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The expression of protein-coding genes is controlled by a complex network of regulatory
interactions. It is becoming increasingly appreciated that post-transcriptional repression
by microRNAs, a class of small non-coding RNAs, is a key layer of regulation in several
biological processes. In this contribution, we discuss the interplay between microRNAs
and epigenetic regulators. Among the mixed genetic circuits composed by these two
different kinds of regulation, it seems that a central role is played by double-negative
feedback loops in which a microRNA inhibits an epigenetic regulator and in turn is
controlled at the epigenetic level by the same regulator. We discuss a few relevant
properties of this class of network motifs and their potential role in cell differentiation. In
particular, using mathematical modeling we show how this particular circuit can exhibit
a switch-like behavior between two alternative steady states, while being robust to
stochastic transitions between these two states, a feature presumably required for circuits
involved in cell fate decision. Finally, we present a list of putative double-negative feedback
loops from a literature survey combined with bioinformatic analysis, and discuss in detail
a few examples.
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1. INTRODUCTION
MicroRNAs (miRNAs) are endogenous non-coding RNAs that
negatively regulate the protein production of their mRNA tar-
gets in metazoans and plants. They are rather small (about 22
nucleotides long), single stranded RNAs, and are known to tar-
get a substantial portion of the human genome (Lewis et al.,
2005; Friedman et al., 2009). They have been shown to play key
roles in several biological processes ranging from development
and metabolism to apoptosis and signaling pathways (Ambros,
2004; Bartel, 2004). Moreover their profiles are altered in several
human diseases and in particular in cancer (Alvarez-Garcia and
Miska, 2005; Esquela-Kerscher and Slack, 2006), making miRNAs
a major focus of research in molecular biology.

Recent work (see for instance Iorio et al., 2010; Kunej et al.,
2011; Sato et al., 2011; Gruber and Zavolan, 2013; Wang et al.,
2013) has shown that there is a strong interplay between miRNAs
and epigenetic regulators. Their expression and mutual inter-
actions are often highly coordinated, suggesting that epigenetic
regulation can be fully understood by only considering epigenetic
regulators and miRNAs as partners of a combined regulatory net-
work. This combined network will be referred to as Epi-miRNA
network in the following. Similarly to what happens in the purely
transcriptional regulatory network (Alon, 2006, 2007), also in
this Epi-miRNA network a few recurrent wiring patterns can
be detected. These patterns are usually called network motifs.
Among these small genetic circuits a special role seems to be
played by the double negative feed-back loop (DNFL) in which a
miRNA (or, in some cases, a set of miRNAs acting in a cooperative

way) targets an epigenetic regulator, which in turn controls the
expression of the same miRNA(s) (Figure 1A).

This network motif, which is usually called “toggle switch,” has
several crucial functions. As suggested by the name, it may act as
a genetic switch between different cell fates (Gardner et al., 2000),
and as such it is found in several differentiation and developmen-
tal processes (Alon, 2006). At the same time it can be used as a
“memory unit.” It is able to fix a transient stimulus into a stable
expression pattern which persists even when the original stimu-
lus disappears. In order to perform these functions in an optimal
way the DNFL must be tuned so as to be in the bistability region
(i.e., it must allow two competing stationary states), it must have
a fine tuned switching threshold so as to avoid unwanted random
transitions between the two alternative states (i.e., it must be a
“robust” switch) but, at the same time, it should allow, if needed, a
switch-back transition (i.e., in some cases it must be a “reversible”
switch).

Even if there are several examples of toggle switches, and more
generally of bistable circuits, in which both partners are transcrip-
tion factors (Tian and Burrage, 2006), in the past few years there
has been an increasing amount of evidence suggesting that in sev-
eral biologically relevant realizations of the switch one of the two
partners is a miRNA instead of a transcription factor. The typical
example is the mir200-ZEB toggle switch, which is at the basis
of the transitions between epithelial and mesenchymal pheno-
types, and thus plays a crucial role in embryonic development
as well as in cancer metastasis formation (Burk et al., 2008; Lu
et al., 2013). In the following, we propose a possible advantage of
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FIGURE 1 | The bistability region of the toggle switch depends on the

degree of repression non-linearity. (A) Cartoon of the interaction scheme
that composes the toggle switch: the two genes A and B mutually repress
each other. (B) The Hill function Hi (x) describes how the production rate of
gene i depends on the repressor concentration x. The exponent n defines
the steepness of the curve. In the limit case of n → ∞, the Hill function
becomes a step function with a critical repressor concentration hi at which
the target production is switched on. As we argue in the text, this limit case
can be considered the suitable description for the transcriptional repression
induced by epigenetic regulators such as chromating remodeling factors.
(C) The bistability region of the toggle switch is depicted as a function of
the amounts of the two gene products A and B. Increasing the steepness
of the repressive function (i.e., the parameter n) enlarges the bistability
region, thus extending the parameter range in which the circuit is suitable
to implement cell fate decisions.

miRNA regulation in this kind of cell-fate decision circuit. In par-
ticular, we show that miRNAs are better suited than transcription
factors in conferring robustness to the committed cell decision.
In fact, the physical mechanism of miRNA regulation can natu-
rally increase the stability of the circuit steady states with respect
to random transitions due to gene expression noise. This feature
could be particularly relevant if each steady state is actually associ-
ated to a specific phenotype that has to be maintained in absence
of specific stimuli, as is the case for the mir200-ZEB toggle
switch. An intuitive way to understand it is to notice that miR-
NAs, acting at the post-transcriptional level, are in general able
to decrease random fluctuations of target proteins (Levine et al.,
2007; Osella et al., 2011), and this increases the robustness of the
switch.

Moreover, we argue that this tendency is even stronger when
one of the two partners of the toggle switch is an epigenetic
regulator. Indeed, epigenetic regulation can be represented as a
switch between discrete states of transcription of the target genes.
Therefore, the response to variations in the concentration of epi-
genetic regulators is effectively highly non-linear and step-like,
compared with the generally more graded dependence of target
activity on its transcription factor concentrations. This feature, if
combined with the post-trascriptional nature of miRNA regula-
tion, increases the range of bistability of the switch and its overall
robustness when it is inserted in a complex network with a wide
range of possible inputs. This paper addresses these two issues by
suitably modeling the toggle switch involving a miRNA and an
epigenetic regulator. Finally, a list of possible candidate DNFLs
will be provided and few relevant examples will be discussed in
detail.

2. RESULTS
2.1. MODELING THE DOUBLE NEGATIVE FEED-BACK LOOP: THE ROLE

OF NON-LINEARITY AND EPIGENETIC REGULATION
This section introduces the modeling framework used to rep-
resent the dynamics of the toggle switch, reviews the necessary
conditions for the circuit to show a bistable behavior, and finally
addresses the possible consequences of the presence of an epi-
genetic regulator as one node of a DNFL. The toggle switch is a
network composed by two genes mutually repressing each other
(Figure 1A). Since it is one of the simplest genetic circuits that can
give rise to multiple equilibrium states, and thus in principle to
cell fate decisions, it has been extensively studied (see for exam-
ple Alon, 2006 and references therein). A coarse-grained math-
ematical description of the circuit dynamics can be expressed
by the following couple of differential equations (Schultz et al.,
2008):

d A
dt = kAHA(B) − γAA
d B
dt = kBHB(A) − γBB

(1)

in which only production and degradation of the two gene prod-
ucts A and B are considered, condensing in these two effective
reactions several intermediate steps such as transcription, trans-
lation, mRNA export or maturation. Theoretical and empirical
arguments suggest that repression can be modeled by making the
production rate of each gene a non-linear function of the regu-
lator concentration (Bintu et al., 2005a,b). More specifically, the
production rate ki of gene i is multiplied by a Hill function, shown
in Figure 1B, of the regulator amount x:

Hi(x) = 1

1 +
(

x
hi

)ni
. (2)

The exponent n represents the cooperativity of the regulation and
sets the steepness of the Hill function, while the effective dis-
sociation constant h defines the regulator amount at which the
production rate is half of its maximum value (Figure 1B).

Several mechanisms can increase the value of the exponent in
the Hill function in Equation 2, making it sigmoidal-like, and
thus inducing an ultrasensitive target response to changes in the
repressor concentration (Zhang et al., 2013). In particular, epige-
netic regulators, such as chromatin remodeling factors, are more
likely to induce transitions between discrete states rather than
smoothly change the transcription rate of genes in the targeted
DNA regions. For example, histone modifications are usually
modeled as transitions between a small number of chemical states
with different DNA accessibility or affinity for the transcriptional
machinery (Dodd et al., 2007), as it has indeed been shown in the
particular case of DNA methylation (Lim and van Oudenaarden,
2007). Therefore, a specific epigenetic regulator will presumably
make the target gene switch between two alternative transcription
rates, corresponding to different chromatin states. This can be
included in the proposed modeling scheme using a Hill function
with an extremely high exponent n, thus effectively approaching
a step function between two values of transcription probability.

Deterministic mathematical analysis allows to identify the
conditions necessary to have bistability, which lets the system
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“decide” between two alternative expression states and ultimately
between different phenotypes. Figure 1C shows the bistability
region as a function of the concentrations of the two gene prod-
ucts (A and B). If the production rate of one of the two genes, and
thus its concentration, is too high relative to the other, the circuit
presents a unique possible steady state, otherwise it can relax to
two different equilibria. These two alternative steady states corre-
spond to one gene highly expressed while the other is switched off.
Moreover, to ensure the presence of bistability, repression must be
strong enough to avoid simultaneous expression of both genes,
and a certain degree of non-linearity in the repression function is
required (Schultz et al., 2008). In fact, if ni = 1 in the Hill func-
tion (Equation 2) of both genes, the bistable region in Figure 1C
vanishes. As discussed above, repression due to an epigenetic reg-
ulator, such as a chromatin remodeling factor, can be modeled
using a high Hill exponent n, ensuring a certain degree of non-
linearity in gene interaction. Figure 1C shows how increasing the
value of n of one of the two regulatory functions leads to a pro-
gressively larger region of bistability. Therefore, the presence of
an epigenetic regulator can naturally widen the parameter space
in which the toggle switch presents two steady states, conferring
robustness to the bistable behavior of the circuit.

2.2. REGULATION BY microRNAs INCREASES THE STABILITY OF THE
SWITCH

Gene expression is inherently a stochastic process (Raj and van
Oudenaarden, 2008). Fluctuations in protein concentration can
induce random transitions between the alternative steady states
of a bistable genetic circuit like the toggle switch in Figure 1A
(Schultz et al., 2008). A bistable circuit at the basis of cell fate
determination is expected to be robust to these stochastic tran-
sitions, since they could in principle drive the cell to an undesired
phenotype. This section indeed focuses on the specific role that
the nature of miRNA regulation can have in controlling the
stochastic transitions between the two alternative steady states of
a toggle switch.

A major source of stochasticity in gene expression is due to
the burstiness in protein production. In fact, proteins have been
observed to be produced in brief periods of high expression inten-
sity followed by waiting periods (Friedman et al., 2006; Yu et al.,
2006). This is mainly due to the fact that during the lifetime
of a single mRNA several proteins can be produced, although
also bursts of transcription, probably due to transitions in the
promoter state, have been observed (Raj and van Oudenaarden,
2008). Therefore, a fluctuation at the transcriptional level can be
amplified by the translation of a large protein burst stemming
from a single mRNA. The average size of these bursts b is given
by the product of the rate of translation kp and the average life-
time of mRNA 1/γm (i.e., b = kp/γm), while their frequency a is
defined by the transcription rate km with respect to the timescale
set by protein degradation γp (i.e., a = km/γp) (Friedman et al.,
2006).

As a consequence, to fully account for the stochasticity in
gene expression, a realistic mathematical description must take
explicitly into account the transcription and translation processes,
which combine to give rise to the observed bursts in protein pro-
duction. Noise at the protein level can be evaluated analytically

(Thattai and van Oudenaarden, 2001). In particular, it can be
quantified measuring the relative fluctuations with the coefficient
of variation CVp = σp

〈p〉 (where p represents the protein level),

which for a constitutive gene takes the simple form

CVp � 1 + b

〈p〉 , (3)

where the mean protein level is simply given by the product of the
average size of bursts and their frequency: 〈p〉 = b a (Thattai and
van Oudenaarden, 2001; Friedman et al., 2006).

Regulation at the transcriptional level, like regulation by tran-
scription factors, modulates the transcription rate of the target
genes, thus affecting the burst frequency a. On the other hand,
miRNAs are known to exert their action by suppressing trans-
lation (i.e., decreasing kp) or promoting mRNA degradation
(increasing γm) (Valencia-Sanchez et al., 2006). Both regulative
modalities affect the target burst size rather than the frequency.
Therefore, the same degree of repression exerted transcriptionally
or post-transcriptionally via miRNAs will lead to very different
levels of noise of the target protein concentration. In particu-
lar, the expression for the coefficient of variation in Equation 3
suggests that miRNAs, reducing the target burst size, are more
effective in keeping fluctuations in gene expression under control.
In fact, several circuits involving miRNA regulation have been
suggested to play a role in conferring robustness to biological pro-
cesses (Levine and Hwa, 2008; El Baroudi et al., 2011; Osella et al.,
2011; Bosia et al., 2012; Ebert and Sharp, 2012; Riba et al., 2014).

These simple arguments indicate a possible evolutionary rea-
son to prefer miRNA regulation, with respect to transcriptional
regulation, to build toggle switches involved in cell fate decision.
In fact, in this biological context a certain degree of robustness
to stochastic fluctuations is probably a crucial feature. To fur-
ther support this idea at a quantitative level, we introduce a more
realistic and detailed mathematical description of toggle switches
in the epi-miRNA network. The two steps of transcription and
translation will be considered explicitely for the epigenetic regu-
lator, in order to fully consider the stochastic effects arising from
the burstiness of gene expression. Moreover, the physical coupling
of miRNAs and target mRNAs, and the catalytic/stoichiometric
nature of this coupling, will be taken into account. In fact,
miRNA regulation is an example of molecular titration since it
requires the direct one-to-one binding of a regulator and its target
molecule (Buchler and Louis, 2008). The regulatory mechanism
is thus different from transcriptional regulation, where even a
small amount of transcription factors can influence the target
production with no significant consequences on their concentra-
tion. Indeed, a mathematical description specifically designed for
miRNA regulation has been previously introduced and some of
its predictions tested experimentally (Levine et al., 2007; Levine
and Hwa, 2008; Mukherji et al., 2011). This modeling strategy
can be straightforwardly applied to the toggle switch here in anal-
ysis. Denoting with s, m and p the number of miRNAs, mRNAs
and proteins respectively, the corresponding deterministic model
of the circuit, describing the dynamics of the average amounts of
the different molecules, is given by the following three coupled
equations.
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d s
dt = ks

1+
(

p
h

)n − γss − αkms

d m
dt = km − γmm − kms

d p
dt = kpm − γpp.

(4)

The parameter k represents the rate of miRNA-mRNA coupling
(and will be dependent on the energy of RNA-RNA binding),
while α is the cataliticity parameter describing the probability that
a degradation event of a mRNA, induced by a miRNA, is accom-
pained by the degradation of the miRNA itself. The limit α → 1
corresponds to a stoichiometric mode of action (as it is often the
case for sRNA regulation in bacteria Levine et al., 2007), while the
opposite situation of α → 0 represents a perfectly catalytic mode,
in which the rate of mRNA degradation becomes simply a linear
function of the number of miRNAs.

In order to evaluate the robustness of the circuit to stochastic
transitions between the two steady states, the stochastic version of
the model in Equation 4 has to be considered. In particular, the
level of stability of a steady state is given by the typical time the
system manages to dwell in it before a stochastic transition, and
this time can be evaluated using stochastic simulations. Figure 2A
shows an example of such simulations. The circuit randomly
switches between the equilibrium in which gene A is on while
B is shut off and the opposite state. The timing between these
transitions defines the switching rate between the stable states.
However, since the switching dynamics are often difficult to study
directly with conventional computer simulations, because of the
infrequent nature of the transitions, we used the “forward flux
sampling” technique (Allen et al., 2005) to accumulate statistics
on the switching rates over many realizations. Figure 2B sum-
marizes the results of this analysis. As discussed above, miRNA
regulation can control gene expression noise by reducing the tar-
get burst size. In fact, the effective burst size of protein p in the

circuit can be defined as b = kp

γm+ks (as can be easily derived from
Equation 4). This is indeed the actual mean number of proteins
that can be produced from a mRNA, depending on the average
miRNA concentration s and the strength of repression k. These
two parameters are crucial in determining the amount of noise in
the protein level, and thus the probability of observing a stochas-
tic transition between the two steady states. In fact, the switching
rate can change by several orders of magnitude depending on
the level of miRNA regulation, and thus on the effective target
burst size (Figure 2B). It should be stressed that a toggle switch
composed only by transcriptional regulators would not be able to
reduce the burst size of either of the two genes, and thus could
not show the significative reduction in the switching rate that is
on the other hand present for a miRNA-mediated toggle switch.
Finally, the degree of cataliticity of the miRNA-mRNA interac-
tion seems to play an important role in defining the stability of the
circuit. A low degree of cataliticity, i.e., a high probability of a cou-
pled miRNA-mRNA degradation after their physical interaction,
allows a stronger reduction of the switching rate.

It is important to stress that (as we mentioned above in the
case of the purely transcriptional toggle switch) Equation 4 rep-
resents a coarse-grained description of the actual dynamics of the
regulatory circuit. At this level of resolution, several processes are

FIGURE 2 | Regulation by miRNAs increases the stability of the toggle

switch by controlling the burst size. (A) Stochastic fluctuations in gene
expression can induce transitions between the two stable steady states.
The figure shows an example of a simulation in which the circuit switches
between the situation in which A is actively transcribed while B is switched
off to the opposite one. The typical time between these transitions is set by
the switching rate, which is a function of the circuit parameters. (B) The
switching rate is shown as a function of the effective burst size(
b = kp

γm+k s

)
, as set by the level of miRNA regulation. The burst size is a

major determinant of gene expression noise, and small variations in this
parameter can vary the toggle switch stability of several order of
magnitude. The different curves correspond to different levels of cataliticity
α, i.e., the ability of the miRNA to be recycled and not degraded with the
targeted mRNA (see Equation 4). The higher is the recycling ability (α → 0)
the less is the circuit stability dependent on the burstiness of the process.

condensed into few effective reactions. In particular, the processes
involved in miRNA maturation and miRNA loading into the
RISC (RNA-induced silencing complex) are neglected, and the
availability of active miRNAs is just defined by the two param-
eters ks and γs. These processing steps are often intertwined
in a non-trivial way. For instance, it has been recently shown
(Winter and Diederichs, 2011; Martinez and Gregory, 2013) that
the stability of the miRNA is strongly influenced by its bind-
ing to the RISC. When the concentration of proteins crucial for
the RISC formation, such as Argonaute proteins, is high enough
or well coupled with the miRNA concentration, as suggested by
recent experiments (Martinez and Gregory, 2013), the coarse-
grained description in Equation 4 is effective, with the parameter
γs capturing the stability of the active miRNA loaded into the
RISC complex. However, in the presence of saturation of pro-
teins needed for the RISC formation (or other necessary small
RNA processing or transport machinery), as it could be the case
in transfection experiments (Khan et al., 2009), more detailed
models must be considered to fully capture the circuit dynamics.

Moreover, the dynamics of miRNA loading into the RISC can
introduce delays between miRNA transcription and the regula-
tory effect on their targets (Hausser et al., 2013). These delays can
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be effectively included in computational models and can indeed
quantitatively affect the circuit dynamics (Osella et al., 2011).
However, miRNAs are still effective in the control of target fluc-
tuations as long as these delays are not too large (Osella et al.,
2011).

Therefore, the proposed coarse-grained model is sufficient to
analyse and compare the robustness and stability against fluctua-
tions of different types of toggle switches (which is the main goal
of our work). However, it is clear that a more refined description
of the regulatory circuit should keep into account also additional
molecular players, and in particular the miRNA-RISC interaction,
in order to be able to formulate precise quantitative predictions.

2.3. BIOINFORMATIC SEARCH OF CANDIDATE DOUBLE NEGATIVE
FEED-BACK LOOPS IN THE EPI-miRNA NETWORK

The identification with bioinformatic methods of regulatory
motifs involving epigenetic regulators is much more difficult than
the analogous search in the case of regulatory motifs composed
by Transcription Factors or miRNAs. The reasons are the lack of
precise sequence motifs and the strong dependence on tissue type
and cell state of epigenetic regulation. Since it is not possible to
rely on sequence information, the main tool to address the prob-
lem is ChIP-seq data for the main epigenetic markers. Keeping
into account these features we decided to address the problem
with a two step analysis.

• First we identified, using literature information (Iorio et al.,
2010; Kunej et al., 2011; Sato et al., 2011; Gruber and Zavolan,
2013; Wang et al., 2013) and convergent signatures from exist-
ing databases a list of miRNAs which are known to target a
few specific epigenetic regulators. We performed this analysis
using the same tools we developed for our previous studies of
motifs involving miRNAs (Re et al., 2009; Friard et al., 2010).
The result of this first step is reported in Table 1.

• Second, we screened the ENCODE data for epigenetic mark-
ers looking for signatures in the promoter regions of the above
miRNAs. We summarized the results of this screening into a
matrix (included in the supplementary material) whose con-
struction is discussed in the Material and Methods Section. The
results are also reported as a heatmap in Figure 3.

This matrix allows to browse the epigenetic regulation of the
selected miRNAs. As expected, it gives a rather fuzzy represen-
tation of it, with a strong tissue dependence. Nevertheless, it
allows to identify a few precise patterns which are highlighted
by the clustering structure reported in the heatmap and to select
a few candidate closed feedback loops which are discussed in
Section 4.2.

3. MATERIALS AND METHODS
3.1. CONSTRUCTION OF THE HEATMAP OF FIGURE 3
The heatmap reported in Figure 3 is a graphical representa-
tion of the matrix obtained by annotating histone modifica-
tions and methylation patterns from the ENCODE epigenetic
tracks at the promoters of the pre-miRNAs listed in Table 1.
We retrieved the data from http://genome.ucsc.edu/ENCODE/
downloads.html (Raney et al., 2011; Rosenbloom et al., 2013).

Table 1 | List of miRNAs targeting epigenetic regulators.

miRNA target

has-miR302a MECP2
hsa-miR29a TET1, TET2, TET3
has-miR29a/c DNMT3A, DNMT3B
has-miR29b-1/2 DNMT1 (Indirect via SP1)
hsa-miR148a DNMT3B
hsa-miR148a DNMT1
hsa-miR152 DNMT1
has-miR302a DNMT1 (Indirect via AOF2)
hsa-miR342 DNMT1
hsa-miR17-92 DNMT1
hsa-miR26a-1/2 EZH2
hsa-miR101-1/2 EZH2/EED
hsa-miR214 EZH2
hsa-miR128-1/2 BMI-1
hsa-miR199a-1/2 BRM
hsa-miR433 HDAC6
hsa-miR449a HDAC1
hsa-miR138 SIRT1

In the first column we report a list of miRNAs which are known to target epige-

netic regulators and in the second column the corresponding targets. We use

the notation hsa-miR17-92 to denote the whole cluster comprising hsa-miR17,

hsa-miR18a, hsa-miR19a/b, hsa-miR20a, hsa-miR92a. We keep them together

since they are part of an unique transcript and are controlled by a common

promoter. Thus they will be associated to a single column in Figure 3.

We first downloaded DNA methylation profiles, obtained using
Reduced Representation Bisulfite Sequencing (RRBS) or with the
Infinium Human Methylation 450 platform, which uses bisulfite
treated genomic DNA to assay the methylation status of more
than 450,000 CpG sites covering all designatable RefSeq genes (all
these data are from Hudson Alpha Institute of Biotechnology).
We next downloaded histone modifications obtained by ChIP-
sequencing, which include histone variant H2AZ, methylation
status of the 4th, 36th, and 79th residue of histone 3, acetyla-
tion and methylation status of the 9th and 27th residue of histone
3 and monomethylation of the 20th residue from H4. All these
experiments were performed on different cell lines and in some
cases replicates are available.

We annotated all datasets at promoters from pre-miRNAs of
interest (defined as 2000 nts upstream of the pre-miRNA TSS)
and marked the entries of the matrix with 1 when there was
at least 1 nt of overlap between the promoter and the chosen
epigenetic track and with zero if no overlap was present.

In-house perl scripts were used to annotate epigenetic
modifications in the promoters of selected pre-miRNAs. The
heatmap in Figure 3 was generated with the R package “gplots”
(function “heatmap.2”). The source code for this analysis is avail-
able at https://github.com/atestori/Interplay_of_microRNA_
and_epigenetic_regulation_in_the_human_regulatory_network/
releases/tag/code1.

4. DISCUSSION
4.1. ANALYSIS OF BIOINFORMATIC RESULTS
It can be seen from the heatmap of Figure 3, and from the
corresponding matrix in the supplementary material, that the
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FIGURE 3 | Summary of the results of the bionformatic analysis. The
heatmap is a graphical representation of the matrix obtained by annotating
all available histone modifications and methylation patterns from the
ENCODE epigenetic tracks at the promoters of the pre-miRNAs listed in
Table 1. Color code: blue whether overlap exists between the putative
pre-miRNA promoter and the corresponding epigenetic track, and white
otherwise. Detailed information on the epigenetic markers listed in the
rows of the map can be found in the supplementary material.

epigenetic regulation of the selected miRNAs is characterized
by an intricated and fuzzy network of interactions which are
characterized by a few general features:

• Looking at the structure of the columns we see that it often
happens that different epigenetic mechanisms act synergisti-
cally to regulate the same miRNA. This is in our opinion the
most interesting outcome of this analysis and will be confirmed
by the examples that we discuss in detail in Section 4.2.

• In several cases the miRNAs that we selected overlap with the
epigenetic markers mediated by exactly the same genes which
they target. These are, within the limits of our analysis, good
candidates to realize the DNFL which we studied in the previ-
ous sections. We selected among them a few cases (discussed in
Section 4.2).

• The miRNAs seem to be regulated in a coordinated way.
Looking at the rows of the heatmap, it can be noticed
that in several cases the same epigenetic marker is present
in several miRNAs at the same time, thus realizing also
on this side a combinatorial and synergistic layer of
regulation.

The main lesson that we learn from this analysis is that the mixed
epi-miRNA network is strongly interconnected and that when
one of the toggle switches is activated, it is likely to activate
also other switches, triggering a complex sequence of regulatory
steps which all contribute to fix the final state of the system.
This may be better understood by looking at a few concrete
examples.

4.2. A FEW EXAMPLES OF DOUBLE NEGATIVE FEED-BACK LOOPS IN
THE EPI-miRNA NETWORK

This section considers a few examples of DNFLs. We discuss a
few cases for which a whole experimental knowledge is available
both of the inhibitory interactions and of the different cell fates
associated to the two competing states of the switch. In particular,
we chose examples that involve all the most important epigenetic
mechanisms, also trying to underline the remarkable connections
linking them together.

4.2.1. The Ezh2 - mir214 loop
This was one of the first DNFL identified in the Epi-miRNA
network (Juan et al., 2009) and is probably one of the best
studied examples. Ezh2 is the catalytic subunit of the Polycomb
complex and with Suz12 and Eed (which is also involved in a
DNFL, see Section 4.2.2) is part of the Polycomb Repressive com-
plex 2 (PRC2) which mediates Histone H3K27 trimethylation
(H3K27me3). This complex plays a crucial role in gene silenc-
ing via chromatin condensation. Among the targets of PRC2
there are several miRNAs and in particular one of its targets
is mir-214. In turn it was shown in Juan et al. (2009) that
Ezh2 is targeted by mir-214 thus closing a DNFL. Mir-214 is
located in one of the introns of the gene DNM3 on the oppo-
site strand orientation, thus it is controlled by its own promoter.
It is located at less than 5kb of distance from another impor-
tant miRNA: mir199a which, remarkably enough, is involved
in another epigenetic feedback loop (Section 4.2.3). Mir-214 is
vertebrate-specific and is known to be involved in several types
of cancer. In particular, it is thought to encourage the metasta-
sis of melanoma and is known to be downregulated in human
cervical cancer. The DNFL involving Ezh2 and mir-214 has been
studied in detail in Juan et al. (2009) where it was shown its role
in inducing the differentiation of embryonic stem cells into skele-
tal muscle cells. Before differentiation the Polycomb complex is
upregulated and represses the transcription of a large set of genes
among which also mir-214. Upon differentiation, stimulated by
the MyoD and myogenin developmental regulators, mir-214 is
released from the Polycomb control and downregulates the Ezh2
translation thus accelerating the differentiation of skeletal muscle
cells.

4.2.2. The Ezh2/Eed - mir101 loop
This DNFL is strictly related to the previous one. The most inter-
esting feature is that this time the miRNA targets two of the three
subunits of the PRC2 complex thus ensuring an even more effec-
tive downregulation of its activity. This loop was studied in detail
in Wang et al. (2013) where its role in controlling hepatocarcino-
genesis was shown. In particular, it was shown that when mir-101
is repressed and PRC2 upregulated the formation of malignant
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phenotypes of Hepatocellular Carcinoma cells is increased, lead-
ing to poorer prognosis in patients. When instead mir-101 is
expressed and PRC2 repressed, malignant phenotypes are sup-
pressed and the prognosis improves. It was also shown that the
switch of this DNFL may be triggered by the oncogene c-Myc,
which is able to mediate and increase the repression of mir-101
by PRC2.

4.2.3. The BRM - mir199 loop
This DNFL is particularly interesting since it involves a differ-
ent epigenetic mechanism: the SWI/SNF pathway. However, it is
deeply linked with the previous ones, since mir-199 is located
in the same cluster of mir214 and is known to form a com-
mon precursor with mir-214 (Loebel et al., 2005), and is thus
controlled by the same PRC2 complex discussed in the previous
examples. The SWI/SNF proteins form a chromatin remodeling
complex (for an updated review on the SWI/SNF pathway see for
instance Wilson and Roberts, 2011) which is known to interact
in a lineage specific manner with other chromatin remodeling
complexes and among them in particular with PRC2 (Ho et al.,
2011). The complex may contain two catalytic subunits. One of
them is the Brm gene (also known as Smarca2) whose translation
is controlled by mir-199 (Sakurai et al., 2011). Interestingly, the
3′UTR region of Brm is targeted by both the mature versions of
mir-199, i.e., mir-199-3p and mir-199-5p (Sakurai et al., 2011).
This is a rather uncommon situation and is typically the signa-
ture of a strong post-transcriptional control of the miRNA on
its target. In turn Brm is able to silence the mir-199, mir-214
cluster by silencing Egr1 which is known to be a strong activa-
tor of the cluster (Sakurai et al., 2011), thus closing in an indirect
way a double negative feedback loop between Brm and mir-199.
This toggle switch is known to play an important role in sev-
eral types of cancer leading to different cell populations during
oncogenesis, thus explaining why mir-199 had been reported as
an ambiguous marker in several types of cancer, being either
upregulated or downregulated in different samples of the same
tumor.

4.2.4. The DNMT1 - mir17-92 loop
Another crucial layer of epigenetic regulation is DNA methyla-
tion which is mediated by Dnmt proteins. It is well known (see
for instance Gruber and Zavolan, 2013) that Dnmt proteins are
strictly controlled in a coordinated way by a number of miR-
NAs, among them in particular mir-29a/b/c, mir-152, mir148a,
mir342, mir302 and various members of the cluster mir17-92.
This last cluster has recently attracted particular attention since
it has been shown that the cluster itself is controlled at the level
of DNA methylation by the same Dnmt1 protein which is tar-
geted by the miRNA of the cluster thus closing again a DNFL
(Dakhlallah et al., 2013). This loop has been shown to play an
important role in controlling the pathogenesis of lung fibrosis
(Dakhlallah et al., 2013). In particular it has been shown that
in patients affected by Idiopathic Pulmonary Fibrosis the miR-
NAs of the cluster are downregulated and Dnmt1 is upregulated
with respect to control samples (Dakhlallah et al., 2013), thus sug-
gesting that the disease could be associated to a switch of this
DNFL.

4.2.5. The Sirt1 - mir138 loop
Sirt1 is a NAD dependent histone deacetylase, it is part of a large
family of histone deacetylase proteins that represent yet another
layer of epigenetic regulation. It acts as a transcriptional repressor
by inducing a compact chromatin structure. It has been recently
shown in Liu et al. (2013) that Sirt1 is controlled by mir-138
which in turn is repressed by Sirt1. This DNFL also triggers mam-
malian axon regeneration. In particular it was shown in Liu et al.
(2013) that mir-138 is a suppressor of axon regeneration and that
the switch between mir138 and Sirt1 is able to regulate mam-
malian axon regeneration in vivo. In the same paper it was also
described that such a switch occurs in response to peripheral
nerve injury.

5. CONCLUSIONS
As we have seen, in the human regulatory network there is
a strong interplay between miRNAs and epigenetic regulators.
Apparently, there was a strong evolutionary pressure to develop
regulatory circuits combining these two types of regulations in
the context of cell-decision making, and in particular several “epi-
miRNA” toggle switches can be identified. One of the aims of
our work was precisely to suggest possible reasons behind this
evolutionary pressure. To this end, we studied both the deter-
ministic and the stochastic behavior of this switch, and compared
it with other possible choices, in which, instead of a miRNA or
an epigenetic regulator, a transcription factor is the regulator.
Our main result is that the epi-miRNA combination is the one
which ensures the widest range of bistability and robustness of
the two equilibrium states of the switch, as summarized in the
sketch in Figure 4. This makes this type of circuit perfectly suited
for robust but reversible decisions and indeed these circuits are
typically involved in cell fate determination and development.
First of all, epigenetic regulators playing a role in development
are usually global regulators (Chen and Dent, 2014), affecting the
expression of several genes. Therefore, the decision made at the
level of expression of these master regulators can be propagated
to a large downstream expression program, potentially defining
the cellular phenotype. This feature suggests a possible reason for
the presence of epigenetic regulation in cell decision making cir-
cuits such as toggle switches. Moreover, as Figure 1C indicates,
the binary-like nature of epigenetic repression naturally increases
the robustness of the bistable behavior of the circuit, thus ensur-
ing the competition between alternative steady states for a large
set of parameter values.

On the other side, we have shown that the very nature of post-
transcriptional regulation by miRNAs can keep under control
undesired random transitions between the two possible equilib-
rium states by reducing the target burst size. The combination
of these features suggests an evolutionary reason for the specific
interplay between epigenetic regulators and miRNAs in bistable
circuits that have to implement stable and long-lasting cell fate
decisions.

Interestingly, the combination of the two characteristics dis-
cussed above leads to a controlled reversibility of the toggle
switch. In a generic toggle switch a transition occurs when a
strong enough external stimulus acts on one of the two players
of the switch. The only condition is that the stimulus must be
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FIGURE 4 | Workflow of our analysis.

larger than the “potential barrier” between the two equilibrium
states. A well studied example is, for instance, the epithelial-
mesenchymal transition controlled by the mir200-ZEB circuit (Lu
et al., 2013). However, in the “epi-miRNA” case we have a fur-
ther level of complexity since the potential barrier depends on the
epigenetic control on the miRNA promoter, and this epigenetic
control is particularly sensitive to the cellular environment (Feil
and Fraga, 2011). The dependence of epigenetic modifications
on environmental factors can thus change the stability of the
switch, and eventually drive switch-back transitions due to sud-
den modifications of the potential barrier. Thus, the epi-miRNA
toggle switch can ensure a strong stability to random transitions
in homeostatic situations, but has a certain level of plasticity that
can be crucial to induce a phenotype switch in the presence of
changes in the cellular environment, for example due to tran-
sitions between different developmental stages (Feil and Fraga,
2011). It would be very interesting to include also this feature
in our model. However, a detailed model of the epigenetic inter-
action and its relations with the cellular environment would be
required, and this is still an open issue (Dodd et al., 2007).

In conclusion, the analysis presented in this paper suggests a
possible relevant role for epi-miRNA DNFLs in cellular decision
making. The peculiar nature of epigenetic and miRNA regula-
tions can ensure a bistable circuit behavior in a vast range of
conditions while keeping the alternative steady states robust with
respect to stochastic fluctuations.
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