
PhD in Clinical & Experimental Medicine 

 

 

 

 

UNIVERSITÀ DEGLI STUDI DEL PIEMONTE ORIENTALE 

“AMEDEO AVOGADRO” 
 

Department of Clinical and Experimental Medicine 

 

Corso di Dottorato di Ricerca in Medicina Clinica e Sperimentale 

Ciclo XXVIII 

 

 

Exploration of new uracil-based compounds as novel inhibitors of  

Hepatitis C Virus replication 

SSD (Settore Scientifico Disciplinare) MED/09 

 

 

 

        Coordinatore                                                                                                    Tutor 

Prof. Marisa GARIGLIO                                                       Prof. Mario PIRISI 

 

Dottorando 

             Andrea MAGRI 



 

Contents 

INTRODUCTION ................................................................................................................. 6 

Hepatitis C virus (HCV): ................................................................................................... 7 

Physical and chemical properties of HCV particles .......................................................... 7 

Molecular virology of HCV ................................................................................................ 8 

5’ NTR ........................................................................................................................ 10 

3’ NTR ........................................................................................................................ 10 

Core protein ................................................................................................................ 10 

E1E2 envelope glycoproteins ..................................................................................... 13 

p7 Protein ................................................................................................................... 15 

NS2 protein ................................................................................................................. 16 

NS3-NS4A complex .................................................................................................... 16 

NS4B protein .............................................................................................................. 18 

NS5A protein .............................................................................................................. 18 

NS5B protein .............................................................................................................. 19 

Lifecycle ......................................................................................................................... 20 

Attachment and entry .................................................................................................. 21 

HCV entry: a model .................................................................................................... 30 

Fusion mechanism ...................................................................................................... 32 

Translation .................................................................................................................. 33 

Replication .................................................................................................................. 35 

Viral assembly, maturation and release ...................................................................... 38 

In vitro models to study HCV cell cycle .......................................................................... 42 

HCV pseudo-typed particles (HCVpp). ....................................................................... 43 

HCV replicons ............................................................................................................. 44 

HCV trans-complemented particles (HCVTCP) ............................................................ 45 

Cell culture derived HCV (HCVcc). ............................................................................. 46 



 

The disease .................................................................................................................... 47 

HCV variability and worldwide distribution. ................................................................. 47 

Modes of transmission ................................................................................................... 48 

Natural History ............................................................................................................... 49 

The Acute Phase of HCV infection ............................................................................. 50 

The chronic phase of HCV infection ........................................................................... 51 

Current and novel HCV therapies .................................................................................. 53 

Preventive and therapeutic Vaccination ...................................................................... 53 

HCV therapy with Interferon ....................................................................................... 55 

HCV therapy and DAAs .............................................................................................. 55 

Aim of the study ................................................................................................................. 57 

MATERIAL         AND         METHODS.............................................................................. 60 

Materials ......................................................................................................................... 61 

Chemicals ................................................................................................................... 61 

Kits .............................................................................................................................. 61 

Cells ............................................................................................................................ 62 

Cell Culture Growth Medium ....................................................................................... 63 

Drugs .......................................................................................................................... 63 

Clones ........................................................................................................................ 65 

Antibodies ................................................................................................................... 66 

Bacterial Strains.......................................................................................................... 66 

Solutions ..................................................................................................................... 66 

Oligonucleotides ......................................................................................................... 67 

Methods ......................................................................................................................... 68 

DNA Manipulation ....................................................................................................... 68 

RNA Manipulation ....................................................................................................... 70 

Reverse Transcription ................................................................................................. 71 

Real-Time PCR........................................................................................................... 73 



 

Tissue Culture Maintenance ....................................................................................... 75 

Cell culture of infectious HCV (HCVcc) ....................................................................... 75 

HCV pseudo-typed particles (HCVpp) ........................................................................ 79 

HCV replicons ............................................................................................................. 80 

HCV trans-complemented particles (HCVTCP) ............................................................ 82 

Evaluation on Influenza Virus ..................................................................................... 83 

Statistical Analysis ...................................................................................................... 83 

RESULTS .......................................................................................................................... 84 

Antiviral effect on HCVcc ................................................................................................ 85 

Inhibition of HCV entry with HCVpp ............................................................................... 87 

Entry inhibition of different virus using pseudo-particles ............................................. 87 

Inhibitory effect on HCV replication ................................................................................ 88 

Transient Replicon ...................................................................................................... 88 

Generation of a replicon cell line ................................................................................ 89 

Replicon cell line inhibition .......................................................................................... 90 

Determining IC50 and CC50 values .................................................................................. 92 

Evaluation of drug resistance mutations ......................................................................... 95 

RNA inhibition on HCVcc ............................................................................................... 96 

Analysis of single-cycle infection on HCVcc ................................................................... 97 

Single-cycle infection inhibition on HCVTCP .................................................................... 99 

Effect on an early step of viral replication ..................................................................... 100 

Effect on HCV translation ............................................................................................. 100 

Antiviral effect on Influenza Virus ................................................................................. 103 

Development of an PCR-based assay for negative strand quantification ..................... 104 

Primer Evaluation ..................................................................................................... 104 

Real Time Testing ..................................................................................................... 105 

Detection of positive RNA in viral particles ............................................................... 106 

Optimisation of RNA amount in the Reverse Transcription ....................................... 107 



 

Optimising RT Primer Concentration ........................................................................ 109 

Viral kinetic based on negative strand synthesis .......................................................... 110 

Positive and negative strand RNA inhibition ................................................................. 111 

Evaluation on single-cycle infection .......................................................................... 111 

Determining positive and negative strand RNA on infection ..................................... 112 

DISCUSSION .................................................................................................................. 113 

BIBLIOGRAPHY .............................................................................................................. 120 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Hepatitis C virus (HCV): 

HCV is a member of the Hepacivirus genus, along with the pestiviruses (i.e. bovine viral 

diarrhea virus or BVDV) and flavivirus (including yellow fever virus, dengue and Zika); they 

constitute the Flaviviridae family1.  

Physical and chemical properties of HCV particles 

HCV particles from serum of infected patients are characterised by a diameter ranging 

between 30 and 80 nm2-4; surprisingly, in vitro produced HCVcc particles showed a diameter 

between 60 and 75 nm5,6. Analysing by density gradients the physical properties of HCV 

particles, emerged that in patient serum-derived particles the HCV RNA is distributed on a 

rage of densities from 1,03 g/ml to 1,20 g/ml and the peak of RNA is between 1,04 g/ml and 

1,12 g/ml7,8. This heterogeneity is dependent on the association of viral particles with 

different classes of lipoproteins (VLDL, LDL and HDL) and/or immunoglobulins7,9-12.  

HCV particles with higher density are less infectious, confirming how the association of HCV 

with lipoproteins is crucial for infectivity. Moreover, virus particles isolated from serum of 

infected chimpanzee have been found to have densities between 1,03 and 1,10 g/ml 9,13,14. 

Noteworthy, the peak of infectivity has been described at low density < 1.10 g/ml15-17, 

whereas HCV particles, produced in in vitro model, showed a higher density, of 

approximately 1,15 g/ml. This difference has also been shown in-patient sera, exhibiting 

lower values compared to in vitro densities, probably because the hepatoma cell line 

currently used to produce HCV has deficient lipoprotein metabolism18. To support the 

hypothesis that this low buoyant density of infectious HCV particles is the result of the 

association of the virions with serum lipoproteins7,10,12,19, ApoAI, ApoB, ApoC1, and ApoE 

have been demonstrated to be associated with serum-derived HCV particles6,20-23. Based 

on these results, it has been hypothesized that the virus is produced and secreted into the 



 

serum as a hybrid lipoviral particles (LVPs) following VLDL (very low density lipoprotein) 

production and secretion pathway24. Although the exact structure of the infectious lipo-viral 

particles and their interactions with HCV has been debated for many years, initially, two 

models were proposed (Fig. 1): in the first one viral particles interact transiently with 

lipoproteins, while in the second one they contribute into forming an integrated particle. 

However, recent studies, using electron microscopy, demonstrated that HCV is part of a 

bigger structure containing lipoprotein (figure 1B) 25. This configuration of the LVPs may 

provide a shield, protecting virus from neutralizing antibodies19,26,27. 

 

Figure 1. Two models for lipo-viral particle (LVP). In the first the two-particle model (A), HCV 

particles and serum lipoproteins transiently interact. In the second one (B), the single-

particle model for LVP structure, a low-density lipoprotein (LDL) particle is integrated in an 

HCV particle24. 

Molecular virology of HCV  

HCV particles contains one molecule of 9.6 kb single stranded positive RNA genome. It is 

composed of the 5’ non-translated region (NTR), characterized by the presence of an IRES 

that drives the translation of a single open reading frame (ORF), coding for structural and 

non-structural proteins, and the 3’ NTR25. Structural proteins have been shown to form the 

capsid of the viral particles (core protein) and to be expressed on the envelope as 

glycoproteins, specifically E1 and E2. The non-structural proteins (NS), which are necessary 

for viral replication and assembly of infectious virus particles, comprised the ion channel p7, 



 

the NS2 protease, the helicase/protease NS3-4A complex, the cofactor NS4B, the 

phosphoprotein NS5A and the NS5B RNA-dependent RNA polymerase (RdRp)28. 

IRES-mediated translation leads to the synthesis of a polyprotein of approximately 3000 

aminoacids (aa) residing on endoplasm reticulum (ER) that undergoes a processing by 

cellular and viral proteases. Specifically, core protein is cleaved sequentially by the cellular 

signal peptidase (SP) and the cellular signal peptide peptidase (SPP), while glycoproteins 

E1, E2 and p7 are cleaved by SP; non-structural proteins are processed by NS2 and 

NS3/NS4 proteases29,30 (Fig. 2). Interestingly, the HCV proteins showed multifunctional 

roles on different viral stages; in particular the NS3-4A complex, that has been shown to be 

involved in the HCV replication and pathogenesis31-36. In addition, the function of HCV 

proteins may be influenced by interaction with other viral or cellular molecules, which may 

induce different structural conformations37.  

 

Figure 2. HCV genome organization and polyprotein processing38. HCV RNA is translated 

into a single polyprotein that is processed to obtain mature proteins. 



 

5’ NTR 

The 5′ NTR extends between nucleotides 1 to 342, is highly conserved through HCV 

genotypes and it is characterised by the presence of 4 major stem loops; furthermore, it has 

been shown playing two key functions in the HCV replication cycle. First, in the positive 

strand it contains a specific internal ribosome entry site (IRES), necessary to drive RNA 

translation, and thus polyprotein synthesis. Second, it has been proposed that the 5’NTR is 

essential to direct the synthesis of progeny positive-strand RNA using as template the 

negative strand RNA. The hypothesis has been supported by the finding that the 5’NTR 

adopts very different secondary structures between positive and negative strands39,40. 

3’ NTR 

The 3′NTR is mainly involved in RNA replication41, presumably playing a key role in the 

initiation and regulation of negative-strand synthesis42. It is constituted by three main 

regions: a variable region, a polyU/UC tract of variable length (ranging between 30 and 90 

base pair depending on HCV isolates), whom function still needs to be clarified, and a highly 

conserved element known as X-tail or 3′X (98 nts) 43,44. Deletions in the variable region 

impair viral replication but they do not determine its abrogation, suggesting that this 

sequence is not essential41,45. The X-tail has been found to be relatively conserved among 

HCV isolates and has been propose to contain the main regulatory elements required for 

the negative-strand synthesis43,44. Since mutations in this region are affect viral replication, 

both its conserved sequence and structure are critical45,46. 

Core protein 

The core protein is the first structural protein encoded by HCV genome and it is responsible 

for the nucleocapsid formation. A short region comprising the C-terminus of the core protein 

acts as a signal sequence that targets the nascent polyprotein to translocate into the ER 

membrane. In addition, the core signal sequence has been reported to be recognised and 



 

cleaved by the host signal peptidase (SP) with production of an immature, 191 aa core. An 

additional cleavage is required at the C terminus of immature core, by the signal peptide 

peptidase (SPP), to obtain the mature core protein (21 kDa) 47,48. Although the C-terminal 

(aa177-191) domain D3 is immediately cleaved after translation, and thus is absent from the 

mature form of HCV core, it has been shown to be important for core stability and correct 

function. The mature core is a dimeric membrane protein and may be stabilised by an 

intramolecular disulphide bonds49,50.  

The mature core protein is composed of two domains: the N-terminal hydrophilic D1 domain 

and the C-terminal hydrophobic domain D2. The D1 has been shown to be involved in RNA 

binding and homo-oligomerization. Indeed, core D1 possess RNA chaperone activity, which 

has been reported to be required for the structural remodelling and packaging of the viral 

RNA51. Moreover, it has also been described that D1 can interact with several host factors 

and thus altering cellular functions upon HCV infection37,52. D2 is more hydrophobic and it 

is thought to interact with phospholipids on lipid droplets (LDs) through amphipathic 

regions53.  

The HCV core protein, besides its role in formation of the virus nucleocapsid, has been 

reported to be involved in the modulation of different host pathways and to interact with a 

variety of cellular factors. Those include numerous transcription factors, such as 

heterogeneous nuclear ribonucleoprotein K54, leucine zipper transcription factor (LZIP)55, 

14-3-3 protein56, NF-kB57 and RNA helicases, such as DDX3 protein58, involved in HCV RNA 

replication59. 

It has also been suggested that core protein might be involved in apoptosis and cell cycle 

regulation, contributing to the pathogenesis of HCC37. For this purpose, HCV core protein is 

considered as a major viral factor inducing development of hepatocellular carcinoma during 

HCV infection. To support this hypothesis, it has been demonstrated that HCV core can 

directly modulate the expression tumor-associated genes, such as the cyclin-dependent 



 

inhibitor p21 60, involved in cell-cycle control and tumor formation, and it can also interfere 

with Wnt/β-catenin pathway, which play a major role in the initiation of carcinogenesis61. 

In addition, it has been shown that HCV core protein expression might induce development 

of hepatic steatosis, particularly in genotype 3 infected patients62. Indeed, it has been proved 

that HCV core enhances the transcriptional activity of sterol regulatory element binding 

protein 1 (SREBP1) and peroxisome proliferators-activated receptor gamma (PPARγ) 63.  

Although it has been largely reported that the core protein predominantly resides in the cell 

cytoplasm, associated with lipid droplets, which represent the site of virus morphogenesis, 

it has also been detected in the nucleus64,65 and mitochondria66,67. However, whereas the 

presence of core on the LDs is mandatory for the virus assembly, the significance of its 

presence in the nucleus and mitochondria for the virus life cycle or pathogenesis is still not 

clear. 

Alternative open reading frame protein (Core+1; ARFP)   

Normally, the correct HCV translation leads to the synthesis of a polyprotein of 3000 aa; 

however, an overlapping ORF has been reported, which may generate an alternate reading 

frame product68. Indeed, a novel HCV protein (named protein F, core +1 or alternative 

reading frame protein) has been shown in in vitro models, encoded by an alternative open 

reading frame in the core region69. The existence of T-cell response70 or antibody 

production71 against core+1 in HCV infected individuals suggests that this protein is also 

produced in natural HCV infection. Nevertheless, ARFP has not yet been detected either in 

patients’ sera or in infected tissues and its biological role remains unknown72.  

Moreover, it has been suggested that HCV core+1 synthesis might negatively regulate 

production of the canonical HCV core protein; furthermore, Core+1 protein seems to not be 

necessary for HCV life cycle72, but the presence of specific antibodies in HCV patients 

suggest that its production in vivo and its potential role in the pathogenesis. 



 

 

E1E2 envelope glycoproteins  

HCV encodes for two glycoproteins: E1 and E2. They are classified as type I membrane 

proteins, with a molecular weight of approximately 35 kDa and 70 kDa, respectively. Both 

contain a large N-terminal ectodomains (of 160 and 334 aa in E1 and E2, respectively) and 

a short C-terminal transmembrane domain. The transmembrane domain (TMD) is 

responsible for anchoring E1 and E2 in the membrane and for their localization into the 

endoplasmic reticulum (ER). The TMD is characterised by two stretches of hydrophobic 

residues separated by a short segment containing at least one positively charged amino 

acid. These positively charged residues have an important role alongside with the N-terminal 

part of E1 TMD in E1-E2 heterodimerization and retention in the ER, whereas the entire 

TMD sequence seems to be necessary for anchoring to the membrane73-75. Six and seven 

ectodomains have been described in E1 and E2, respectively, which undergo an extensive 

N-glycosylation during the translocation into the endoplasmic reticulum lumen. These sites, 

highly conserved among HCV genotypes, are involved in glycoprotein folding and have been 

reported to play a specific role in HCV entry76. Moreover, a segment containing the N-

terminal 27 aa residues of E2, defined as hyper variable region 1 (HVR1), is characterized 

by a high content of basic aminoacids known to influence HCV pseudo particles (HCVpp 

see below) infectivity77,78. HVR1 has been shown to be partially responsible for HCV escape 

from the immune response79; furthermore, viruses lacking HVR1 have been described as 

less infectious and exhibited impaired fusion, showing an enhanced neutralization and 

precipitation by E2 specific antibodies and soluble CD8180, one of the main factors involved 

in HCV entry, as described below. Initially, newly-synthesized E1 and E2 are assembled as 

a non-covalent heterodimer on the ER membrane, then the HCV glycoproteins are subjected 



 

to post-translational changes. Interestingly, on the viral particles they exist as large covalent 

complexes stabilised by disulfide bridges81.  

HCV glycoproteins E1 and E2 are present in tandem and this organization has also been 

found in alphaviruses and flaviviruses that encode class II fusion proteins, although for HCV 

the prediction of which glycoprotein acts as main fusion protein, remains unclear. In fact, 

over the last 10 years many studies, supported by contrasting evidences, led to the 

generation of many hypothesis, trying to explain fusogenic activity. Interestingly, to support 

the idea that E1 is the main protein involved in fusion, sequence analysis revealed that the 

E1 ectodomain contains a fusion peptide-like motif similar to the homologous peptide of 

paramyxoviruses and flaviviruses82. In addition, has been demonstrated that the structure 

of this motif is not required to mediate cell fusion, while the presence of specific residues is 

essential for viral entry83. However, comparing the E2 structure with other members of the 

Flaviviridae family, led the authors hypothesized that fusion is mediated by E2, suggesting 

that E2 belongs to the class II fusion protein84,85. To support this idea, Lavillette et al 

described at least three putative regions involved in virus-cell fusion by a mutagenesis 

approach, suggesting that E2 may contribute to the fusion step, either by direct interaction 

with the lipid membrane or by induction of conformational change of E1E2 complex86. 

Moreover, several residues responsible for CD81-E2 interaction have been described, 

supporting the idea that E2 plays a major role in the fusion step87,88. However, very recently, 

Kong et al succeeded in obtaining a crystal structure of E2 89. Surprisingly, the authors 

described E2 as a globular structure that contains many regions with no regular secondary 

structure despite the presence of eight disulfide bonds. Comparing E2 structure with other 

class II fusion proteins of different Flaviviruses, it emerged that the only shared element is 

the Ig-fold beta sandwich and that E2 does not adopt the putative three-domain fold 

described for other class II fusion proteins88,89. Furthermore, data obtained allowed to 

visualize the previous findings regarding the putative CD81 binding sites on E287,89,90. 



 

Despite these controversial data concerning fusion properties, observing the nature of E1 

and E2 glycoproteins and their capacity to form E1-E2 heterodimer seems to suggest that 

they may have a synergic role in regulating HCV entry and fusion. Indeed, it has been shown 

that the E1E2 heterodimer can bind to CD81 stronger than E2 alone indicating that E1 may 

modulate E2 activity91,92.  

 

p7 Protein  

p7 is a 63 aa, integral trans-membrane protein that is usually listed as NS proteins even 

though there is not a concrete evidence whether it can be directly associated to viral particle. 

Its structure is characterised by two transmembrane α-helices (named M1 and M2) linked 

by a positively charged cytosolic loop with the N and C termini both oriented towards the ER 

lumen93. The first experiments, conducted with electron microscopy, showed that p7 

monomers assemble into hexamer or heptamer complexes in artificial membranes94. 

Furthermore, another study, based on electron microscopy, revealed the presence of a 

hexameric complex characterized by a flower-shaped architecture and six protruding petals 

oriented toward the ER-lumen95. Subsequently, a third α-helix, located upstream of M1, has 

been identified96. A more recent model, developed using similar experimental strategies, 

suggested that hexameric and heptameric complexes might coexist; in this situation they 

may form a functional ion channels97. Interestingly, analysing p7 structure, some analogies 

have been found with viral proteins of other viruses such as 6k of alphaviruses, M2 of 

influenza A virus, vpu of HIV-1 which all belong to the viroporin family97. Typically, viroporins 

are not essential for viral RNA replication but they are involved in assembly and release of 

virus particles. Surprisingly, some recent data seem to suggest that p7 might also have a 

role on HCV replication98, even though this eventuality has still to be discussed. 



 

Other studies, conducted in vitro and in vivo, confirmed that p7 is essential for assembly and 

release of HCV particles99-101, moreover, p7 acts in the assembly stage through the 

interaction with NS2. During viral release, p7 acts mainly to form ion channels that are 

essential to equilibrate pH gradients within the endo-lysosomal compartments, in order to 

protect HCV particles from pH-dependent uncoating during egress95,96,101-104.  

NS2 protein  

NS2 is a transmembrane protein, containing three putative transmembrane domains at its 

N-terminal, and one cysteine protease domain at C-terminal. Interestingly, It has been 

shown that homo-dimerisation of NS2 induces folding of the catalytic domain and generation 

of two active sites at dimer interface105. To date, only one substrate, the junction NS2/NS3, 

has been identifies for the NS2 protease activity. NS2 is necessary for polyprotein 

processing and full-length HCV genome replication but it is not required for RNA replication 

of the subgenomic replicon106,107. 

Interestingly, NS2 has been recently identified also as a key factor for the assembly of new 

infectious HCV particles and this function has been demonstrated that does not depend on 

its protease activity108,109. Specifically, NS2 has been shown to act in combination with E1-

E2 glycoproteins, p7, and the NS3–4A enzyme complex at an early stage during virus 

assembly109-114. Furthermore, Counihan et al demonstrated that the recruitment of the core 

protein, from lipid droplets (LDs) to the putative sites of virus assembly, is strictly dependent 

on the NS2 and NS3–4A interaction115. In particular, it has been shown that this interaction 

is required to localize NS2 and core-associated LDs to putative sites of the virus 

assembly109,111,113. 

NS3-NS4A complex 

NS3-4A is a non-covalent protein complex composed of NS3 and its cofactor NS4A. NS3 is 

a 70 kDa protein characterised by two well defined enzymatic activities. NS3/4A structure 



 

has been solved by Yao116 et al. in 1999, showing that the N-terminal contains the serine 

protease activity responsible for the processing of the HCV polyprotein to generate the NS 

proteins, whereas the C-terminus has been reported as the NTPase/RNA helicase catalytic 

site117-119. The N-terminal domain encodes for the viral protease, which belongs to the 

trypsin/chymotrypsin protease superfamily120,121. The protease activity is exerted by the NS3 

catalytic triad, and the NS4A cofactor has been shown to stabilise the interaction between 

the catalytic site inside the NS3 and its substrates, enhancing the efficacy and specificity122. 

The process of NS3-substrate recognition is dependent on the presence of specific multiple 

aminoacid residues; however, recent experiments in order to investigate potential NS3-4A 

substrates, has not been able to solve this enigma. In fact, only few of a large number of 

cellular proteins, that contain the specific consensus sequence, are effectively cleaved by 

the NS3-4A. On the other hand, several cellular substrates have been identified as effective 

substrates, although they present some differences in the recognition sequence compared 

to the canonical one119. 

The NS3 helicase belongs to the RNA helicase super family 2, and shares six helicase 

motifs with proteins belonging to the same family123.  Furthermore, the NS3 exerts its 

helicase activity, nucleic acid unwinding, through ATP consumption; indeed, an APT-binding 

domain has been well described124. However, in experiments were NS3 protein was 

expressed alone, it showed an impaired activity compared to the entire NS3-NS4A complex. 

Hence, although the NS3 helicase is essential for HCV RNA replication, more recently it has 

also been proposed that NS3-4A can play a role in the virus assembly and immune 

response125-130 . 

Interestingly, an “in-plane amphipathic α-helix” at the N terminus of NS3, and the 

transmembrane α-helix harboured in the NS4A N-terminal have been shown to be the key 

factors in the association of NS3-4A with membranes and the structural organization131. 



 

Surprisingly, the authors described that the NS3-NS4A complex can be found on 

mitochondrial or mitochondria-associated membranes. It has been hypothesized that this 

atypical localisation is responsible for interfering with immune response, inactivating 

MAVS132,133. 

NS4B protein  

NS4B is a hydrophobic integral membrane protein of approximately 27 kDa. NS4B has been 

characterised by its effect to induce the formation of specific membrane alterations, forming 

a characteristic formation called membranous web; it consists of locally confined 

membranes in which HCV NS proteins accumulate, interact and drive viral replication134,135. 

NS4B has been demonstrated to be involved in several distinct functions: NTPase activity, 

interactions with other HCV NS proteins, direct binding to RNA and finally playing a role in 

the assembly of viral particles34,136-138. As already shown for other HCV NS proteins, NS4B 

can associate to form oligomers139,140. Furthermore, NS4B is essential to stabilise the 

functional replication complex: in fact, mutations affecting its oligomerization impair the 

membranous web formation and, as consequence, they affect HCV replication. It has also 

been suggested that the NS4B expression induces membrane curvature and vesicle 

formation141. 

NS5A protein 

NS5A is a membrane-associated phosphoprotein of 447 aa that is involved in modulation of 

HCV RNA replication and particle formation during assembly. It is characterised by a 

membrane anchor in the N-terminal and three main domains, which are separated by two 

low complexity sequence (LCS) 142. The first two domains, named D1 and D2 have been 

shown to be involved in RNA replication whereas D3 is required for virus assembly31,33. 

Interestingly, HCV NS5A has been described in two different states: basally phosphorylated 

(56 kDa) and hyper-phosphorylated (58 kDa). While basal phosphorylation is mainly focused 



 

on NS5A C-terminal and central residues, the hyper-phosphorylation has been described in 

a specific residue in the LCS. Based on the evidence showing that cell-culture adaptive 

mutations mostly affect these residues and data obtained with kinase inhibitors, it has been 

hypothesized that NS5A regulates HCV RNA replication, probably interacting with specific 

host factors143-145.  NS5A is anchored to the ER membrane through an N-terminal 

amphipathic alpha helix that is located into the cytosolic face of the membrane. NS5A has 

been shown to associate with phospholipid monolayer allowing its interaction with the core 

protein located on LDs or on the LDs-ER interface. Analysing the crystal structure of D1, it 

has been demonstrated that the dimerization, characterised by an extended shape, is able 

to form a channel capable to host both ssRNA and dsRNA142. Moreover, the NS5A D1 

domain has been found capable to bind RNA as a dimer146. Hence, it has been proposed 

that NS5A dimers might bind RNA and drive it through the HCV replication147. Interestingly, 

D2 and D3 domains have been found natively unfolded suggesting that to reach their stable 

conformation (mainly alpha helical), several interactions with specific cellular or viral proteins 

are required. Furthermore, D2 and D3 have been reported as substrate of Cyclophilin A 

(CypA)148,149; CypA, an isomerase enzyme, which have been shown essential for HCV 

replication; moreover, CypA can be inhibited by cyclosporine A (CsA)150. In particular, it has 

been reported that D2 and D3 can directly bind to the active site of CypA and specifically to 

proline residues, which have been shown to be substrates for the isomerase activity 148,149. 

Finally, it is important to highlight that most of the known mutations conferring CsA 

resistance, have been found in the NS5A D2 domain151.  

NS5B protein 

NS5B is the RNA-dependent RNA polymerase (RdRp) that has been isolated more than 20 

years ago; for this reason, it has been largely studied and crystalised152-155. The NS5B, a 

protein of 68 kDa, is characterised by the N-terminal catalytic domain spanning from aa 1 to 



 

530, a linker domain of 40 aa and a short C-terminal membrane anchor (CMA) of 21 aa. 

This anchor has been reported to be essential for viral replication in vivo but, in in vitro 

experiments, it is dispensable for RNA synthesis156. In vivo the CMA has been reported to 

be responsible for cytosolic orientation of the RdRp catalytic domain157. The N-terminal 

catalytic domain, is characterised by a well-defined right hand shape, which can be found in 

many other RNA-dependent RNA polymerases. In this hand-like folding, different structural 

regions were identified, referred as fingers, thumb and palm154,158,159. In addition, authors 

have identified a beta-flap on the thumb region that has been shown also in other Flaviviridae 

RdRp160. Hence, two different conformations have been reported: a closed conformation 

has been described during the de novo initiation step, while the open folding has been 

reported during the elongation step. Interestingly, the closed conformation is able to use 

ssRNA as template recognising the two initiating nucleotides155. Interestingly, on de novo 

replication, the RNA template and nucleotides are surrounded by an encircled active site, 

which is closed from one side by fingers and on the other by interaction between linker and 

beta-flap. Once the RNA synthesis is started, the NS5B undergoes a significant change 

during which the linker and the beta-flap are removed and the RdRp might begin the 

elongation. Interestingly, from the recent structural models, it has not been completely 

clarified whether the newly synthesized RNA can emerge as double stranded, paired to the 

template, or if it is forced to unwind in order to leave the active site161. 

Lifecycle 

The HCV life cycle is a complicated process based on different well-distinguished steps: 

entry, translation, replication, assembly and release. Below, all of these steps have been 

described individually.  



 

Attachment and entry 

The HCV entry is a multistep process that involves several factors and co-factors 

sequentially interacting with the virus that promote initiation of productive infection. Below 

are described all known factors involved in viral attachment.  

Glycosaminoglycans (GAGs) 

GAGs are long unbranched polysaccharides, characterised by repeated disaccharide units 

that show several degrees of heterogeneity including molecular weight, disaccharide 

construction, and sulfation. Based on core disaccharide features, GAGs can be classified 

into four groups: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate and 

hyaluronic acid GAGs. They are commonly associated with cellular proteins to form a panel 

of molecules exposed on cell surfaces, known as proteoglycans (PG). Interestingly, it has 

been reported that many viruses use PG for their attachment to host cells. Specifically, a 

heparan sulfate proteoglycan (HSPG) has been shown to be crucial for the early steps of 

HCV infection. The direct interaction between the HCV E2 glycoprotein and cell surface 

GAGs, via the positively charged residues at the N terminus, has been demonstrated and 

extensively studied using HCV-like particles produced in insect cell lines and recombinant 

E2 glycoprotein162. Nevertheless, it is generally accepted that the primary site of interaction, 

between HCV and the liver, is the heparan sulphate, especially Syndecan 1 163. This 

interaction is mediated by lipoproteins associated to LVPs and especially Apolipoprotein E 

(ApoE). For this reason, the role of Apo E exposed on the HCV surface in virus attachment 

to heparin/heparin sulfate PG has been demonstrated by showing that antibodies targeting 

ApoE and synthetic peptides derived from ApoE were able to inhibit HCV cell binding164. 

Moreover, Shi et al demonstrated the role of different heparin/heparin sulfate proteoglycan 

(HSPG) core proteins in the HCV binding process, showing that Syndecan 1 plays a major 



 

role in virus attachment compared to other member of the Syndecan family and others 

HSPG163.  

DC-SIGN and L-SIGN 

Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) 

and the related protein liver/lymph node-specific (L-SIGN or DC-SIGNR) are calcium-

dependent lectins expressed on dendritic and endothelial cells in the liver and lymph nodes, 

respectively. DC-SIGN and L-SIGN have been initially investigated due to their role in 

mediating human immunodeficiency virus (HIV) binding and internalisation. It has also been 

shown that the interaction between these molecules and HIV is dependent on the presence 

of mannose N-linked chains in the HIV envelope protein (Env). Based on these 

observations, it has been reported that glycosylation of HCV E1-E2 glycoproteins is 

comparable to that of HIV Env, and, moreover, L-SIGN is expressed in the liver. 

Interestingly, results obtained from early studies, conducted with soluble E2 (sE2) and 

HCVpp, confirmed that virus-associated E1 and E2 were able to bind DC-SIGN and L-

SIGN165. These data have been subsequently confirmed with the HCV cell-cultured (HCVcc, 

see below) system166. Based on these data, it has been hypothesized that L-SIGN, 

expressed on sinusoidal endothelium cells, might be used as a docking site for circulating 

HCV within sinusoids, facilitating the virus transfer to hepatocytes. Furthermore, the 

absence of DC-SIGN and L-SIGN on hepatocyte membranes suggests that they do not play 

a role as direct virus entry factors; rather, these molecules could enhance infection by 

promoting virus attachment. Finally, Pöhlmann et al suggested that sinusoidal endothelial 

cells might be involved in capturing and concentrating circulating virions in the liver, allowing 

their presentation to the hepatocyte167. 

 



 

Several human proteins have been identified as factors or co-factors involved in HCV entry; 

they are briefly described below.  

Low-density lipoprotein receptor (LDLR).  

LDLR, a member of the low-density lipoprotein family168, is a cell-surface receptor involved 

in cholesterol homeostasis. It has been shown to recognise ApoB100 embedded in LDL and 

ApoE in intermediate lipoprotein (IDL), and thus, mediate endocytosis of these 

lipoproteins169. The presence of lipoprotein components on the virus surface and the role of 

LDLR in HCV entry were first suggested by V. Agnello170. Several studies confirmed that 

indeed ApoB100 and ApoE are present on the HCV surface23,26,171. This hypothesis was 

also strengthened by the finding that cell entry of patient-derived HCV strains required 

LDLR172. Although several studies clearly demonstrated the role of LDLR in HCV cell 

entry170,172-174, in one particular study the role of LDL-R in HCV RNA replication has been 

suggested in addition to virus entry process175.  

Cluster of Differentiation 81 (CD81).  

CD81 is a 26 KDa ubiquitously expressed transmembrane protein belonging to the 

tetraspanin family. It is involved in regulation of cell morphology, motility and signalling176. 

CD81 is a type III membrane glycoprotein characterised by four transmembrane domains 

producing two extracellular loops and one short intracellular domain. CD-81 was initially 

identified as an HCV entry factor by Pileri et al, based on its interaction with E2 protein177 

and subsequently confirmed using HCVpp model178. Several experiments confirmed that 

disulphide bonds between cysteine residues in the large extracellular loop (LEL) are 

responsible for the stabilization and integrity of CD81 enabling its interaction with E290,179. 

Specifically, the LEL has been demonstrated to be crucial for E2 binding180-182; moreover, 

the residues on CD81, involved in the interaction with E2, have been identified87,90,177. HCV 

E1E2 heterodimers have been shown to have a stronger interaction with CD81 than soluble 



 

E2 alone91 and thus suggesting that CD81 might induce a conformational change in E1E2 

heterodimers to promote low pH-dependent fusion and endocytosis183.  

It has also been shown, thanks to new high-resolution fluorescence microscopy techniques, 

that CD81 is present on the cell surface in  particular features, known as  dot-like tetraspanin-

enriched microdomains (TEMs), in which tetraspanins are present at higher 

concentrations184,185. These areas, which have been equally reported in experiments with 

other viruses186, suggested that CD81 clustering on the cell membrane might be linked to 

susceptibility to HCV infection187.  

Moreover, a new regulatory ligand of CD81 has been described, EWI-2wint (EWI-2 without 

its N-terminus), whose expression could inhibit HCV entry in cells non-susceptible to 

infection188. Furthermore, silencing CD81 expression by small interfering RNA can efficiently 

inhibit HCVpp and HCVcc entry into hepatoma cell lines189, while, on the other hand, CD81 

expression in non-hepatic cells conferred susceptibility to HCV infection178,190. Specific anti-

CD81 antibodies effectively prevent HCV entry but not its binding, confirming the role of 

CD81 as co-receptor required for the virus cell entry after attachment step 190-192.  

Importantly, CD81 has been found to be present in cholesterol rich-microdomains (lipid rafts) 

and in cell junctions, where it co-localises with SR-BI and CLDN1, respectively193. 

Scavenger Receptor Class B type I (SR-BI).  

SR-BI is a 509 amino acids glycoprotein of 82 kDa, which is expressed on the membrane of 

several cell types including hepatocytes. It is involved in the bidirectional transport of 

cholesterol and it has been characterised as a receptor for various classes of lipoproteins194. 

It has a large extracellular loop anchored at the membrane at both N- and C- termini195. SR-

BI has been identified as a potential receptor for viral entry based on its interaction with 

soluble E2 protein196. Furthermore, it has been proposed that it could interact with the 

hypervariable region 1 (HVR1) 197. To confirm this hypothesis, the role of SR-BI during HCV 



 

binding has been largely investigated, identifying a region on SR-BI between amino acids 

70-87 necessary for E2 recognition198. However, the experiments conducted with serum-

derived (thus lipoprotein-associated) HCV have demonstrated that the effective interaction 

between SR-BI and virus-associated ApoB-containing lipoproteins is mediated by virus-

associated VLDL26.  

Interestingly, the endogenous function of SR-BI as the lipid transporter has been 

investigated to determine whether it could confer susceptibility to HCV infection: in fact, 

using HCVpp and HCVcc, it has been shown that high-density lipoproteins (HDL) enhanced 

HCV infection197,199, while oxidized LDLs reduced HCV entry200,201. Moreover, Ploss et al 

have demonstrated that human CD81 and Occludin (OCLN) expression is essential to 

render mouse cells susceptible to infection, whereas the expression of murine SR-BI and 

CLDN1 homologues may function similarly to the human proteins in promoting HCV entry202. 

Finally, inhibition experiments have shown that anti-SR-BI antibodies block HCV infection of 

hepatic cell lines203 and of chimeric mice with transplanted human hepatocytes204, 

confirming that SR-BI is an essential factor for HCV infection. 

Recent studies have validated the hypothesis that SR-BI is involved in HCV cell entry at 

binding and post-binding steps205 as well as in the cell-to-cell virus transmission198. 

Claudin 1 (CLDN1).  

CLDN1 is a 211 amino acid, transmembrane protein of 23 KDa. It is an important component 

of tight junctions and is involved in cellular permeability and polarity206. It is expressed in all 

epithelial tissues and especially in the liver but it can also be found at the basolateral 

membrane of hepatocytes, as non-junctional CLDN1207. This molecule has been identified 

as a novel entry factor for HCV infection by screening a library of cellular proteins with 

HCVpp208. Although there is no homology between CLDN1 and tetraspanins209, CLDN1 has 

been shown to interact directly with HCV virions210. Most importantly, CLDN1 has been 



 

shown to complex with CD81, forming a well characterised complex that play a role in the 

post-binding step211,212. The critical region of CLDN1 for HCV entry is the extracellular loop 

1208 and especially the domain containing the highly conserved motif W30-GLW51-C54-C64 

213. Moreover, some studies have demonstrated that lateral diffusion of CD81-CLDN1 

complexes is crucial for HCV entry in vitro211,214,215; however, it has not been completely 

clarified if these complexes are pre-existing in the cells or are induced by HCV infection216. 

It has also been hypothesized that CLDN1 expression in the tight junctions might be related 

with HCV permissiveness217, thus suggesting that tight junctions play a critical role for HCV 

entry. In fact, in infected cells CLDN1 is generally down regulated to avoid superinfection218. 

Moreover, the role of the cell polarisation in the HCV cell entry has been largely investigated: 

the polarisation affected tight junction formation interfering with the correct localisation of 

CLDN1 and other proteins219. As consequence, a non-junctional CLDN1 pool is produced, 

with impaired capacity of binding CD81 and thus, reduced HCV entry219. Equally, it has been 

proposed that HCV entry might be mediated by other proteins belonging to the Claudin 

family, such as CLDN6 and CLDN9, although with different efficiency220,221.  

Occludin (OCLN) 

OCLN is a 65 KDa transmembrane protein highly expressed in the tight junctions of 

polarised cells222. This protein has been shown to have an important function in cell-cell 

adhesion and in anchoring the junctional complex to the cytoskeleton223,224. After that this 

protein has been identified as a new cellular receptor for HCV entry202, it has been 

demonstrated that OCLN is required for late, post-binding entry events218,225. According to 

the most recent findings, OCLN and CD81 are considered the two critical cellular factors 

responsible for human HCV tropism. In fact, the expression of these human proteins confers 

susceptibility to HCV infection of mouse cells202. It has also been demonstrated that 

glucocorticosteroids affect OCLN expression increasing its level and thus stimulating HCV 



 

entry, as already shown for SR-BI226. However, it has not been clarified whether OCLN  has 

a direct interaction with viral proteins and further studies are necessary to fully understand 

the role of OCLN in this process209. 

 

EGFR and EphA2.  

The epidermal growth factor receptor (EGFR) is a 170 kDa transmembrane glycoprotein 

characterised by an intracellular domain with tyrosine kinase activity. EGFR overexpression 

has been detected in a large proportion of hepatocellular carcinoma cases (40-70%) 227. 

Recently, EGFR has been identified as a co-factor for HCV entry by RNA interference kinase 

screening228. Moreover, a second entry co-factor, the ephrin type A receptor 2 (EphA2), has 

been reported; EphA2 is a transmembrane tyrosine kinase protein involved in cell 

positioning, cell morphology, polarity and motility229.  

From several experiments, performed with HCVpp, HCVcc and replicon systems on several 

lines of hepatic origin and primary hepatocytes, it emerged that EGFR and EphA2 have no 

a direct interaction with HCV particles, but that they modulate CD81-claudin-1 association, 

affecting viral glycoprotein–dependent membrane fusion and facilitating virus entry228. This 

mechanism seems to be dependent on the synergistic expression and the activity of both 

EGFR and EphA2. Binding of HCV with CD81 but not with CLDN1 activates EGFR, 

triggering the internalisation of the HCV-CLDN1-CD81 complex.  

HCV entry is apparently mediated by EGFR activation but seems to not be related to its 

kinase activity230. On contrary, the complex HCV-CD81-CLDN1 has been shown to 

associate with two other proteins: CD81-associated protein ITGB1 and Rap2B, which have 

been reported as putative cofactors for HCV entry. This complex activates a GTPase 

protein, HRas that represents the link between the HCV entry complex and the signalling 

pathway of EGFR. EGFR, trough HRas activation, is thought to promote HCV entry via the 

MAPK pathway, regulating CD81-CLDN1 complex assembly231. Furthermore, it has been 



 

suggested that Rap2B, another GTPase protein, acts by regulating tetraspanin-enriched 

microdomains formation promoting CD81 and ITGB1 clustering231.  

Niemann Pick C1-like 1 receptor (NPC1L1).  

NPC1L1 is a glycoprotein with a molecular mass of 170 to 200 kDa, which is supposed 

containing 13 transmembrane domains with three large extracellular loops (LEL); between 

them, LEL1 has been shown to bind cholesterol. NPC1L1 is a protein naturally involved in 

cellular cholesterol absorption and, in humans, it is highly expressed in the liver and in the 

gastrointestinal tract. In hepatocytes, during steady state NPC1L1 has been found mainly in 

the endocytic recycling compartment, whereas, in the case of cholesterol depletion, it is 

translocated to the canalicular membrane. Once exposed on the plasma membrane, 

NPC1L1 activity is controlling the uptake of biliary cholesterol into the cells. Recently, a 

model on NPC1L1 function has been proposed232; the authors suggested that NPC1L1 can 

bind to cholesterol present on bile micelles and transfer it to form a NPC1L1-flotillin-

cholesterol microdomain that subsequently undergoes endocytosed via clathtrin coated 

vesicles. This mechanism and its role in cholesterol homeostasis suggests that this cell 

surface cholesterol-sensing receptor might be involved in HCV entry, based on the evidence 

that cholesterol is present on virus particles233. It has also been shown that knock down of 

NPC1L1, through the inhibition of pharmacological endocytosis or blockage of its LEL1 by 

antibodies, dramatically reduced HCV entry234. Furthermore, it has been reported that 

NPC1L1 is likely to be a HCV-specific entry cofactor, since no effects on vesicular stomatitis 

virus G protein pseudotyped particles were detected. Finally, it has been suggested that 

cholesterol content in HCV particles might highly influence viral entry via NPC1L1. It has not 

been completely clarified whether NPC1L1 may interact directly with HCV by removing 

cholesterol associated with virions, thus revealing a binding site on E1-E2, or conferring 

required conformational changes for optimal fusion. It has been proposed that NCPC1L1 



 

might play a role similar to that suggested for EGFR, i.e. the cholesterol triggered 

endocytosis of NPC1L1 and consequently entry of HCV particles. 

Transferrin receptor 1 (TfR1).  

TfR1 is involved is iron homeostasis, mediating the iron-transferrin complex uptake; it is 

widely expressed in most of the human tissues. TfR1 is a 760 amino acid single pass type 

II membrane protein that undergoes endocytosis in a clathrin-dependent way. Once iron is 

delivered inside the cells, TfR1 is recycled and return to the cell membrane to collect more 

iron235. TfR1 has been proposed as entry factor for several arenaviruses including Machupo 

virus, Guanarito virus and Sabiá virus236,237. A possible correlation between iron metabolism 

and HCV infection has been proposed recently, supported by several evidences: first, a 

significant proportion of HCV patients have altered iron levels, suggesting iron overload238; 

in addition, microarray analysis revealed that changes in genes involved in iron metabolism 

may occur during HCV infection. Based on these observations, TfR1 has been suggested 

as putative factor in HCV entry. Interestingly, preliminary studies showed that TfR1 might 

interact with viral envelope glycoproteins; the authors also proposed that such interaction 

may take place after virus binding to CD81239. 

Cluster of differentiation 63 (CD63).  

CD63 is a member of the tetraspanin superfamily, but it does not belong to the CD subfamily. 

In fact, CD63 constitutes its own subfamily because it has been shown that it originated 

before other CD molecules240. CD63 is ubiquitously expressed and it resides either on the 

cell surface or in the endosomal system. This protein is characterised by a lysosome-

targeting motif that is recognised by AP-2 and AP-3, which are adaptor proteins involved in 

processing of clathrin-coated vesicles, and respectively mediate endocytosis from the 

plasma membrane and redistribution from endosomes to lysosomes241. 



 

Recently CD63 has been identified as a new entry factor by a novel approach based on 

computational prediction and data integration242. The authors further analysed CD63 and 

discovered that it is able to bind directly to HCV E2. In addition, HCV infection can be 

efficiently inhibited by anti-CD63 antibody and, in particular, by a polypeptide corresponding 

to the extracellular domain 2 of CD63243. 

HCV entry: a model 

As represented in figure 3, HCV present in the blood stream might interact with endothelial 

cells of the liver sinusoids, where molecules of the lectin family, in particular L-SIGN, might 

act as capture receptors for the transmission of the viral particles to the hepatocytes244. 

Subsequently, virions are supposed to be trafficked to the basolateral membrane of the 

hepatocytes162,245. The first site of attachment is believed to be the HSPG192, especially 

Syndecan-1 163. This might be due to the capacity of the LVPs to interact with both GAGs 

and LDLR through the virus associated lipoproteins allowing the attachment of HCV virions 

to the hepatocytes170. Post-binding events have not been completely determined, but it is 

supposed that, after the primary attachment, the viral particles interact with SR-BI that is 

able to bind HCV indirectly via VLDL associated to the virus26  and then facilitate their uptake 

due to its cholesterol transfer function246. In sequence, the entry process probably involves 

the virus interaction with CD81 through E1E2 heterodimers91. Then, CD81 forms a complex 

with proteins of the CLDN family211, though it has not been completely understood if these 

interactions are pre-existing or induced by HCV binding. After these early steps, the HCV 

entry may be altered by the presence of molecules circulating in the blood such as HDL and 

LDL 247, VLDL 26,  or Lipoprotein Lipase (LPL) 248, facilitating (HDL) or inhibiting (VLDL, LDL, 

LPL) HCV infectivity. The role of other factors is still unclear, although, according to the most 

recent data, HCV entry co-factors such EGFR and EphA2, once activated by their ligands, 

are responsible for HCV-CD81-CLDN1 complex modulation and transport into the tight 



 

junctions220. This step is supposed to trigger viral glycoprotein–dependent membrane fusion 

and endocytosis by an actin-dependent mechanism249,250. The role of TfR1 is not completely 

clear; however, it could play a role during endocytosis239. The tight junctions have been 

identified as necessary for protein localisation and virion internalization202,219,251; at this step 

of the entry process the complexes constituted by virion-CD81-CLDN most probably interact 

with other co-factors such as OCLN and NPC1L1234 leading to a clathrin-mediated 

endocytosis208,220, a common internalization mechanism for different viruses252-255. 

 

Figure 3. Putative mechanism of HCV entry showing the interactions between the virus and 

entry factors256. Viral particles interact with L-SIGN on sinusoids to be translocated in the 

Space of Disse where they directly face hepatocytes. Entry process involves several host 

receptors, such as LDLR, Gags, SR-BI, CD81, CLND1, EGFR. These interactions allow the 

transport of viral particles to tight junctions, where other proteins like OCLN and NPC1L1 

are responsible to mediate clathrin-mediated endocytosis. After the entry, the fusion step 

that leads to HCV uncoating (not shown). 



 

Fusion mechanism 

The HCV fusion is a process that has not been completely described; for many years it has 

been suggested that it was mediated by the presence of a class II fusion protein, similar to 

those of other viruses possessing this class of protein257. Class II fusion proteins have been 

shown to induce membrane fusion through a clathrin-mediated endocytosis in a process 

that is highly dependent on the acidic environment208,220,252. For viruses belonging to 

Flaviviridae family, it has been demonstrated that low pH induces conformational changes 

in the glycoproteins and in the heterodimer dissolution, resulting in the formation of a fusion-

competent homo-trimer258,259.  

Moreover, cholesterol has been shown to facilitates HCV-mediated fusion, depending on 

the presence of functional E1 and E2 proteins260. The fusion protein has been reported to 

act synergistically with lipid and cholesterol during the virus-cell fusion step. Noteworthy, the 

level of virion-associated cholesterol is significantly important; indeed, the most fusion-

competent HCV particles showed the same density as the predominant cholesterol rich 

lipoprotein LDL 261,262. Depletion of cholesterol from the virus almost completely abolished 

HCV infectivity, affecting internalization but not attachment263. 

Interestingly, it has been reported that other cellular lipids, in particular 

glycerophospholipids, sphingolipids and sterols, might be involved in HCV fusion thank to 

their physical, mechanical and/or chemical properties, whereas it has been demonstrated 

that cholesterol might bind to certain viral envelope protein after its organisation in 

cholesterol-rich microdomains, which have been shown to be implicated in the entry of many 

virus species such as Ebola and Marburg viruses, Vaccinia virus, murine Hepatitis virus, 

lymphocytic choriomeningitis virus and Herpes Simplex virus264,265. 



 

Translation 

The HCV positive-strand RNA genome is directly used as a template for translation in the 

cytosol, immediately after infection and uncoating. This process is driven by an IRES-

mediated translation, whom presence has been largely documented in the 5'-NTR of the 

viral RNA; its presence has been shown to be crucial to start the translation process, 

bypassing the cellular mRNA processing events and recruiting all the translation factors to 

the viral RNA. 

The HCV IRES is characterized by the presence of several stem-loops (I, IIa, IIb, IIIa, IIIb,, 

IIIc, IIId, IIIe, IIIf, IV, V, VI). Interestingly, stem-loops IIId, IIIe,IIIf  and IV have been shown to 

constitute the IRES core, forming a double pseudoknot  structure, with a transfer RNA 

(tRNA) like structure266,267. This structure has been reported to bind strongly to the small 

ribosomal 40S subunit thank to multiple contacts. These contacts are responsible for the 

IRES binding to the 40S without any contribution from other initiation factors268-271. It has 

been suggested that the interaction between the pseudoknot and the 40S ribosomal subunit 

contribute to the positioning of the AUG codon in the mRNA binding cleft of the 40S 

ribosome272. Interestingly, the stem-loop II has been shown to be required for translation, 

while the stem-loop I presence is not necessary273,274; moreover, the stem-loop II, through 

the interaction with stem-loop IV, is thought to be responsible for placing the region with 

AUG into the 40S channel275. Moreover, it has been demonstrated that only three eukaryotic 

initiation factors (eIF) are required to form the 48S ribosomal complex and subsequently the 

80S, triggering the IRES-mediated translation.  The eIF3 interacts with 40S by binding to 

the apical part of stem-loop III 276-278; furthermore, eIF2, in combination with the initiator tRNA 

(tRNAi) and the guanosine-5’-triphosphate (GTP), forms the eIF2-GTP-Methionine (Met)-

tRNAiMet, that is responsible for transferring the Met-tRNAi to 40S in a GTP dependent way. 

Noteworthy, it has been shown that the recognition of the ORF start codon, driven by the 

eIF5, is supported by the aforementioned complex and is able to induce GTP, eIF2-



 

mediated, hydrolysis. Finally, the addition of the 60S to the already established large 

complex leads to the formation of the translation-competent 80S 279-281. Probably, the core 

sequence and the secondary structures, present in the protein, might positively affect 

translation282. Moreover, the 3’ NTR has been reported to enhance the translation, especially 

through elements mapped in its variable region, including poly U/C tract and the 3’-X 

region283.  Usually, eIF2 activity is suppressed in case of a host cell-response to virus 

infections and, in this condition, an alternative eIF has been found, able to sustain the IRES-

mediated translation, In particular, eIF2, eIF5 or the eIF2a can be replaced by eIF5b that is 

able to promote delivery of tRNA in a GTP-independent way281. Several other factors, 

including the La protein have been suggested to contribute to the efficient translation but 

their mechanisms of action need to be clarified284,285.  Recent studies have identified the 

expression of miR-122 as a novel key factor in hepatitis C virus translation286. miR-122 has 

been shown to regulate HCV by binding directly to two adjacent sites close to the 5' end of 

HCV RNA287. Although these experiments were performed using genotype 1a and 1b HCV 

RNA, the miR-122 binding sites are located in a highly conserved region; moreover, it has 

been reported that miR-122 is required for replication of infectious type 2a HCV288. As 

miRNAs generally function to repress gene expression by binding to 3'UTR sites, this 

positive regulation of viral replication via a 5'UTR represents a novel function for miR-122. 

The mechanism of regulation is not yet known. miR-122 stimulates translation of HCV RNA, 

but not to a sufficient extent to explain its effects on viral replication, indicating that a second 

stage of the viral replication cycle must also be regulated289. HCV RNA synthesis is not 

affected by miR-122, suggesting that regulation of other processes such as RNA stability 

may occur285. 



 

Replication 

Immediately after translation and the subsequent processing of the polyprotein, the NS 

proteins, comprised between NS3 and NS5B, rapidly constitute the replication complex on 

the ER membrane. Interestingly, the establishment of the replication complex leads to 

membrane alterations135,290; altered membranes have been reported since the first studies 

on the human and chimpanzee liver tissues291-293. Expressing the NSs comprised in the 

replication complex, in particular NS4B, leads to a massive vesicles modifications and 

induces their accumulations, forming a characteristic feature, reported as membranous 

web134. According to several studies, it has been reported that the HCV RNA replication 

sites are protected by membranes294-296. Based on other findings, it has been hypothesized 

that these vesicles are membrane invagination with a pore that allows the exchange of 

hydrophilic molecules like nucleotides297. Aside single vesicles, more complex structures 

have been described in HCV infected cells. As shown in figure 4, these structures are 

defined as double-membrane vesicles (DMVs), massively predominant, together with 

multiple-membrane vesicles (MMVs) 290,298; however, their functions have not been 

completely clarified38,299. The morphology of membranous web is not affected by RNA 

synthesis, although it depends on the expression of NS3-N5B module that is likely to interact 

with host factors298-300. NS4B plays also an important role in the formation of replication 

complexes; indeed, its expression alone is sufficient to generate a membranous web 

resembling to the one generated by NS3 to NS5 protein expression134. Interestingly, the 

expression of NS3/4A or NS5B alone has been reported to induce membranous web 

morphogenesis; moreover, the NS5A expression occasionally produces vesicles, which 

present the same morphology of DMVs 300. In addition, HCV is known to alter the expression 

of genes involved in lipid metabolism; as consequence, an intracellular lipid accumulation 

has been observed, that is crucial for optimal replication301-303. Specifically, it has been 

suggested that lipids might be involved in two distinct ways: contributing to form the 



 

replication site through membrane proliferation and inducing protein modifications like 

geranyl-geranylation and palmitoylation304; however, very recently has been shown that in 

replicating cells the majority of NS4B is not palmitoylated305.  

 

Figure 4. (A) RNA translation and formation of the membranous web24. Viral RNA is 

immediately translated to generate a polyprotein, which is processed to obtain viral proteins. 

HCV proteins are expressed on the ER membrane, where they form double-membrane 

vesicles, sites in which RNA replication takes place.  

 

Once membranous web is completely established, RNA replication takes place. This step is 

a complicated process that has not been yet completely elucidated. Almost all data have 

been collected from in vitro experiments, thus the mechanism observed in vivo remains 

unclear, mainly due to lack of appropriate model systems. Initially, from studies conducted 

with purified NS5B, it has been proposed that RNA synthesis may initiate in two ways: by a 

primer-dependent mechanism or by the de novo synthesis152,153,306-308; however, recent 

studies seemed to confirm that de novo synthesis is the physiological mode of RNA 

synthesis in HCV infected cells309. 

The first step of HCV replication is the synthesis of the intermediate negative-strand RNA,     

in a ratio to positive RNA comprised between 10-100 310,311, which is then used as template 



 

for the synthesis of the positive-strand RNA; the newly synthesized RNA is either packaged 

into virions or re-used for negative strand synthesis312. Interestingly, negative-strand 

synthesis appears to be rate limiting, suggesting it may represent a mechanism to control 

replication efficiency38. 

The 3’NTR on the positive strand has been shown to be crucial for viral RNA replication41, 

probably for its role in the initiation and regulation of negative-strand synthesis313. Moreover, 

the 3’ of the HCV negative strand has been shown to represent the template for RNA 

synthesis initiation, whereas the 3’ end of the positive strand is part of a stable structure that 

cannot be accessed by the NS5B in the closed conformation42,314. These observations 

suggest that the synthesis of the intermediate negative strand, starting from the positive 

strand, requires other factors, such as the NS3 helicase.  

RNA synthesis in vitro can be divided in four different steps: RNA binding, initiation, 

elongation and termination. NS5B polymerase has been shown to bind to a various number 

of RNA template, in a slow and inefficient process315. Interestingly, the NS5B enzymatic core 

is able to bind with high affinity to single strand RNAs characterised by more than seven 

nucleotides316. Following the binding of a single-stranded template, a dinucleotide primer is 

synthesized; for this process, a high concentration of GTP nucleotide is required317.  

Noteworthy, the synthesis of the dinucleotide can generate an accumulation of it in vitro, 

probably due to the closed conformation of NS5B, suggesting that it dissociate rapidly from 

the NS5B-template complex155. Furthermore, it has been hypothesized that the dinucleotide 

primer is subsequently addressed in a “platform” where the addition of the third base takes 

place. It has been proposed that the C-terminal linker or the beta flap might represent the 

site for this “platform” as already shown for other pestiviruses160,318. Switching to the 

elongation requires a high concentration of the third base incorporated and it is facilitated 

by high GTP concentration319,320. Moreover, the switch to elongation requires a 

conformational change, during which the NS5B C-terminal is removed to hold the egressing 



 

dsRNA and “fingers” shift adapting contacts with the “thumb” 321,322. Interestingly, it has been 

demonstrated that the amino acid in position 405 in the thumb is crucial to switch from 

initiation to elongation, stabilising the close conformation first, and then facilitating the 

transition to the open conformation323. During elongation, it has been estimated that NS5B 

can incorporate between 100-400 nucleotides per minute324,325; interestingly it has been 

reported that NS5B is able to replicate the full HCV genome in vitro, suggesting that the NS3 

helicase is not required at this stage155,324,325.  In this process, the NS5B polymerase is 

strictly associated to its template and surprisingly, low nucleotide concentrations are 

required compared to initiation stage326. Termination step of RNA synthesis is almost 

unknown, although it has been suggested that the polymerase might dissociated when reach 

the end of the template. NS5B-mediated synthesis has been largely documented as error 

prone, providing evidences for the high variability of HCV isolates. Powdrill et al showed that 

the NS5B error rate is approximately of 10-3 per site, with a strong bias toward G:U/U:G 

mismatches327.  

Viral assembly, maturation and release 

The exact mechanisms underneath the assembly of infectious virus particles remain poorly 

understood but it has been demonstrated that these events are driven by a complex 

interaction between viral and cellular factors. HCV core protein, thanks to the presence of 

amphipathic regions, acts like a membrane protein and this feature allows its association to 

the surface of cytosolic LDs (cLD), which derive from the outer leaflet of the ER53.  

Interestingly, specific mutations in Domain 2 of core protein seemed to impair interaction 

with cLDs, reducing virus production, presumably affecting the assembly stage15,49,328. In 

particular, a specific mutation in D2, phenylalanine 130, heavily compromises the protein 

stability and blocks the interaction between core and LDs 49. The trafficking of core to cLD 

has been shown to be dependent on the cytosolic phospholipase A2 G4A (PLA2GA4) and 



 

this process can be enhanced by the diacylglycerol acyltransferase 1 (DGAT-1), highlighting 

the importance of lipid metabolism in HCV life cycle329,330. The first study supporting the 

hypothesis that LDs play a key role in the mechanisms of HCV assembly was provided by 

Miyanari et al., who proposed the first model with HCV-induced morphogenesis15. In this 

study, the authors described the core protein as the main element responsible for the 

recruitment of glycoprotein E1E2 to replication complexes and viral genome to LDs. 

According to this hypothesis, LDs represent the sub-cellular microenvironment where all 

factors are localised, allowing the initiation of virus assembly (figure 5). 

Moreover, it has also been shown (figure 5) that NS2 plays a crucial role in the early stage 

of assembly: according to authors, NS2 is essential to stabilize the replication complex that 

includes E1E2, p7 and NS3-4A109,110,114. In addition, it has been shown that NS2 can interact 

directly with NS3-4A, a step fundamental to recruit core-cLDs into the assembly site and 

with p7, which is also required to localize NS2 to the site of the virus assembly111,113,115. 

Mutations in NS3 and NS5A result in significantly reduction of the viral assembly, suggesting 

that they may contribute to the replication/assembly transition331. During the assembly of 

viral particles, it has been reported that NS5A is recruited to LDs where it interacts with core 

and probably also with ApoE, a critical factor for this step15,31,332. In fact, interaction between 

ApoE and NS5A is considered essential to stabilize the viral assembly platform332.  

Furthermore, it has been proposed that HCV particles might be formed through budding into 

ER, as exhibited by other members of the Flaviviridae family. In fact, pharmacological 

inhibition of ER-Golgi transport leads to an accumulation of HCV particles inside the cells333. 

From this observation, it has been hypothesized that HCV assembly starts in a site close to 

intracellular LD structures and that the nucleocapsid formation may take place 

simultaneously with budding from ER (figure 5)38,334.  

After assembly, it has been proposed that HCV particles undergo some complex 

modifications that have been described in the post-ER compartment. To support this idea, 



 

several experiments confirmed that maturation and release of HCV virions share features 

with the pathway of VLDLs production23. VLDL synthesis, in hepatocytes, is a complex 

pathway that can be briefly described as a two-step process requiring several factors. In the 

first step, ApoB is located with lipids, in a co-translation mechanism, by the microsomal 

triglyceride transfer protein (MTP) to form the pre-beta VLDL in the ER. In the second step, 

pre-beta VLDL are subject to a further lipidation, but this mechanism is still unclear and two 

models have been proposed335,336: in the first hypothesis, lipids are included into the VLDL 

precursor through the fusion with LDs facing the ER lumen, which are known to be 

associated with ApoE and ApoC. In the second one, it has been suggested that the addition 

of lipids to VLDL might happen in a post-ER compartment, likely in the Golgi337. 

Considering that ApoB, ApoE and MTP are key components required for VLDL formation, 

they have been investigated to determine their role in viral particle production. Blocking the 

VLDL production, interfering with ApoB or ApoE synthesis or through a pharmacological 

inhibitions of MTP or the acyl-CoA-synthase 3, resulted in massive reduction of HCV 

production, although no effect was detected on viral replication21,27,333,338-340. In contrast, 

others suggested that ApoB and MTP were not involved, whereas depletion of ApoE alone 

resulted in a massive inhibition on HCVcc production21,341. Based on their results, the 

authors suggested that HCV maturation is dependent on fusion with ApoE-associated LDs 

rather than the VLDL pathways. Has to be considered, though, that most of these results 

were obtained using Huh7 cells, which have been described for having deficient lipoprotein 

synthesis pathways, and thus an impaired production of ApoB. However, in the last few 

years, ultrastructural analysis of HCV particles, produced in primary human hepatocytes, 

confirmed the association of ApoB with secreted viral particles342; moreover, it has been 

demonstrated that knocking down ApoE level significantly reduces virus production and 

promotes viral-evasion from neutralising antibodies27. 



 

Finally, during egress the viral glycoproteins undergo an extended glycosylation, and their 

disulphide bonds are rearranged81; furthermore, mature particles are secreted in vesicles, 

in order to prevent the exposure of the viral progeny to low pH, which would trigger, in a p7-

dependent mechanism, premature uncoating101. 

 

Figure 5. RNA assembly and release process through ER lumen25. After RNA replication 

inside DMVs, viral proteins cooperate with cellular factors to initiate viral assembly. In 

particular core protein, responsible for recruiting lipid droplets to DMVs and driving progeny 

positive ssRNA inside nascent particles. Once particles are correctly assembled they are 

associated with lipoproteins, such as ApoB and ApoE, and released following LDL pathway. 

 



 

In vitro models to study HCV cell cycle  

Since the discovery of HCV, in 1989, many unsuccessful attempts have been done trying to 

establish efficient in vitro systems to culture the virus. In early experiments, human and 

chimpanzee primary hepatocytes were infected with sera obtained from HCV patients or 

transfected with cloned viral RNA; all these trials failed to establish a robust replication 

model343. In primary human foetal hepatocytes, infected with serum-derived HCV, the viral 

RNA was detectable but the replication rate was very low344. Furthermore, stable cultures of 

primary hepatocytes are still very difficult to establish. For these reasons, several human 

hepatoma cell lines were tested. Human hepatoma cell lines 7721, PLC/PRF5, Hep3B and 

Huh7 appeared susceptible to infection with HCV from patient sera but the system was still 

inefficient345. 

Transfection of hepatoma cell lines with cloned viral RNA gave poor results due to non-

functional sequences or mutations introduced by RT-PCR. This problem has been 

circumvented by the isolation and cloning of particular strains, like H77 or JFH1, able to 

sustain viral replication. Based on these replicative-competent clones and thanks to new 

molecular biology techniques, different efficient in vitro cell culture systems to study HCV 

were established (Figure 6) 346-348. 

 



 

 

Figure 6. In vitro models developed to study HCV life cycle. Systems are listed accordingly 

to the HCV life cycle step(s) that they allow to study347. 

HCV pseudo-typed particles (HCVpp).  

HCVpp were introduced as the first HCV in vitro infection system178. HCVpp consist of a 

retro- or lentiviral nucleocapsid surrounded with HCV enveloped glycoproteins E1 and E2. 

HCVpp are obtained by co-transfection of the human embryo kidney cells (HEK293T) with 

three plasmids. The packaging vector encodes the genes for retroviral structural proteins, 

Gag and Pol, the transfer vector contains a sequence required for encapsidation and a 

reporter gene (typically Luciferase), which are flanked at 5’ and 3’ by sequences required 

for its integration in the cellular DNA; finally, the vector that encodes for HCV envelope 

glycoproteins E1 and E2. Viral pseudo-particles, produced in HEK293T cells, can be used 

on Huh7 cells to evaluate viral infectivity, which can be quantified by determining luciferase 

activity. Infection of primary hepatocytes with HCVpp is possible, although the infection 



 

levels are usually not comparable with those in Huh7 cells178. HCVpp are largely used to 

investigate viral entry, which include viral binding, entry process and fusion; furthermore, 

they have been described for evaluating neutralization of HCV with anti-envelope antibodies. 

In fact, HCVpp entry can be neutralized with sera of HCV infected patients containing 

antibodies targeting E1, or E2 protein349-351. In addition, they are often used to identify and 

characterise molecules able to block HCV entry and to investigate virus-cell-fusion 

mechanisms352. 

Importantly, due to the non-hepatic origin of HCVpp, these virus pseudotyped particles are 

not associated with lipoproteins (unlike infectious HCV virions, see below), and thus the 

entry mechanisms does not consider lipoprotein-associated virus.  

 

 

HCV replicons 

HCV replicons are genetic elements consisting of a portion or the entire genome of HCV; 

they are able to replicate autonomously and were developed to study HCV replication317. Up 

to date, a large number of replicon system has been established353,354. The replicons may 

be sub-genomic, containing only the non-structural HCV proteins required for RNA 

replication or full-length, which are characterised by the presence of structural and non-

structural proteins, although no viral particles are released. In the first generation, most of 

them were bicistronic construct and contain the HCV 5’-NTR, the neomycin 

phosphotransferase gene for selection, an encephalomyocarditis virus (EMCV) internal 

ribosome entry site (IRES) driving translation of the HCV non-structural genes which are 

followed by the HCV 3’-NTR. The second generation of replicons consist of a monocistronic 

or bicistronic construct usually encoding a reporter gene (luciferase or GFP) and a selection 



 

gene (puromycin or neomycin resistance) under the control of HCV or EMCV IRES355. 

Moreover, several replicons have been developed from different genotypes356. 

All the replicon constructs have the T7 promoter, upstream of the viral genome cDNA, which 

drives transcription of RNA. Following in vitro transcription with T7 RNA polymerase, 

replicon RNA is transfected into human Huh7 hepatoma cell line, usually by electroporation 

to achieve a high efficiency357. 

Several studies have reported that replicons usually may acquire adaptive mutations, which 

are generally located in the NS3, NS5A and NS5B proteins, within few weeks358,359. 

Importantly, adaptive mutations in NS5A region have been identified as responsible for 

interferon resistance360. In addition, a replicon carrying three adaptive mutations (two in NS3 

and one in NS5A) has shown a strong increase of RNA replication361. The replicon system 

has been generated to study the host and viral signalling, adaptive mutations necessary for 

viral replication and, most importantly, screening of candidates for anti-viral 

molecules357,361,362. 

However, due to intrinsic limitations, this system could not be used to investigate viral entry 

or assembly process. Indeed, the replicon cells are not able to produce viral particles363. 

HCV trans-complemented particles (HCVTCP) 

HCVTCP are authentic viral particles that contain a subgenomic replicon RNA, mostly JFH-

1-based, instead of the full-length genome. These particles are generated in Huh7 cell line 

by transfection with replicon RNA and envelope proteins. However, several packaging cell 

lines have been obtained through transduction with vectors encoding HCV structural 

proteins and thus the sequences are stably integrated into the cellular genome364. HCVTCP, 

which are assembled in hepatic cells, show association with lipoproteins, and consequently 

they resemble more to HCV than HCVpp365. Moreover, HCVTCP contain as genome a sub-

genomic replicon, as such lacking of sequences encoding structural proteins; hence, the 



 

infection of naïve cells with these particles allows investigating a single cycle infection, 

evaluating potential effects only one viral entry and RNA replication. 

  

Cell culture derived HCV (HCVcc).  

In 2001 it was reported that a sub-genomic replicon, obtained from a clone termed Japanese 

Fulminant Hepatitis 1 (JFH-1), was able to replicate very efficiently in Huh7 cells without the 

addition of adaptive mutations366-368. However, the real turning came a few years later, when 

three different groups reported that the full-length JFH-1 genome was able to replicate and 

to produce virus particles in Huh7 cells; interestingly, these particles have been shown to be 

infectious for these cells as well as in animal models such as humanized mice and 

chimpanzees369-371.  

These virus particles were then termed HCV cell-cultured (HCVcc), and they boosted the 

studies of all steps of the viral life cycle, including also assembly, release and multiple cycles 

of infection. Considering that the JFH-1 is a genotype 2a based system, many groups 

focused their studies to obtain clones from other genotypes able to produce infectious virus 

particles in cell culture17. However, these new systems seemed not be able to establish a 

robust production of virus particles. Only in the last few years, it has been reported that these 

strains, of different genotypes, can support robust viral culturing when mutated to introduce 

specific adaptive mutations able to restore high level of viral replication372-374. 

To partially overcome this problem, a wide panel of intra- and inter-genotypic chimeras has 

been developed to obtain infectious systems of different genotypes375,376. Most of the 

reported chimeras have been produced by replacing the region comprised from core to NS2 

protein in the JFH-1 backbone with the same region of other genotypes. Noteworthy, it has 

been reported the development of chimeras in which JFH-1 sequences encoding NS3/4A 

or NS5A proteins were replaced with homologous sequences of other genotypes374,377,378 



 

These new chimeras might allow to screen new antiviral compounds (especially those 

targeting NS3/4A and NS5A) and study the drug-resistance mutations developed by all HCV 

genotypes. 

The disease  

HCV variability and worldwide distribution.  

Hepatitis C is a virus-related liver disease caused by Hepatitis C Virus. The World Health 

Organization (WHO) estimates that a 170 million people are currently infected with HCV379. 

HCV is divided into 7 different genotypes, which can differ between them up to 31-34% for 

the nucleotide sequence and up to 30% of the amino acid sequence. Interestingly, the 

variability in the nucleotide sequence has been observed in the whole viral genome, 

although some regions show a higher degree of diversity than others; in particular, the region 

encoding envelope proteins is characterised by a high variability, whereas the 5’ NTR is the 

most conserved region380-382. These genotypes (1, 2, 3, 4, 5, 6 and 7) have been 

characterised for a different worldwide distribution, transmission rates and disease 

progression383. Interestingly, among genotypes has been possible to define about 100 

different subtypes (a, b, c, d, etc.), the most frequent of which are HCV 1a, 1b, 2a and 2b384. 

Moreover, HCV variability is so high, due to the polymerase error-prone activity that it 

circulates in infected patients as a population of different but closely related variants known 

as "quasispecies" 385.  

Their geographical distribution is not homogeneous386: in particular, as shown in figure 7, 

genotypes 1 and 2 are better represented in Europe and the United States; the HCV 3 in 

India, Australia and Far East, even though is now rapidly increasing in Europe. The genotype 

4 is predominant in the Middle East and Africa, whereas HCV 5 in South Africa and HCV 6 

in Hong Kong379,386-388.  



 

Moreover, there is a significant difference between genotypes in the response to therapy 

and progression of disease. In fact, patients infected with genotypes 1a and 1b respond less 

well to therapy with interferon389, as well as genotype 3 patients, that develop more 

frequently steatosis and have a more rapid disease progression to chronic liver disease390. 

 

 

Figure 7: Worldwide distribution of hepatitis C virus in 2015 386. Genotype 1 is predominant 

in Europe, America and China, while genotype 4 in Africa and genotype 3 in Asia. However, 

due to drug resistance, genotype 3 is rapidly spreading in Europe.  

 

Modes of transmission 

The HCV transmission occurs mostly by parental diffusion, mainly using intravenous drugs 

or by transfusion of infected blood, although the latter has undergone a dramatic decrease 

following the introduction of screening test for blood donors since 1990; moreover, sexual 

and parental transmissions, although reported, are rare391,392.  

In fact, the efficiency of sexual transmission is low, and it has been observed mostly in 

people with multiple partners and homosexual; hence, the risk of transmission to partners is 



 

the same in these two groups393. It is important to highlight, however, that the risk increase 

in HIV co-infected patients394. 

 

Figure 8: The natural history of HCV infection395. 15 to 40% of infected people can 

spontaneously clear the virus, whereas the remaining 60-85% develops chronic infection. 

Viral persistence is responsible of a chronic liver damage that can lead to liver cirrhosis (15-

30%) and eventually to Hepatocellular carcinoma (HCC). 

Natural History 

As reported in figure 8, typical HCV infection is characterised by an initial acute phase that 

is usually cleared in 15-40% of the patients, while remains persistent in 60-85%. Of those 

patients, with a persistent liver damage, 15-30% develops liver cirrhosis, which could end in 

hepatocellular carcinoma in 1-3% of the cases379,384,386. Moreover, both acute and chronic 

infections are commonly either asymptomatic or characterized by nonspecific symptoms, 

making difficult to determine when infection occurred. Noteworthy, HCV patients can be co-

infected by HIV and/or HBV; this situation makes it extremely difficult to dissect the relative 

role played by each virus in the development of liver disease. Furthermore, it has to be 

considered that estimating the correct alcohol consumption is often complicated in those 

patients, although alcohol is known to be a very important factor for liver fibrosis 

progression396. 



 

The Acute Phase of HCV infection 

Typically, the HCV RNA can be detected in the serum between 7-21 days after infection, 

although is not completely clear the time of incubation, probably depending on the mode of 

transmission397,398. Usually, after 4-12 weeks from infection, a significant increase in the 

level of alanine aminotransferase (ALT) is observed, representative of liver injury399. Indeed, 

ALT levels might reach concentrations ten times or more higher than the upper normal level, 

and may be also followed by a rise in serum bilirubin concentration400,401. In addition, some 

patients have been shown to develop symptoms up to 4-12 weeks after exposure, although 

the majority remain asymptomatic402,403.  

Symptoms commonly reported include nausea, fatigue, abdominal pain, loss of appetite, 

and mild fever. Although these symptoms are nonspecific, it has been estimated that 

between 16-33% of patients develop jaundice, in particular if associated with carriage of a 

single nucleotide polymorphism upstream the IL28B locus; moreover, it has been reported 

that patients with acute hepatitis, C who become jaundiced, have more probability to clear 

the infection404.  

Although is a very rare event, several cases of fulminant hepatitis C have been reported405; 

it is characterized by massive liver cells necrosis, and it develops earlier, typically within 2-

8 weeks post infection406.  

Interestingly, in a minority of cases (15-40%), HCV infection can undergo spontaneous 

clearance, usually within 3-4 months from infection, but it is estimated that 60-85% of HCV 

infected patients establish a persistent infection407,408. It has been reported that some 

favourable alleles, especially in the IL28B polymorphic locus, are associated with 

spontaneous clearance409,410; moreover, the presence of neutralising antibodies has been 

described in patients that cleared the infection411,412. 



 

The chronic phase of HCV infection 

The current definition of chronic HCV infection can be resumed as the presence of HCV 

RNA in the patient blood longer than six months after transmission413. As consequence, the 

persistent presence of viral replication is responsible for liver damage, which can frequently 

cause fibrosis deposition, determining in a low number of patients the onset of liver cirrhosis 

and finally the development of hepatocellular carcinoma (HCC). The course of the disease 

is characterised by high variability and patients report different symptoms including nausea, 

myalgia, loss of weight, right abdominal pain, and fatigue. All these symptoms are non-

specific and often are not recognised until advanced a state of fibrosis/cirrhosis is 

established. Liver cirrhosis is defined histologically as a diffuse process characterized by 

replacement of the normal liver parenchyma with fibrous tissue and the conversion of normal 

liver architecture into structurally abnormal regenerative nodules. This process results in the 

loss of functional liver cells and the establishment of portal hypertension, to which most of 

liver-related mortality via liver decompensation and/or HCC development is associated. Data 

from a meta-analysis indicate that cirrhosis develops in 16% of patients within 20 years from 

infection414. It is important to highlight that HCV-associated cirrhosis has a very high 

variability, between 14-62%, probably due to regional difference and other environmental 

factors415. One of the key point for personalised medicine is trying to differentiate individuals 

with low or high risk of developing cirrhosis; for this purpose, several risk factors for fibrosis 

progression in hepatitis C have been identified, also including age416. Those data are easily 

confirmed by the fact that longer is the duration of infection higher is the degree of the 

reparative processes that are responsible to induce fibrosis. However, it has been proposed 

that cirrhosis generate in a dynamic and complicated process that could be accelerated in 

parallel with age increase. Different studies on cohorts including young subjects showed a 

rather low prevalence of cirrhosis, suggesting that in the young people fibrosis development 

occurs slowly416. Moreover, it has been demonstrated that people exposed to HCV infection 



 

at an age older than 40 years have an increased risk to fibrosis progression in a shorter 

period of time417. On this purpose, it has been demonstrated that infection during childhood 

lead to milder course, but on the other hand, it has been reported that most of HCV patients 

develop fibrosis at about 65 years, independently on the age of infection418. Gender has also 

been shown to be an important predictive factor; In fact, the ability to spontaneously clear 

hepatitis C virus infection is greater in premenopausal women than in men and, among 

patients with chronic infection, histologic progression occurs rarely in pre-menopausal 

women419, confirming data suggesting the involvement of  sex hormones420. On this 

purpose, a key role of 17β-estradiol has been largely documented421,422. 

Interestingly, a potential role of viral factors have also been largely investigated, leading at 

the conclusion that they probably play a minor role423.  In fact, it has been demonstrated that 

viral load is not associated to the increased level of liver fibrosis or liver damage420,424. 

However, some exceptions have been described in different studies, showing that genotype 

3 is possibly linked to an accelerated and severe course of the disease425-427. To confirm 

these findings, it has also been reported that genotype 3 is strongly associated to the 

insurgence of liver steatosis; steatosis is one of the factors responsible for boosting liver 

fibrosis and liver disease390,428-430. 

Finally, another important risk factor, among HCV infected patients, for liver disease 

progression is excessive alcohol consumption, a largely recognised cause of liver cirrhosis 

on its own: during a persistent HCV infection, a chronic intake of more than 50 g per day is 

responsible for a dramatic increase in the progression of the disease431.  

 



 

Current and novel HCV therapies 

Preventive and therapeutic Vaccination 

Despite all the efforts since its discovery, to date no preventive or therapeutic vaccine is 

available for HCV, mostly due to the high virus variability and viral escape mechanisms79. 

Moreover, recovery from infection, either spontaneously or pharmacologically, does not 

provide protection to a second exposure to the virus432.  

However, several promising vaccine candidates have been developed to provide preventive 

protection or as a therapeutic approach. However, the results obtained using therapeutic 

vaccines have been discouraging, showing a reduced reductions in viral loads; for this 

reason, a prophylactic vaccine may be a better strategy. In fact, trying to prevent the 

chronicity of HCV infection might be a result easier to be achieved in uninfected subjects, 

using a prophylactic vaccine. 

Initially, the HCV vaccine research has been largely focused on a prophylactic B-cell 

vaccine; for this purpose, the potential of the envelope glycoproteins E1 and E2 has been 

investigated433. Several candidates, based on the recombinant E1E2 heterodimer, were 

tested on healthy volunteers, showing a cross-reactive neutralising antibody response to 

genotypes 1a, 1b, and 2a. However, the main issues related to this approach are the 

difficulty to produce intact recombinant heterodimer434,435 and the viral evasion, based on 

the same strategies that contribute to establish the chronic infection79,436-438. Based on these 

findings, a new strategy, based on E1-only vaccination, showed in a phase-I clinical trial a 

low Ab responses; however the authors reported a T-helper 1-mediated response in almost 

all participants439. 

Interestingly, two therapeutic DNA vaccines have also entered clinical trials: CIGB-230 and 

chronVac-C. CIGB-230 is based on the mixture of pIDKE2, a plasmid expressing HCV 

structural antigens, with a recombinant HCV core protein440; ChronVac-C consists of a 



 

plasmid coding for optimized NS3and NS4a genes441,442. However, one of major difficulties 

to use DNA vaccines is represented by the method of delivery; in fact, the classical delivery 

through injection does not allow cells to capture the naked DNA. To overcome this problem, 

developers coupled the injection with in vivo electroporation, a short electrical pulse causing 

permeabilisation of cellular membranes resulting in the induction of a local inflammatory 

response442. Reported data show that the vaccine gives rise to an evident T cell response 

after the second booster dose, although its convenience has still to be clarified443,444. 

Finally, in the last years, many HCV vaccines have been developed trying to generate a T-

cell response445-450; noteworthy, some of them entered into phase-II or I clinical trials as 

therapeutic or prophylactic vaccine450-452. One of the most promising approach is 

characterised by the use of adenoviral particles to induce the expression of a conserved 

epitope located in the NS3–NS5 region452. In this study, the authors used a novel strategy 

based on the adenoviral vectors human adenovirus 6 (Ad6) and chimpanzee adenovirus 3 

(ChAd3), both containing DNA encoding the same region of the HCV genome. Initially, the 

immune system has been primed with an initial inoculation of Ad6, and subsequently 

boosted with several inoculations of ChAd3. These particular adenoviruses were selected 

as serotypes inducing low anti-vector immune responses. The authors described that the T-

cell responses were mostly cytotoxic, although helper T-cells were reported. T-cell 

responses were triggered by peptides from genotypes 1b, 1a, and to a lesser extent 3a, 

suggesting a potentially pan-genotypic treatment profile453. The authors, using a modified 

vaccinia Ankara (MVA) vector as boosting agent, showed an increased T-cell response 

profile. Moreover, they demonstrated the presence of long-term memory T-cells, associated 

to high levels of CD4+ and CD8+ cell responses452,453. In summary, the above vaccine 

strategies using viral vectors have great potential. However, formulating a vaccine with two 

different components may be expensive, and repeated boosting may not be practical in the 

developing world and for some patient groups. 



 

HCV therapy with Interferon 

The very first treatment reported to be effective against HCV infection was based on the 

systematic administration of interferon (INF) α in combination therapy with ribavirin, a purine-

analogue. INFs are protein naturally produced by host’s immune system in response to a 

viral infection. Through the years, HCV treatment has been improved with the development 

of modified version of interferons, like the pegylation (pegylated-interferon or peg-INF), 

which confers longer biological half-life454. INFs are known to activate several direct and 

indirect antiviral mechanisms (such as viral RNA degradation, stop viral translation) 455,456. 

The goal of HCV therapy is to achieve the sustained virological response (SVR), defined as 

undetectable HCV RNA (<15 IU/ml) after 24 weeks of treatment457,458. The success was 

highly dependent on several host factors, like gender, age, ethnicity, single nucleotide 

polymorphisms at the IL28B gene locus as well as on viral factors, like viral load and mainly, 

genotype. In fact, peg-IFNα plus ribavirin eradicate the infection in approximately 80% of 

patients infected by genotype 2 but the rate drops to approximately 40% in the case of 

genotype 1 389,459. Unfortunately, both these compounds are toxic and their administration 

can cause severe side effects such as headache, fever, severe depression, myalgia, 

arthralgia and haemolytic anaemia460. 

 

HCV therapy and DAAs 

Progress in the knowledge of HCV life cycle allowed the development of novel direct anti-

HCV agents (DAAs), many of which are still being developed. Initially, in 2011 two NS3-4A 

protease inhibitors, telaprevir and boceprevir, have been approved for triple therapy, still in 

association with peg-IFNα and ribavirin, for the treatment of patients chronically infected with 

genotype 1 461,462. Although this therapy greatly improved response against genotype 1, 

marginal effects have been reported on the other genotypes, and as consequence – 



 

considering the high costs - the standard of care for non-HCV1 genotypes remained based 

on pegIFNα and ribavirin459. Moreover, almost all the genotypes, particularly genotype 3, 

exhibited an immediate and effective resistance to the new antiviral compounds, highlighting 

the importance of new drugs463,464.  

Very recently, the second generation of new DAAs has been approved (figure 9). 

Noteworthy, FDA approved Sofosbuvir in 2013 as a highly active inhibitor of HCV NS5B 

RNA-dependent RNA polymerase465. It is the first drug to be used in combination with 

Ribavirin for treatment of hepatitis C genotypes 2 and 3 in absence of PEGylated 

interferon466. After Sofosbuvir, a new NS3/4A inhibitor, Simeprevir was approved by FDA in 

2013. Interestingly, these new compounds, in combination with Ribavirin showed success 

rates of around 90% for all viral genotypes467. Within the last two years, more NS5A and 

NS3/4A inhibitors were approved, to treat different genotypes. Specifically, combinations 

that contain HCV NS5A inhibitors, such as Daclatasvir and Ledipasvir, show even higher 

success rates of 93 to 100% depending on viral genotype1 468. In the end of 2014 a new 

cocktail was approved called Viekira Pak that includes Ombitasvir, Paritaprevir, Ritonavir 

and Dasabuvir469. Viekira Pak showed very promising results in the treatment of chronic 

hepatitis C 470. However, access to directly acting anti-HCV therapies is severely limited 

since these regimes are very expensive471,472; moreover, these drugs did not entered in all 

the regional market, such as Russia, and the treatment of adults is not covered by national 

health system. In addition, their clinical usage faces development of drug resistant HCV 

strains473,474. 



 

 

Figure 9: Time-line of HCV therapy475. N.B. Peg-IFNλ never reached the market.  

For many years the standard therapy has been based on interferon in combination with 

ribavirin, achieving a sustained virological response (SVR) of approximately 50%. In 2011 

the first generation of direct–acting agents has been approved, showing different SVR in 

relation to viral genotype. In 2013 the second generation of DAAs reached the market, 

exhibiting SVR in 90% of the cases. 



 

Aim of the study 

Hepatitis C Virus (HCV) is a major public health problem worldwide. It has estimated that 

170 million people are currently infected. The HCV infection remains persistent in 60-85% 

of the cases and, as consequence, this can lead to develop advanced liver fibrosis, cirrhosis 

and, in a small number of cases, hepatocellular carcinoma. Viral strains can be divided into 

seven epidemiologically relevant genotypes that differ from each other by more than 30% at 

the nucleotide level. Moreover, 100 or more subtypes have been described and, within an 

infected individual, a large number of viral variants, called “quasispecies”, have been 

reported. This high variability of HCV is responsible for immune evasion, facilitates 

persistence, and represent a big issue in the development of specific antiviral therapies 

effective across all HCV genotypes. No effective vaccine exists and the therapy based on 

pegylated IFN-α (pegIFN-α) and ribavirin has been the standard of care for over two 

decades, showing SVR in approximately 50% of cases. In the last years, new highly 

efficacious directly-acting antiviral agents have been developed, achieving SVR in 

approximately 90-100% of the cases. However, their high costs and relative inaccessibility 

make their use limited. Hence, the development of novel anti-HCV agents to increase 

effectiveness, shorten treatment periods and widen availability (and affordability) is an 

urgent task for the modern healthcare. Therefore, the aim of the study presented in this 

thesis has been to investigate the antiviral effect of new uracil-based antiviral compounds, 

trying to define their potential mechanism of action. To achieve this goal we tested the 

inhibition of these molecules on HCVcc evaluating different conditions of viral infection. 

Furthermore, we focused on each viral stage using different surrogate HCV particles to 

establish which viral stage is target by our compounds. 

 



 

To better understand the efficacy and mechanism of these compounds, several issues have 

been addressed:   

 

 First, we evaluated whether these agents could block HCV infection by itself in Huh7 

cells, using JFH1 virus with different models of infection.  

 

 Secondly, we determined for each compound efficacy and tolerability profiles, 

evaluating several concentrations on infected Huh7 cells.  

 

 We also investigated in which stage of the virus life cycle these drugs exert their 

action; for this purpose, they were tested on various steps of HCV cell cycle, such as 

virus cell entry, RNA replication or assembly/secretion; the experiments were carried 

out using HCVpp, HCV replicons and HCVTCP. 

 

 Since preliminary results showed an inhibitory effect of some drugs on HCV 

replication, we developed a new assay, based on a specific RT-qPCR, to quantitate 

the intermediate negative strand RNA. 

 

 We finally evaluated the antiviral activity of these new compounds only on viral 

replication, trying to dissect where they interfere with HCV normal replication. 

 

We described the antiviral properties of new uracil-based antiviral compounds, showing how 

they can block viral replication. We attempted to evaluate whether a single candidate might 

be proposed for future development as a new direct-acting anti-HCV drug.  
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Materials  

Chemicals   

Chemical/Reagent Supplier 

Absolute Ethanol Bamford Laboratories, UK 

Agarose Sigma-Aldrich 

Ampicillin (Amp) Melford 

Chloroform Sigma-Aldrich 

Isopropanol Fisher Scientific 

MluI NEB 

Mung Bean nuclease NEB 

Proteinase K Invitrogen 

Restriction Enzymes NEB 

TriReagent Sigma-Aldrich 

Tween-20 Bio-Rad Laboratories 

XbaI NEB 

Kits 

Kit Source 

Qiagen Plasmid Maxi Kit Qiagen 

RNeasy Plus Mini Kit Quiagen 

Taqman Reverse Transcription Kit Applied Biosystems 

MEGAscript High Yield Transcription 

Kit 

Ambion 

Calcium Phosphate Transfection Kit Sigma-Aldrich 

 



 

Cells 

Cells Description Source 

Huh-7 Human Hepatoma cell line A kind gift from Jean 

Dubuisson (CNRS, 

Institut de Biologie de 

Lille, Lille, France) 

Huh-7 J20 (J20) Huh-7 stably transduced with a 

lentiviral vector encoding for SEAP 

reporter gene. 

Home-made. Iro et al. 

(2009) 

Huh-7 J17 (J17) Huh-7 electroporated with N17 RNA 

and selected with puromycin. 

Home-made. Angus et al.  

(2012) 

Huh7-Lunet-CD81 An Huh-7 subclone lacking cellular 

receptor CD81 expression 

Witteveldt et al. (2009): a 

kind gift from Thomas 

Pietschmann 

Huh7L-H/EF Huh7-Lunet-CD81 cells stably 

transduced with a vector to 

overexpress CD81  

Witteveldt et al. (2009) 

A549 Human Lung Carcinoma cell line American Type Culture 

Collection 

HEK-293T Human Embryonic Kidney cell line American Type Culture 

Collection 

MDCK Canine Epithelial cell line American Type Culture 

Collection 

 

 



 

Cell Culture Growth Medium 

All cell culture media components were supplied by Life Technologies. Huh-7 cells, Huh7-

Lunet-CD81, Huh7L-H/EF, Hek-293T and A549 cells were grown in complete Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (FCS), 100 U/ml 

penicillin, 100 µg/ml streptomycin, 0.1 mM non-essential amino acids (NEA) and 2 mM 

glutamine. J20 and J17 cells were propagated as above, but in the presence of 2 µg/ml 

puromycin (Sigma) 355,476. 

 

Drugs 

Compound library was synthesized by Dr. Mikhail Novikov, from Volgograd State Medical 

University, Volgograd (Russia) and delivered to MRC-University of Glasgow Centre for Virus 

Research, Glasgow (United Kingdom) for evaluating their activity against HCV. Briefly, 

compounds were obtained starting from a core molecule, shown below, introducing 

modifications at X, R1, R2 and R3 sites or modifying the length of the spacer as described 

previously477-479. The panel of compounds generated is listed in the table below. 

All drugs were evaluated as potential HCV inhibitors at the concentration of 10 µM, if not 

indicated elsewhere.  

 

 

 

 

 

 



 

Compound Spacer R1 R2 R3 X 

Z263 ―O(CH2)5― 4-Br H H O 

Z421 ―O(CH2)5― 3-Br H H O 

Z434 ―O(CH2)5― 4-CN H H O 

Z436 ―O(CH2)5― H H H O 

Z438 ―O(CH2)5― 4-Ph H H O 

Z397 ―O(CH2)4― 4-Br H H O 

Z400 ―O(CH2)6― 4-Br H H O 

Z401 ―O(CH2)8― 4-Br H H O 

Z432 ―CH2O(CH2)4― 4-Br H H O 

Z422 ―CH2O(CH2)2OCH2― 4-Br H H O 

Z433 ―CH2O(CH2)2OCH2― 4-Br 5-Et-6-Me H O 

Z437 ―(CH2)6― H H H O 

Z376 ―O(CH2)5― 4-Br 5-Me H O 

Z439 ―O(CH2)5― 4-Br I H O 

Z385 ―O(CH2)5― 4-Br H Cl O 

Z413 ―O(CH2)5― 4-Br H Me O 

Z414 ―O(CH2)5― 4-Br H F O 

Z377 ―O(CH2)5― 4-Br H H OCH2 

Z387 ―O(CH2)5― 4-Br H H CH2 

Z430 ―O(CH2)5― 4-Br H H C=O 

Z431 ―O(CH2)5― 4-Br H H O 

Z176 ―CH2― H H H O 



 

Clones 

Name Virus Details Source 

pJFH1 HCV Full-length JFH1 cDNA downstream 

of the T7 RNA polymerase promoter. 

A kind gift from 

Takaji Wakita370. 

pJFH1GND HCV As pJFH1, except carries a mutation 

in the NS5B GDD motif, downstream 

of the T7 RNA polymerase promoter. 

A kind gift from 

Takaji Wakita370. 

AM7/1 HCV As pJFH1, except it carries 8 point 

mutations to improve replication 

efficiency. 

Based on Zhou et 

al. (2014)480 

pSGR-Luc-

JFH1 

HCV Bicistronic replicon encoding Firefly 

luciferase downstream of the HCV 

IRES and HCV NS3-3’ after ECMV 

IRES, downstream of the T7 RNA 

polymerase promoter. 

A kind gift from 

Takaji Wakita481. 

pSGR-Luc-

JFH1GND 

HCV As pSGR-Luc-JFH1, except carries a 

mutation in the NS5B GDD motif, 

downstream of the T7 RNA 

polymerase promoter. 

A kind gift from 

Takaji Wakita481. 

N17/JFH1ΔE1E2 HCV Monocistronic replicon, driven by T7 

RNA polymerase promoter, encoding 

Firefly luciferase and puromycin 

resistance downstream of the HCV 

IRES, with the deletion of HCV E1 

and E2. 

Angus et al. 

(2012)355 

N17/JFH1ΔE1E2-

GND 

HCV As N17/JFH1ΔE1E2, except carries a 

mutation in the NS5B GDD motif, 

downstream of the T7 RNA 

polymerase promoter. 

Angus et al. 

(2012)355 

PR8-GFP Flu Influenza virus based on a rescued-

system expressing green fluorescent 

protein. 

Kind gift from Ben 

Hale482. 

 



 

Antibodies 

Name Description Source 

Anti-NS5A (9E10) Mouse monoclonal Primary Antibody Kind gift from Charles 

Rice369. 

Anti-E2 (AP33) Mouse monoclonal Primary Antibody Tarr et al. (2006)349 

Donkey anti-mouse 

IgG 

Alexa Fluor® 488 dye-conjugated 

secondary Antibody 

Invitrogen 

Anti-mouse HRP HRP-conjugated secondary 

Antibody 

Invitrogen 

 

Bacterial Strains 

Plasmids were manipulated and growth in the Escherichia Coli strain DH5-α. 

Solutions 

Bacterial Expression 

Solution Components 

L-Broth (LB)* 170 mM NaCl, 10 g/l 

Bactopeptone, 5 g/l yeast 

extract 

LB-agar* LB plus 1.5 (w/v) agar 

* Prepared in-house by media department 

DNA manipulation 

Solution Components 

DNA loading dye 30% glycerol; 0.25% 

Bromophenol Blue; 0.25% 

Xylen Cyanol 

TBE (10X) 8.9 M Tris-borate, 8.9 M boric 

acid, 0.02 M EDTA (pH 8.0) 

 



 

Tissue Culture 

Solution Components 

Trypsin Solution 0.25% Difco trypsin dissolved in 

PBS, 0.002 (w/v) phenol red 

(Life Technologies). 

Versene 0.6 mM EDTA in PBS, 0.002% 

(w/v) phenol red (Life 

Technologies). 

  

Oligonucleotides  

Oligonucleotides were ordered from Sigma. 

Primer Sequence (5’  3’) Position Product Size 

F1 TCACTCCCCTGTGAGGAACT HCV-5’UTR 
82 bp 

R1 CCTGGAGGCTGTACGACACT HCV-5’UTR 

F2 GTCGCCCAGAAGACGTTAAG HCV-5’UTR 
113 bp 

R2 CTCCGAAGTTTTCCTTGTCG HCV-5’UTR 

F3 GCCTTGTGGTACTGCCTGAT HCV-5’UTR 
114 bp 

R3 CGGTTGGTGTTTCTTTTGGT HCV-5’UTR 

F4 ACCACCTATTGCCTCACTGG HCV-NS2 
114 bp 

R4 CAACAAACCCACGCCTATCT HCV-NS2 

F5 

R5 

AGATCGTTGGCGGAGTATAC 

ACACGTTAGGGTGTCGATGACTT 

HCV-CORE 

HCV-CORE 
299 bp 

F6  

R6 

TCCCGGGAGAGCCATAGTG 

TCCAAGAAAGGACCCAGTC 

HCV-5’UTR 

HCV-5’UTR 
76 bp 

RpL_F 

RpL_R 

GCAATGTTGCCAGTGTCTG 

GCCTTGACCTTTTCAGCAA 

Rplp0-Ex7-8 

Rplp0-Ex7 
142 bp 



 

Methods  

DNA Manipulation 

Quantitation of DNA 

DNA aliquots were quantified by measuring the optical density (OD) absorbance at 260/280 

nm using Nanodrop® 2000 (Thermo Scientific). 

Nucleotide Sequencing 

Nucleotide sequencing of plasmid and amplified DNA was performed using selected primers 

by GATC biotech (Germany). A minimum of 15 µl of DNA and primers (10 µM) were required 

for each reaction. Completed sequences were analysed using Chromas Lite (Technelysium) 

and NCBI alignment software.  

Transformation of Competent E. Coli Cells 

Plasmid was added to 50 µl competent E. Coli (NEB) and incubated 30 minutes. For the 

heat-shock, cells were incubated at 42°C for 90 s and then chilled on ice for other 3 min. 

The bacteria were resuspended in 500 µl of LB broth and incubated 1 h at 37°C before being 

plated on LB-agar plates with ampicillin, final concentration 100 µg/ml. Finally, plates were 

incubated overnight at 37°C. 

Large Scale Plasmid Preparation from Transformed Bacteria 

A single colony from a streaked selective agar plate was picked and used to inoculate a 3 

ml starter culture of LB with Ampicillin (LB-Amp). Following 8 h incubation at 37°C, the starter 

culture was inoculated in 200 ml of LB-Amp and incubated overnight at 37°C with vigorous 

shaking (200 rpm). The bacteria were then pelleted by centrifugation at 3000 rpm for 10 min. 

A large scale DNA extraction was performed using the HiSpeed plasmid Maxi kit (Qiagen) 

according to the manufacturer’s protocol. 



 

Restriction Digestion of Plasmids for In Vitro Transcription  

JFH-based plasmids were linearised by XbaI digestion in a 100 µl reaction for 3h at 37°C, 

followed by treatment with Mung Bean nuclease to remove the single stranded overhangs 

(30°C for 30 min). For N17 plasmids a digestion with MluI for 3 h at 37°C was performed. 

Proteinase K (final concentration 100 µg/ml) and SDS (final concentration 0.5%) were added 

and incubated at 50°C for 30 min to remove proteins. DNA purification was carried out 

adding 100 µl of neutral phenol-chloroform (25 parts saturated neutral phenol: 24 parts 

chloroform: 1 part isoamyl alcohol) before centrifugating at 13000 rpm for 2 min. The 

aqueous layer was placed in a fresh tube and 0.1 volumes 5 M sodium acetate added along 

with 3 volumes of 100% ethanol. Samples were stored at -20°C for 30 min before being 

centrifuged at 13000 rpm for 15 min to pellet precipitated DNA. The ethanol was carefully 

removed and the pellet air-dried at room temperature before being resuspended in 30 µl 

nuclease-free distilled water (dH2O). The concentration of linear DNA templates was 

determined as previously described.  

Polymerase Chain Reaction (PCR) Amplification of DNA 

 The primer pairs, designed for strand-specific assay and listed in the table above, were 

firstly tested in a PCR on pJFH-1 at the concentration of 500 nM. Samples were amplified 

in duplicate using FastStart Taq DNA Polymerase (Roche Life Science) in a Veriti Thermal 

Cycler (Life Technologies) at the conditions expressed in table X. Amplification products 

were visualised on a 1.5% agarose gel. Subsequently, same primers were tested at the 

temperature of 65°C to optimise amplification settings. 

Stage 1 Stage 2 Stage 3 Stage 4 

95°C 

5 min 

95°C 

30 s 

65°C 

30 s 

72°C 

30s 

72°C 

7 min 

4°C 

hold 

 x 35 cycles   



 

RNA Manipulation 

In Vitro Transcription  

In Vitro transcription was carried out using a T7 Megascript kit (Ambion) following the 

manufacturer’s instructions using 1 µg of linear DNA template. Briefly, the reaction mix 

(containing DNA template, buffer, ribonucleotides and enxyme) was incubated at 37°C 

overnight and then digested with 1 µl of Turbo DNase at 37°C for 30 min. The RNA was 

then purified using RNeasy Kit (Qiagen) to remove nucleotides, short oligonucleotides, 

proteins and salts from the RNA. The RNA concentrations were obtained as described 

above; typically, the RNA yields obtained were 70-100 µg. 

Total RNA extraction 

RNA was extracted from cells grown on 12-well dishes using TriReagent (Sigma) according 

to the manufacturer’s protocol. Briefly, cell lysis was performed in 500 µl of TriReagent 

before adding 100 µl of chloroform. After 10 min of incubation, samples were centrifuged at 

13000 rpm for 15 min. The aqueous phase was placed in a new tube and RNA precipitated 

with 200 µl of isopropyl alcohol before being pelleted by centrifugation at 13000 rpm for 15 

min. After a washing step with 70% ethanol, RNA pellets were air-dried and resuspended in 

50 µl of nuclease-free double-distilled water (ddH2O). RNA samples were quantified as 

previously described and stored at -70°C. 

Preparation of Extracellular RNA 

RNA extraction from the released viral particles was performed on infected cell supernatants 

using the RNAEasy kit (Qiagen) in order to minimise RNA loss. Briefly, 300 µl of infected 

cell medium were digested with RNAse A at 37°C for 2 h to remove all the input RNA prior 

to RNA purification. All the samples were then eluted in 30 µl of nuclease-free ddH2O and 

stored at -70°C. 



 

Electroporation of RNA 

Following trypsin treatment and counting, aliquots of 4 x 106 cells were centrifuged at 1000 

rpm for 5 min at room temperature. Media was discarded and pelleted cells were washed 

twice by resuspension in 15 ml of PBS, and centrifuged as before. PBS was decanted and 

cell pellets were resuspended in a total volume of 500 µl PBS and added to a 4 mm gap 

cuvette (Bio-Rad) along with 10 µg of in vitro-transcribed viral RNA. Electroporation was 

performed using a BioRad GenePulser Xcell (250 V, 950 µF), following the manufacturer’s 

instructions. Cells were then diluted and resuspended in the indicated amount of complete 

DMEM and seeded into the appropriate tissue culture flash or plate.  

 

Reverse Transcription  

First-Strand cDNA Synthesis 

Reverse transcription of viral and cellular RNAs was performed using the TaqMan Reverse 

Transcription Reagents kit.  cDNA synthesis from cell pellets or supernatants was performed 

in the same way. Briefly, for each reaction 250 ng of RNA or 1/3 of the eluted RNA were 

reverse transcribed using the following reaction mix and temperature cycles:  

Component Volume (µl) 

10x RT Buffer 2 

MgCl2 2.2 

dNTPs 2 

Random Hexamers 0.5 

RNase Inhibitors 0.2 

Multiscribe RT 0.25 

ddH2O Up to 20  

 

 

 



 

Reaction cycle: 

Stage 1 Stage 2 Stage 3 Stage 4 

25°C 

10 min 

48°C 

30 min 

95°C 

5 min 

4°C 

hold 

 

Strand-Specific cDNA Synthesis 

Total RNA was reverse transcribed with TaqMan Reverse Transcription Reagents (Life 

Technologies) in a 15 µl reaction using a forward primer for HCV negative strand and a 

reverse primer for positive strand. To optimise cDNA synthesis, reducing non-specific 

products, several primer sets were tested; moreover, different concentrations were tested 

for RT: precisely, 1 µM and 100 nM. Subsequently, RT reaction was performed using 

different amount of RNA, in order to determine the best quantity for the assay, avoiding 

background. The quantities tested were 500, 50, 5 and 0.5 ng. 

Component Volume 

(µl) 

10x RT Buffer 1.5 

MgCl2 2.2 

dNTPs 2 

Specific Primer (1 µM) 1.5 

RNase Inhibitors 0.2 

Multiscribe RT 0.25 

ddH2O Up to 15  

 

Reaction cycle: 

Stage 1 Stage 2 Stage 3 

48°C 

30 min 

95°C 

5 min 

4°C 

hold 



 

Real-Time PCR 

Total HCV quantification 

Total viral quantification of RNA from electroporated or infected cells was determined by 

qPCR. The cDNA obtained from RT reaction with random hexamers was amplified in a 15 

µl reaction by a TaqMan assay using 300 nM HCV specific primers (F6 and R6) in the 

presence of 300 nM FAM™-labelled probe (Life Technologies). All the values were 

normalised to the selected reference gene: Ribosomal Large Protein 0 (Rplp0). Relative 

quantifications were carried out using linear regression on plasmid serial dilutions. The 

reaction mix and the reaction cycle conditions, performed on an Applied Biosystem 7500 

Fast Real-Time PCR system, are listed below: 

 

Component 

Volume 

(µl) 

2X TaqMan Fast Master Mix 7.5 

10 µM Forward Primer 0.45 

10 µM Reverse Primer 0.45 

5 µM FAM probe 0.9 

cDNA 1.5 

ddH2O Up to 15  

 

 

Thermal Cycler Protocol: 

Stage 1 Stage 2 

95°C 

5 min 

95°C 

3 s 

65°C 

30 s 

 x 40 cycles 

 



 

Viral particles quantification 

Viral extracellular RNA was analysed by Real Time PCR and the viral amount was 

determined by absolute quantificative qPCR. Typically, 2 µl of cDNA, obtained from reverse 

transcription, were amplified using the HCV-specific primer (F6-R6) and FAM probe 

combination described for Total RNA. The pJFH1 genomic sequence of known 

concentration was used as a standard to calculate the copy number per µl. Serial dilutions 

were performed to obtain a complete standard curve.  

Quantification of HCV positive/negative strand 

Specific-strand quantification was performed by Real Time PCR. Briefly, 1.5 µl of cDNA for 

each positive and negative strand samples, obtained with specific primers as described 

above, were amplified in a 15 µl reaction using Fast Sybr Green Master Mix (Life 

Technologies) with different concentrations of each selected primers; the concentrations 

tested were: 500, 250, 100, 75 and 50 nM.  Absolute quantification was carried out using 

linear regression on a standard curve based on pJFH-1 serial dilutions. 

Component Volume (µl) 

2X Fast Sybr Master Mix 7.5 

10 µM Forward Primer 0.075 

10 µM Reverse Primer 0.075 

cDNA 1.5 

ddH2O Up to 15  

 

Thermal Cycler Protocol: 

Stage 1 Stage 2 Stage 3  

95°C 

5 min 

95°C 

3 s 

65°C 

30 s 

Melting 

Curve 

 x 40 cycles  

 



 

Tissue Culture Maintenance 

Cell Passaging 

All the cell types were propagated at 37°C in complete DMEM in an atmosphere of 5% CO2. 

Cell lines were typically grown in 80 cm2 or 175 cm2 tissue culture flasks (Nunc). Passage 

of cells was carried out when cells reached 95% confluence by first gently washing cells in 

versene followed by their removal with trypsin diluted 1:100 in versene. Cells were 

resuspended in 10 ml of complete DMEM before re-seeding or use in experiments. 

Long Term Storage of cells 

Aliquoted cells were stored in complete DMEM medium supplemented with 25% FCS and 

containing 10% DMSO. Aliquots were left overnight at -70°C before being transferred to 

liquid nitrogen container for long-term storage.  

Measuring cellular viability 

Cell viability was measured to evaluate a potential toxic effect of the compounds tested using 

the WST-1 reagent (Roche, Applied Biosystem). Huh7, Huh7-J20 and Huh7-J17 cells were 

tested for viability in the same conditions described for antiviral assays. Cells grown in a 96-

well tissue culture plate in the presence of the drugs or DMSO control were incubated with 

the WST-1 reagent for 3 h as per the manufacturer’s protocol. Cell viability was obtained 

reading absorbance at 450 nm with PheraStar (BMG Labtech). 

Cell culture of infectious HCV (HCVcc) 

Generation of JFH1 Virus and Adaptive Virus 

In Vitro synthesized RNA (10 µg) was electroporated into Huh-7 cells. The transfected cells 

were immediately recovered with fresh medium and seeded into the indicated tissue culture 

flasks. Following incubation at 37°C for 72 h, the medium containing the infection progeny 



 

was harvested, the cells replenished with fresh medium and incubated overnight before the 

second collection of viral particles. The viral stock collected thus was filtered through a 0.45 

µm pore-sized membrane and stored at 4°C for further experiments. 

Measuring Virus Infectivity 

Limiting dilution assays were used to quantify the amount of virus infectivity using the focus 

forming unit (FFU) assay, as described by Zhong et al. (2005)371.  To determine the virus 

titer by FFU assay, Huh-7 target cells were seeded at the concentration of 4x10^4 per well 

of a 96-well plate in a total volume of 100 µl complete DMEM. Twenty-four hours later, serial 

5-fold dilutions of virus stock were added, with 3 wells per dilution. Seventy-two hours later, 

the medium was removed and the cells were fixed with ice-cold methanol and incubated at        

-20°C for 1 h. The cells were then washed three times with PBS-T and probed with anti-

NS5A mAb 9E10 (Apath, Rockfeller University) at the dilution of 1:20000 in PBS-T for 1 h at 

room temperature. Cells were washed again three times with PBS-T and incubated with the 

anti-mouse FITC-conjugate secondary antibody at 1:500 dilutions in PBS-T for 1 h at room 

temperature. Finally, after three washes with PBS-T, the cells were overlaid with 100 µl of 

ddH2O and visualised under a fluorescent microscope (Nikon Eclipse TS100). The viral titre 

was calculated as FFU/ml by the average number of NS5A-positive foci detected at the 

highest dilution. 

Drug Screening 

The Huh7-J20 reporter cells were seeded into 96-well tissue culture dish at the 

concentration of 4x10^4 per well of a 96-well plate in a total volume of 100 µl complete 

DMEM. Twenty-four hours later, cells were infected with HCVcc in the presence or absence 

(i.e. DMSO control) of compounds and the levels of virus infectivity and replication were 

determined by measuring the secreted alkaline phosphatase (SEAP) activity in the culture 

medium at indicated time post-infection as described below. Antiviral screenings were 



 

performed using 3 different infection models. In the first one, cells were pre-treated with 

drugs for 1 h and then infected in the presence of the drugs. After 3 h, viral inoculum was 

replaced, and then cells were washed and incubated with fresh medium without drug for 72. 

In the second model drugs were added at 3 h post-infection and cells incubated for 72 h. 

The third one is the combination of the other two: fresh drugs were added before, during 

and after infection to have the compounds always present throughout the course of infection. 

In all the three models, the antiviral activity was determined by measuring SEAP levels in 

the infected cell medium using the PhosphaLite kit (Applied Biosystem) as previously 

described476. Typically, 90 µl of culture medium were collected and mixed with 10 µl of 10x 

lysis buffer to a final concentration of 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 10 mM NaCl 

and 0.5% Tritox X-100 to inactivate the virus. To inactivate the endogenous alkaline 

phosphatase, in a 96-well plate, 30 µl of lysate were mixed 1:1 with 1x dilution buffer and 

incubated at 65°C for 30 min. The plate was then cooled on ice and before 50 µl of the 

cooled reaction was mixed with 50 µl assay buffer in a white 96-well microplateplate. Finally, 

50 µl of reaction buffer (prepared by diluting CSPD chemiluminescent substrate 1:20 with 

reaction buffer diluent) were added to this plate before luminescence counting. The SEAP 

activity was measured by using a Plate Chameleon plate reader (Hidex, Finland). All the 

RLU values were normalised to DMSO-treated value, which was defined as 100%. 

Dose Response Scales 

In order to obtain IC50 values, 4x10^4 Huh7-J20 cells per well were plated in a 96-well plate 

and incubated at 37°C overnight. Then, cells were pretreated with drugs for 1 h starting at 

the concentration of 30 µM and following 3-fold dilutions before being infected with JFH-1 in 

the presence of drugs in 50 µl of volume. After 3 h of incubation at 37°C, viral inoculum was 

removed, cells were washed and 110 µl of fresh medium containing drugs were added. 



 

Seventy-two hours post infection cell supernatants were collected and tested for SEAP 

activity as described above.  

For CC50 values, same number of Huh7-J20 cells was incubated with serial dilutions of each 

compound for 72 h before measuring cell viability. 

RNA Inhibition 

To quantify the inhibitory effect on RNA synthesis, 4x10^6 Huh7-Lunet-CD81 or Huh7L-H/EF 

cells were electroporated with 5 µg of JFH-1 RNA and seeded in the presence of each 

compound at the concentration of 10 µM. RNA inhibition was also evaluated on AM7/1 

adaptive virus, infecting 105 Huh7 cells. After 72 h viral RNA quantification was performed 

from supernatants and on infected cells by RT-qPCR as described above.  

Negative Strand Kinetic 

Specific-strand viral RNA was evaluated at different time points after transfection: briefly, 4 

x 106 Huh-7 were electroporated with 10 µg of either JFH1 or JFH1GND RNA and seeded in 

a 12-well plate for 24, 48 or 72 h. Total RNA was extracted as described at X.x.x.x and 

negative and positive strand quantification was performed by RT-qPCR.  

Negative Strand Inhibition 

To evaluate a possible effect on negative strand synthesis, 4 x 106 either Huh7-Lunet-CD81 

or Huh7L-H/EF cells were electroporated with 5 µg of JFH1 RNA as described previously. 

Transfected cells were recovered in fresh medium, plated in a 12-well plate in the presence 

of each drug at the concentration of 10 µM and incubated for 72 h before RNA extraction. 

Moreover, specific strand RNA was investigated also in Huh7 cells infected with the adaptive 

virus AM7/1. Negative and positive RNA quantification was performed by RT-qPCR as 

described above. 



 

HCV pseudo-typed particles (HCVpp) 

Generation of Pseudo-typed particles  

HCVpp were generated as descried previously178,483,484 in HEK-293T cells. Typically, 1,4 x 

106 cells were seeded into 100 mm tissue culture dishes 24 h before transfection. After 24 

h cells were then co-transfected with the retrovirus packaging vector pMLV gag-pol (8 µg), 

the transfer vector pMLV-Luciferase (8 µg) and the HCV JFH-1 E1E2-expressing vector 

phCMV E1E2 (3 µg) as described previously178 using the Calcium Phosphate Transfection 

Kit (Sigma-Aldrich). Briefly, HEK-293T cells were seeded into 100 mm tissue culture dishes 

in 15 ml complete DMEM 24 h before transfection. For transfection, plasmid DNA was mixed 

with ddH2O and 100 µl 2.5 M CaCl2 in a total volume of 500 µl in a sterile 1.5 ml tube. In a 

second tube, 500 µl of 2X HEPES-Buffered Saline (HeBS) pH 7.05 were added. To form the 

precipitate, the HeBS solution containing sodium phosphate was slowly mixed with the 

calcium solution containing DNA. For this procedure, the HeBS was gently bubbled using 

an automatic pipette pump, during which time the CaCl2/DNA solution was added dropwise. 

The mix was incubated for 20 min at room temperature to allow the formation of salts/DNA 

complexes and then distributed dropwise over the cells, followed by gentle mixing by 

agitation. The DNA/salts co-precipitates adhere to the cell surface and are then taken up by 

the cells. At 24 h post-transfection, medium was replaced with 8 ml of fresh DMEM. Culture 

media, containing HCVpp, were collected 72 h post transfection and filtered through a 0.45 

µm pore-sized filter. To obtain the vesicular stomatitis virus (VSV) and influenza virus (FLU) 

pseudoparticles, the same protocol was performed as above in HEK-293T cells, co-

transfecting with plasmid encoding the VSV-G or influenza haemagglutinin glycoproteins (3 

µg) together with the pMLV gag-pol and pMLV-Luc. 



 

Measuring Viral Entry Inhibition by Luciferase Assay  

To evaluate the inhibitory effect on HCV entry, 4 x 103 Huh7 cells were plated in a 96-well 

plate and incubated overnight at 37°C. The following day the medium was removed and 

cells were incubated with 50 µl of 10 µM of each compound for 1 h. Cells were then infected 

with HCVpp in the volume of 40 µl in the presence of the drugs for 3 h. Finally, the inoculum 

was removed, cells washed and 150 µl of fresh medium added. After 72 h post-infection, 

luciferase assay was performed. Typically, the cell medium was removed and cell lysed in 

50 µl of Lysis Buffer (Promega) for 10 min. The lysates were then moved into a white 96-

well plate, 50 µl of Bright-Glo reagent (Promega) were added and luciferase activity 

determined by measuring the Relative Light Unit (RLU) using the Chameleon multiwall plate 

reader. For VSV and Flu pseudoparticles experiments, the same protocol was executes, 

except for using virus-specific particles, obtained previously. 

HCV replicons 

Testing drugs on JFH1-luc replicon 

Initially, to investigate a possible antiviral activity at the replication stage, Huh7 cells were 

electroporated with 10 µg of JFH-luc RNA, seeded in a 96-well plate in the presence of each 

compound at the concentration of 10 µM and incubated at 37°C for 24 h. After 1 d, cells 

were lysed and RLU readings taken using a Plate Chameleon plate reader (Hidex, Finland) 

as described above. All the RLU values were normalised to DMSO-treated value, which was 

defined as 100%. 

Generation of HCV replicon cell line 

To generate a stable replicon cell line, persistently harbouring HCV RNA, 4x106 Huh7 cells 

were electroporated with 10 µg of N17/JFH1 and plated in a 100 mm cell-culture dish. After 

48 h cells were fed with medium containing 3 µg/ml of puromycin to select positively-



 

transfected cells. After 1 week, the puromycin-resistance cells were trypsinized, pooled and 

seeded in a 75 cm2 cell-culture flask. These cells, named Huh7-J17 or simply J17, were then 

passaged twice in the presence of 2 µg/ml of puromycin and then stored and used for further 

experiments. 

Antiviral effects on J17 Replicon Cell line 

All the compounds were tested as replicon inhibitors on J17 cells. Briefly, 5x103 J17 cells 

were plated in 96-well plate and treated with each drug at the concentration of 10 µM. RLU 

readings were taken after 24, 48 and 72 h as described above.  

Drug Resistant Mutants 

In order to determine whether these compounds could trigger a spontaneous onset of 

resistant mutations, J17 cells were seeded in a 12-well plate in the presence of each 

compound at the concentration of 3 µM and cultured for 21 days. Typically, every 3 to 4 days 

cells were trypsinized, counted and 2x104 cells were lysed to measure luciferase, while 

8x104 cells were seeded in a 12-well plate to maintain the cell cultures.  

Inhibition of HCV IRES-mediated translation 

To test an antiviral effect on HCV translation, 4x106 Huh7 cells were electroporated with 

SGR-Luc-JFH1GND RNA, able to efficiently translate viral RNA but not to replicate it; then, 

transfected cells were seeded in a 96-well plate in presence of each compound and 

incubated for 2, 4 and 8 h. At each time point, cells were lysed and luciferase measured as 

previously described. 

Evaluating an early antiviral effect 

4x106 Huh7 cells were electroporated with subgenomic SGR-Luc-JFH1 RNA and seeded in 

a 96-well plate in the presence of each compound for a small amount of time, spanning from 

1 to 5 hours. Afterwards, cells were washed, re-incubated with fresh medium and incubated 



 

for 24 or 48h. At the appropriate time point, cells were lysed and luciferase measured as 

described above.  

HCV trans-complemented particles (HCVTCP) 

Generation of HCVTCP 

Trans-complemented particles consisted of viral particles containing the replicon N17/JFH 

RNA as transgene, HCV Core protein that forms capsid and VSV-G as glycoprotein 

expressed on the envelope. Briefly, 2x106 J17 cells, harbouring N17 sub-genomic RNA, 

were transfected with 10 µg of phCMV-VSVg DNA using Viafect (promega) and incubated 

for 3 d. Supernatant-containing particles was then harvested and filtered through 0,45 µm 

filter. HCVTCP were concentrated using Peg-IT (Biosciences) by overnight incubation at 4°C 

and then centrifuged at 1500xg for 30 min. The pellet containing particles was resuspended 

in PBS, titrated, aliquoted and stored at -70°C.  

Titration of HCVTCP 

HCV trans-complemented particles were titrated using FFU assay with 1:5 limiting dilutions. 

Briefly, Huh7 cells were infected with TCP-containing medium following serial dilution. After 

3 h, cells were washed and re-fed with fresh medium. After 3 days, cells were fixed with ice-

cold methanol and then were stained using an NS5A antibody as described above for JFH1. 

The particle titre was calculated as average of FFU number per millilitre. 

Measuring viral inhibition on HCVTCP 

4x103 Huh7 cells, plated in a 96-well tissue culture plate, were pretreated for 1 h with the 4 

selected compounds and DMSO and then infected with HCVTCP in presence of drugs. After 

3 hours, particle inoculum was removed and replaced with fresh medium containing fresh 

drugs. After 3 days, cells were lysed and RLU readings taken.  



 

Evaluation on Influenza Virus 

Propagation of influenza virus (Flu) strain PR8/GFP 

A 75 cm2 tissue culture flask containing approximately 1x107 MDCK cells, corresponding at 

80-90% confluence, was infected with PR8/GFP Flu virus (kindly provided by Dr. Ben Hale) 

at a MOI of 0.001 and incubated at 37°C. After 1 h the inoculum was removed, cells were 

washed three times with PBS and finally re-fed with complete medium. After 48-72 h, when 

approximately 10% was left, the particle-containing medium was harvested, filtered and 

stored at -70°C and titrate by plaque assay as described485. 

Testing antiviral activity on Flu virus 

2x104 A549 cells were seeded in a 96-well plate the day prior to infection. The next day, 

cells were pre-treated with decreasing concentration of Z401, as stronger candidate for viral 

inhibition, or DMSO as reported for HCV.  After 1 h cells were infected with PR8/GFP virus 

and incubated for 1 h at 37°C. Finally, the inoculum was removed and cells re-fed with fresh 

medium containing drug. After 24 and 48 h viral inhibition was evaluated by fluorescence 

measurement using PheraStar (BMG Labtech).  

Statistical Analysis 

All experiments were conducted at least in duplicate and repeated at least 3 times. Multiple-

group comparison was performed by one-way analysis of variance. Data are presented as 

mean ± SEM. Statistical analysis was performed using GraphPad Prism 6 software. 

Statistical significance was defined as P<0.05. 
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Antiviral effect on HCVcc 

To assess the effect of these compounds on HCV infection, we used three different 

protocols: Protocol 1 where Huh7-J20476 cells were exposed to drugs or equivalent DMSO 

(as a vehicle control) before and during HCV infection. The cells were then washed and re-

fed with fresh medium (without drug) for 72 h. Thus, this model allows investigating a 

possible effect on HCV entry. In the second protocol Huh7-J20 cells were infected with 

HCVcc and then the inoculum was replaced with fresh medium containing the drug or DMSO 

to determine if the effect of the drug is exerted post-viral entry (e.g. RNA replication and/or 

virus assembly). In the third protocol, Huh7-J20 cells were pre-treated, infected and exposed 

in the presence of the compounds for all the time of experiment; this model is commonly 

used to test effect of compounds on full viral life cycle. Cell viability assays were performed 

in parallel. Several compounds showed a good inhibitory effect on virus entry, particularly 

the compound Z401 which inhibited virus infection by 80% relative to the DMSO control (Fig. 

7A). Most compounds, however, showed a strong antiviral activity on both the post-entry or 

full life cycle model, with inhibitory values up to 90% for many of them, with no or little 

adverse effect on cell viability except compound Z431 (Fig. 7B). Together, these data 

suggest that most of the compounds affect virus genome replication. 

 

 

 



 

 

Figure 10. Antiviral properties of new antiviral compounds on HCVcc. Huh7-J20 cells 

infected and exposed to drugs according to different models: cells were pretreated and 

infected in the presence of compounds (A), treated after infection or during all time (B); 

viability was also measured (grey bars). 



 

Inhibition of HCV entry with HCVpp 

To further test the effect on HCV entry, we used the surrogate retrovirus-based 

pseudoparticle (HCVpp) model. HCVpp consist of retroviral particles, expressing HCV 

glycoproteins E1 and E2 on their surface and with firefly luciferase as transgene. The 

compounds were tested following the protocol 1 described above for HCVcc. The results 

showed that just 2 drugs were able to inhibit HCVpp by more than 50%; Z431 strongly 

blocked HCV entry (84% inhibition), while Z432 showed a moderate effect (62%) (Fig. 10). 

While Z401 was a potent inhibitor of HCVcc entry (80% inhibition) (Fig. 10A), it had a 

moderate effect on HCVpp infection (50%) (Fig. 11).  

 

Figure 11. Inhibitory effect on cell entry. Huh7 cells were pre-treated for 1 h and then infected 

in the presence of compounds. Luciferase signal was measured after 72h.  

 

Entry inhibition of different virus using pseudo-particles 

Based on the previous results, we evaluated the specificity of Z431. For this purpose, this 

compound was evaluated on pseudo-particles of different viruses. Specifically, it was tested 

as entry inhibitor of Vesicular Stomatitis Virus (VSV) and Influenza virus. Interestingly, as 



 

shown in fig. 12, no effects were detected on VSV of Flu virus (inhibitory effect <50%), while 

a significant reduction was seen in HCV (80%). 

 

Figure 12. Z431 was tested to evaluate its viral-specificity; for this purpose, its antiviral effect 

was determined infecting target cells, exposed to Z431, with pseudoparticles obtained from 

HCV, influenza or VSV. Results were collected 72 h post infection. 

Inhibitory effect on HCV replication 

Transient Replicon 

Our results above indicate that most of our compounds target virus replication. To confirm 

this, all the drugs were tested for their ability to inhibit replication of a transient sub-genomic 

replicon. Huh7 cells, electroporated with JFH-luc replicon RNA, were seeded and incubated 

for 24 h in the presence of the drugs before measuring luciferase signal. Interestingly, almost 

all the compounds showed a good inhibition of viral RNA replication, with some compounds 

being able to block up to 95% of replication (Fig. 13). These data confirm the hypothesis 

that these compounds are able to inhibit HCV replication as previously observed in HCVcc 

experiments (Fig. 10B). In this model, the cell viabilities were up to 10% less compared to 

those in previous experiments, possibly due to an increase in drug uptake resulting from 

electroporation.  
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Figure 13. Inhibitory effect on the HCV replicon. Huh7 cells were electroporated with SGR-

JFH-luc, seeded and immediately exposed to drugs. After 24 h luciferase readings were 

taken. 

 

Generation of a replicon cell line 

Huh7 cells, electroporated with N17/JFH1 RNA, were plated and selected with puromycin. 

After 1 week all the clones were pooled together and maintained in presence of puromycin. 

RNA replication was monitored by RLU readings, confirming stable replication levels (106 

RLU/sec) for up to 60 days. Moreover, that result was confirmed by RT-qPCR at two different 

time points, day 17 and 59, showing a constant level of HCV RNA (Fig. 14).  



 

 

Figure 14. Electroporated Huh7 cells were cultured in the presence of puromycin to generate 

a stable replicon cell line (Huh7J17). The persistence of viral replication was confirmed by 

RLU measurement (A) and RNA quantitation by RT-qPCR (B). 

 

Replicon cell line inhibition 

The inhibitory effect above, observed on Huh7 cells transiently transfected with the HCV 

sub-genomic replicon, was then confirmed using the above generated replicon cell line 

Huh7-J17. Cells were plated in the presence of the drugs and incubated for 24, 48 or 72 h. 

Results confirmed the previous observation, with a good number of drugs showing high 

inhibition of the viral replicon RNA, up to 80%, in a time-dependent fashion (Fig. 15). 

Interestingly, after 24 h almost all the compounds showed an antiviral effect of approximately 

50%, while an enhanced effect was seen after 48 h, that remained constant after 72 h. 

Noteworthy, 9 drugs (Z385, Z387, Z401, Z400, Z176, Z421, Z430, Z431, Z432) showed a 

strong inhibition, up to 95% compared to DMSO-treated cells at 72 h after seeding. 

Interestingly, all the compounds induced toxicity effects similar to those observed on 

electroporated cells.   
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Figure 15. Huh7-J17 cells were exposed to drugs for different time points. For each drug, 

inhibition and viability were measured after 24, 48 and 72 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Determining IC50 and CC50 values 

We next obtained dose-response profiles for each compound to determine their IC50 and 

CC50 values on HCVcc. These experiments were conducted testing all the compounds with 

concentrations starting at 30 µM and decreasing with 3-fold dilutions. Huh7-J20 cells were 

treated and infected following the second protocol described above, to investigate effects 

on all the virus life cycle. IC50 and CC50 values were determined on SEAP results, collected 

3 d post-infection as described above, using a non-linear regression function on normalised 

samples (Fig. 16). Interestingly, all the compounds showed good IC50 values, in the 

micromolar range (<5 µM). It is important to highlight that some drugs showed values in the 

nM scale (9 compounds, Table I). It is also noteworthy that the CC50 values remained 

approximately at 10 µM for all compounds. We then calculated Selectivity Indexes, which 

represents the ratio CC50/IC50. Considering a SI cut-off of 3, almost all the compounds 

passed this limit, with many of them showing extremely higher values. Notably, 4 compound 

(Z385, Z387, Z401, Z400) exhibited SI values higher than 100, and 2 of them (Z401, Z400) 

even higher than 200.  

 

 

 

 

 

 

 

 

 

 



 

Compound IC50, µM CC50, µM SI 

Z263 3.1 56.3 18.174 

Z421 1.16 44.6 38,548 

Z434 1.85 10.5 5,661 

Z436 3.62 13.0 3,595 

Z438 1.74 9.60 5,534 

Z397 2.95 61.1 20,715 

Z400 0.243 66.5 273,569 

Z401 0.0924 22.6 244,238 

Z432 1.29 19.2 14,942 

Z422 20 24.9 1,247 

Z433 0.991 23.7 23,917 

Z437 2.93 14.7 5,029 

Z376 2,18 69.2 31.761 

Z439 3.72 29.7 7,977 

Z385 0.585 59.2 101,145 

Z413 0.315 27.4 87,166 

Z414 0.627 30.5 48,612 

Z377 2.98 18.4 6.196 

Z387 0.712 132 185,482 

Z430 0.941 11.5 12,173 

Z431 0.5 2.67 5,348 

Z176 1.34 17.6 13,174 

Table I. IC50, CC50 and Selectivity Index values calculated for each compound using HCVcc. 



 

The 4 compounds (Z385, Z387, Z400 and Z401) with SI >100, showed interesting inhibition 

and viability profiles (Fig. 16) and for these reasons were selected for further evaluation as 

inhibitors of virus RNA replication. 

 

 

 

Figure 16. Huh7-J20 cells were infected with JFH1 virus to determine IC50 and CC50 values 

performing dose-response scales. Cells were infected according to model 3 previously 

described and exposed to compounds at the concentration of 30 µM following 3-fold 

dilutions. Viability and inhibition profiles were determined as described above. 

 

 

 



 

Evaluation of drug resistance mutations 

To assess whether our compounds could trigger viral escape, they were evaluated in a long 

period on the replicon cell line using a concentration of 3 µM, in order to reduce the cytotoxic 

effect. Huh7-J17 cells were treated with Z385, Z387, Z400, Z401 or DMSO and cultured for 

20 days. Replication levels were measured at different time point on the same number of 

cells. Noteworthy, all the compounds were able to inhibit HCV replication. Specifically, Z385, 

Z387 and Z400 showed a significant level of inhibition, of approximately 70-80%. 

Interestingly, Z401 was able to massively block RNA replication, with a decrease in 

luciferase signal up to 90% (Fig. 17). Moreover, the antiviral activity was evident through the 

entire period of the experiment, maintaining constant levels of antiviral inhibition. 

Noteworthy, no rebounds were observed for all the compounds.  

 

Figure 17. Huh7-J17 cells were exposed to drugs for 20 days to investigate the potential 

development of drug-resistance mutations. Every 2/3 days cells were lysed and RLU 

measured. 
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RNA inhibition on HCVcc 

To further confirm antiviral activity, we directly evaluated RNA inhibition, testing Z385, Z387, 

Z400, and Z401 on a cell culture adaptive virus, called AM7/1 that contains 8 point mutations 

into HCV JFH-1 genome and grows to high titres (unpublished), showing a consistent 

replication to high titres. Huh7 cells were infected with HCVcc AM7/1 in the presence of 

drugs as per Protocol 2 described above and RNA was collected 72 h post-infection. Total 

RNA was quantified as described above. As shown in Fig. 15, compounds Z385, Z387, Z400 

and Z401 reduced the total viral RNA levels over 95%. Similar results were obtained with 

the parent HCVcc JFH1 strain where a concurrent decrease in virus replication levels was 

seen in our reporter cell line, showing a significant correlation (Fig. 18). 

 

Figure 18. Huh7-J20 cells were infected with AM7/1 adaptive virus according to model 3 

described above. RNA inhibition and SEAP reported gene were evaluated 3 days post 

infection. 

 

 



 

Analysis of single-cycle infection on HCVcc 

For the next experiments, we chose a cell line called Huh7-Lunet CD81 to mitigate the 

possible effect of secondary infection on our results. Huh7-Lunet-CD81 cells do not express 

the cellular receptor CD81, a host factor essential for virus entry but not for cell-to-cell 

spread486. While these cells remain competent for viral RNA replication, assembly and 

release upon direct introduction of its RNA genome into the cells, they are refractory to virus 

entry and spread of infection. As such, these cells can be used to investigate the inhibitory 

effect of antiviral compounds in a single-cycle infection assay. As control, we used Huh7L-

H/EF, a Huh7 Lunet CD81-derived cell line over-expressing human CD81486. Both cell lines 

were electroporated with HCVcc JFH-1 RNA, seeded in the presence of the drugs and 

incubated for 72 h before measuring intracellular RNA levels, and those associated with the 

viral progeny secreted into the medium of electroporated cells. The latter was performed 

following digestion with RNAse A to remove any residual untransfected viral RNA. We found 

that compounds Z385, Z387, Z400 and Z401 exhibited strong inhibition of virus replication. 

The levels observed on CD81 over-expressing Huh7L-H/EF cells were up to 80-95%, 

significantly more profound than CD81 negative cells, which showed a mild effect comprised 

between 50-80% (Fig. 19A); this difference is probably due to an effect on secondary 

infection, resulting in an increased antiviral effect. In parallel, we also measured the progeny 

virus release by quantifying viral RNA into the medium, observing a significant reduction for 

all the compounds in both cell lines, between 70 and 95% (Fig. 19B). In keeping with the 

results obtained in Fig. 15A, there was a drastic reduction in virus progeny levels in the 

medium of cells infected in the presence of compounds Z385, Z387, Z400 and Z401 (Fig. 

19B). Collectively, these results indicate that compounds Z385, Z387, Z400 and Z401 affect 

virus RNA replication.  



 

 

Figure 19. CD81 negative cells and the control HeF cells were electroporated with HCVcc 

and treated with drugs. After 3 days, inhibition in intracellular RNA (A) and release particles 

(B) was measured by RT-qPCR.  .  

 

 

      

  



 

Single-cycle infection inhibition on HCVTCP 

To further validate our findings, we tested these 4 compounds using trans-complemented 

pseudo-typed HCV replicon particles (TCP). Based on a system described previously487, we 

generated TCP, encapsidating our N17/JFH1 subgenomic replicon355, in the medium of 

Huh7-J17 replicon cells that had been transfected with a plasmid construct expressing the 

VSV glycoprotein protein (VSV-g). The TCPs produced thus are capable of infecting and 

delivering replication-competent N17 replicon RNA into naïve Huh7 cells without generating 

progeny virus. Thus, TCPs represent a good model to investigate single-cycle infection 

allowing analyses of antiviral compounds in the absence of secondary infection or defective 

cell lines. As shown in Fig. 20, all 4 compounds efficiently inhibited the replication of the N17 

replicon in cells infected with the VSV-G pseudotyped TCPs, with an antiviral activity up to 

85-95%. 

 

Figure 20. Inhibitory effect on single cycle infection. Huh7 cells were infected with HCVTCP 

and exposed to compounds for 3 days. Antiviral effect was evaluated measuring luciferase 

signal. 



 

Effect on an early step of viral replication 

Analysing our data presented in Figs. 10B, 13 and 17, we reasoned that these compounds 

may be acting at an early stage of viral replication. Compound Z401, in particular, showed 

a partial effect (Fig. 10A) that could be explained by a rapid inhibition of viral replication. To 

explore this idea, we tested the ability of 4 selected compounds (Z385, Z387, Z400 and 

Z401) to inhibit viral replication under a slightly modified condition in which cells were treated 

only during the first hours after RNA transfection. Briefly, immediately after electroporation 

with SGR-JFH-luc RNA Huh7 cells were treated with drugs for a time ranging from 1 to 5 h. 

The cells were then washed, and incubated in fresh medium in the absence of drugs 24 or 

48 h. The results at 24 h post transfection, shown in Fig. 21A, confirmed a significant block 

of approximately 50% to 60% for Z385, Z387 and Z400 and 80% for Z401. However, data 

obtained 48 h post transfection showed a massive rebound of viral replication, with no 

effects observed for all the compounds except a small inhibition in 5 h treatment; only Z401, 

exhibited a persistent antiviral activity of 50% (Fig. 21B). 

Effect on HCV translation 

These compounds where also tested as potential translation inhibitors. For this purpose, 

Huh7 cells were electroporated with the viral NS5B-defective SGR-JFH-GND-luc RNA, a 

sub-genomic replicon with a mutation in the GDD domain that blocks the viral NS5B 

polymerase activity and hence RNA replication. However, this mutant RNA is expected to 

be translation-competent, at least up to 8 h post-transfection. As such, Huh7 cells, 

electroporated with JFH-GND-luc RNA, were plated in the presence of the compounds and 

the antiviral effect was observed after 2, 4 or 8 hours. Interestingly, showed no significant 

effects on the levels of luciferase, indicating that viral RNA translation was not affected (Fig. 

21C). Moreover, when the compounds were tested on the stable replicon cell line treating 



 

the cells for 5 h (data not shown), no inhibitory effects were observed from all the 

compounds. Together, these results indicate that the compounds tested exert their antiviral 

effect mainly during the initial stage of viral replication, showing a significant effect on RNA 

levels. To evaluate whether the effects observed are on RNA synthesis, we developed a 

new qPCR-based assay to detect and quantitate the replicative-intermediate RNA negative 

strand. 

 

 

 



 

 

Figure 21. Huh7 cells were electroporated with SGR-JFH-luc RNA and then seeded 

immediately in the presence of each compound for a short amount of time (1-5 h). Luciferase 

readings were collected after 24 h (A) or 48 h (B). A potential effect on viral translation was 

evaluated electroporating Huh7 cells with SGR-JFH-lucGND (C); RLU readings were taken 

after 2, 4 or 8 h. 



 

Antiviral effect on Influenza Virus 

Based on the previous data, we decided to investigate the potential inhibitory effect of Z401, 

as strongest inhibitor on HCV, on the influenza reporter virus PR8/GFP. Flu virus, belonging 

to orthomyxoviridae, is a segmented negative strand RNA virus, and, as such, it is a good 

tool to determine the specificity of our compound. A459 cells were infected with PR8/GFP 

and exposed to compounds using 3-fold dilution concentrations, following the second model 

described for HCV, in order to determine the IC50 value. Interestingly, we found a moderate 

inhibition after 24 h, up to 40% at the highest concentration, with an estimated IC50 value of 

100 µM. However, analysing the antiviral effect after 48 h, a boost in the viral inhibition was 

detected, with an IC50 value of 22 µM (Fig. 22). 

 

 

 

Figure 22. A549 cells were infected with influenza reporter virus PR8/GFP according to 

model 3 and exposed to Z401 for 24 or 48 h. Inhibition was evaluated measuring reporter 

GFP signal. 
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Development of an PCR-based assay for negative strand 

quantification 

Based on the previous results, we demonstrated that our compounds can efficiently inhibit 

HCV replication and that this effect is exerted interfering with RNA synthesis at an early 

stage of RNA replication. To validate these findings, we established a new real-time based 

assay to specifically detect positive or negative strand of HCV and evaluate then the 

mechanism of these drugs.  

Primer Evaluation   

Initially, we identified 6 pairs of primers, named 1 to 6 and listed above, that were selected 

on Vector NTI using as a cut off a score >170. Of those, 4 pairs are located in the 5’UTR, 

one pair in the NS2-encoding region and one pair in the Core coding sequence, as reported 

above. All the pairs were tested in an end-point PCR in order to evaluate functionality. 

Results showed a strong amplification with an annealing temperature of 60°C (Fig. 23) for 

the entire set, although some non-specific products were observed for pairs 1, 3 and 5. 

However, when the annealing temperature was increased to 65°C, a best amplification was 

observed, reducing non-specific amplification, although the pairs 1 and 6 showed a lower 

amplification; the final temperature selected was 65°C. 

 

   

Figure 23. Screening of primer pairs by end-point PCR, using as annealing temperature 60 

(A) or 65 (B) degrees.  

B A 



 

Real Time Testing   

Next, the utility of these primers in the detection and quantitation of HCV genomic negative 

and positive strands were evaluated. Huh7 cells were electroporated with in vitro-

synthesized JFH-1 or JFH-GND RNA. Untransfected Huh7 cells were used as negative 

control. At 24 or 72 h post-transfection (Fig. 24 A and B, respectively), total RNA was 

prepared and used as a template to generate viral strand-specific cDNA by reverse 

transcription using forward and reverse primers previously described. The cDNA was then 

amplified by Real Time PCR to determine the relative amounts of negative and positive 

strands using an absolute quantification.  As expected, no negative RNA was detected in 

the control untransfected Huh7 cells at 24 or 72 h, while a partial amplification of positive 

strand was observed in negative cells for pairs 2 and 4 at both time points. A good 

amplification of positive strand was observed in both GND RNA- and WT RNA-

electroporated cells, except primer pair 1 and 6, which showed a very low amplification, 

confirming the results obtained with end point PCR. Interestingly, the negative strand of 

JFH-1 was nicely amplified, especially for the pairs 3, 4 and 5. The ratio observed between 

quantities of positive and negative strand in our assay for primer pairs 3, 4 and 5, with values 

ranging between 3 and 7 (Fig. 24). Negative strand was detected in JFH-GND samples 

(which represented the internal negative control) with primer pairs 2 to 5 for both time points. 

However, the quantity observed was up to 100-fold lower compared to WT samples, 

especially for primer pairs 3 and 5, indicating that these species are a product of non-specific 

amplication or reverse transcription. Based on these results, primer pairs 2 and 4 were 

excluded due to a non-specific effect on un-infected cells and primer pairs 1 and 6 were 

discarded considering the poor amplification profiles observed in infected cells, indicating 

their unsuitability in this assay (Fig. 24).  

 



 

 

Figure 24. Quantification of positive and negative strand HCV RNA. Huh7 cells were 

electroporated with WT or GND JFH1 and cultured for 24 h (A) or 72 h (B). Strand-specific 

quantification was carried out by strand specific RT-qPCR. 

 

 

Detection of positive RNA in viral particles   

The selected pairs 3 and 5 were then evaluated for their specificity to detect positive strand 

RNA, but not negative strand, in particle-containing medium. It represents a good control to 

investigate the specificity of the strand-specific primers; as expected, we found a good 
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amplification of positive strand, correlating with viral titre obtained by FFU staining, while no 

amplification was detected for negative strand (Fig. 25).  

 

Figure 25. Quantification of positive strand RNA in viral particles. Viral RNA has been 

extracted from particle-containing medium and negative and positive strand RNA were 

quantified by RT-qPCR. 

 

Optimisation of RNA amount in the Reverse Transcription 

To optimise the RT reaction, we considered if the amount of total RNA could affect the 

specificity of reverse transcription. To explore this idea, different amounts of input total RNA 

were assayed to test amplification profiles and investigate the sensibility limit; specifically, 

we evaluated 1000, 100, 10 and 1 ng. The RT reaction was performed using either pair 3 

and 5, on RNA obtained from Huh7 24 hours post electroporation with JFH or JFH-GND. 

For primer set 3, results showed no significant differences between all the samples tested 

for positive strand, while reduction in RNA quantity led to a low amplification for negative 

strand, with 10 or 1 ng showing no amplification. Analysing data obtained with primer pair 5, 

we found no differences between 1000, 100 or 10 ng for both strand, while a moderate 

reduction was observed using 1 ng. This experiment confirmed that a small amount of total 

RNA (~ 100 ng) was enough for a solid quantification, comparable to what observed with 

increased RNA amounts (Fig. 26A). Moreover, to determine background levels, obtained by 

negative strand amplification on defective GND virus, we determined the positive/negative 
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ratio, that has been reported to be variable between 10-100295. Considering our results (Fig. 

26B), we found that primer pair 5 showed interesting ratio values, of approximately 60 for wt 

virus and >200 for GND, especially for 100 ng of total RNA, while higher background levels 

could be detected with different RNA quantities. Interestingly, results obtained from pair 3 

showed inconsistent ratio values. To confirm these findings a melting analysis was 

performed, that showed a non-specific peak in the primer set 3 (Fig. 27A), while a specific 

amplification was observed in pair 5 (Fig 27B). Based on these results, we outlined the 

primer set 5 as more specific in combination with the RNA amount of 100 ng for each strand. 

 

Figure 26. (A) Huh7 cells were electroporated with WT or GND JFH1 and incubated for 24 

h. Negative and positive strand HCV RNA were quantified by RT-qPCR using different 

amount of viral RNA. (B) Ratio between positive and negative strand for both primer sets. 
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Figure 27. Melting curve analysis performed on qPCR products for primer pair 3 (A) and 5 

(B). 

 

 

Optimising RT Primer Concentration 

To optimise cDNA synthesis, RNA obtained from Huh7 24 hours post electroporation with 

JFH-GND, was reverse transcribed testing 2 different primer concentrations: 1 µM and 0.1 

µM. No significant differences were observed for positive strand quantification, while a good 

variation was observed for negative strand, particularly in the GND virus with a 3-fold 

decrease, demonstrating the importance of the primer concentration in the RT reaction to 

avoid non-specific products (Fig. 28). Based on these evidences, all the subsequent RT 

reactions were conducted using 0.1 µM as final primer concentration for each strand. 

A B 



 

 

Figure 28. Huh7 cells were transfected with WT or GND JFH1. After 24 h, quantification of 

strand-specific HCV RNA was carried out using different concentrations of primers during 

reverse transcription.  

 

Viral kinetic based on negative strand synthesis 

Once the assay had been optimised, as described above, we determined negative and 

positive strand kinetic by means of Huh7 electroporation with WT and defective virus. 

Negative and positive strand RNA were evaluated after 24, 48, 72; as shown in Fig. 29, 

similar amounts of positive RNA were detected after 24 h for WT and GND virus, while a 

significant difference was observed in negative strand quantification. After 48 h, positive and 

negative strand RNA amounts rapidly increased for WT virus, whereas a massive drop was 

observed from RNA quantity in GND control. Interestingly, after 72 h a further increase was 

detected for positive and negative strands in WT virus, while a significant decrease was 

observed in the defective GND.  
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Figure 29. Time course of positive-negative HCV RNA. Huh7 cells were electroporated with 

WT or GND virus and cultured for 24, 48 or 72 h. Positive and negative strand RNA 

quantification was performed by RT-qPCR. 

 

Positive and negative strand RNA inhibition 

Evaluation on single-cycle infection 

To evaluate whether these compounds were able to interfere directly with RNA synthesis, 

negative and positive strands were evaluated on the single life-cycle model and on control 

cell line after electroporation; this system allows to investigate negative strand synthesis in 

conditions were positive strand is over-represented. As reported in Fig. 30 a massive 

inhibition was detected in negative strand synthesis, up to 90% for both cell lines tested. 

Noteworthy, positive strand RNA synthesis was impaired up to 60% for CD81 negative cells 

and up to 40% for HeF cells, showing an important difference between the cell lines; this 

effect is related to viral spread through secondary infections present in control HeF cells but 

not in CD81 negative cells. 
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Fig. 30. RNA quantification by RT-qPCR in CD81 negative cells and control HeF cells 

electroporated with WT virus and incubated for 72 h. Specifically, (A) Negative and (B) 

Positive strand were evaluated in the presence of a known assembly inhibitor. 

 

Determining positive and negative strand RNA on infection 

Finally, to confirm our findings, we evaluated negative strand synthesis after infection with 

the adaptive virus AM7/1. As expected, an impressive inhibition was detected for both 

positive and negative strand for all the compounds, up to 95% (Fig. 31). Interestingly, a 

higher inhibition of negative strand synthesis was observed as compared to the positive 

strand. 

 

Fig. 31. Quantitation of positive and negative strand in Huh7 cells infected with HCVcc. Huh7 

cells were infected with AM7/1 virus and exposed to drugs for 3 days. Positive and negative 

strand were quantitated by RT-qPCR. 
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DISCUSSION 

 

 

 

 

 

 

 

 

 

 



 

Hepatitis C virus (HCV) infection affects 3% of the world population and is major cause of 

chronic liver disease with severe hepatic consequences such as fibrosis, cirrhosis and 

hepatocarcinoma. Recently, numerous direct acting anti-viral drugs (DAA) have been 

introduced, targeting essential viral functions. These new treatments represent a significant 

step forward as compared to the Pegylated IFN-α-ribavirin therapy. Up to date, DAA are 

mainly inhibitors of NS3/NS4 HCV protease, some inhibitor of NS5A co-factor and only one, 

Sofosbuvir, is able to target the NS5B polymerase488. However, high costs and limited 

availability suggest that new antiviral drugs that are more affordable and readily accessible, 

are needed. Moreover, given the high heterogeneity of HCV, highly variable, it is likely that 

within few years new drug-resistance variants will arise, making the research for new 

inhibitory molecules extremely urgent. In our study, presented in this thesis, we 

demonstrated that our new uracil-based antiviral compounds can massively reduce HCV life 

cycle by interfering with viral RNA replication. In particular, we demonstrated that these 

agents are active on an early stage of viral replication, likely blocking the synthesis of 

negative strand RNA, resulting in a significant decrease in its infectivity. 

Initially, using cell-based assays involving three different protocols, we show that most of 

our compounds inhibit virus genome replication. Our initial data indicated that they had a 

moderate effect on HCVcc entry. However, a further analysis using HCVpp, which is a well-

established virus entry model, identified only Z431 as an HCV-specific entry inhibitor. 

Treatment of cells post-infection showed that most of the compounds inhibited viral genome 

replication by up to 95%. That most of the compounds targeted viral genome replication was 

unequivocally confirmed using the viral sub-genomic replicon system. Interestingly, we 

found a significant difference in the antiviral activity of the compounds when tested in the 

stably established replicon cell lines as opposed to in cells that had been freshly 

electroporated with the replicon RNA. In the latter case, a stronger inhibitory activity was 

detected, indicating that these compounds likely act on de novo RNA synthesis thus 



 

affecting early stages of HCV replication. Our analysis of the effects of the selected 

compounds in the surrogate viral TCP system further reinforces this hypothesis. Moreover, 

we proved that culturing replicon cells up to 20 days did not lead to the emergence of any 

resistance mutation, confirming that these compounds have a very high resistance barrier. 

Most of the compounds exhibited IC50 values in the micromolar scale and a good cell viability 

profile. The antiviral activity of the compound Z401 was in the nanomolar range. The 

Selectivity Index, expressed as the ratio of CC50 on IC50, indicated that most of the 

compounds have high values (>10) and are therefore good candidates for further studies. 

Here, we selected four compounds for further studies based on an SI cut-off of 100. 

To further validate the mechanism of action of the selected compounds, we evaluated their 

effect on viral RNA levels in infected cells. We used well-established methods to quantitate 

both total from infected cells and the positive-strand viral RNA from the released virion 

progeny. We used a cell line defective in the virus entry factor, CD81, thus excluding the 

possible effect of secondary infection and allowing analyses in a single cycle infection 

setting. As expected, compounds Z385, Z387, Z401 and Z400 efficiently inhibited both the 

total viral RNA, and this inhibition corresponded to the reduced levels of viral genomic RNA 

in the cell medium. In keeping with our data above, the compound Z398 had no effect on 

total viral RNA levels. Moreover, in the HeF cells in which CD81 expression was restored a 

better inhibition was observed for all the compounds, probably due their antiviral activity on 

secondary infection. To confirm these findings, we investigate the release of new viral 

particles by measuring viral RNA in the cell supernatant; the results showed a reduced 

release for all the compounds. Our 5 drugs exhibited a strong inhibition of negative strand 

synthesis, in particular Z385 and Z401, up to 90%. The same effects were then observed 

infecting cells with an adapted version of JFH1 virus, with strong inhibition of negative 

strand. These data confirmed that our compounds act in an early stage of viral replication. 



 

To confirm this idea, we treated the electroporated cells for a short time (1-5 h) and then 

waited 24 or 48 h before evaluate viral replication. All the compounds showed viral inhibition, 

particularly Z401, able to inhibit up to 80%. However, a rebound in viral replication, 

especially after 48 h, was observed for all the compounds except Z401, able to maintain 

50% of inhibition. We excluded their possible effect on the translation of viral RNA by testing 

them during the translation phase of a replication-defective subgenomic viral replicon post-

electorporation. These data proved that our compounds are highly efficient in blocking viral 

replication in an early stage and that their effects are stable.  

To evaluate species-specificity, Z401, our best candidate, was tested on Influenza virus. 

Interestingly, good inhibitory profiles were observed, and thus, confirming the effect of Z401 

as a strong antiviral with potential pan-viral inhibitory properties. 

 Finally, we investigate whether these compounds could interfere with viral RNA synthesis. 

For this purpose, we developed a qRT-PCR assay to quantitate the levels of the replication 

intermediate negative-strand RNA in infected cells. Initially we evaluated negative and 

positive RNA synthesis on the CD81 negative cells and their control to compare results in 

single and multiple cycles of infection. Interestingly, a massive inhibition in the negative 

strand synthesis in both cell lines was observed, confirming the role of these compounds in 

blocking RNA synthesis, whereas a moderate inhibition was detected in positive strand, 

although this effect can be related to the experimental design based on electroporation. To 

confirm these findings, we measured positive and negative strand inhibition after cell 

infection, showing a massive inhibition of negative strand RNA, and as consequence, an 

effective reduction in positive strand RNA confirming that these compounds act impairing 

viral RNA synthesis. 

Based on these results, we are currently investigating if these antiviral properties can be 

confirmed on HCV strains of a different genotype, to determine if they can be proposed as 



 

candidates for further development. Moreover, different in vitro assays have been developed 

to properly investigate the NS5B activity and its inhibition. 

Summarizing the results obtained from all the studies conducted, it is clear that most of the 

screened compounds exhibit pronounced inhibitory properties (Table I) on viral replication. 

Z401 is proved to be the most active compound blocking the replication of HCV at IC50 

0.0924 µM with a selectivity index of 244 and showing a moderate effect also on Influenza 

virus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

During my PhD program, I also participated in several projects focused on: a) different 

aspects of HCV-mediated immunity and b) drug discovery.  In particular, I contributed to 

studies on: 

 

1) Apolipoprotein E Mediates Evasion From Hepatitis C Virus Neutralizing Antibodies 

 

Here, I generated cell culture infectious viruses bearing glycoproteins from different viral 

genotypes and tested them against several neutralising antibodies, in a setting where the 

ApoE expression in the host cells was silenced by RNA interference. The aim of this study 

was to evaluate the role of ApoE in antibody-mediated virus neutralisation27. 

 

2) Rethinking the old antiviral drug moroxydine: Discovery of novel analogues as anti-

hepatitis C virus (HCV) agents 

 

In this project, I tested several new moroxydine-based antiviral compounds, evaluating them 

on HCVcc and HCV replicons, showing that they can inhibit HCV replication when added 

constantly to infected cells, suggesting that these agents may have a reduced uptake or a 

fast metabolism357. 

 

3) Recent advances in HCV entry (Review) 

 

During my experience at the MRC-University of Glasgow Centre for Virus Research, I 

acquired a huge knowledge on HCV entry, in particular on the factors involved in HCV 

attachment and entry that allowed me to write this review256. 

 

 



 

 

In addition, I also contributed to other collaborative projects on a) pathophysiological 

mechanisms involved in the progression of liver diseases and b) HCV-mediated innate 

immunity. 

 

A) In the first project, we investigated the antiviral properties of sex hormones on HCV 

virus, trying to underline where these hormones can interfering with HCV life cycle 

conferring protection (manuscript in preparation). 

 

B) I also collaborated on a project to investigate the role of a conserved epitope in natural 

killer cell mediated host immune response. In this project I generated several mutants 

evaluating the phenotypic effects induced by these alterations (manuscript 

submitted). Moreover, we investigate whether the virus can adapt introducing 

adaptive mutations. Interestingly, we demonstrated that HCV was able to partially 

restore its replicative fitness introducing an adaptive mutation to compensate the 

aminoacid changes (manuscript in preparation). 
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