production is however still

insufficient to cover the commercial requests, and then hemp is imported from

China and Canada, among the world-leading hemp producers. Since some

hempseeds are grown in countries known for their humid climate, which

facilitates the growth of toxigenic filamentous fungi with consequent production

and accumulation of mycotoxins, and since the transport and the preservation of

the seed can potentially increase the contamination rate, a molecular approach for

the separation of hempseeds based on their cultivar identity is proposed in this

Thesis.

A set of 20 RAPD primers were tested, and the combination of six RAPD markers

resulted sufficient for the geographical clustering of hempseeds: Italian cultivars

clustered separately, and could be discriminated from those grown abroad. The

RAPD technique resulted an inexpensive and easy approach that could be

exploited in rapid screening to verify the correctness of the information written

on the label, or for the control of the imported commodities at the reception, to

direct the crops to suitable management and utilization. Nevertheless, further

investigations that will consider a higher number of ecotypes are needed to

validate this approach and verify its utility. More specific DNA markers, such as

microsatellite (SSR) or the sequence characterized amplified regions (SCAR), can

be developed in further studies, as an alternative tool to monitor the origin of

hempseeds. More different analytical approaches will be useful to confirm the

data recovered by DNA analysis, particularly the application of IRMS and NMR,
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both useful to assess (and confirm) the geographical origin, beside the molecular

identification of the ecotype.

The 75% of Chinese and the 20% of Italian samples of hempseeds analysed in

this study showed the presence of at least one class of mycotoxins. No specific

correlation with original Country of production can be made, in consideration of

the small set of samples considered for each origin. None of the contaminated

samples exceeded the legal limit fixed in Europe for flours intended as food

(Commission Regulation (EC) No 1881/2006) or feed (Directive 2002/32/EC).

During the second and the third year of my PhD studies, the work has been

addressed to the monitoring of ochratoxin and ochratoxin-producing fungi

presence in traditional Italian cured salami, as well as on the setting up of a new

Real Time PCR protocol for the detection of OTA-producing fungi. The Italian

cured “salami” is a model of great interest for the study of mycotoxins production:

molds play a major role in the correct maturation of artisanal salamis and the lack

of the use of fungal starters during the fermentation/maturing process allows the

surface colonization by environmental fungi present in the ripening room. One

hundred and thirty-three samples of salami produced in Lombardia and Emilia

Romagna were investigated. Ochratoxin A was searched in salami through LC-

MS/MS (in collaboration with IZSLER, Brescia Unit). For the searching of

ochratoxin-producing strains, fungal isolates from salamis were identified at

species level through the observation of macro and microscopic morphologic

characteristics. Then, the total genomic DNA from the isolates was subjected to

the amplification of a target DNA sequence (otanpsPN) know to be common to

all OTA-producing fungi. Regarding Penicillium isolates, also the otapksPN gene

target to recognise the ochratoxigenic strains of P. nordicum, the species

identified as the major OTA producer in meat, was considered. The same Real

Time PCR reactions were carried out also from 19 salamis casings, including 12

casing belonging to salamis positive to OTA.
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This investigation led to new knowledge about the frequency of the occurrence of

OTA in this food: 9.8% of samples showed the presence of OTA beyond the limit

permitted by Italian regulation, ranging from 1.14 to 691 µg/kg of meat. Among

these salamis, three were contaminated by both OTA and an OTA-producing

fungus (Aspergillus westerdijkiae), two of which were manufactured by the same

salamis factory in two different periods. Our monitoring study highlighted a huge

problem of contamination in this traditional factory. In fact, in a subsequent

sampling of the air and surfaces of this small working plant, A. westerdijkiae was

found as the predominant fungal species in the air, workspaces and on tools

dedicated to the processing and ripening of salami, as well as in the external

environments (these data have not been discussed during this thesis report). Since

fungal spores in the air are able to produce OTA, a plan for the sanitization of the

plant has been proposed.

This monitoring has also allowed highlighting the limit of the prediction method

based on the morphologic species identification followed by the analysis of

specific genetic characteristic of the isolates. In fact, OTA was detected in 13 out

of 133 salamis, but only three salamis carried an isolable OTA-producing species,

A. westerdijkiae. None of the DNA purified from the isolates, including the three

A. westerdijkiae, showed to possess either the otanpsPN gene target, common to

all the strains able to synthesize OTA, or the target for the ochratoxigenic strains

of P. nordicum, and the inability to produce OTA was confirmed by growing the

isolates under conditions favourable to OTA biosynthesis. Conversely, the otanps

target gene was amplified from the DNA purified from the three salami casings

harbouring both A. westerdijkiae and OTA, but also from other 11 salami casings

where A. westerdijkiae was not isolated, suggesting that OTA-producing strains

were no longer viable and isolable at the end of maturation. The molecular

approach has also permitted to foresee the production of OTA also in those

salamis where, despite the colonization by ochratoxigenic fungi, the conditions of
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temperature, water activity, pH and nutrients suitable for the mycotoxin

production have not occurred. In fact, among the seven salami casings negative

to OTA presence, four resulted positives to the amplification of otanpsPN gene.

Moreover, in our study, no strain of P. nordicum was isolated, but 11 salami

casings were positive to the amplification of the otapksPN fragment specific for

this species. Since P. nordicum prefers high water activity, it belongs to the flora

of early maturation stages and probably it is not viable and isolable in late

maturation stages. Both the microbiological species identification and the

molecular search for OTA-producing strains from DNA purified from the isolates

did not result a good indicator for the ochratoxin production. Our data show that

it is complicated to isolate the strains responsible for the toxin production within

a multitude of different  fungal  strains that  colonize the salami at  the end of its

maturation. This difficulty can be explained considering the different mycofloras

present at different stages of maturation, or postulating the presence of different

strains belonging to the same species that share the same morphology but not the

same genotype. In any case, the PCR-based approach, performed for the

otanpsPN gene target, and the otapksPN fragment specific for OTA-producing P.

nordicum, failed to recognize two salamis positive to OTA. The origin of the OTA

detected in these two salamis could most probably be the meat used for their

preparation, since OTA resulting from the contaminated feeding can be carried-

over  in  the  swine  tissues.  Finally,  the  amplification  of  sequences  specific  for

OTA-producing strains performed on DNA extracted directly from the washing

of  the  salami  casing  resulted  a  better  approach  to  evaluate  the  risk  of  OTA

presence  than  amplifying  the  same  target  from DNA purified  from the  salami

isolates.

In the same Project, two novel primer pairs were designed on beta tubulin region

of  fungal  genomic  DNA,  and  tested  in  real  time  PCR  in  order  to  identify  the

species A. westerdijkiae, the only OTA-producing species isolated in this study.



Chapter 7. Discussion

206

The best performing primer pair could be used to monitor the working plants in

the  salami  factory,  which  was  massively  colonized  by  this  fungus.  Both  the

designed primer pairs failed the specificity tests, since they showed to amplify

also the DNA of A. ochraceus and P. nordicum (also after the modulation of PCR

parameters). Therefore, other DNA regions different from beta tubulin should be

considered in the next future to design species-specific primers. Recently (just

before the completing of this PhD Thesis), A. westerdijkiae whole genome was

sequenced and published: its comparison with known sequences of A. ochraceus

or the whole genome of P. nordicum can allow the design of more specific

primers.

Among the major toxins recovered from foods, staphylococcal enterotoxins were

considered a secondary target of this Thesis. Particularly, we aimed to select the

most  promising  Luminex  xMAP  and  SPR  assays  to  detect  low  levels  of  the

Staphylococcal Enterotoxin A (SEA) in spiked samples of milk. This preliminary

study (part of a larger Project and performed in collaboration with WUR) aimed

to set up a rapid and sensitive method for the detection of SEA in milk and milk-

derived products. The choice of the technologies was made considering quicker

and cheap alternatives to ELISA, which can also be exploited for the simultaneous

detection of multiple analytes with minimal sample pre-treatment. Different

antibodies, one polyclonal, one antiserum and five monoclonal, were tested in

several formats of immunoassay (direct, competitive and sandwich), either by

using Luminex xMAP or SPR Biacore technologies.

Preliminary results confirmed that the SPR technology (Biacore) displays low

sensitivity for all the tested antibodies in the different assays. The real advantage

of this biosensor-like approach is that the immunochemical interactions between

the toxin and the antibodies are performed in real time and in a completely

automated way, since the instrument pre-programmed by the operator performs

by itself the dilutions, the admixtures and the analysis. Considering these
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advantages, the sandwich format in which the polyclonal antibody is used for the

SEA capture and either the same polyclonal or the best performing monoclonal

SETJ21310 are used as detection antibody, were selected to test the detection of

the toxin in spiked foods.

Among the Luminex xMAP competitive assays tested, both the antiserum and the

polyclonal antibody are suitable for testing the presence of SEA in spiked milk.

Even if the highest sensitivity is achieved in the first case, we still need to verify

in the next future whether different conditions of incubation and the use of

alterative buffers can improve the sensitivity of the competitive assay performed

with the purified polyclonal antibody.

Regarding the Luminex xMAP sandwich assays, three format display satisfying

sensitivity and will be tested for the detection of SEA in spiked milk. The best

sensitivity was obtained when the purified polyclonal antibody is used for both

the capture and the detection or when the monoclonal antibody SETJ643 or

SETJ21310 is used as detector. The use of monoclonal antibody can also improve

the specificity, which was not considered in the experiment performed so far. In

fact, several enterotoxins share similarities in structure, and especially the lack of

cross-reactions between the antibodies at our disposal and staphylococcal

enterotoxin E should be verified. Following the setting up and the selection of the

best performing methods, this protocol will be compared to a common ELISA kit,

in order to assess sensitivity, robustness and repeatability (analytical validation).

Our results are preliminary, and only the testing of the two SPR Biacore and the

five Luminex xMAP selected formats to detect SEA in spiked foods could give a

real indication of which method is the most suitable.
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