
1. Introduction

Set functions, not necessarily additive, are extensively used in Cooperative
Game Theory, where they model the notion of transferable utility (TU) game.
Given a set I and a σ-algebra Σ on I, interpreted respectively as a set of players
and a collection of possible coalitions, a TU game is a function ν : Σ→ R such
that ν(Ø) = 0. For each S ∈ Σ, the number ν(S) represents the total payoff
that coalition S can obtain for its members, if it forms.
The use of differential techniques in Cooperative Game Theory dates back
to Aumann and Shapley (1974): in their treatise they worked out a notion
of derivative related to games which allowed to translate and maintain the
original meaning of the Shapley value as a weighted average of each player’s
marginal contribution to the worth of all possible coalitions in which he/she
may participate, in the context of non-atomic games. With an analogous spirit,
Epstein and Marinacci (2001) developed and applied to the study of the core
of large TU games a notion of differentiability (firstly introduced by Epstein
(1999) in a Decision Theory context) which goes as follows.
Let Λ be a directed set. For any S ∈ Σ, let {Sj,λ}nλj=1 be a finite partition of

S and let {Sj,λ}λ∈Λ be the Moore-Smith sequence of all finite partitions of S
ordered by refinements, that is, λ′ > λ implies that the partition corresponding
to λ′ refines the one corresponding to λ.

Definition 1. A game ν is called outer differentiable at a set E ∈ Σ if there
exists a bounded and strongly non-atomic finitely additive measure δ+ν(·;E)
on Σ such that

nλ∑
j=1

|ν(E ∪ F j,λ)− ν(E)− δ+ν(F j,λ;E)| −→
λ

0,

for all F ⊂ Ec.
δ+ν(·;E) is termed as outer derivative of ν at E.
By −→

λ
we mean the limit in the Moore-Smith sense: for every ε > 0, there

exists a finite partition of measurable sets {F j,λ}nλj=1 of F such that, for every
λ′ > λ,

nλ′∑
j=1

|ν(E ∪ F j,λ′)− ν(E)− δ+ν(F j,λ′ ;E)| < ε.

The inner derivative at E ∈ Σ, denoted by δ−ν(·;E), must verify

nλ∑
j=1

|ν(E −Gj,λ)− ν(E) + δ−ν(Gj,λ;E)| −→
λ

0,

for all G ⊂ E.



Then, if a game ν admits both outer and inner derivative at E, the derivative
of ν at E can be defined as δν(·;E) := δ+ν(·;E) + δ−ν(·;E).
For every F ⊂ Ec and finite partition {F j,λ}nλj=1 of F , ν(E ∪ F j,λ) − ν(E)

represents the marginal value of {F j,λ} relative to E. Hence, in the limit,
δν(·;E) represents the total marginal value of F relative to the base coalition
E. An analogous interpretation holds for the inner derivative.
Throughout the paper we shall call this derivative derivative by refinements.
The above approach is bounded to a non-atomic context: anyway we point out
that, more recently, Montrucchio and Semeraro (2008) extended it to games
defined on algebras of sets, removed the non-atomicity assumption and thus
considerably widened the class of differentiable games.
Epstein (1999) introduced and applied a notion of differentiability where the
idea of smallness is not captured by a refinement process but, as is more
familiar in calculus, through the limit of a difference quotient. We state it
below.

Definition 2. Given a game ν and a finitely additive non-negative measure
µ, ν is called µ-differentiable at E ∈ Σ if:

(i) µ(N∆N
′
) = 0, for N,N

′ ∈ Σ, implies ν(F ∪ N) = ν(F ∪ N ′), for every
F ∈ Σ;

(ii) there exists a bounded and strongly non-atomic finitely additive measure
∆ν(·;E) on Σ such that, for all F ⊂ Ec and G ⊂ E and µ(F ∪G) > 0,

lim
µ(F∪G)→0

|ν(E ∪ F −G)− ν(E)−∆ν(F ;E) + ∆ν(G;E)|
µ(F ∪G)

= 0.

Property (i) is easily seen to be equivalent (see Centrone and Martellotti, 2012)
to property:

(i
′
) if for N ∈ Σ, µ(F ∪ N) = µ(F ) for every F ∈ Σ, then ν(F ∪ N) = ν(F )

for every F ∈ Σ.

The two above types of derivatives coincide for µ-differentiable games (Ep-
stein, 1999), but µ-differentiability is indeed stronger than differentiability by
refinements (for an example, see Centrone and Martellotti, 2012).
At this point, we observe that a notion very close to Definition 2 above, already
appeared in the paper of Artzner and Ostroy (1983) in a General Equilibrium
context. There, the authors introduce the notion of “product-exhaustion” for
a non-atomic production economy (I,Σ, w, f), where (I,Σ) is the measurable
space of agents, and w is a non-atomic vector measure on the σ-algebra of
coalitions Σ such that, for every S ∈ Σ, w(S) ∈ Rl

+ is the endowment vector
of resources available to coalition S. Here f is a production function, and
f ◦ w : Σ −→ R (defined by (f ◦ w)(S) = f(w(S)), which is the production
of coalition S), is an example of a so called vector measure game in the termi-
nology of Aumann and Shapley (1974). In Artzner and Ostroy’s framework, a



non-atomic production economy for which there exists a measure η satisfying
Definition 2, for E = I, S = G, when the norm ‖w(S)‖ (representing the
“size” of S) tends to zero, is said to exhibit product exhaustion. Hence, inter-
preting η(S) has the payment of a coalition S, the differentiability condition
tells us that, in the limit, this payment is close to the “marginal” product
f(w(I)) − f(w(I − S)), as according to the classical marginal productivity
theory of distribution. Then, the authors also show the link between the prod-
uct exhaustion notion and the price-taking behavior of small group of agents
arising from the concept of Walrasian equilibrium.
In the present note we introduce an extension to games of the measure the-
oretic construction of the Radon-Nikodym derivative and, under suitable hy-
potheses, we show that this can be used to “represent” Epstein and Marinacci
derivatives for some classes of games relevant to Cooperative Game Theory
and Mathematical Economics that is, vector measure games and absolutely
continuous games. Indeed, as pointed out in Neyman (2002),“games arising in
applications are often either vector measure games or approximated by vector
measure games”. Market exchange economies of finite type or, as we have
already anticipated, some production models provide meaningful examples of
this kind of games (see Aumann and Shapley (1974), Einy et al. (1999) and
Hart and Neyman (1988)). As for the space of absolutely continuous games,
denoted by AC, it contains many interesting games such as, for instance, the
ones forming the space pNA, i.e., the closure in a suitable topology of the space
generated by polynomials in measures (under suitable assumptions, exchange
economies of finite type can be expressed as measure games belonging to this
space).
We prove that, under customary hypotheses on the underlying players space,
for absolutely continuous games which are µ- differentiable, and for vector mea-
sure games (not necessarily absolutely continuous) the derivatives of Epstein
and Marinacci can be expressed by means of their density with respect to an
appropriate measure. To support the economic interpretation, in the model
of Artzner and Ostroy (1983), this integral representation tells us that the
marginal productivity of a coalition S, and hence its reward, is precisely given
by the “sum” of the contributions of “infinitesimal” individuals dS.
We also point out how the interest for an integral representation of derivatives
of games, arises once more from the work of Aumann and Shapley (1974): for
example, on pNA where a value is known to exist, it can be expressed as an
integral of a Frechét-type derivative. Our representation result goes in this
direction and could thus provide an alternative vision, if the equality between
the Aumann and Shapley value and Epstein and Marinacci derivatives could
be proven in some relevant cases. Anyway, this topic appears not to be a trivial
one.
In the sequel, for the sake of brevity, we recall just the essential definitions and
refer the reader to Aumann and Shapley (1974), Bhaskara Rao and Bhaskara
Rao (1983) and Marinacci and Montrucchio (2004) for all the other game and
measure theoretic related notions.



2. A Radon-Nikodym derivative for AC games

Let I be a topological space and B its Borel σ-algebra. Suppose that I is the
union of a countable family R1 of disjoint A1

1, . . . , A
1
j , · · · ∈ B, called the sets

of the first rank. Suppose moreover that every set A1
j of the first rank is itself

the union of a countable family of disjoint Borelians A2
j1, . . . , A

2
jk, . . . called

the sets of the second rank, and let R2 denote the family of all such sets over
all j’s. Repeating the process for every n ∈ N leads at each step to a family
Rn of disjoint Borel sets, called of the n-th rank, whose union is the original
set I. The family

R =
∞⋃
n=1

Rn

of all sets of finite rank is called a net (Shilov and Gurevich (1966)).
Henceforth, according to Aumann and Shapley (1974), we shall denote by NA
the space of all non-atomic bounded measures on B, and by NA+ the cone of
all non-negative measures in NA.

Definition 3. (Munroe (1971)) A net R is called regular with respect to
µ ∈ NA+ if for every E ∈ B and for every ε > 0, there are countably many
sets A1, A2, . . . of R such that

E ⊂
∞⋃
n=1

An, µ(
∞⋃
n=1

An) < µ(E) + ε. (1)

Definition 4. (Munroe (1971)) Let I be endowed with a metric d: a net R is
called indefinitely fine if for each x ∈ I and each ε > 0 there exists a set An from
one of the Rn which contains x and has diameter (i.e. sup{d(y, z), y, z ∈ An})
less than ε.

Example 1. If I = [0, 1] is endowed with the euclidean metric, the net R where

the set of the n-th rank are the intervals

[
0,

1

2n

]
,

(
1

2n
,

2

2n

]
, · · · ,

(
1− 1

2n
, 1

]
is indefinitely fine and regular with respect to the Lebesgue measure.

The following theorem expresses the key idea to our purposes.

Theorem 1. (De Possel) (Shilov and Gurevich (1966)) LetR be a net, regular
w.r.t. the non-negative measure µ, and let θ ∈ NA be absolutely continuous
with respect to µ. Then the derivative DRθ(·) of θ with respect to R, i.e. the
quantity

DRθ(x) := lim
n→∞

ψn(x), (2)

where

ψn(x) =


θ(An(x))

µ(An(x))
if µ(An(x)) 6= 0

0 otherwise

(3)



and An(x) is the unique set of the n-th rank containing x, exists on a set of
full µ-measure and is integrable. Moreover

θ(S) =

∫
S

DRθ(x)dµ, ∀S ∈ B (4)

i.e. DRθ(·) coincides with the Radon-Nikodym derivative of θ with respect to
µ.

In particular, this theorem implies that the derivative does not depend on R.

Henceforth, unless otherwise specified, I will be a Polish metric space, i.e. it
will be supposed to be endowed with a metric d with respect to which I is
separable and complete.
Now let ν be a TU game, µ a non-negative measure on B and R an indefinitely
fine net. Consider a set E ∈ B such that its topological boundary ∂E is of
µ-null measure. In the sequel we shall indicate by Eest the set of topologi-
cally external points of E, i.e. the set of points of Ec having a neighborhood
contained in Ec, while E◦ shall denote the topological interior of E.
We introduce the following sequence: for each n ∈ N, let

φE,n(x) =



ν(E ∪ An(x))− ν(E)

µ(An(x))
if x ∈ Eest, µ(An(x)) 6= 0

ν(E)− ν(E − An(x))

µ(An(x))
if x ∈ E◦, µ(An(x)) 6= 0

0 otherwise

(5)

where, for every x, An(x) denotes the only element of the n-th rank containing
x, and let

φE(x) =

{
lim

n→+∞
φE,n(x) if the limit exists

0 otherwise.
(6)

φE is measurable and, having supposed µ(∂E) = 0, it is defined µ-a.e.

Remark 1. φE extends expression (2) to the case of non-additive set functions
and can thus be interpreted as a generalized Radon-Nikodym derivative.
Indeed note that, if x ∈ Eest, for n sufficiently large we have An(x) ⊂ Ec

(and, analogously, if x ∈ Eo An(x) ⊂ E). In fact, as x ∈ Eest, there exists a
neighborhood B = B(x, δ) of x such that B ⊂ Ec. Now take 0 < ε < δ: there
exists a set An(x) of the net with diam(An(x )) < ε and x ∈ An(x). Hence by
construction An(x) ⊂ B ⊂ Ec. The same argument can be applied to x ∈ Eo.
Therefore, when ν is a measure, for µ-almost all x ∈ I there exists n(x) ∈ N
such that φE,n(x) = ψn(x) for every n ≥ n(x).

Remark 2. Intuitively, φE recalls the density of the measure δν(·;E) with
respect to µ, i.e., for each S ∈ B,

δν(S;E) =

∫
S

φE(x)dµ, (7)



Indeed, consider an interval F ⊂ Ec, and let {F j,λ}λ be the net of all finite

partitions of F . If limn→+∞
ν(E∪An(x))−ν(E)

µ(An(x))
is approximated by the step func-

tions φE,λ defined by ν(E∪F j,λ)−ν(E)
µ(F j,λ)

on F j,λ, in the sense of the L1 norm on F ,
i.e. ∫

F

|φE,λ − φE|dµ −→
λ

0, (8)

then

nλ∑
j=1

|ν(E ∪ F j,λ)− ν(E)−
∫
F j,λ

φEdµ| =
nλ∑
j=1

|
∫
F j,λ

φE,λdµ−
∫
F j,λ

φEdµ|

≤
nλ∑
j=1

∫
F j,λ
|φE,λ − φE|dµ

=

∫
F

|φE,λ − φE|dµ −→
λ

0.

Hence the measure
∫
· φEdµ is precisely Epstein-Marinacci outer derivative.

We are now going to show that, for an important class of games, when µ-
differentiability is assumed the intuition expressed in Remark 2 is correct, and
so both the Epstein-Marinacci and the Epstein derivative can be represented
in terms of (7). First, we recall two definitions from Aumann and Shapley
(1971).

Definition 5. A chain C is a family of sets Ø = S0 ⊂ S1 ⊂ · · · ⊂ Sn = I.
A link of a chain is a pair of consecutive elements {Si−1, Si}. A subchain of a
chain is any set of links.

A chain will be identified with the subchain consisting of all the links. Given
a game ν and a subchain Λ of a chain C, the variation of ν over Λ is defined
as

‖ν‖Λ :=
∑
|ν(Si)− ν(Si−1)|,

where the sum ranges over all indexes i such that {Si−1, Si} is a link in the
subchain.

Definition 6. If ν and w are two games defined on B, ν is said to be absolutely
continuous with respect to w in the sense of Aumann and Shapley (ν �AS w)
if for every ε > 0 there exists a δ > 0 such that for every chain C and every
subchain Λ of C,

‖w‖Λ ≤ δ =⇒ ‖ν‖Λ ≤ ε.

A game ν is said to be absolutely continuous in the sense of Aumann and
Shapley if there exists µ ∈ NA+ such that ν �AS µ.
The space of absolutely continuous games in the sense of Aumann and Shapley
will be, as it is customary, indicated by AC.



Lemma 1. Suppose µ is a regular measure on B. Then there exists an indef-
initely fine net, and every indefinitely fine net is regular w.r.t. µ.

Proof. Since I is a separable metric space, there exists an indefinitely fine net
(Saks (2005), pag. 152). Furthermore, being µ regular, for every E ∈ B and
every ε > 0, there exists an open set O ⊃ E: µ(O) < µ(E) + ε. Moreover
O is a countable union of open balls B(x, δ). Let R be an indefinitely fine
net; we claim that each ball B(x, δ) can be written as a countable union of
sets Ai from the net R. Indeed, take y ∈ B(x, δ) and let 0 < δ < δ − d(x, y).
Hence B(y, δ) ⊂ B(x, δ). Fix 0 < ε < δ: as there exists Ai from R such that
diam(Ai) < ε and y ∈ Ai, this implies Ai ⊂ B(y, δ), hence R is regular.

We can now state our main result.

Theorem 2. Let ν ∈ AC, namely there exists µ ∈ NA+ such that ν �AS µ.
Suppose that ν satisfies (ii) of Definition 2 at a set E ∈ B. Then the function
φE in (6) is in L1(I) and we have

∆ν(S;E) = δν(S;E) =

∫
S

φE(x)dµ. (9)

Proof. Firstly, note that ∆ν(·;E) is absolutely continuous (with respect to µ)
and is a measure. In fact, take ε > 0. Being ν �AS µ, there exists δ1 > 0 such
that,

|ν(E ∪ F )− ν(E)| < ε (10)

for every F ∈ B|Ec with 0 < µ(F ) < δ1 (take the chain Ø ⊂ E ⊂ E ∪ F ⊂ I,
and the subchain {E,E ∪ F}).
Furthermore, there exists δ2 > 0 such that,

|ν(E ∪ F )− ν(E)−∆ν(F ;E)| < εµ(F ) < εµ(I) (11)

for every F ∈ B|Ec with 0 < µ(F ) < δ2.
Combining (10) and (11) we get a δ∗ > 0 such that

|∆ν(F ;E)| ≤ |ν(E ∪ F )− ν(E)|+ εµ(F ) < ε(µ(I) + 1) (12)

for every F ∈ B|Ec with 0 < µ(F ) < δ∗.
If otherwise µ(F )=0, then µ(F j,λ) = 0 for each finite measurable partition
{F j,λ}j=1,...,nλ of F . As ν �AS µ obviously implies property (i

′
) (and hence (i))

of Definition 2, we have ν(E ∪ F j,λ) = ν(E) and ν is µ-differentiable. Hence,

as

nλ∑
j=1

|∆ν(F j,λ)| ≥ |∆ν(F )|, differentiability by refinements (which is implied

by µ-differentiability) yields |∆ν(F )|=0. Concluding, ∆ν(·;E) � µ on B|Ec .
Analogously, ∆ν(·;E) � µ on B|E. Moreover ∆ν(·;E) is countably additive,
being absolutely continuous w.r.t. a measure (see Bhaskara Rao and Bhaskara
Rao (1983), pag.163). As µ is regular, being finite on a Polish metric space
(see Aliprantis and Border (1999)), by Lemma 1 there exists an indefinitely fine



regular net R and, by Theorem 1, the Radon-Nikodym derivative of ∆ν(·;E)
with respect to R has the form expressed in (2), i.e.

DR∆ν(·;E)(x) = lim
n→∞

ψn(x), (13)

µ-a.e. in I, where An(x) is, as before, the only element of the n-th rank
containing x; therefore

∆ν(S;E) =

∫
S

lim
n→∞

ψn(x)dµ, (14)

for all S ∈ B.
Now, as ν is µ-differentiable at E, choosing n sufficiently large in order to have
An(x) ⊂ Ec we get

lim
n→+∞

|φE,n(x)− ψn(x)| = 0, (15)

for µ-almost all x ∈ Eest.
In fact, if µ(An(x)) = 0, then µ(An(x)) = 0 for each n ≥ n, from where
|φE,n(x)−ψn(x)| = 0 for each n ≥ n. If otherwise µ(An(x)) > 0, then anyway
µ(An(x))→ 0 for n→ +∞, and hence by µ-differentiability

lim
n→∞

|φE,n(x)− ψn(x)| = lim
µ(An(x))→0

|φE,n(x)− ψn(x)| = 0.

Indeed, let n ≥ n. Then, being the net indefinitely fine, there exists mn ∈ N:

diamAmn(x) <
1

n
. Notice that

⋂
n≥n

Amn(x) = {x}, as if y ∈
⋂
n≥n

Amn(x) then

d(x, y) < 1
n

for every n ≥ n and hence x = y. Therefore
⋂
n≥n

An(x) = {x}.

Hence, by continuity and by the non-atomicity of µ it turns out µ(An(x)) →
µ({x}) = 0.
We claim that

⋂
n≥nAmn(x) = {x} implies

⋂
n≥nAn(x) = {x}. Take an ele-

ment y ∈
⋂
n≥nAn(x) (this intersection is nonempty as it contains x). W.l.o.g.

we can suppose that m1 ≤ m2 ≤ . . . , so that Am1 ⊇ Am2 ⊇ . . . . If there
exists n∗ ≥ n such that mn∗ ≥ n then y ∈ Amn(x) for every mn ≥ mn∗ . But
y belongs also to all the Amn(x) with mn < mn∗ as Amn(x) ⊇ Amn∗ (x) for
all mn < mn∗ . Then y ∈

⋂
n≥nAmn(x) and hence y = x. If, otherwise, for

every n ≥ n one has mn ≤ n, then An(x) ⊆ Amn(x) for every n ≥ n. Hence⋂
n≥nAn(x) = {x}.

Therefore lim
n→+∞

φE,n(x) exists in R by (13) and (15), for almost all x ∈ Eest,

and it holds:
lim

n→+∞
φE,n(x) = lim

n→+∞
ψn(x). (16)

Hence, from (14) and (16) we have

∆ν(F ;E) =

∫
F

lim
n→+∞

φE,n(x)dµ =

∫
F

φE(x)dµ, (17)

for every F ∈ B|Ec . Proceeding analogously for G ⊂ E, we get the thesis.



The following result shows that, at least for the important class of measure
games, formula (7) holds, also without the µ-differentiability assumption.

Definition 7. A game ν is called a vector measure game if there exists a
vector measure P = (P1, . . . , PN), with P (I) 6= 0 and each Pi ∈ NA, and a
real valued function g defined on the range of P , with g(0) = 0, such that
ν = (g ◦ P ).

We recall that the differentiability hypothesis on g is not sufficient to assure
that ν ∈ AC (see for example Aumann and Shapley (1974), Tauman (1982)),
hence the following result can not be derived from the previous one even as-
suming µ-differentiability.

Proposition 1. Let ν = (g ◦ P ) : B → R be a vector measure game ( P =

(P1, . . . , PN)), with each Pi ∈ NA+) and set P̂ := P1 + · · · + PN . If g is
differentiable at P (E) (with Pi(∂E) = 0, ∀i), then the function φE in (6) is
well defined, and for every S ∈ B it holds:∫

S

φE(x)dP̂ = δν(S;E) = ∇g(P (E)) · P (S),

Proof. First, we arbitrarily introduce the measure P̂ = P1 + · · ·+ PN , as each
of the Pi’s is absolutely continuous with respect to P̂ : hence we can apply
apply the Radon-Nikodym Theorem in the form of Theorem 1, with θi = Pi,
and µ = P̂ , for each i = 1, . . . , N . Furthermore, as P̂ is regular on B, by
Lemma 1 there exists an indefinitely fine net R, regular w.r.t. P̂ . Take E ∈ B
with P̂ (∂E) = 0 and such that g is differentiable at P (E). By the additivity
of the integral and of the Pi’s, it suffices to prove the result for a Borelian
F ⊂ Ec. For every x ∈ F , let An(x) be the only element of the n-th rank of
R containing x. For n sufficiently large E ∩ An(x) = Ø, therefore we have:

ν(E ∪ An(x))− ν(E) = g(P (E ∪ An(x))− g(P (E))

= g(P (E) + P (An(x)))− g(P (E)). (18)

Hence, (18) and the differentiability of g at P (E) imply:

ν(E ∪ An(x))− ν(E) = ∇g(P (E)) · P (An(x)) + o(‖P (An(x))‖),
for ‖P (An(x))‖ → 0 (19)

(where ‖P (An(x))‖ = P̂ (An(x)) and it is assumed to be non null). Thus

ν(E ∪ An(x))− ν(E)

P̂ (An(x))
=
∇g(P (E)) · P (An(x)) + o(‖P (An(x))‖)

P̂ (An(x))
, (20)

that is

ν(E ∪ An(x))− ν(E)

P̂ (An(x))
=

N∑
i=1

gi(P (E))
Pi(An(x))

P̂ (An(x))
+
o(‖P (An(x))‖)
P̂ (An(x))

(21)



(where gi denotes the i-th partial derivative of g). Now, as in (3) and (5),
define ψin for each i = 1, · · · , N , and φE,n . Then, by Theorem 1, lim

n→+∞
ψin(x)

exists on a set of full P̂ -measure, and it holds:

Pi(F ) =

∫
F

lim
n→+∞

ψin(x)dP̂ . (22)

Therefore, (21) and the existence of the limit of the ψin imply that lim
n→+∞

φE,n(x)

exists P̂ - almost everywhere in I and∫
F

lim
n→+∞

φE,n(x)dP̂ =
N∑
i=1

gi(P (E))

∫
F

lim
n→+∞

ψin(x)

= ∇g(P (E)) · P (F ). (23)

The result follows now from Epstein and Marinacci (2001), Lemma 3.2.

As pointed out in Remark 1, so far it remains unclear whether the repre-
sentation result can be extended to more general classes of games than vector
measure ones, without the µ-differentiability assumption. Also the link with
Aumann and Shapley derivative (see Aumann and Shapley (1974)) is still an
open task.
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