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Chapter 1
Introduction

Next generation sequencing (NGS) techniques are seeing constant evo-
lutions and allow us to sequence nucleic acids with increasingly com-
petitive cost per base and unprecedented speed: in just few hours it is
possible to produce the same amount of data obtained with traditional
techniques in the past 30 years [1].

The advent of these technologies answered the demand for greater and
more advanced instruments to answer complex biological questions, al-
lowing researchers and clinicians to probe genomes in greater depth.
Sanger sequencing [2], despite the impressive improvements since its
introduction is not suitable for large-scale modern projects due to its
high costs and low throughput.

NGS scenario is under constant evolution and many different platforms
are available, such as lllumina, IonTorrent and Roche 454 (that is cur-
rently at phase-out stage), however in every case the output is a vast
set of reads (up to billions), each one representing a fragment of the
input sample (typically in the range of 50-500 nucleotides) that have
to be processed in a way that depends on the kind of analysis in order
to get some meaning from them.

Analysis task is complicated by the presence of sequencing errors: al-

though provided accuracy is usually very high (in the range of 98% to



99,9%) each platform has its specific error model that must be consid-
ered when performing analysis.

This problem is compensated by sequencing depth, that represents how
many times each nucleotide from input sample has been sequenced: it
is very unlikely to get the same errors in all reads, so by applying
proper statistics it is possible to detect them. Adequate coverage is
critical for accurate reassembly of the genomic sequence and to date
it is not a problem to achieve very high depths.

Because of high throughput a NGS run on a single sample is likely to
generate more data than is required, so with adequate protocols it is
possible to multiplex multiple samples and to process them in a single
run.

Regardless of the origin of the biological sample, NGS platforms pro-
duce very large files in which the reads from input sequences are coded
and it may be not trivial at all to manage them and perform all the
analysis steps required to extract useful information: bioinformatics
analysis has become an essential part of the process.

The field of application for NGS techniques is wide and there is no
“universal” way of analysing data. Depending on requirements of the
specific project the need to adapt existing tools and pipelines or to
develop new ones might arise.

The main aim of this research project was the development of new
bioinformatic algorithms and integrated tools to address several as-
pects of NGS data analysis, with particular focus on three main areas:
molecular diagnostics [3], denovo assembly of RNA-seq data [4] and

application of denovo assembly to metagenomics [5].

1.1 Molecular diagnostics

Molecular diagnostics is a collection of techniques that allow to assess

a person’s health at molecular level by detecting specific markers in
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his DNA and RNA and their possible effects on expressed proteins.
By genome sequencing it is possible to diagnose susceptibility to spe-
cific diseases and to get additional useful informations about patients
on whom clinical actions must be taken.

This name identifies a wide set of techniques, however this project
was mainly focused on the identification of variants in gene panels
and virus genotyping.

A typical approach in this area is target based amplification, that con-
sists in the design of specific primer pairs to amplify genomic regions
where interesting markers are located: these regions are named am-
plicons.

Sequencing results are processed by a variant calling procedure, that
consists on alignment of reads to a reference sequence to identify poten-
tial variants that are finally annotated with functional informations.
These applications are opening the doors to personalised medicine,
however there is still a number of open challenges that must be ad-
dressed before they can be transferred to routine clinical practices,
especially on the bioinformatics analysis side. The presence of se-
quencing errors and the large size of datasets are probably the most

limiting factors that must be dealt with.

BRCA1 and BRCA2 (BRCA) genes are among the most frequently
analysed genes in clinical routine, since rapid identification of germline
BRCA mutations can be useful for both prophylactic strategies and
therapy administration. In fact they are the two main highly penetrant
genes predisposing to hereditary breast and ovarian cancer syndrome
(HBOCS): about 5-10% of tumour cases are mainly caused by mu-
tations in the BRCA tumour-suppressor genes, resulting in nonfunc-
tional BRCA proteins. This defect compromises the accurate DNA
repair function, cell cycle regulation and transcriptional activity [6, 7].
Sanger sequencing is considered the gold standard for identifying qual-

itative changes in BRCA regions: nevertheless, it is time consuming
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and expensive, due to the large sizes of the coding regions of both genes
(5592 and 10257 bp for BRCA1 and BRCA2 genes, respectively), and
the equal distribution of mutations within regions of interest (Breast
Cancer Information Core database [8] reports about 1781 and 2000
variants for BRCA1 and BRCA2 genes, respectively).

Introduction of NGS in laboratory practice allowed molecular diag-
nostic laboratories to increase the throughput and to analyse multiple
genes in the same run, facilitating the study of complex disease where
Sanger sequencing is not technically or economically feasible. How-
ever given current limitations these techniques are only applied as a
support to traditional ones even though, with proper advancements,

they are expected to replace them in the future.

Another important - and very current - molecular diagnostics ap-
plication plays an important role in the treatment of HCV infected
patients. Obtaining the correct genotype and subtype information
about the infecting strain is essential to ensure that the most ap-
propriate treatment regimen is selected. In addition once the viral
population has been profiled it is also important to analyse mutations
present on viral genome in order to detect those associated with drug
resistances [9].

NGS has given a boost to this research area, since information pro-
vided by short reads can be used to unambiguously detect correct
genotype [10] and genomic mutations. High sequencing depths also
provide enough information to assess the presence of a mixed infec-

tion.

Our contribution to this area was the the development of a robust
procedure for variant calling and annotation from NGS data specifi-
cally designed for clinical purposes that at present is used as core for
two integrated tools: Amplicon Suite - for the detection and annota-
tion of disease-related variants - and SmartVir - for virus genotyping

and drug resistance detection.



The two applications and obtained results will be presented in chap-
ter 3.

1.2 Denovo assembly of RNA-seq data

RNA-seq (also called Whole-Transcriptome shotgun sequencing (WTSS)
[11]) is a set of powerful techniques that allow to perform identification
and quantification of RNA transcripts in a biological sample.
Unfortunately given current limitations, NGS platforms do not output
the whole transcripts but a vast set of reads that have to be properly
assembled in order to reconstruct transcriptome.

Short-reads assembly represents a crucial point in data analysis, since
subsequent steps heavily rely on high quality of reconstructions.

At present there are two main approaches to transcriptome assembly:
e Alignment to reference genome
e Denovo assembly

The first approach is the most efficient and accurate: it consists
on alignment of reads to a reference genome, however it is viable only
if high quality annotated reference sequences are available for the or-
ganism that is object of study.

When references are not available denovo assembly has to be per-
formed: reads are assembled blindly to reconstruct the longer tran-
scripts.

Currently available tools for denovo assembly - such as Bridger [12],
Oases [13] and Trinity [14] - emphasise the good sensitivity levels
reached, but this result is often obtained by producing an high number
of assemblies, consequentially increasing false positives. In addition
they have very high hardware requirements, limiting their applicabil-
ity especially in case of smaller laboratories that do not have access to

dedicated computing infrastructures.
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False positive reconstructions when working with real data are a very
important matter, since in absence of any reference it is not trivial
- and maybe not even possibile - to determine the correctness of a

reconstruction.

As my MSc thesis project I contributed to the development of a
prototype for a new denovo assembler for RNA-seq data, that was
specifically designed to overcome current limitations in terms of both
false positive reconstructions and hardware requirements. Preliminary
results were encouraging so part of my PhD project was aimed towards
its finalisation into STAble [15] that will be introduced in chapter 4.

1.3 Application of denovo assembly to

metagenomics

Metagenomics is the study of uncultured microorganisms sampled
directly from their habitat.

NGS based metagenomics approaches allow us to study organisms that
live in particular conditions that cannot be reproduced in laboratory
environment and to analyse complex interactions that are established
among different microbial populations but would otherwise be missed
by examining artificial cultures.

This scenario opens further challenges for bioinformaticians, since it
is necessary to deal with data coming from heterogenous communities
that can be noisy and partial.

A typical metagenomics experiment is composed by two approaches:
microbiota identification [16] and metatranscriptome characterisation
[17].

The first is the most exploited one and consists on profiling the mi-
crobial population in order to determine which species are actually

present in a given sample, alongside their relative abundances.
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The latter one is complementary to the former and allows to to un-
derstand the effective metabolic activity of the profiled population by
analysing collective transcriptome.

Microbiota identification is usually performed by amplicon sequencing
16s TRNA (that is conserved between different species) and to align
reads to databases of annotated sequences, such as RDP [18]: in some
cases it is possible to perform classification even at species level.
Metatranscriptome characterisation involves a WTSS and at present
transcripts reconstruction is usually performed by direct alignment of
reads to a reference database, however - given the short length of reads
- this approach is expected to cause many assignment ambiguities dur-
ing mapping process and does not consider the possible present of new
unannotated transcripts.

As part of this project we explored the possibility to apply den-
ovo assembly approach to the collective metatranscriptome, by tuning
STAble to assemble reads from multiple organisms.

Preliminary results for this extension will be presented in chapter 4

while future perspectives are discussed in chapter 5.
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Chapter 2

Outline of the Thesis

The main aim of this research project was the development of new
bioinformatic algorithms and integrated tools to address several as-
pects of NGS data analysis, with particular focus on three main areas:
molecular diagnostics [1], denovo assembly of RNA-seq data [2] and

application of denovo assembly to metagenomics [3].

The first part of this thesis is focused on two specific areas of molec-
ular diagnostics, that are the identification of variants in gene panels
and virus genotyping.

In both areas, variant calling - that is the process of aligning reads
to a reference sequence in order to detect potential variants - repre-
sents possibly the most critical step since quality of results is strongly
depending on its ability to discriminate between real variants and se-
quencing errors.

Many variant callers are available for research use, however they are
not applicable to clinical routine environments since for diagnostic pur-
poses the entire development process must be carried in compliance
with strict requirements for achievement of proper certifications.
Once variants are identified it is also important to annotate them with
functional informations and to perform comparison with external re-

sources to get most up-to-date clinical informations about their effects,
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however to date this task is not trivial all because of the presence of
multiple competing formats for variant nomenclature [4].

Moreover all these steps in clinical environment should be performed
within a completely automatised procedure that does not require any
manual intervention.

My contribution to this area was the the development of a robust pro-
cedure for variant calling and annotation starting from NGS data and
a module for automatic integration with external resources that trans-
parently resolves issues caused by different nomenclature conventions.
The procedure was extensively validated on both simulated and real
clinical data and now constitutes the core of two integrated tools:
Amplicon Suite and SmartVir.

Amplicon Suite is a user-friendly platform for variant calling and anno-
tation on amplicon sequencing NGS data. Thanks to a collaboration
with research group of Dr. Ettore Capoluongo of Policlinico Gemelli
in Rome we were able to obtain CE-IVD certification for analysis of
BRCA1 and BRCA2 genes, that are known to be involved in breast
and ovarian cancer.

SmartVir was developed in collaboration with Roche Italian sequenc-
ing team and easily allows to perform HCV genotyping and drug re-
sistance detection in order to administer most appropriate treatment
to infected patients.

These tools and obtained results will be presented in chapter 3.

Currently available tools for denovo assembly of RNA-seq data -
such as Bridger [5], Oases [6] and Trinity [7] - share similar approaches
(as they rely on the identification of k-mer sequences) and they achieve
high levels of sensitivity at the expense of a consistent number of false
positive reconstructions and very high hardware requirements.

As my MSc thesis project I contributed to the development of a new
strategy for denovo transcriptome assembly that is based on an original

approach where the whole reads are used to drive the assembly process
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instead of considering only smaller k-mers with the aim of reducing
the number of false positive reconstructions.

Preliminary results were encouraging, so part of my PhD projects was
aimed towards its finalisation into STAble [8], that will be introduced
in chapter 4.

Finally the last part of this thesis presents a contribution to metage-
nomics, more specifically to the metatranscriptome assembly problem
which is very actual while analysis procedures are still at an early
stage.

Reconstruction of microbial transcripts from NGS datasets is actu-
ally being performed by direct alignment of short reads to reference
databases, however this is expected to cause many assignment ambi-
guities during mapping process and it is possible to miss new unanno-
tated transcripts.

My specific contribution was the tuning of STAble for assembly of
transcripts from mixed populations (such as microbial communities),
thus bringing the benefits of single organism denovo RNA-seq assem-
bly to metatranscriptome studies. This extension will be presented in

chapter 4 while future perspectives are discussed in chapter 5.
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Chapter 3

Analysis workflows for NGS

The advent of NGS techniques paved the road for new research areas
and revolutionised many existing ones. Recent advancements allow
us to sequence nucleic acids at increasingly high speeds and accuracy
while lowering the cost per base.
Molecular diagnostics is a very actual area to which NGS has
opened new frontiers: this name identifies a collection of techniques
aimed at identifying specific markers in a patient’s genome and tran-
scriptome and to analyse their effects on expressed proteins.
Current applications of NGS to this area are offering the perspec-
tive of personalised medicine, with the possibility of modelling specific
therapies for each person. However there are still open challenges -
especially in the bioinformatics analysis side - that are delaying the
integration of these techniques into routine clinical procedures and
they are being applied only as a support to traditional ones.
Our contribution to molecular diagnostics is focused on two specific
areas: identification of variants in gene panels and virus genotyping.
A strong variant calling mechanism is the core of most bioinfor-
matics analysis procedures for molecular diagnostics: it allows the
identification of nucleotide variants by aligning NGS reads to a refer-

ence sequence as shown in Figure 3.1.
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GGAAAGGCTGCCCGGTGAAGAATTCGAG
GTAGGGAAAGGCTGCCCGGTGAAGAATT
TAGGGAAAGGCTGCCCGGTGAAGAATTC
GTAGGGAAAGGCTGCCCGGTGAAGAATT — reads
AGGGAAAGGCTGCCCGGTGAAGAATTCG
TAGGGAAAGGCAGCCCGGTGAAGAATTC
CCGTAGGGAAAGGCTGCCCGGTGAAGAA
..ACCCGTAGGGAAAGGCAGCCCGGTGAAGAATTCGAG... reference

Figure 3.1: Representation of variant calling process where short NGS
reads are aligned to a reference sequence. In this example 6 out of 7
reads have a T instead of an A at the highlighted position, so there is
a potential variant.

The main problem that must be taken into account in this process it
the presence of sequencing errors: the accuracy of a variant calling
mechanisms resides in its ability to discriminate between them and
real variants by applying proper statistics.

The typical subsequent step is variant annotation that consists on as-
signment of functional informations to detected variants: depending
on their location they are likely to have a different impact on cell’s
health. Variants in intronic regions might cause no visible effects, but
when they alter splicing sites or coding sequences it is desirable to
study them more in depth.

Finally, detected and annotated variants should be compared to ex-
ternal resources, like databases and functional predictors, to get ad-
ditional informations about their effects (such as if they are known
to be linked to a particular pathology). Even though this task may
look straight-forward at first glance, at present it is not trivial at all,
mainly because of the lack of commonly agreed standards for variants
nomenclature [1]. Human Genome Variation Society (HGVS) back

in the year 2000 proposed its own recommendations [2]: despite they
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have been widely adopted and are likely to become the international
standard, to date there are still many resources that implement alter-
native formats.

Given these premises, a new workflow that implements all these steps
was developed and used as core for two integrated tools: Amplicon
Suite and SmartVir.

Amplicon Suite is a platform for analysis of molecular diagnostics
datasets that can be easily extended to work with all annotated genes.
SmartVir was developed in collaboration with Roche Italian sequenc-
ing team and performs fast and accurate HCV genotyping and drug
resistance detection.

Both tools can be used through an intuitive graphical user interface
(GUI) carefully designed to allow users with no specific bioinformatics
skills to perform analyses autonomously.

The new pipeline will be introduced and then its specific implementa-

tion into the two integrated tools will be discussed.

3.1 A new pipeline for variant calling and

annotation

The new pipeline for variant calling and annotation is depicted in
Figure 3.2: it expects raw NGS amplicon sequencing data as input

and returns a set of detected and annotated variants.

3.1.1 Analysis profiles

The new pipeline is designed to be flexible and to work with NGS
amplicon sequencing data from any annotated gene.

We defined an automated procedure for the creation of a proper pro-
file that can be used to introduce support for new genes. A profile is

composed by reference sequences to be used for alignment (NCBI Ref-
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SEQUENCING ERROR
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VARIANTS

Figure 3.2: The new variant calling and annotation pipeline.

Seq data [3]) and other informations required to complete all analysis

steps. Most relevant informations involved are:
e List of genes on which amplicons where designed.
e Primer sequences used for amplification.
e List of transcripts related to target genes and their annotation.

e Informations about amplification and sequencing kit.

3.1.2 Alignment to reference

This module accepts a NGS amplicon sequencing dataset as input that
is analysed in order to detect potential variants.

The procedure is depicted in Figure 3.3 and consists of two steps:
1. Detection of appropriate reference sequence and its sub-region.

2. Accurate alignment to sub-region for variant detection.
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NGS amplicon reads

- BLASTN
— _ 7

AGGCGTTTGGGCAAATT .
SmartAlign
AGGCGTTAGGGCAA-TT

AGGCGTTAGGGCAA-TT
AGGCGTTAGGGCAA-TT

Figure 3.3: The two-step alignment procedure. Short reads are
mapped to correct reference sequence using BLASTN and then are
more accurately aligned to a specific region using SmartAlign.

In the first step reads are mapped to genes listed in analysis profile
using BLASTN [4], similarity cutoff to adopt is parametric and should
be carefully chosen depending on the specific application.

Afterwards each read is more accurately aligned to its mapping region
using SmartAlign, a custom aligner developed by my research group
that implements the Needleman- Wunsch dynamic programming algo-
rithm [5], with penalty scores carefully tuned for NGS data.

We chose to develop our custom aligner to get full control of the situa-
tion since, as shown in Figure 3.4, this step is critical: there might be
multiple algorithmically correct alignments, however their biological

meaning can be significantly different.

The final output of this step is the set of potential variants de-
tected for each read, expressed in genomic absolute coordinates with

the following notation:
(chr_name):(chr_pos):(nt_ref):(nt_var)
e chr_name: name of the chromosome where the gene is located.
e chr_pos: genomic start position.

27



reference reference

AGTTTTAAAA-GTCATA AGTTTTAAAAGTCATA
d i s
AGTTT-AAAAAGTCATA AGTTTAAAAAGTCATA

read read

Figure 3.4: Both alignments shown in the example are algorithmically
correct but their biological meaning is very different. Alignment on
the left implies an insertion and a deletion in the same read, which is
an unlikely event. The one on the right involves a single substitution,
which seems more reasonable from a biological perspective. However if
we suppose that read is generated by Roche 454 platform, which has
known issues with homopolymers, we can state with a good degree
of confidence that alignment on the left is the correct one, but both
variants are not real and have to be marked as sequencing errors.

e nt_ref: original allele from reference

e nt_var: allele found in read.

This notation contains all required informations to unambiguously
identify each variant, however it is just for internal use: there are mul-
tiple plugins that before generating final output convert it to user’s
preferred format, with particular emphasis on HGVS standards. Here

are some examples of real variant names:

chr13:32930761:A:G (substitution of A with G)
chr13:32900613:-:T (insertion of T)
chr17:41251858:T:- (deletion of T)

chr13:32906457:ACCACAT:-——---- (deletion of ACCACAT)

3.1.3 Sequencing error detection

This module filters variants reported by previous one by applying
proper statistics with the aim of removing potential sequencing er-

rors.
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nt variant

A
~ ~

intron exon splice site

U EE——

CDS 5 UTR 3’ UTR non-coding

Figure 3.5: Hierarchy used by variant annotation module for classifi-
cation.

Main parameters involved in filtering are the number of supporting
reads and mean quality score of involved bases. Also a minimum cov-
erage for target region is required.

Actual values for these thresholds must be chosen according to re-

quirements of specific application.

3.1.4 Variant annotation

Variant annotation module classifies nucleotide variants according to
their effect on expressed transcripts: classification hierarchy is de-
picted in Figure 3.5.

There is a first grouping based on the involved region, that can be an
intron, an exon or a splice site in the boundary between two of them.
In case of intronic regions, the variant is just labeled that way and no
further actions are taken, since it is not likely to produce any effect.
When the variant modifies a splice site between an intron and an exon,
a warning is raised and both the original and modified versions of the
site will be reported as the situation needs to be carefully evaluated.
Finally, in case of exonic regions there is an additional layer of classi-

fication:
e CDS: variant modifies an annotated coding region.

e 5’ UTR: variant modifies 5" UTR region.
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e 3’ UTR: variant modifies 3" UTR region.
e non-coding: affected transcript is non-coding.

Nucleotide variants that affect a CDS are also annotated with their

representation at amino-acid level:

p.(aa_ref) (aa_pos)(aa_var)

e aa_ref: the original amino acid from the reference sequence.
e aa_pos: amino acid position in the protein sequence.

e aa_var: the variated amino acid.

Some examples of real variants:

p.K21S (substitution of K with S in position 21)
p.L35del (deletion of L in position 35)
p.15-16insV (insertion of V after position 15)

3.1.5 Integration with external resources

Interoperability with external dedicated resources is nowadays a very
important feature, since it allows to get access to the latest discoveries
from the scientific community.

Many widely used authoritative resources are available for molecu-
lar diagnostics, from functional predictors for mutations to dedicated
databases where knowledge about the effect of known variants resides.
Unfortunately accessing them can be as important as tricky, mainly
because universal standards for variant nomenclature are still far from
being fully deployed. In addition, some databases do not explicitly
state accession number and revision of the reference sequence used for
annotation, so there is a considerable risk of performing the wrong

comparisons.
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To address this issue, the new pipeline is not designed around a par-
ticular nomenclature but internally uses its own format for variant
representation and implements multiple plugins that are able to per-
form conversions to different formats when outputting data to the user,
with particular attention to HGVS recommendations that are used as
default.

The same plugins are also used to perform automatic integration with
external resources, that can be queried by performing a name conver-

sion from our internal format to the accepted one.

3.2 Amplicon Suite

Amplicon Suite is a user-friendly tool for variant calling and anno-
tation from NGS amplicon sequencing data. It is designed to allow
clinicians and researches to perform analyses autonomously without
requiring specific bioinformatics skills.

It is based on the thin-client approach where the user can interact
with the system through an intuitive graphical user interface, while
the analysis core resides on a remote server. This architecture was
chosen to deal with typical restrictions on hospital networks where
personal computers may not be not powerful enough to run analysis
process and strict policies about installed software are enforced. In
addition, to address legal privacy issues it is also possible to install
analysis core on a dedicated server connected to the local network,
thus not requiring upload of data to remote hosts.

By setting up a proper profile it is possible to work with any anno-
tated gene, however thanks to a collaboration with Policlinico Gemelli
in Rome we had the opportunity to focus on the setup and tuning of a
profile specific for analysis of variants on BRCA1 and BRCA2 genes,
that are known to be involved in breast and ovarian cancer.

The analysis workflow is shown in Figure 3.6 and is based on the new
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Figure 3.6: Amplicon Suite’s analysis workflow. Modules that imple-
ment the new variant calling pipeline are highlighted in red.

variant calling pipeline.

Data input The user uploads a raw NGS dataset through an intu-
itive graphical user interface and is asked to answer few simple ques-
tions about the procedure used for sample preparation. Currently ac-
cepted input formats are SF'F files returned by Roche 454 and FAST(Q)

files from Illumina and IonTorrent platforms.

Conversion to standard format Amplicon Suite is able to analyse
datasets returned from the major sequencing platforms available and
adding support for new ones is as simple as extending this module.
Input is converted to a standardised format, that consists of a FASTA
file with raw sequences and a QUAL file where quality scores annotated
with Phred values [6].

A metadata file is also generated, containing informations required
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by subsequent steps, such as used sequencing platform and its error

model.

Demultiplexing Current NGS platform have a very high through-
put that in most cases exceeds actual needs. Because of this, a common
approach is to perform multiplexing and sequence multiple samples in
a single run.

Specific multiplexing protocol employed varies depending on the se-
quencing platform that will be used, however it is usually achieved
by incorporating specific barcodes (that in Roche 454 environment are
usually called MIDs) at the ends of amplified sequences. Every sam-
ple is associated to a specific barcode so during analysis process it is
possible to perform demultiplexing by detecting them.

In case of Illumina or IonTorrent datasets, sequencing output is al-
ready demultiplexed and a separate FASTQ file for each sample is
provided.

Conversely, for Roche 454 datasets MIDs at the ends of each read are
detected and separate pairs of FASTA and QUAL files are generated

for each sample.

Variant calling and annotation This macro-step consists of the
implementation of the new pipeline. Demultiplexed reads are at first
mapped to BRCA1 and BRCA2 references (NG_005905.2 and NG_012772.1)
using BLASTN in order to perform assignment of each input sequence

to the correct one.

SmartAlign is then applied to perform a more accurate alignment of
each read to the mapping region to detect potential variants that are
subsequently filtered for sequencing error removal and annotated over
expressed transcripts.

Finally, integration module is currently implemented for 4 resources:
e Breast Cancer Information Core (BIC): an open access
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online breast cancer mutation database [7].
e dbSNP: the NCBI database of genetic variation [8].

e SIFT: predictor for the effects of amino acid substitution on

protein function [9].

e Polyphen: predictor of functional effects of human nsSNPs [10].

Output results Results are reported to the user through the graph-
ical user interface, in form of tables with detected variants and charts
related to their frequencies and amplicon coverage.

Clinicians can review results and select which mutations are to appear

in the final report, that can be saved in PDF format and printed.

3.2.1 Clinical validation

Amplicon Suite was clinically validated and CE-IVD certified for the
analysis of BRCA1 and BRCA2 genes in collaboration with research
group of Dr. Ettore Capoluongo of Policlinico Gemelli in Rome.
Validation was performed by integration into the analysis workflow
proposed in Figure 3.7, that describes a complete protocol (from sam-
ple preparation to NGS data analysis) for routine analysis of BRCA
full exome and exon-intron flanking regions.

The whole procedure is based on the use of a multiplex PCR strategy
[11] (BRCA MASTR kit by Multiplicom [12]) that is able to generate
DNA library, followed by 454 GS Junior pyrosequencing [13].

Due to technical limitations of pyrosequencing in deciphering homopoly-
mer stretches [14], a specific validated pre-NGS quality control step
based on fragment analysis [15] that is able to evaluate quality of PCR
multiplex and identify small indels in coding regions has been setup.
The whole procedure is documented in [16], however here we'll focus

on bioinformatics analysis step.
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Figure 3.7: Integrated NGS workflow used for validation of Amplicon

Suite (image from [16]).
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Validation method

Validation was performed on 220 samples from women that were di-
agnosed as sporadic and/or familial ovarian cancer patient.

Genomic DNA was isolated from peripheral blood by a method based
on a commercial kit distributed by Roche Diagnostics.

Samples were then PCR-enriched using Multiplicom BRCA MASTR
Dx assay v2.0, that covers all the coding regions and splice sites of
BRCA genes with 93 amplicons per patient.

Sequencing was performed on GS Junior platform (23 runs in total)
with GS Junior Titanium Sequencing Kit in combination with the
matching GS Junior Titanium PicoTiterPlate (PTP).

The first 10 runs (80 samples in total) were analysed with both Am-
plicon Variant Analyzer (AVA) and Amplicon Suite, in order to allow
validation of the new software, while the remaining 13 were analysed
primarily with Amplicon Suite and only subsequently with AVA.
AVA is part of the software suite distributed by Roche Diagnostics with
every GS sequencing platform and is specifically designed for analysis
of amplicon sequencing experiments, however it has some important
limitations. Noteworthy, advanced coverage analysis is of primary im-
portance in diagnostic setting, but it cannot be achieved by using AVA
and data is not stored in a structured way (e.g. flat files instead of a
database) not allowing to easily compare results of different runs and
to create for instance an historic database of all variants of interest
that were detected. Moreover the process of creation of a new analysis
project can be tricky for a user with no specific bioinformatic skills and
automatic integration of external resources is not provided: Amplicon
Suite was specifically designed around user requests to overcome all
these issues.

Reference sequences NG_005905.2 (BRCA1) and NG_012772.1 (BRCA2)
were used for alignment and results were confirmed by sequencing all

samples also with Sanger, that is actually considered as the golden
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standard for these applications.

Analysis results have been compared against most relevant databases
for clinical use: dbSNP [8], BIC [7], LOVD !, UMD 2, AURP 2 and
HGMD [17].

Evaluation of amplicon coverage

The first task was the evaluation of amplicon coverage for each pa-
tient. Two threshold values were established: 30x and 38x that were
arbitrarily defined as alert and enhanced level.

In literature 30x is actually considered as the minimum acceptable
coverage for genomic clinical studies [18], while in the setup pipeline
38x indicates an optimised performance level.

Table 3.1 reports obtained results by Amplicon Suite for whole ampli-
con coverage that indicates the number of patients for which at least
the threshold values of 30x or 38x are overcome in all 93 amplicons.
This information was extremely useful to tune analysis protocol: data
shows that the performance of amplicons not reaching fixed coverages
did not depend on the number of samples loaded in each run, since
with 13 samples per run the number of amplicons that failed the target

values decreased.

Indel identification by fragment analysis

Given the known limitations of pyrosequencing in deciphering ho-
mopolymer stretches, indel identification was performed separately by
fragment analysis based on Multiplex ligation-dependent probe ampli-
fication (MLPA) [19], which is a variation of the multiplex polymerase
chain reaction that permits amplification of multiple targets with only

a single primer pair and it is widely used to determine relative ploidy.

thttp:/ /www.lovd.nl/3.0 /home/
2http://www.umd.be/
3http://www.arup.utah.edu/database/
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Table 3.1:  Whole amplicon coverage values reported by Amplicon
Suite (data from [16]).

Subjects . Alert level | Enhanced level
per run # of runs | Subjects (%) < 302 < 382
8 15 120 (54) 87 (73) 74 (62)
11 1 11 (5) 5 (46) 6 (55)
12 2 24 (11) 13 (54) 12 (50)
13 5 65 (30) 53 (82) 28 (43)
[ Total | 23 [ 220 (100) [ 158 (72) | 120 (55) ]

Probes are designed to target genes of interest and their signal strengths
are compared with those obtained from a reference DNA known to
have two copies of the chromosome. If an extra copy is present in the
test sample, the signals are expected to be 1.5 times the intensities of
the respective probes from the reference. If only one copy is present
the proportion is expected to be 0.5. If the sample has two copies, the
relative probe strengths are expected to be equal.

Results from Table 3.2 show that 31 out of 212 samples resulted pos-
itive in this test and also gives an insight about the complexity of
implementing automatic integration with external resources: in this
list, nomenclature for the same variant is very different between HGVS
recommendations and BIC annotation.

Since the presence of two deleterious mutations is a very rare event in
BRCA genes, these samples were not sequenced by NGS, but imme-
diately sequenced by targeted Sanger: perfect concordance between
fragment analysis and Sanger for all the prescreened indels was ob-
tained.

In addition the accuracy of Amplicon Suite has been confirmed since
it reported no further indels for those samples that resulted negative

to this test and were processed with NGS.
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Table 3.3: BRCA deleterious mutations identified by NGS and confirmed by targeted Sanger sequencing (data

from [16]).
# of Gene 7 Exon HGVS nucleotide BIC nucleotide HGVS protein 7 dbSNP _ Clinical importance
carriers . | BIC | LOVD [ UMD | AURP ]| HGMD

2 BRCA1 5 c.181T > G 300T > G p.C61G 28897672 Yes - Yes Yes Breast cancer

1 BRCA1 11 c.3257T > G 3376T > G p.L1086X 80357006 Yes - Yes Yes Breast cancer

1 BRCA1 11 c.3514G > T 3633G > T p.E1172X - - - - Yes Breast and/or ovarian cancer
1 BRCA1 12 c4117G > T 4236G > T p.E1373X 80357259 Yes Yes Yes Yes Ovarian cancer

1 BRCA1 13 c.4258C > T 4377C > T p.Q1420X 80357305 Yes - Yes Yes Breast cancer

1 BRCA1 18 c.5123C > A 5242C > A p.A1708E 28897696 Yes Yes Yes Yes Breast cancer

1 BRCA1 19 c.5161C > T 5280C > T p.Q1721X - - - Yes Yes -

3 BRCA2 IVS10 c.1909 4+ 1G > A 2137+ 1G > A - - - - Yes - -

1 BRCA2 16 c.7681C > T 7909G > T p.-Q2561X 80358994 Yes - - - -

1 BRCA2 17 c.7857G > A 8085G > A p-W2619X 80359011 Yes - - Yes Breast and/or ovarian cancer
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Table 3.4: VUS identified by NGS and confirmed by targeted Sanger
sequencing (data from [16]).

[ # of carriers [ Gene [ Exon [ HGVS nucleotide [ BIC nucleotide [ HGVS protein ]

1 BRCA1 11 c.804C > G 923C > G p-N268K
1 BRCA1 11 ¢.2501G > A 2620G > A p.-G834E
1 BRCA1 11 c.3868A > G 3987A > G p.K1290E
1 BRCA1 14 c.4361T > C 4480T > C p.-V1454A
1 BRCA1 17 c.5058T > A 5177T > A p-H1686Q
1 BRCA2 10 c.1444C > T 1672C > T p.-L482F
1 BRCA2 25 c.9383C > T 9601C' > T p-L3125F

Detection of mutations with NGS

All samples that resulted negative to the fragment test where se-
quenced with GS Junior platform and results compared against refer-
ence clinical databases (integration with BIC and dbSNP was auto-
matically performed by Amplicon Suite, while for the other resources
results were manually compared).

Detected variants and mutations are are subdivided into 3 main groups

according to their clinical relevance:

e Deleterious mutations: mutations that are known to pro-

duce harmful effects.

e Variants of uncertain significance (VUS): novel mutations
or variants for which informations included in different databases
were discordant regarding the pathogenic effect at both biologi-

cal and clinical level.

e Variants of no significance: synonymous SNPs or missenses
that all interrogated databases concordantly classified as not pro-

ducing noteworthy effects.

Among 181 samples analysed by NGS, 10 different deleterious mu-
tations (see Table 3.3) were found in 13, including 7 BRCA1 mutations
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(5 nonsense and 2 missense) and 3 BRCA2 mutations (2 nonsense and
1 missense).

VUS were detected in 7 patients and are reported In Table 3.4. One
patient carried the p.K1290E along with the deleterious BRCA2 exon
20 deletion, while the remaining ones were identified in women not
carrying other deleterious mutations.

Finally, 55 synonymous and missense SNPs were found: 25 and 32 in
BRCA1 and BRCA2 genes, respectively. The exhaustive list will not
be reported here but is available in [16].

Most importantly, all mutations reported by Amplicon Suite were con-
firmed by targeted Sanger sequencing, demonstrating that it is possible

to apply it for routine clinical analysis of BRCA mutations.

3.3 SmartVir

NGS techniques allow mass sequencing of viral genome, providing the
opportunity to probe viral population from a single host.

There is a growing interest in these applications for both research and
clinical purposes, however dedicated resources - such as databases with
reference genotypes and drug resistance related mutations - are still
fragmented, making the creation of an integrated solution for routine
analysis not trivial at all.

As our contribution to this field we developed SmartVir, a user-
friendly integrated tool for virus genotyping and drug resistance de-
tection. Like Amplicon Suite it is designed to be generic and to work
with many viral species, however within a collaboration with Roche
[talian Sequencing team we focused on the creation of a profile for the
treatment of HCV infections.

Analysis workflow is depicted in Figure 3.8: it shares some modules
with Amplicon Suite (input dataset, conversion to standard format

and demultiplexing) and it is also based on the new variant calling
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Figure 3.8: SmartVir’s analysis workflow.

pipeline.

Genotyping This module performs genotyping of each sample in
order to detect which strain (or strains in case of mixed infections) is
affecting the patient.

Applied technique is the one introduced in [20] that allows discrim-
ination between the first six genotypes (1, la, 1b, 2, 3, 4, 5 and 6)
without ambiguities.

Reads from each sample are aligned using BLASTN to references of all
genotypes but only alignments that span over a specific 250-bp area
in NS3 (position 701-950), NS5A (position 1-250) and NS5B (position
101-350) regions are retained. Assigned genotype is the one that shows

the best matches against all these three sub-regions.

Variant calling and annotation Reads for each sample are sub-

jected to the two-step alignment process: they are first mapped to the
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correct region of the assigned reference using BLASTN and then are
accurately aligned with SmartAlign for variant detection.
Detection of mutations in viral genome represents an important step

towards the choice of the most appropriate treatment.

Drug resistance detection This module implements automatic in-
tegration with external resources in order to verify if mutations de-
tected in viral genome are known to cause resistance to certain drugs.
Databases that are currently used as reference are Geno2Pheno [21]
(a web-based decision support system for HCV treatment) and the
list of clinically relevant mutations reviewed in [22] that we informally

named Lontok.

Output results Detected mutations and drug resistances are avail-
able in form of tables through the user interface alongside other in-
formations about the quality of the sequencing run (e.g. amplicon
coverage and number of reads for sample). It is also possible to export
and print a report with a summary of relevant mutations found for

each patient.

3.3.1 Results

SmartVir was validated in collaboration with Roche Italian sequenc-
ing team starting from a set of 40 HCV samples subdivided in 4 GS
Junior runs (10 samples per run).

Sequencing kit is developed by Roche and targets NS3, NS5A and
NS5B regions for genotypes 1la, 1b and 3a (which are the most preva-
lent strains worldwide [23]) over 27 total amplicons.

NS3 is a multifunctional protein with both serine protease and RNA
helicase/NTPase activities, NS5A is a phosphoprotein which takes
part in virus particle formation and is involved in virus resistance

against interferons [24] and NS5B protein encodes for an RNA-dependent
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Table 3.5: Demultiplexing and genotyping report for HCV test run.

[ Sample ID [ Genotype [ Reference [ Total reads [ Aligned reads ]

1 1b D90208.1 421 376

2 1b D90208.1 2795 2764
3 1b D90208.1 5264 4260
4 1b D90208.1 13392 11450
5 1b D90208.1 3904 2889
6 la AF009606.1 6884 6796
7 la AF009606.1 9939 9840
8 la AF009606.1 17324 16723
9 la AF009606.1 4464 4408
10 la AF009606.1 10983 10887

RNA polymerase (RdRp), which is the central catalytic enzyme of the
HCV replicase [25, 26].

Results for one of validation runs will be presented.

Table 3.5 reports genotype and reference sequence automatically as-
signed by SmartVir for each sample alongside alignment statistics (in
terms of total reads and reads successfully aligned to reference). Sam-
ple 1 has a very low read count and SmartVir immediately raised a
warning about this, informing the user that not enough data is avail-
able to produce reliable results (it was later confirmed that sample
was sent to sequencing despite some amplification problems have oc-
curred).

After quality control check and genotype assignment, SmartVir
proceeds to detect mutations on viral genome and automatically com-
pare them to external resources (as already mentioned Geno2Pheno
[21] and Lontok [22] are currently integrated) in order to determine
possible drug resistances. Samples 1, 9 and 10 resulted in a negative
outcome, while drug resistance associated mutations where detected
for all the others over NS3 regions (see Table 3.6).
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Table 3.6: Drug resistance associated mutations detected by SmartVir.

Sample Region | Mutation | Read count Total Frequency | Geno2Pheno Lontok
ID coverage
2 NS3 S122N 22 1187 1.9% - Asunaprevir
3 NS3 S122T 53 3360 1.6% - Asunaprevir
Simeprevir
ASUBADIEVIE |\ naprevir
4 NS3 D168E 376 6850 5.5% ZOPTEVIT | Simeprevir
Paritaprevir . .
. . Vaniprevir
Simeprevir
5 NS3 S122N 6 2959 0.2% - Asunaprevir
5 NS3 R117H 6 2959 0.2% Telaprevir -
6 NS3 F43L 24 3971 0.6% Paritaprevir -
6 NS3 S122R 23 2912 0.8% Simeprevir Simeprevir
6 NS3 R117H 6 2912 0.2% Telaprevir -
7 NS3 F43L 4173 4296 97.1% Paritaprevir -
7 NS3 S122R 75 5640 1.3% Simeprevir Simeprevir
8 NS3 Q80H 4352 4441 98.0% Simeprevir -
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Chapter 4

Algorithms for NGS

RNA-seq is a set of powerful techniques that allow to characterise
metabolic activity of a biological sample by sequencing all of its mRNA
[1].

Unfortunately, as seen in chapter 1 the output of a NGS sequencing
platform is a vast set of short reads that have to be properly assembled
in order to reconstruct original transcripts.

When high quality reference sequences are available for the organism
that is object of study, reconstruction can be performed by alignment
to reference genome for which many efficient and accurate solutions
are available.

In case references are unavailable denovo assembly [2] has to be ap-

plied: reads are assembled blindly in order to reconstruct transcripts.

Currently available tools for denovo assembly of RNA-seq data -
such as Bridger [3], Oases [4] and Trinity [5] - achieve high levels of
sensitivity and share a similar approach as they rely on the identifica-
tion of k-mer sequences. Bridger then uses this information to build
and traverse splicing graphs [6], while Oases and Trinity rely on De-
Bruijn graphs [7].

Despite the good sensitivity, they all show two main limitations that

will be further discussed with results:
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e High number of false positive reconstructions
e Very high demands in term of hardware requirements

When working with real data, in absence of any reference it is not
trivial - and maybe not even possibile - to determine the correctness
of a reconstruction, so applying methods that are likely to produce
many false positives can lead to production of unreliable results.
Furthermore current approaches are very demanding in terms of hard-
ware requirements: this can be a serious limitation, especially in the
case of smaller laboratories where dedicated computing infrastructures
are not available.

To overcome these limitations we developed STAble [8], a new
denovo assembler for RNA-seq data that is built around an original
approach: the whole reads are used to drive the alignment process
instead of considering only smaller k-mers with the aim of reducing
the number of false positive reconstructions.

False positive matter was our primary concern, however it is desirable
to achieve a sensitivity at least comparable to existing tools.
Moreover we designed it to be parallelizable, allowing to to split the as-
sembly process into smaller subtasks that can be processed in parallel
even in absence of dedicated computing infrastructures.

STAble’s performances were initially compared with other tools
on many simulated and real RNA-seq datasets, but given the growing
interest on metagenomics analysis we also explored the possibility of
applying it for the assembly of metatranscriptome.
Metatranscriptome studies are still at an early stage and identification
of expressed transcripts is usually accomplished by alignment of short
reads (obtained by Whole-Transcriptome shotgun sequencing (WTSS)
9] as for RNA-seq) to databases of annotated bacterial transcripts,
that are later mapped to known metabolic pathways in order to char-

acterise metabolic activity.
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Figure 4.1: STAble’s assembly workflow.

This approach is however expected, given to short length of reads, to
produce many assignment ambiguities and novel unannotated tran-
scripts can be missed.

For these reasons we decided to tune STAble for this application: pre-

liminary results are presented in section 4.2.

4.1 STADble

STAble’s assembly workflow consists of three modules as depicted in
Figure 4.1.

The first step is the efficient detection of potential head-tail align-
ments between reads, possibly with mismatches: ideally if two reads
show an head-tail overlap with a good score they can be assembled
into a longer contig.

Second module uses reported alignments to build an unweighted di-
rected graph which is traversed by a custom algorithm that takes into

account biological properties of input data.
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Finally the third one applies some post-processing operations to re-
sults.
Core analysis modules are implemented in C while the rest of the

pipeline is written in Perl.

4.1.1 Head-tail alignments detection

The first module starts from a FASTQ file with raw sequencer output
on alphabet ACGTN and returns a list of triples [i, j, k] where:

e ¢ and j represent two reads.
e k is an integer number.

e The tail of ¢ (that is i[k...len(i)]) has a good overlap with the
head of j (that is j[1...(len(i) — k + 1)]).

Given this definition, it is vital to explain what is considered to
be a good overlap, a concept that must take into account biological
properties of input data.

From a pure computer science perspective there are two main ap-

proaches to string alignment:

e Exact alignment: a potential alignment is valid only if edit

distance is 0.

e Alignment with errors: alignment is valid if edit distance is
included between 0 and a threshold ¢.

For this specific application the presence of errors must be tolerated
to deal with possible sequencing errors. More formally, an head-tail
alignment is reported as valid only if it satisfies the following condi-

tions:
1. Edit distance must not be greater than max_errors.
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Figure 4.2: The graph on the left represents a situation where se-
quence A can be extended with B, C' and D. Due to high sequencing
depths the existence of A1 and A2 that are very similar to A is highly
probable. If a maximum overlap length is not set, the situation on
the right is likely to occur: the graph will contain many paths that
will complicate its structure but do not contribute with meaningful
informations.

2. Overlap length is included in interval [min_len, maz_len).

The first condition trivially ensures the goodness of the alignment
score: for increased efficiency only mismatches are considered.
A minimum length for the overlap is required to avoid alignments po-
tentially caused by casual similarities. This is particularly important
for dealing with low complexity and repeated regions that are likely
to produce many chimeric contigs if too short overlaps are accepted.
Similarly a maximum length must be set to deal with redundancy of
information caused by high sequencing depths: an alignment caused
by an excessive overlap will generate a contig just a little longer than a
single read, while there are good chances that the same reads can gen-
erate more informative alignments elsewhere. In addition this thresh-
old helps to reduce the number of arcs in the graph built by the second
module, preventing the formation of alternative paths that represent
unessential variants of the same transcripts as shown in Figure 4.2.
Always referring to the same figure it is important to point out that
even if alignments between A, Al and A2 are prevented, their tails
still align with the same sequences: to address this, when a too simi-

lar sequence is detected it is discarded.
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In addition there is also a limit to the number of alignments a
single read can contribute to on both head and tail. The heuristic
is that if alignment [i, j, k] is discarded because read i was used too
many times, it is highly probable that a very similar read ¢’ exists and
makes the alignment [¢, j, k'] valid too. Without this limitation, for
each alignment [i, j, k| and a generic pair of sequences ¢ and j' (very
similar to ¢ and j) any possible combination such as [i/, 7, k'], [i, j', k"]
and [i’, 5/, k"] is likely to be considered, but once again this would just
result in a more complex graph without additional benefits.

The proposed algorithm for head-tail alignment detection will now be
examined, starting with the definition of keywords, parameters and

data structures involved.

Keywords

Anchor A k-mer used to start an alignment, whose length is defined
by an input parameter. An anchor is valid only if it contains all four

nucleotides, in order to filter low complexity regions.

Parameters
anchor size Length of the anchors expressed in nucleotides (default:

11).

anchor_scope Maximum number of anchors for each sequence to
consider for starting alignment. Its meaning will become more clear

during algorithm presentation (default: 5).

max_mismatches Maximum number of mismatches allowed (de-
fault: 10% of overlap length).
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min_overlap_len Minimum length allowed for overlaps (default: 20%

of longer sequence!l).

max_overlap_len Maximum length allowed for overlaps (default:

90% of shorter sequence).

max_align_before Maximum number of alignments the head of a

sequence can contribute to (default: 5).

max_align_after Maximum number of alignments the tail of a se-

quence can contribute to (default: 5).

Data structures

Anchor index This is the main data structure for this module,
depicted in Figure 4.3. It is implemented as an array whose indexes
range across binary representations of all possible anchors and is used
to keep record of all occurrences of each anchor in input reads.

Lists of occurrences are implemented as dynamically allocated linked
lists, since a sequential visit is required by the algorithm. Each list
entry contains an integer identifier for the sequence and the offset of

the occurrence relative to its start.

Algorithm description

The pseudocode of the main procedure - informally named SeqAlign
- is represented in Algorithm 1. Computation starts by recoding in-
put FASTQ from 8-bit ASCII characters to a 2-bit alphabet as shown
in Figure 4.4: this will allow to reduce memory consumption and to
speed up subsequent operations.

No special symbol is assigned to ambiguous bases - such as N - but the

'RNA-seq reads are expected to have all the same length, however the algorithm
is designed to work even for sequences with different lengths.
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000000000000
(AAAARA)

000000000001
E—
(AAAAAC)

111111111110 sequence id
(TTTTTG) offset

111111111111
(TTTTTT)

Figure 4.3: Representation of the anchor index data structure for an-

chor_size=6, supposing that each base is encoded with a 2-bit simbol:
A=00, C=01, G=10, T=11.

DICTIONARY
>
BASE CODE Sequence 1
ACGNTTAN
A 00
- o Sequence 1 |00 01 10 01 11 11 00 01
> Sequence 2 Sequence 2 |11 11 11 01 00 01 10 01
G . TTTCACGN
T 11
N 01

Figure 4.4: Encoding of input FASTQ on a 2-bit symbols alphabet.
Ambiguous bases are encoded with the same symbol reserved for C.
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Algorithm 1: SEQALIGN

10

11
12

13

14

15

16

17

18
19

Input: fa_input (FASTQ sequences)
Output: A set of triples [i, j, k], each one representing and head-tail
alignment between ¢ and j starting from position £ in <.

// Encodes input on a 2-bit alphabet.

seq_arr + encode_fastq(fa-input);

// Initialise output set and anchor index.

alignments < 0;

anchor_index <+ 0;

foreach s € seq_arr do

// Initialise the list of sequences already aligned with s.

visited < (;

end < lenght(s) — anchor _size;

foreach idx € [0 ... end] do

// Reads next anchor from s.

anchor = read_sequence(s, idx, idx + anchor_size);

// Add the new occurrence to index.

anchor iindex|anchor]| < anchor_index[anchor] U [s, idz];

// Process only first and last anchor_scope anchors.

if idx € [0 ... anchor_scope] U [end — anchor_scope ... end] then

// FindAlignment returns a triple [i,j,k] that
represents an alignment.

al < FindAlignment(anchor, s, idzx, visited);

alignments < alignments U al

// Verify if acceptance s was discarded during
alignment process.

if is_discarded(s) then

‘ break;
end

end

end
end
return alignments;
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same symbol reserved for C is used. This choice was made to keep the
size of the new alphabet as low as possible. Results quality is not af-
fected since reads with too many ambiguous base are usually discarded
by pre-processing steps because of low quality, so false matches with C
are expected to be rare. The use of C was chosen because in biological
data poly-A and poly-T stretches are very frequent, so that could have
caused much more problems.

After initialisation is done, the algorithms proceeds to analyse input
sequences one at a time. For each one the wisited set is kept (imple-
mented as a linked list): it contains ids of the sequences that have
been successfully aligned before with current one. This is an effective
strategy for avoiding multiple alignments between the same sequences:
they would be collapsed anyway during graph construction step (as
they would result in the same arc), however this way there is a time
saving by avoiding an useless computation.

Each read is examined anchor by anchor and they are all indexed.
For the first and last anchor_scope anchors additional operations are

performed:

1. Current anchor is given as input to Find Alignment procedure

(Algorithm 2) that will try to detect potential alignments.
2. If a good alignment is found it is added to report list.

3. Check if alignment procedure caused current sequence to be dis-
carded (because it is too similar to an already processed one or

maz_align_before and maz_align_after limits are exceeded).

anchor_scope limit was introduced to cut down complexity: if two se-
quences can be successfully head-tail aligned, one of the first (or last)

anchors must match.

The first operation performed by FindAlignment is to query anchor
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Algorithm 2: FINDALIGNMENT

=

10
11
12
13
14

15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30

Input: anchor (current anchor), cur_id (current sequence id),
anchor_start (anchor offset in current sequence), visited (a set
with ids of sequences already aligned with current one).

Output: A triple [i, j, k] representing an head-tail alignment between i

and j starting from offset k in 1.

// Retrieves previous occurrences of same anchor from index.

oces[] < anchor_index|anchor];

foreach o € occs do

// Ignore previous occurrences on the same read.

if cur_id = o.seq_id then

‘ next;

end

// Candidate already aligned with current one or

max_align_be fore and max_align_after are exceeded.

if cannot_align(cur_id, o.seq_id, visited) then

‘ next;

end

// ov represents start and end index of potential overlap

area.

ov + get_overlap(cur_id, o, anchor_start);

// Overlap too short or one sequence included in the other.

if illegal overlap(ov) then

‘ next;

end

mismatches < CompareSequences(cur_id, 0.seq_id, ov)

if mismatches < max_mismatches then

// Discard current one if too similar to candidate.

if ov.length > maz_overlap_len then

mark_as_discarded(cur_id);
return ();

end

// cur_id is before o.seq_id in alignment.

if is_before(cur_id,o.seq-id,ov) then

‘ first < cur_id; last < o.seq_id; k < ov.startl;
else
‘ first < o.seq_id; last < cur_id; k < ov.start2;

end

first.aligned_after < first.aligned_after + 1;

last.aligned_be fore < last.aligned_be fore + 1;

visited < visited 4 o.seq_id;

return [first,last, kl;

end

end
return (;
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ACGTGG GAACTAGAGGA

GCACTAGAGAA TATACGT

Figure 4.5: During alignment process reads are overlapped on a specific
anchor to start alignment.

index for past occurrences of input anchor. For each one three actions

are taken:
1. Preliminary checks
2. Overlap area detection
3. Alignment scoring

During step 1, involved sequences are checked for trivial incompat-

ibilities:

e The two occurrences must not refer to current sequence: such

alignment would make no sense.

e Candidate sequence must not have been aligned with current one
before or marked as discarded (because too similar to another

one or because of maz_align_before and max_align_after limits.)

On the second step, sequences are overlapped on anchors to identify
potential overlap area as shown in Figure 4.5. In case its extension is
smaller than min_overlap_len or the alignment results in the inclusion
of one sequence into the other (this situation occurs in case of input
sequences with different lengths), procedure skips to next occurrence.

Finally in step 3 the alignment score is computed by Compare-
Sequences (Algorithm 3), that efficiently computes number of mis-

matches on overlap area by using XOR metric.
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Algorithm 3: COMPARESEQUENCES

Input: s1, s2 (ids of sequences to compare), ov (index that identify
overlap area).
Output: Number m of mismatches in overlap area.
// Reads data from sequences.
1 datal = read_sequence(sl, ov.startl, ov.endl);
2 data2 = read_sequence(s2, ov.start2, ov.end2);
// Computes bitwise XOR.
s mm = datal @ data2;
// Returns the number of bit pairs greater than O.
4 return countMismatches(mm);

Given that z @ y = 1 & = # y, computation of s1 @ s2 results on a
third sequence r for which the following property holds:

Vi 2 ri] # 0 < s1[i] # s2[i (4.1)

Since input is encoded in 2-bit symbols the number of mismatches
can be easily calculated by applying XOR operator and counting num-
ber of bit pairs with value greater than 0.

If return value is lower than maz_mismatches, FindAlignment performs

two additional steps:

e If overlap length is longer than max_overlap_length current se-
quence is marked as discarded because too similar to the candi-
date.

e If all constraints are satisfied, it is established which read is the
head and which the tail, updating respective aligned_before and

aligned_after counters afterwards.

Finally, if alignment has not been discarded yet it is reported since

it has passed all filters.
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T1
T2

Figure 4.6: Distinction between “big” and “small” bubbles. T1 and T3
are both to be reported since we consider them as alternative splicing
forms of the same gene. T2 is to be discarded, as it is considered as
a slight variant of T1. T4 is to be reported too, but marked as “low
confidence” since it does not end on a sink.

4.1.2 Graph construction and traversal

The second module uses reported head-tail alignments to build an un-
weighted directed graph where each node represents a read and each
arc an head-tail alignment between two of them.

Ideally every path originating in a source and ending into a sink rep-
resents a transcript or a fragment of it. However in real world cases
this is not true due to high sequencing depths, the presence of alter-
native splicings and the head-tail alignments on repeated regions that
may lead to chimeric reconstructions: this graph must be carefully

traversed taking into account all these issues.

A first set of expected situations is depicted in Figure 4.6. We con-
sider T1 and T2 to be two alternative paths that represent the same
biological sequence and we want to report only one of them. This
is because of the presence of what we informally call a small bubble:
a single path is bifurcated in two or more parallel ones that merge
again after few nodes. We consider this class of bubbles to represent

a consequence of high sequencing depths and consequent redundancy
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T6

Figure 4.7: In this scenario only T5 and T7 are to be reported because
T6 is not considered as a significant variant.

of information.

T3 instead is part of a big bubble with T1 so we consider these tran-
scripts as alternative splicing forms of the same gene and we want to
report both.

Finally even T4 is due to be reported, however since it is the result of
a loop cut (it does not end on a sink) it will be marked as low confi-
dence: this way the user is informed that is derived from a particular
situation and should be used carefully. The distinction between “big”
and “small” bubbles is made relying on a threshold expressed as a

number of nodes.

Another possible scenario is shown in Figure 4.7. A path branches
off in several directions that do not merge anymore, so we have a com-
mon source but different tails.

In this case we define a threshold on the length of the tail: only sig-
nificantly different variants are to be reported, the others are labeled
as short tendrils and ignored.

The same criteria applies for the reversed situation when there are
multiple sources that merge in the same branch: a minimum number

of original nodes in the head is required.
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Parameters

intT The number of nodes used to discriminate between “big” and

“small” bubbles, referring to situation in Figure 4.6 (default: 5).

extT With reference to Figure 4.7, this is the number of original

nodes required in the head or tail (default: 2).

minL.  Minimum length for paths to be reported (default: 2).

Algorithm description

The second module procedure - informally named cpaths - is pre-

sented in Algorithm 4. It consists of three different steps:

1. An unweighted directed graph is built from SeqAlign results:

each node represents a read and each arc an head-tail overlap.
2. Graph is searched for short tendrils that are removed.

3. Graph is traversed to detect all paths that satisfy all our require-

ments.

Algorithm 4: CPATHS

Input: sa_res (the list of triples returned by SeqAlign), intT', extT.
Output: A list of paths in a graph built from SeqAlign results.
// Build graph from SeqAlign results.
1 g < buildGraph(sa_res);
// Prune short tendrils.
2 g + pruneTendrils(g);
// Traverse graph to build paths.
3 paths « traverseGraph(g);
a return paths;

Operations performed by the first step are trivial: every input

triplet [4, j, k] is translated by adding arc i — j to the graph.
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Second step consists in pruning of short tendrils by using input
parameter extT’ as a threshold.
For each node n the algorithm verifies the existence of paths that start

in that node and have length greater than extT"

e If at least one exists, all outgoing arcs that lead to paths shorter

than the set threshold are removed.

e If not, on the outgoing arcs leading to paths of maximum length

are kept.

The same logic is then applied by traversing arcs backwards: for each
node n we want to assess the presence of incoming paths longer than
extT'.

At this point pruning of short tendrils is completed.

The third and last step represents the core of the traversal algo-
rithm. It is based on the principles of depth-first search (DFS) and
starting from the pruned graph detects all paths longer than minlL
after taking care of all big and small bubbles issues.

The algorithm is very complex since it has to deal with a vast number
of situations, so instead of showing and intricate pseudocode, a more
intuitive high-level description will be given.

DFS is performed from all sources s, then for each node n that is found
the first operation is to check if it is a sink.

In affermative case, if the path from s to n is at least minL long, it is

added to result set. If not every child m of n is examined:

e If m is already in the path from s to n we have a loop, so the
arc that causes it is cut and the path is reported but in the low

confidence group.

e If path from s to n contains a node w such that the sub-path
from w and m is shorter than intT and in previously reported

paths there is another one that contains a sub-path from w to m
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also shorter that intT we have detected a small bubble, so the

loop continues and next child of n is examined.

e If none of the previous conditions is verified DFS continues by

travelling through m.

DFS approach was chosen because of its memory efficiency, that is
desirable given that typical graphs are composed by millions of nodes.
On the other hand, from a time perspective it is less effective since in
presence of nodes with indegree > 1 multiple visit to the same sub-
graph are performed.

In order to avoid this we applied an heuristic to speed up the process.
Let’s suppose that node n has indegree > 1 and arc p — n was al-
ready travelled: when DFS ascends to n subgraph originating from it
is fully explored and all valid sub-paths are already detected. For each
node with multiple parents we keep track of all its valid subpaths, so
when a new arc ¢ — n is travelled, multiple paths are immediately
reported by appending all possible continuations to current one with-
out performing a new visit. When node n has been visited a number
of times equals to its indegree the list of sub-paths is deleted to free
memory.

This technique allows to visit each node only once, but it may also
generate many paths that are very similar to each other: to address
this we introduced the whiL threshold.

At the beginning all nodes are coloured of white and every time a path
is reported, all of its nodes are coloured of black. A path is reported
only if it contains at least whiL white nodes: that means it will intro-
duce new significative information compared to the already reported
ones.

From a theoretical perspective, if the graph contains an exponen-
tial number of paths that satisfy requirements the traversal operation

has exponential time complexity. However, due to filtering criteria ap-
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plied in first module, in real data experiments this condition has never
occurred and visit always completed within few seconds in graphs with

millions of nodes.

4.1.3 Results post-processing

The first operation performed by this module is the conversion of paths
reported by second module to a FASTA file: SeqAlign output and
input FASTQ contains all the informations required to accomplish
this task.

Then the clustering algorithm implemented by vsearch [10] is applied
to resulting file: due to high redundancy of NGS data it is possible
that different paths that are completely unrelated in terms of graph

nodes represent the same biological sequence, so they are collapsed.

4.1.4 Parallel workflow

STAble is designed to be parallelizable, allowing to break down com-
putations on huge datasets into multiple smaller subtasks that can be
individually run even in absence of dedicated computing infrastruc-
tures.

The proposed workflow is depicted in Figure 4.8. Input dataset is split
in blocks of size K each (a typical value is 1 million reads) that will
be processed in parallel.

Once all computations are completed, partial results are collected and
used as input for a new iteration. When size of resulting dataset is
smaller than K, a last iteration takes place and final results are re-

turned.
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Figure 4.8: STAble’s parallel workflow.

4.2 Benchmarks

STAble’s performances were evaluated and compared with Oases and
Trinity - that currently represent the most widely used state-of-the-
art tools for denovo assembly - and with Bridger, which is the most

recently introduced one.

4.2.1 Benchmarks on simulated datasets

STAble’s performances, in a preliminary stage were tested on a large
set of simulated datasets.

While benchmarks are usually performed on real data for which a ref-
erence genome is available, we have chosen to work with simulations
because they allow the unambiguous identification of what is true and
false.

With real data the correctness of reconstructions is usually assessed

by alignment to genome or to a database of known transcripts, so as
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Figure 4.9: Let’s suppose that t1, t2 and t3 are three alternative
splicing forms of the same gene and that only t1 and t2 are present
in the sample: reads may lead to reconstruction of t3 even if it is not
effectively present.

long as reconstructions are compatible with genome are considered as
true.

With simulated datasets instead, we are able to apply more strict fil-
ters by accepting only those transcripts that were effectively present
in database used for simulation: this opportunity allowed us to char-
acterise a new and subtle type of false positive.

Figure 4.9 represents three different splicing forms of the same gene.
Let’s suppose that only t1 and t2 are effectively expressed in sequenced
sample: assembly process may lead to reconstruction of t3 even if it is
not present.

With simulated datasets we have a full knowledge of what we expect
to reconstruct, so we can easily label t3 as a false positive and try
tuning the assembler not to produce it.

On real data scenario instead, t3 is compatible with genome and cor-
responds to a known annotated transcript: it must be accepted as true
with a consequent underestimation of real false positive ratio.

To deal with this situation, in following benchmarks two classes of

false positive are defined:

e False positive class A (FPA): reconstructions that are com-
patible with genome but do not correspond to any of the tran-

scripts used to perform sequencing simulation.
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e False positive class B (FPB): chimeric reconstructions that

are not compatible with genome.

Simulated benchmarks setup

Input reads have been simulated using ART [11] as Illumina 150bp
single end with 20x of fold coverage and HiSeq 2500 quality profile.
Reconstructions were validated by alignment to database used for sim-
ulation using BLASTN [12]: only reconstructed transcripts that are
fully included in one of the reference sequences are accepted and re-
ported as true positives.

False positives are then aligned to genome with GMAP [13]: compat-
ible ones are labeled as FPA and the others as FPB.

A reference sequence that has been reconstructed for at least 90% of
its length is labeled as full-length reconstructed.

STAble ran on a small grid of 9 computers equipped with Intel(R)
Core(TM) i3-2130 CPU @ 3.40GHz processor and 8 GB of RAM, while
other assemblers were executed with default parameters on a server
equipped with Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz processor
and 48 GB of RAM.

Simulated datasets

Results for 4 simulated datasets will be shown. Size of these samples
is much smaller than common datasets: they were chosen to highlight
the key points of strength of the new strategy, but also results on

full-size real datasets will be presented afterwards.

Dataset A 147800 reads simulated from a pool of 200 transcripts

randomly chosen from human transcriptome.

Dataset B 1088271 reads simulated from a pool of 6309 transcripts

randomly chosen from human transcriptome.
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Dataset C 1242040 reads simulated from transcriptome of 10 ran-

domly chosen bacterial species (11815 total transcripts).

Dataset D 2382790 reads simulated from transcriptome of 50 ran-
domly chosen bacterial species (43578 total transcripts)

Abbreviations

e Assembler Assembler name.

e # of results Total number of reported reconstructions.

e # of FP Total number of false positive reconstructions (FPA+FPB).
e FPA Number of false positives classified as FPA.

e FPB Number of false positives classified as FPB.

e 100% Number of reference sequences reconstructed at full-length.

e 80% Number of reference sequences reconstructed at least at
80% of length.

e 70% Number of reference sequences reconstructed at least at
70% of length.

e S100 Sensitivity value for full-length reconstructions.
e S80 Sensitivity value for reconstructions of at least 80% of length.

e S70 Sensitivity value for reconstructions of at least 70% of length.

e FPR Global false positive ratio (FPA+FPB).
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Dataset A Dataset A consists of 147800 reads simulated from a
pool of 200 transcripts randomly chosen from human transcriptome
(see Table 4.1).

STAble showed a sensitivity similar to other assemblers while produc-
ing only 3 false positives. It is interesting to note that Oases showed

the highest sensitivity but also the highest number of false positives.

Table 4.1: Dataset A - 200 random human transcripts. STAble re-
turned the most reliable set of results showing a sensitivity comparable
to other assemblers while producing only 3 false positives.

[ Assembler | # of results [ # of FP | FPA | FPB [ 100% [ 80% | 70% [ S100 [ S80 | S70 [ FPR |

STAble 249 3 1 2 156 163 166 8% | 82% | 83% 1%
Bridger 210 61 15 46 140 144 145 0% | 2% | 3% | 29%
Oases 321 114 45 69 158 164 164 | 79% | 82% | 82% | 36%
Trinity 258 59 29 30 157 164 167 | 79% | 82% | 84% | 22%

Dataset B Dataset B consists of 1088271 reads simulated from a
pool of 6309 transcripts randomly chosen from human transcriptome
(see Table 4.2).

Even in this scenario STAble produced the lowest number of false pos-
itives while exhibiting a sensitivity comparable to other tools.

While Oases and Trinity showed a slightly higher number of tran-
scripts reconstructed at 80% and 100% it is important to point out
that they also show the highest rate of false positives.

While false reconstructions produced by Bridger and Oases are mostly
FPB, Trinity showed a very high number of FPA: if this was a bench-
mark on real data (where it is not possible to discriminate between
the two classes because the set of effectively expressed sequences is not
available) it would have shown a way better performance.

Moreover when considering reference transcripts reconstructed at at

least 70% STAble performances are almost the same as Trinity’s.
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Table 4.2: Dataset B - 6309 random human transcripts. Although
STAble’s sensitivity is a bit lower than Oases’ and Trinity’s, results
reliability is still the best.

[ Assembler [ # of results [ # of FP [ FPA [ FPB [

100% [ 80% [ 70% | S100 [ S80 [ S70 [ FPR ]

STAble 9071 1373 551 822 2682 | 3417 | 4206 | 43% | 54% | 67% | 15%
Bridger 5697 1957 454 1503 | 2654 | 3044 | 3189 | 42% | 48% | 51% | 34%
Oases 16895 6334 1075 | 5259 | 3484 | 3926 | 4067 | 55% | 63% | 65% | 37%
Trinity 8300 2665 1771 894 3536 | 4023 | 4236 | 56% | 64% | 67% | 32%

Dataset C Dataset C consists of 1242040 reads simulated from tran-

scriptome of 10 randomly chosen bacterial species for a total of 11815

transcripts (see Table 4.3).
STAble showed the highest sensitivity while minimising false positive

ratio. It is interesting to note that due to absence of alternative splic-

ings in bacterial transcriptome it is not possible to produce FPA.

Table 4.3: Dataset C - 11815 mixed bacterial transcripts.

STAble

showed the best sensitivity while producing the lowest false positive

ratio alongside with Trinity.

[ Assembler [ # of results [ # of FP [ FPA [ FPB [ 100% [ 80% [ 70% [

S100 | S80 [ S70 | FPR |

STAble 18218 454 0 454 9661 | 10128 | 10218 | 82% | 86% | 8% 2%
Bridger 5873 302 0 302 8437 8877 8971 1% | 5% | 76% 5%
Oases 5579 284 0 284 6633 8207 8523 56% | 69% | 72% 5%
Trinity 7597 157 0 157 9039 9342 9471 7% | 9% | 80% 2%

Dataset D Dataset D consists of 2382790 reads simulated from tran-

scriptome of 50 randomly chosen bacterial species for a total of 43578

transcripts (see Table 4.4).
These results highlight an important feature of STAble: running on a
small grid of desktop computers equipped with just 8GB of RAM, it

was the only assembler capable of completing the assembly task. All

existing tools terminated returning an out of memory error even on a
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server with 48GB of RAM.

Table 4.4: Dataset D - 43578 mixed bacterial transcripts. Existing
assemblers terminated with an out of memory error on a computer
with 48GB of RAM. STAble ran on a computer with just 8GB of
RAM.

[ Assembler [ # of results [ # of FP | FPA | FPB [ 100% | 80% [ 70% [ S100 | S80 [ S70 | FPR ]
[ STAble [ 71159 [ 1531 [ 1531 [ 0 [ 29961 | 36547 | 37912 [ 68% | 84% [ 87% | 2% |

4.2.2 Benchmarks on real data

STAble’s performances were compared with Trinity and Oases on two
real datasets.

Since we were not able to satisfy their hardware requirements on our
servers with real data, we decided to perform comparison using bench-
mark datasets from their respective papers (SRX017794 for Oases and
GSE29209 for Trinity) and to rely on published results.

STAble ran on a small grid of 9 computers equipped with Intel(R)
Core(TM) i3-2130 CPU @ 3.40GHz processor and 8 GB of RAM.

In these scenarios it is not possible to discriminate between different

classes of false positives, so the total amount will be used.

STAble vs Oases

STAble and Oases were compared on mouse dataset SRX017794 (about
84M of paired-end Illumina reads). Results are reported in Table 4.5.
STAble achieved a sensitivity comparable to Oases while producing a
significantly lower number of both reported transcripts and false pos-
itives.

From the hardware requirements perspective, Oases paper states that

assembly process took about 10 hours on a server equipped with a 48
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Table 4.5: STAble vs Oases on mouse dataset SRX017794. Results
reported for Oases are from Table 2 and Supplemental Table 6 of [4].

[ Assembler [ # of results [ # of FP [ 100% [ FPR ]

STAble 76396 2378 1332 3%
Oases 175914 29906 1324 17%

core AMD Operon processor and 256GB of RAM while in our grid of

9 common desktop computers the task was completed in 8 hours.

STAble vs Trinity

STAble and Trinity were compared on mouse dataset GSE29209 (about
105M of paired-end Illumina reads). Results are reported in Table 4.6.

Table 4.6: STAble vs Trinity on mouse dataset GSE29209. Results
reported for Trinity are from Supplementary Table 2 of [5].

[ Assembler [ # of results [ # of FP [ 100% [ FPR ]

STAble 207349 12047 11711 6%
Trinity 179340 147634 11334 | 82%

Even in this test scenario STAble showed a sensitivity comparable
to Trinity while producing a drastically lower number of false positive
reconstructions.

Analysis with Trinity took 60 hours on a server equipped with 256 GB
of RAM and a load sharing facility that ran some steps in parallel.

STAble completed the task in just 7 hours on our test environment.
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Chapter 5
Discussion

The advent of NGS techniques revolutionised genomic research but
for clinical routine purposes there are still some open challenges, es-
pecially on the bioinformatics side, that are limiting their application
as a support for traditional Sanger sequencing.

In this thesis a new workflow for variant calling and annotation start-
ing from NGS data was introduced. It is designed to be flexible and
by setting up a proper analysis profile it is applicable to study any an-
notated gene in combination with all the major sequencing platforms
available.

The entire procedure was extensively validated and as an added value
from the state-of-the-art it provides automatic integration with ex-
ternal resources (like databases of clinically relevant mutations and
functional predictors) by automatically resolving problems caused by
the use of different standards for variant nomenclature.

Users can also choose their preferred visualisation format and particu-
lar attention was paid to HGVS recommendations [1] that are offered
as default.

This new workflow was used as core for the development of two inte-

grated tools: Amplicon Suite and SmartVir.

Amplicon Suite is a platform for variant calling and annotation:
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by setting up a proper profile it is possible to analyse NGS amplicon
sequencing data from any annotated gene.

In collaboration with research group of Dr. Ettore Capoluongo of Poli-
clinico Gemelli in Rome we had the opportunity to setup and clinically
validate a profile for the detection of relevant mutations over BRCA1
and BRCAZ2 genes, that are known to be involved in breast and ovar-
ian cancer.

Obtained results allowed us to achieve CE-IVD certification for anal-
ysis of BRCA datasets with Amplicon Suite, but most importantly
demonstrated that by setting up a proper analysis protocol it is possi-
ble to apply NGS techniques to clinical routine while getting the same

accuracy provided by traditional methods.

SmartVir is a user friendly tool for virus genotyping and drug resis-
tance detection. It was developed in collaboration with Roche Italian
sequencing team with particular focus on the creation of a profile for
analysis of samples from HCV infected patients.

In just few clicks, the user with no specific bioinformatics skills can
accurately detect the specific strain (or strains in case of mixed in-
fections) of HCV that is affecting the patient and probe viral genome
in order to determine the presence of mutations that are know to be
associated with drug resistances.

An automatic integration procedure compares detected mutations with
dedicated external authoritative databases (currently Geno2Pheno [2]
and Lontok [3]) in order to collect the most up to date informations
about them.

The final output is an intuitive report about relevant mutations de-
tected for each sample with informations about frequencies and pos-
sible drug resistances that clinicians can use to determine the most
suitable treatment option.

All obtained results were validated in collaboration with Roche Italian

sequencing team. The immediate future perspective for SmartVir is
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the introduction of support for analysis of HIV.

Finally we also presented STAble, a new assembler for RNA-seq
data that is built around a completely original approach where the
whole reads are used to drive the assembly process instead of consid-
ering only smaller k-mers.

It achieves a sensitivity comparable to existing tools while significantly
decreasing the number of false positive reconstructions, that in a real
denovo environment can lead to production of unreliable results, since
there is almost no way to detect them.

Moreover it is designed to be parallelizable, allowing to break down
the onerous assembly task into smaller subsets that can be processed
in parallel even on common desktop computers.

The possibility to apply RNA-seq denovo assembly techniques to en-
hance metatranscriptome studies was also explored by properly tuning
STAble: preliminary results on simulated datasets are confirming the
viability of this approach.

The immediate future perspective is its application to real metatran-
scriptome studies in collaboration with the local hospital.

The long-term goal is the integration of this feature into MicrobAT
[4], an user-friendly tool for profiling microbial populations developed
my research group that at present is capable of microbiota identifica-
tion.

The idea is to transform it into an integrated suite for complete metage-
nomics studies: microbiota profiling, metatranscriptome assembly, an-
notation of new transcripts, mapping of transcripts to metabolic path-
ways and application of fluz balance analysis [5] to better understand

the balances that are established within the bacterial community:.
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