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PITUIARY GLAND  

The pituitary gland is a central regulator of growth, reproduction, metabolism and stress responses, 

and functions to relay signals from the hypothalamus to peripheral organs. It is situated within the 

sella turcica, a recess in the sphenoid bone, at the base of the brain. The hypothalamus is the 

principal neural structure regulating homeostasis in vertebrates, coordinating complex signals 

from other regions of the brain and the periphery. The hypothalamus releases factors that control 

the endocrine activity of the pituitary cells. [1]  

The pituitary gland is formed by the juxtaposition of the adenohypophysis (anterior and 

intermediate lobes) and the neurohypophysis (posterior lobe). The anterior pituitary consists of 

five different endocrine cell types secreting six hormones: somatotrophs that secrete growth 

hormone (GH), lactotrophs that secrete prolactin (PRL), thyrotrophs that secrete thyroid-

stimulating hormone (TSH), gonadotrophs that secrete both gonadotrophins, follicle-stimulating 

hormone (FSH) and luteinizing hormone (LH), and corticotrophs that secrete adrenocorticotrophin 

(ACTH). [2]  

Somatotrophs are the majority of adenohypophyseal secretory cells comprising nearly 50% of all 

anterior pituitary cells. Lactotrophs embryologically arise from GH-producing cells, and constitute 

about 15-20% of the anterior pituitary cell population, although pregnancy and lactation alter the 

number of maternal lactotrophs. Corticotrophs and gonadotrophs represent 15-20% and 10-15% 

of anterior pituitary cells, respectively. The thyrotroph is the least common cell type in the anterior 

pituitary, accounting for less than 10% of the pituitary cell population [3, 4].  

The intermediate lobe secretes proopiomelanocortin (POMC), a precursor to melanocyte-

stimulating hormone (MSH), and involutes in the adult [2]. The neurohypophysis is formed from 
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axonal terminals, projecting from two discrete groups of magnocellular neurons in the 

hypothalamus, surrounded by modified astrocytes called pituicytes. The two hormones secreted 

by the posterior lobe of the pituitary gland, arginine vasopressin (AVP) and oxytocin, are 

synthesized in the paraventricular and supraoptic nuclei within the hypothalamus [2, 5]. 

The hypothalamus is positioned above the pituitary gland in the basal part of the forebrain. The 

magnocellular neurons, within the paraventricular and supraoptic nuclei in the hypothalamus, 

produce AVP and oxytocin. Their axons form the hypothalamo-hypophyseal tract, and the 

hormones are released from the posterior pituitary into the general circulation in response to 

electrical excitation. The adenohypophysis is anatomically distinct from the hypothalamus. 

However, parvocellular neurons of the hypothalamus secrete releasing factors that, via a system 

of hypophyseal portal vessels, act on the endocrine cells of the anterior lobe to stimulate or inhibit 

the synthesis and secretion of GH, prolactin, TSH, ACTH, and FSH and LH. The infundibulum 

(or pituitary stalk) carries both the portal blood delivering hypothalamic hormones to the anterior 

pituitary and the neural tract from the hypothalamic nuclei to the posterior pituitary. It is 

noteworthy that the optic chiasm lies above the hypophysis and anterior to the pituitary stalk. Thus, 

any mass lesion of sufficient size in the area of the pituitary gland will cause visual field defects 

[1, 2 and 4].  
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Table 1: List of Pituitary Gland Hormones and their Target and Major Functions. 

 

ANTERIOR PITUITARY 

HORMONES 

PRIMARY TARGETS 

OF ANTERIOR 

PITUITARY 

HORMONES  

MAJOR FUNCTION OF 

ANTERIOR PITUITARY 

HORMONES  

Thyroid Stimulating 

Hormone (TSH, 

Thyrotropin)  

Thyroid Gland  Stimulates secretion of Thyroid 

Hormones  

Follicle Stimulating 

Hormone (FSH, 

Gonadotropin)  

Ovaries and Testes  Triggers ovulation, secretion of 

estrogen, progesterone and 

testosterone  

Luteinizing Hormone (LH, 

Gonadotropin)   

Follicles and Testes Stimulation and maturation of 

Oocyte and sperm production  

AdrenoCortico Tropin 

Hormone (ACTH, 

Corticotrophin)  

Adrenal Cortex  Secretion of Glucocorticoid  

 

Growth Hormone (GH)  

Most Tissues in Body  Growth regulation, metabolism 

and protein biosynthesis and 

regulation of Blood Glucose level    

                Prolactin (PRL)  Mammary Glands  Development and lactation of 

mammary gland  

POSTERIOR 

PITUITARY 

HORMONES 

PRIMARY TARGETS 

OF POSTERIOR 

PITUITARY 

HORMONES 

MAJOR FUNCTIONS OF 

POSTERIOR PITUITARY 

HORMONES 

Arginine Vasopressin (AVP)  Vascular smooth muscles 

and kidney  

Aquaporin and distal tubes 

development and water regulation 

in kidney  

Oxytocin  Mammary glands and 

Uterus  

Contraction of Uterus and Milk 

regulation in mammary gland  
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The hormones secreted from the anterior pituitary regulate growth, puberty, metabolism, response 

to stress, reproduction, and lactation, while those from the posterior pituitary are required during 

parturition and lactation, and regulate water balance see to (Tab.1) [2]. 

GH stimulates insulin-like growth factor 1 (IGF1) gene expression and IGF1 synthesis in liver and 

bone, amongst other tissues, acting on growth. GH also regulates the hepatic production of insulin-

like growth factor binding protein 3 (IGFBP3), acting as a gluco-counterregulatory hormone in 

metabolism. In muscle, GH increases protein synthesis, while in the adipocyte, GH induces 

lipolysis [6, 7]. PRL is the major hormone that simulates milk production, it inhibits LH and FSH 

secretion inducing lactation-related amenorrhea in the postpartum period [5]. ACTH binds with 

high affinity to the melanocortin 2 receptor (MC2R) in the adrenal gland and regulates 

steroidogenesis [3].  

In the male, LH binds to a receptor on testicular Leydig cells and increases the synthesis of 

testosterone [8], while FSH binds to testicular Sertoli cell and stimulates the production of proteins 

in the seminal fluid [9]. In females, LH binds to its receptor on ovarian theca cells and stimulates 

steroidogenesis; FSH stimulates ovarian follicular growth and facilitates generation of estrogen 

from thecal cells [10]. TSH binds to its receptor on thyrocytes, resulting in an increase in iodine 

transport, in the expression of thyroperoxidase and thyroglobulin, and ultimately in increased 

synthesis of thyroid hormones [2, 3].   

AVP acts on the V2 receptor in the renal collecting duct and increases water permeability to 

facilitate water reabsorption, and on V1 receptor in endothelial cells to promote vasoconstriction 

[3]. Oxytocin acts through its receptor, inducing intracellular calcium release that, in turn, results 
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in smooth muscle contraction in the uterine myometrial cells and mammary gland myoepithelial 

cells to cause uterine contraction and milk ejection, respectively [11]. 

FACTORS INVOLVED IN EMBRYOGENESIS OF PITUITARY GLAND 

Pituitary gland is an amalgam of two tissues (Adenohypophysis and Neurohypophysis). Early in 

gestation a finger like projections of ectoderm grows upward from the upper portion of 

oropharynx. This protrusion is called Rathke's pouch and will develop into the anterior pituitary 

or adenohypophysis [13].  

 

Figure 1: Schematic representation of Rathke’s pouch formation and Pituitary Gland 

Development. 

At the same phase that Rathke's pouch is developing, another finger like projections of ectodermal 

tissue evaginates ventrally from the diencephalon of the developing brain. This extension of the 

ventral brain tissue will become the posterior pituitary or neurohypophysis. Finally, the two tissues 

grow into one another and become tightly apposed, but their structure remains distinctly different, 

reflecting their differing embryological origins (Fig.1) [12].  
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Pituitary cell proliferation and differentiation are regulated by different transcriptional activators 

and repressors and by signalling molecules from adjacent regions. The early development of 

pituitary gland in mammals are similar in embryonic stages, so here we considered mice pituitary 

gland development for explanation. In the early stage of pituitary development, which corresponds 

to embryonic days (E) 6.5–10.5 in mice, the extrinsic signalling pathways are activated, including 

the sonic hedgehog (Shh) [17], bone morphogenetic proteins (Bmps) [18], fibroblast growth factor 

(Fgf) [18] and wingless (Wnt) [19] pathways (Fig.2).   

 

 

Figure 2: Embryonic days of developing Pituitary Gland. 

 

Shh is not directly involved in Rathke’s pouch formation; however, it is required for midline 

formation, forebrain development, brain lobe determination, eye formation [18, 20, 21 and 22] and 

BMP2 expression induction. Mouse embryos that lack Shh have pituitary hypoplasia and the optic 

disc is absent [21]. The Shh pathway depends on zinc finger factors, such as Gli1, Gli2 and Gli3 

[17]. Although Shh is not expressed in Rathke’s pouch, Gli factors are found in the precursor 

structures of the pituitary. Therefore, it is possible that in response to Shh signalling, Gli proteins 
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activate other target genes directly involved in pituitary organogenesis [20]. Otx2 is another TF 

that is not expressed in the pituitary tissues themselves [23, 24]. This is a bicoid protein that is 

important for eye and forebrain formation [24, 25]. Otx2 is also responsible for Hesx1 expression 

regulation [23]. Hesx1 is the first pituitary-specific TF to be expressed at or before E6.5 [26, 27]. 

Hesx1 expression begins in the rostral region and progresses dorsally; the restricted expression of 

this TF is responsible for Rathke’s pouch formation. Hesx1 is important for midline formation and 

regulates the expression of other TFs [23, 26, 28 and 29].  

The Pitx1 and Pitx2 genes are expressed at approximately E9 and participate in the different steps 

of central nervous system (CNS) organogenesis. Pitx1 is initially expressed in the first branchial 

arch, then in the oral cavity, and next in Rathke’s pouch [30]. Pitx1 continues to be expressed in 

the latter stages of pituitary embryogenesis and participates in cellular differentiation [30, 31]. 

Pitx2 is expressed in several organs, including the CNS, forelimbs, lungs, kidneys and tongue. In 

addition to its role in CNS formation, Pitx2 appears to be important in the determination of the 

left–right axis. Similar to Pitx1, Pitx2 continues to be expressed during pituitary cell differentiation 

and acts synergistically with other TFs to determine pituitary cell types, primarily Pit1 (Pou1f1)-

specific cells [30-32].   

Similarly, other molecules play relevant roles in the development of the CNS, including the Soxb1 

TFs (Sox1, Sox2 and Sox3) [33, 34]. Sox3 expression begins during early embryogenesis; recent 

studies have suggested that this gene must be expressed at a constant level because both increases 

and decreases in its expression are related to pituitary deficiencies and CNS malformations [34]. 

Some signalling molecules expressed in the infundibulum directly contribute to the induction of 

pouch invagination, among which Bmp4 [18] and Nkx2 are key [35].  
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Mutant animals lacking any of these factors may develop pituitary absence, malformation or even 

embryonic lethality [36, 37]. In parallel with the invagination of oral ectoderm, the pituitary 

precursor cells proliferate and migrate. The Wnt [33] and Shh [38] pathways are important for 

proliferation regulation, while the Bmp and Fgf pathways are required for proliferation and for 

determining cellular migration [39]. Rathke’s pouch formation is complete at approximately 

E10.5, and the pituitary precursor cells begin to express specific factors that determine their 

differentiation patterns (Tab.2) [33].   

Table 2: Genes involved in embryogenesis of Pituitary Gland with embryonic days. 

Pituitary 

embryogenesis 

Embryonic Day 

6.5 – 7.0 

Embryonic Day 

8.0 

Embryonic Day 

9.0 

Embryonic 

Day 10.5 

 

Regulating 

Genes in 

Pituitary Gland 

Embryogenesis  

 

Sox3  

 

Sox3, Shh, 

Gli1,2,3, Six3, Otx2 

and Hesx1  

 

Sox3, Shh, 

Gli1,2,3, Six3, 

Otx2, Hesx1, 

Bmp4, Fgf8/10, 

Wnt, Nkx2, Pitx1/2 

and Lhx4/3  

Sox3, Shh, 

Gli1,2,3, Six3, 

Otx2, Hesx1, 

Bmp4/2, Prop1, 

Fgf8/10, Wnt, 

Nxk2, Pitx1/2, 

Lhx4/3 
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DISORDERS AND DEFICIENCIES IN PITUITARY GLAND HORMONES  

Deficiency of one or multiple pituitary hormones is defined as Hypopituitarism. Congenital 

hypopituitarism is a syndrome with a wide variation in severity, age at presentation, from the early 

neonatal period to later in life (e.g. with abnormal pubertal development), and inheritance. It may 

manifest as isolated deficiency of GH, ACTH or TSH, hypogonadotropic hypogonadism (HH) or 

central diabetes insipidus (DI). Alternatively, several pituitary hormone axes may be defective, 

resulting in combined pituitary hormone deficiency (CPHD) syndromes. The hormonal deficits 

can be associated with extra-pituitary abnormalities, notably of the eye and midline forebrain, such 

as optic nerve hypoplasia (ONH), anophthalmia/microphthalmia, agenesis of corpus callosum 

(ACC) and absence of septum pellucidum [1, 2].   

The endocrinopathy can evolve to include other hormonal deficits, necessitating ongoing 

assessment, as these conditions are often associated with significant morbidity and occasional 

mortality. Neonates with congenital hypopituitarism may present with nonspecific symptoms, such 

as hypoglycaemia, lethargy, seizures, failure to thrive, cholestasis and prolonged jaundice, with or 

without associated developmental defects. Alternatively, they may be initially asymptomatic but 

at risk of developing pituitary hormone deficiencies over time. Males may present with 

undescended testes and a micropenis. Growth failure in severe growth hormone deficiency (GHD) 

can occur early in infancy, while bone maturation may be delayed for the chronological age but 

this is usually evident later in life. Moreover, neonates with optic nerve hypoplasia and/or midline 

abnormalities or syndromes known to be associated with hypopituitarism will need, in the first 

instance, assessment of their endocrine status, as well as long term follow-up even if the initial 

endocrine investigations are normal. Early diagnosis of hypopituitarism in the neonatal period is 

difficult due to the immaturity of the hypothalamic-pituitary axis, and the contraindication for 
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some GH provocation tests at this age. More than 50% of patients with eye/forebrain and pituitary 

abnormalities have ACTH deficiency, and the resulting cortisol deficiency can be life threatening. 

Neonates with TSH deficiency may also present with temperature instability [14]. 

Investigations of hypopituitarism include the use of combined pituitary function and provocative 

testing of the hypothalamo-pituitary axis. GHD may be confirmed on the basis of low 

concentrations of IGF1 and IGFBP3 in combination with a poor growth rate, while GH 

provocation tests are contraindicated in children less than one year of age. The diagnosis of TSH 

deficiency is made in the presence of a low concentration of free thyroxine and basal TSH, and 

central hypothyroidism is associated with additional pituitary hormone deficiencies in 78% of 

cases. A thyrotropin-releasing hormone (TRH) test may be useful for the diagnosis of prolactin 

deficiency. A poor response to gonadotropin-releasing hormone (GnRH) stimulation within the 

first 12-18 months of life is suggestive of gonadotropin deficiency, which provides a window of 

opportunity for the early detection of HH, although patients will require repeat investigations at 

puberty. In neonates, multiple random cortisol measurements may point towards the integrity of 

the hypothalamo-pituitary-adrenal axis, but requires frequent blood sampling, while 

hypoglycaemia-inducing tests are contraindicated at this age. The cortisol response to an 

exogenous ACTH test is safe, but it has a sensitivity of 80%. Once the circadian rhythm has been 

established, an 08:00 am cortisol, a 24-hour plasma cortisol, and a mean cortisol may represent a 

more sensitive tool to confirm ACTH deficiency. Finally, early morning paired plasma and urine 

osmolarities point towards the diagnosis of DI [2, 14].   
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Neuroimaging also plays an important role in the diagnosis and monitoring of patients with 

congenital hypopituitarism, as there is a correlation between the neuroradiological abnormalities 

and the severity and evolution of the endocrinopathy. Signs to look for at the magnetic resonance 

imaging (MRI) of the brain and pituitary include the size of the anterior pituitary, the presence and 

location of the posterior pituitary (absent or ectopic/undescended), the presence and morphology 

of the infundibulum, the presence and morphology of the corpus callosum and septum pellucidum, 

the appearance of the optic nerves and chiasm, as well as associated brain abnormalities [15]. The 

risk of hypopituitarism is 27.2 times greater in patients with an undescended posterior pituitary as 

compared with those with a normally positioned posterior pituitary, and midline forebrain defects 

are up to 5.2 times more prevalent in patients with CPHD as compared with isolated growth 

hormone deficiency (IGHD) [14, 15]. The mainstay of treatment of hypopituitarism is replacement 

therapy with appropriate hormones, which entails the use of subcutaneously administered 

recombinant human growth hormone, oral hydrocortisone, thyroxine, and intramuscular or 

transdermal testosterone or estrogen [16].  
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HEDGEHOG SIGNALING PATHWAY  

Hedgehog (Hh) signaling is mediated by a group of morphogen ligands: sonic hedgehog (SHH), 

Desert hedgehog (DHH) and Indian hedgehog (IHH). These are synthesized as precursor proteins 

that are then processed into two fragments, namely an amino-terminal peptide and a carboxy-

terminal peptide. The amino-terminal peptide is responsible for Hh signaling [40, 41]. Both the N- 

and C-termini of the amino-terminal Hh peptide are modified with lipid moieties, catalyzed in part 

by the carboxy-terminal peptide [42]. These lipid modifications must either be cleaved such that 

the secreted ligand is soluble or shielded in a transport mechanism through the bloodstream.  

In Drosophila, it has been shown that heparin sulfate glycoproteins called glypicans play a role in 

the transport of Hh ligand [43]. These glypicans can recruit lipophorins, lipoproteins that transport 

the hydrophobic Hh ligand through the bloodstream.  

Hh signaling requires intact primary cilium, a microtubule-containing organelle that extends from 

the surface of nearly all cells in mammalian tissues. Responding to mechanical and 

chemosensation, primary cilium are localization points for signaling receptors, ion channels and 

transporters. Acting at the primary cilium, Hh morphogens play essential roles in embryogenesis, 

cell proliferation and tissue development, and stem cell maintenance [44]. Specifically, at the 

activation of Hh signaling, Hh morphogens bind to the 12 pass-transmembrane receptor, Ptach 

(Ptch1) which is localized to the base of primary cilium, releasing its inhibition of Smoothened 

(Smo), a protein responsible for activating the downstream Hh pathway. Once Smo is activated, it 

binds to Sufu and induces nuclear translocation of Hh pathway transcription regulators, Gli1 

(activator), Gli2 (activator and repressor) and Gli3 (repressor) [45, 46]. Gli1, Gli2 and Gli3 
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regulate the expression of downstream targets such as Gli1, Ptch1, cyclin D, and myc involved in 

cell survival, proliferation and differentiation (Figure 3) [47, 48].  

 

Figure 3: Upstream regulation of the Gli transcription factors and their individual and 

combined roles in regulating Hh target gene expression. In the absence of the signal, Gli3 

functions repressor of the Hh signaling pathway. When there is signaling, repression of Gli3 is 

relieved and activator form of the Gli2 becomes active and induces target gene activation. 
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RELEASE AND TRANSPORT OF Hh THROUGH TISSUES  

Despite its tight membrane association, Hh is able to affect patterning of distal tissues, acting 

directly over a long range in a time- and concentration-dependent manner [49]. The formation of 

the gradient of Hh activity emanating from the secreting cells is facilitated by multiple 

macromolecules, which control release, transport and sequestration of Hh. Hh is released from the 

secreting cell by Dispatched (Disp), a conserved protein that shares sequence similarity with 

transmembrane transporters [50, 51]. Subsequent transport of Hh through tissues requires heparin 

sulfate, as indicated by the failure of Hh transport in embryos lacking heparansulfate-synthesizing 

enzymes of the EXT/tout velu (ttv) family [51, 52]. The cholesterol modification of Hh also affects 

the range of Hh action by affecting its palmitoylation, stability, diffusion and/or transport [53-58]. 

Several other proteins that affect Hh transport and/or shape the Hh gradient have been described 

in different species. For example, in addition to the Hh receptor Patched (Ptc), which sequesters 

Hh and restricts its range of action in all species analyzed [51, 59], vertebrates have an additional 

transmembrane protein, Hh-interacting protein (Hip), which binds to Hh proteins and reduces their 

range of movement [51, 60].  

 

RECEIVING THE Hh SIGNAL  

The binding of Hh to cells is facilitated by two classes of accessory receptor: the glypican-family 

of cell surface proteoglycans (e.g. dally-like in Drosophila) [61] and the transmembrane proteins 

iHog and Boi (CDO and BOC in vertebrates) [62, 63]. iHog and Boi also increase the binding 

affinity of Hh for the signaling receptor Ptc, a 12- span transmembrane protein related to bacterial 

transmembrane transporters of the resistance-nodulation-division (RND) family. In the absence of 

Hh, Ptc catalytically inhibits the activity of the seven-transmembrane-span receptor-like protein 
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Smoothened (Smo) [64], potentially by affecting localization and/or concentration of a small 

molecule. Smo activity can be modulated by many synthetic small molecules [65]. Of endogenous 

metabolites, oxysterol derivatives [66] and vitamin D3 derivatives [67] have been suggested to 

mediate the effects of Ptc on Smo. Binding of Hh to Ptc results in loss of Ptc activity, and 

consequent activation of Smo, which transduces the Hh signal to the cytoplasm [64, 68], ultimately 

leading to the activation of the Ci/GLI family of transcription factors [69, 70 and 71]. 

 

 

TRANSCRIPTIONAL TARGETS OF Hh SIGNALING 

 

The Hh signaling response is mediated by the binding of the Ci/Gli1-3 transcription factors to a 

Gli-consensus binding sequence, ‘TGGGTGGTC’ [72, 73, 74 and 75], in promoter and enhancer 

regions of target genes. The transcription factors act as both activators and repressors on the 

transcription of a number of genes that vary between organisms and tissues. There are several 

examples of graded responses to Hh signaling, often in conjunction with other signaling factors, 

including the establishment of the A/P boundary in wing disks and the tight segmental boundaries 

in Drosophila described above. In addition, several response elements and enhancers, in addition 

to the GLI consensus sequence, may regulate the expression of each specific gene target. In 

Drosophila, Hh targets genes include Dpp, Wg, Ptch, Col and En [76, 77]. Vertebrate targets 

include components of the pathway, Ptch, Gli1 and Hip, as well as several proteins from various 

protein families including Bmp [78] Hox [78], Fgf [79], Myc [80], Cyclin [81], Vegf [82,83], 

Angiopoietin [83,84], and other proteins including Pdgfrα [85], Bcl-2 [86,87], Bmi1 [88], Wnt [89], 

Hes1 [90], HNF-3b [75], Spop [91]. Gli-R represses target genes when Hh is absent, and while 

moderate levels of Hh signaling leads to the de-depression these genes, higher levels leads to 
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transcriptional activation. In mice, a total of 42 genes have two or more Gli consensus binding 

sequences in the enhancer regions (Tab.3) [92].  
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Table 3: Hedgehog pathway components in Drosophila and vertebrates   

DROSOPHILA  VERTEBRATE  FUNCTION 

Hedgehog (Hh) Shh, Ihh, Dhh Secreted signaling ligand activating 

the Hh pathway 

Skinny hedgehog (Ski) Hhat (Skn) Acyltransferase involved in Hh 

ligand palmitoylation 

Dispatched (Disp) Disp1, Disp2 Transmembrane protein involved in 

Hh ligand release 

Smoothened (Smo) Smo Positive transmembrane transducer 

Patched (Ptc) Ptch1, Ptch2 Inhibits Smo translocation and 

activity, and possibly a sterol pump 

(cholesterol, provitamin D3). Also 

blocks Stt4 kinase activity. 

Interference hedgehog 

(Ihog), Brother Ihog (Boi) 

Cdo, Boc Ptch co-receptors 

Costal-2 (Cos-2) Kif 7, (Kif family) Scaffold for Ci/Gli processing, 

positive and negative roles 

Fused (Fu) Fu (Stk36) Positive transducer required for 

SuFu and Cos2 phosphorylation 

Suppressor of fused 

(SuFu) 

SuFu Negative regulator of Ci/Gli proteins 

Cubitus interruptus (Ci). Gli1, Gli2, Gli3 Transcriptional activator and 

repressor of Hh target genes 

Dally, Dally-like protein 

(Dlp) 

Gpc4, Gpc6 Heparan-sulfate proteoglycan 

glypican involved in Hh movement 

and reception 

Tout-velu (Ttv), Sister 

of Ttv (Sotv), Brother 

of Ttv (Botv) 

Ext1-3 Hspg glycosylation 

(polymerization), involved in Hh 

movement 

Shifted (Shf) Wif Secreted protein involved in Hh 

movement 

Hedgehog-interacting 

protein (Hip1) 

HIP Negative regulator of Hh movement 

Protein kinase A (Pka) PKA Ci/Gli and Smo phosphorylation, 

positive and negative regulator 

Casein kinase 1 (CkI) ck1 Ci and Smo phosphorylation 

Shaggy (Sgg) Gsk3β Ci and Smo phosphorylation 

Supernumerary limbs 

(Slimb) 

β-Trcp F-box protein substrate recognition 

subunit of ubiquitin E3 ligase 
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There are Gli family of genes targets that act in feedback mechanisms on Hh pathway activity and 

the Hh protein. While Gli1 mediates an important positive feedback signal, the expression of Ptch 

and Hip reduce the movement of Hh ligands and retrains Hh signaling in a negative feedback loop. 

Factors involved in movement and reception of the Hh ligands, like Ihog/Boi, Cdo/Boc and Gas1 

are down regulated in response to Hh signaling, also functioning as negative feedback to Hh 

pathway activation. 
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HUMAN GLI FAMILY 

In vertebrates, there are three GLI (glioma-associated oncogene homolog) transcription factors, 

GLI1, GLI2 and GLI3, which mediate Hedgehog signalling [93-94]. The three isoforms contain 

five zinc-finger DNA-binding domains, but their N-terminal domains exhibit important 

differences. GLI1 functions as a strong transcriptional activator. It lacks a repressor domain found 

in the N-terminus of GLI2 and GLI3. GLI1 expression also depends on GLI2 and/or GLI3-mediated 

transcription since it constitutes a direct target gene of the Hh pathway. Compared to GLI2, GLI1 

exerts the largest part of activator functions by providing a positive feedback-loop. However, GLI2 

represents the primary downstream activator and is indispensable to initiate activation of target 

genes of the Hedgehog pathway. Thereby, both factors display identical or very similar DNA 

binding specificities [95, 97-100]. By contrast, GLI3 exerts a role as a repressor (Fig.4) [96, 99]. 

 

 

Figure 4: Regulatory domains in Gli Zinc Finger Family proteins.  
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GLI2 GENE 

The GLI2 is a member of GLI zinc finger family of transcription factors along with GLI1 and 

GLI3. These zinc finger transcription factors are characterized by the consensus sequence X3-Cys-

X4-Cys-X12-His-X4-His-X3, where X is any amino acid. The zinc finger forms a compact 

globular structure that contains a β-sheet and an α-helix held together by a central Zinc ion. GLI2 

is specifically recognized and binds to the 5’-GAACCACCCA-3’ motif in the target genes. 

GLI2 is a 1586 – amino acid protein (197kDa) which is encoded by 13 exons on chromosome 

2q14. In addition to the central zinc finger DNA binding domain consisting of 5 fingers, GLI2 

proteins also contains an amino terminal (N-terminal) repressor domain and carboxyl terminal (C-

terminal) transactivation domain (Fig.5).  

In previous study showed that the region encoding GLI2 repressor domain is subject to alternative 

splicing in the gonadal tissues and different cell lines. The alternatively 5’ end of GLI2 mRNA 

splicing resulted in two major isoforms from skipping exon 3 (GLI2Δ3) or exons 4 and 5 (GLI2Δ4–

5 also known as GLI2-∆N). This both isoforms contain premature translational stop codons in the 

GLI2 open reading frame (ORF) starting from exon 2. Translation of GLI2Δ3 and GLI2Δ4–5 

(GLI2-∆N) in vitro, initiated from downstream AUG codons, to produce N-terminally truncated 

proteins [119].  

In GLI-dependent transactivation assay, expression of GLI2-Δ3 induced activation of the reporter 

gene similar to that of the GLI2-full-length construct containing complete ORF. However, 

expression of the GLI2Δ4–5 (GLI2-∆N) resulted in about 10-fold increase in activation, suggesting 

that deletion of the major part of repressor domain was responsible for the enhanced activation of 

GLI2 protein and study suggested that in addition to proteolytic processing, alternative splicing 
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may be another important regulatory mechanism for the modulation of repressor and activator 

properties of GLI2 protein. [119] 

At least five different GLI2 isoforms are produced by alternative splicing of mRNA known as α 

(133kDa), β (131kDa), γ (88kDa), δ (86kDa) and GLI2 full-length [100, 107, 108-110] (Tab.4&5). 

The Gli2-α also known asGLI2-∆N variant which lacks the N-terminal repressor domain shows a 

30-fold higher reporter activity compared with the full length protein in vitro.  

 

Figure 5: Schematic Representation of GLI2 Gene Full-Length with regulatory Domains. 
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Table 4: GLI2 Isoforms with missing amino acid positions, length and mass.  

GLI2 ISOFORMS 

NAME 

MISSING AMINO ACID 

POSITIONS 

LENGTH AND MASS OF 

ISOFORMS 

GLI2 Alpha or GLI2-∆N 1-328 1258 amino acids & 133kDa 

GLI2 Beta 1-328 & 394-410  1241 amino acids & 131kDa 

           GLI2 Gamma 1-328, 1149-1157 & 1158-1586 829 amino acids & 88kDa 

             GLI2 Delta 1-328, 394-410, 1149-1157 & 

1158-1586 

812 amino acids & 86kDa 

GLI2 Full-length No missing 1586 amino acids & 167kDa 

 

Table 5: GLI2 Zinc Finger positions and length of binding site.  

ZINC FINGERS NO:  POSITION OF BINDING 

SITES  

LENGTH OF BINDING 

SITES  

Zinc Finger 1 437 – 464  28 

Zinc Finger 2 475 – 497  23 

Zinc Finger 3 503 – 527  25 

Zinc Finger 4 533 - 558 26 

Zinc Finger 5 564 – 589  26 
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GLI2 IN THE DEVELOPMENT OF PITUITARY 

As an effector molecule of the sonic hedgehog (SHH) signalling pathway, GLI2 has a fundamental 

role in the development. Sonic hedgehog is a morphogen expressed in the early steps of pituitary 

ontogenesis by exerting effects on both proliferation and cell-type determination. SHH is expressed 

in the ventral diencephalon and throughout the oral ectoderm except Rathke’s pouch [17, 101]. 

However, the patched receptor (PTCH1) as well as the GLI family of zinc finger transcription 

factors are expressed in the Rathke’s pouch, indicating that the developing gland is competent to 

receive and respond to SHH signalling [102]. 

The Hh pathway (Fig.3) is considered as the canonical pathway through which GLI2 activity is 

regulated. The Hedgehog ligands binds to and activate the transmembrane receptor called patched 

(PTCH). When the Hh ligand is absent, PTCH exerts a consistent inhibitory effect on 

transmembrane G-protein coupled receptor smoothened (SMO). When the Hh ligand is present and 

binds to PTCH, inhibition over SMO is released [59, 68]. The GLI2 transcription factors are bound 

with SuFu which keeps GLI2 tethered in the cytoplasm [103]. Activated SMO triggers the 

dissociation of SuFu/GLI2 complex and allowing the nuclear translocation and activation of GLI2. 

This translocation promotes the subsequent DNA binding and transcription of a series of Hh 

pathway target genes.  

Multiple studies using knockout mice has been performed to study the importance of Gli2 in the 

development. Mice with homozygous loss of function Gli2 mutation resulted in lethal phenotype 

later in development while the heterozygous mice developed normally [102].  

The phenotypic evaluation of abnormalities in the knock out mice showed severe skeletal 

abnormalities including absence of vertebral body and intervertebral disc, truncated mandibles 
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with absent incisors, shortened limbs and sternum, missing tympanic ring bones of the inner ear 

and severe cleft palate malformations [102]. Gli2 deficient mice also showed defects in the 

pituitary development including partial loss of anterior and complete loss of posterior pituitary 

[104, 105]. These defects were attributed by the loss of expression of Gli2 target genes Bmp4 and 

Fgf8 [104]. 

 

GLI2 IN CPHD DISEASES 

SHH and to lower extent GLI2   mutations were initially reported in patients with 

Holoprosencephaly (HPE), a severe neurological characterized by incomplete or failed forebrain 

separation, or HPE-like phenotypes with pituitary anomalies and postaxial polydactyly [118]. As 

the SHH pathway is also involved in pituitary development, mutations in SHH and GLI2 have been 

subsequently searched in CPHD patients. Franca et al [20] reported novel heterozygous frame-

shift and nonsense GLI2 mutations and considerable frequency of missense GLI2 variants in 

patients with congenital hypopituitarism without HPE and most of these patients presented with 

CPHD and an ectopic posterior pituitary lobe.  

More recently, individuals with truncating mutations in GLI2 were reported with the presence of 

typical pituitary anomalies, polydactyly and subtle facial features rather than HPE [115]. In all the 

patients so far identified carrying GLI2 mutations, the pattern of inheritance was dominant with 

incomplete penetrance and variable phenotype [20, 115].  

It has to be considered that GLI2 is a large and highly polymorphic gene with several rare 

variations reported in the exome server database (http://evs.gs.washington.edu/EVS/). Thus 

especially for the missense variants it is quite difficult to assess the pathogenicity in the absence 

of functional studies.    
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AIM 

The aim of this study was to determine the frequency of GLI2 mutations in a cohort of Italian 

CPHD patients that resulted negative for mutations in other causative genes encoding pituitary 

transcription factors (PIT1, PROP1, HESX1, LHX3, and LHX4). Moreover, in the case of missense 

mutations, to discern between polymorphic variants and causative mutation we settled a series of 

in-vitro functional study aimed to evaluate the modifications induced by the different variants on 

the transcriptional GLI2 activity.  
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SUBJECTS:  
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SUBJECTS  

One hundred and thirty-six CPHD patients were recruited based on the following criteria: 

1) They presented with a clinical and hormonal evidence of childhood-onset GH deficiency 

combined with at least one other pituitary defect in the absence of an identified cause of 

hypopituitarism (e.g. cerebral tumors, cranial trauma, documented asphyxia, or other injuries at 

delivery).   

2) Mutations in the coding sequences of genes associated with multiple pituitary hormone 

dysfunctions (PIT1, PROP1, HEXS1, LHX3, and LHX4) had been previously excluded.    

Mean height SDS for chronological age was calculated using the criteria of Tanner-Whitehouse 

method [111]. The mean height of the patients at diagnosis was −2.26 SDS ± 2.3 sd. Morphological 

evaluation of the hypothalamus-pituitary area and/or of the central nervous system was performed 

in 136 patients by magnetic resonance imaging, using precontrast coronal spin echo T1-weighted 

images followed by postgadolinium T1-weighted imaging. Among the 136 CPHD index cases, 8 

(5.8%) were the probands of pedigrees with more than one affected individual (familial cases). 

Four patients were born from consanguineous parents but they were considered as sporadic cases 

since they were the only affected subject in their families. The mean height of these patients at 

diagnosis was -2.81 ±1.83 SDS and the mean delay in bone age relative to chronological age was 

2.57± 2.36 years. GHD was present in all the patients, TSH deficiency in 78.6% (107/136) and 

ACTH deficiency in 61% (83/136). Thirty-nine subjects were Prepubertal at the time of diagnosis. 

Among the remaining 97 subjects that could be evaluated in terms of pubertal age, 81 (83.5%) 

presented with FSH/LH deficiencies. Eight male patients presented neonatal micropenis and/or 

cryptorchidism. Five patients (3.5%) had diabetes insipidus. We obtained MRI data from 101 
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patients (74% of the total). Among these, abnormalities (ectopy of the neurohypophysis, pituitary 

hypoplasia and empty sella) were found in 81 (80%) subjects; in particular, anterior pituitary 

hypoplasia or aplasia was the most frequent abnormality and was present in 61 patients (60.4%), 

while pituitary stalk interruption and/or neuropediatric ectopia were observed in 35 patients 

(34.6%), 16 of them presenting both abnormalities. Eleven patients (10.8%) presented also extra-

pituitary abnormalities such as SOD, other midline defects or cerebellar abnormalities. 

Patients or parents of the patients under 18 years of age gave their written informed consent to 

participate to this study, which was approved by the local ethical committee of each contributing 

auxological center. 
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MATERIALS AND METHODS: 

 

 

 

 

 

 

 

 

 

 

 



32 
 

SCREENING GLI2 GENE  

The entire coding region of GLI2 (13 exons and exon-intron boundaries) was PCR amplified from 

peripheral blood genomic DNA by 18 couple of primers designed for separate fragments (Tab.6). 

The PCR products were visualized on a 2% Agarose gel and purified using Exo/SAP-IT enzymatic 

PCR clean up system (Affymetrix). The Purified products were then sequenced with Big Dye 

Terminator kit (Applied Biosystems, Foster City, CA) and automatic sequencer ABI PRISM 3100 Genetic 

Analyzer (Applied Biosystems, Foster City, CA).  

Table 6: To examine all coding regions of GLI2 gene 18 pairs of following primers designed. 

EXONS  FORWARD PRIMERS  REVERSE PRIMERS 

EXON 1 5’-TGGGTTTGGGCTCAGTGT-3’ 5’-CCTCTTCGCCCTCCATAAAC-3’ 

EXON 2 5’-TGGCTGCTCTTGCTATGAAA-3’ 5’-GCAGGAGATGTGGCTGAGG-3’ 

EXON 3 5’-CATGTTGGTTTTGGGGTCTT-3’ 5’-GACCAAGGCTGAGGAGTTGA-3’ 

EXON 4 5’-CCAGGTGTGCATTTCTCTCTG-3’ 5’-TTGTCCCCAAAAGAAACAGC-3’ 

EXON 5 5’-CCTTGCAGGCTCTTCCTATC-3’ 5’-TCTTTCTCCTCGGGTCAAAA-3’   

EXON 6 5’-TGGGCAAGGTTCTCTCTGTC-3’ 5’-CTTAGCATGAGCTGGCAGTG-3’   

EXON 7 5’-TGTGCGGAGAGATCCTAGAG-3’ 5’-TTCACCACCAAGGGTACAGC-3’ 

EXON 8 5’-TTCCCCACAGCACTTCGAT-3’ 5’-TCCAGCCCCTTCTGTCTAGT-3’ 

EXON 9 5’-GACAGCAGGGGGTGGTCT-3’   5’-CCACCTCCAAACATGATCC-3’ 

EXON 10 5’-GGTTGGAGCAGAGCAGAGAA-3’   5’-GGCACCTGGCTATCTACTGG-3’   

EXON 11 5’- CGTGGGTAGCTTCAGGAGAA -3’   5’-GATATCGCTGTGCCCCTAGA-3’   

EXON 12 5’-GCCTGTGCAGGCCTAGAG-3’ 5’-GTGGGTGCCAGCCTAGTTG-3’    

EXON 13.1 5’-GTGTTGCAAGCCCTCTTCTC-3’   5’-AGTGGCTGCCGCGTACTT-3’   

EXON 13.2 5’-AGCAGTACAGCCTGCGGGCCAAGTA-3’ 5’-CTCCATCGCCACGTTCTCGCT-3’ 

EXON 13.3 5’-CTTCCACAGCACCCACAAC-3’   5’-CCTTGCGGACTGTAGCCC-3’   

EXON 13.4 5’-GCAGTGGAATGAGGTGAGCT-3’   5’-GATGGCTCTGCTGTGGGTAG-3’   

EXON 13.5 5’-CCCTCAGCAGACAGAAGTGG-3’   5’-GTACATGTGGATCTGGCCGT-3’ 

EXON 13.6 5’- CAGTCAGGAAACAGCAGAGG-3’   5’-GGAAAAAGACAAGACAGCTGGA-3’   

 

GENOMIC DNA EXTRACTION  

Genomic DNA was extracted from whole blood samples using salting out method based on 

Miller et al. [112].  
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POLYMERASE CHAIN REACTION 

The PCR reaction was carried out with the GoTaq Flexi DNA polymerase (Promega) in a 15µl 

reaction volume, with touchdown protocol from 650 C to 550 C annealing temperatures.  The initial 

denaturation at 94°C for 5 min, 20 cycles consisting of 30s denaturation at 94° C, 30s annealing at 

higher temperature 65° C and 30s extension at 72° C, followed by second cycle consisting 25 

cycles of denaturation at 940 C for 30s, annealing at lower temperature 550 C and extension at 720 

C, followed by a final extension at 72°C for 7 minutes and cooled to 40C (Tab.7&8). 

Table 7: Reagents used for Polymerase chain reaction fragments 1-18 except 4 and 13.2. 

REAGENTS INITIAL 

CONCENTRATIONS 

REACTION MIX 

Go Taq® Flexi Buffer 5X 3µl 

MgCl2 25mM 0.9µl 

dNTPs 2.5mM 1.2µl 

Primers F+R 10pmol/µl 1.2µl 

Go Taq® (Promega) 5U/µl 0.06µl 

DNA 50ng/µl 1µl 

H2O - 7.64µl 

Volume Total 15µl 15µl 
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Table 8: Thermal cycle conditions for fragments 1 – 18 except fragment 4 and 13.2. 

STEPS  TEMPERATURES  TIME  NUMBER OF 

CYCLES  

Initial Denaturation 94°C 5 Minutes 1 Cycle 

Denaturation 94°C 30 Seconds  

 

20 cycles Annealing (High Temp.) 65°C 30 Seconds 

Extension 72°C 30 Seconds 

Denaturation 94°C 30 Seconds  

 

25 cycles Annealing (Low Temp) 55°C 30 Seconds 

Extension 72°C 30 Seconds 

Final Extension 72°C 7 Minutes ̶ 

Rest 4°C ∞ ̶ 

 

The exon 4 and exon 13.2 fragment which is GC rich region we modified the PCR reaction 

conditions by adding 5% DMSO and making final reaction volume to 20µl, with touchdown 

protocol from 640 C, 610 C, 580 C and 570 C annealing temperatures. The initial denaturation at 940 

C for 2mins, 3 cycles consisting of 10s denaturation at 940 C, 10s annealing at higher temperature 

640 C and 30s extension at 720 C, followed by second, third and fourth cycles consisting 3 cycles 

of denaturation, annealing and extension at 610 C, 580 C and 570 C, followed by final extension at 

720 C for 5mins and cooled to 40 C (Tab.9&10).   
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Table 9: Reagents used for Polymerase chain reaction fragments 4 and 13.2. 

REAGENTS INITIAL 

CONCENTRATIONS 

REACTION MIX 

Go Taq® Flexi Buffer 5X 4µl 

MgCl2 25mM 1.2µl 

dNTPs 2.5mM 1.6µl 

Primers F+R 10pmol/µl 2µl 

DMSO 5%  1.2µl 

Go Taq® (Promega) 5U/µl 0.06µl 

DNA 50ng/µl 1µl 

H2O - 8.94µl 

Volume Total 20µl 20µl 

 

Table 10: Thermal conditions for Fragment 4 and 13.2. 

STEPS TEMPERATURES TIME NO OF CYCLES 

Initial Denaturation 94°C 2 Minutes 1 Cycle 

Denaturation 94°C 10 Seconds  

 

 

3 Cycles 
Annealing (1st Temp) 64°C 10 Seconds 

Extension 72°C 30 Seconds 

Denaturation 94°C 10 Seconds  

 

 

3 Cycles 
Annealing (2nd Temp) 61°C 10 Seconds 

Extension 72°C 30 Seconds 

Denaturation 94°C 10 Seconds  

 

 

3 Cycles 
Annealing (3rd Temp) 58°C 10 Seconds 

Extension 72°C 30 Seconds 

Denaturation 94°C 10 Seconds  

 

 

40 Cycles 
Annealing (4th Temp) 57°C 10 Seconds 

Extension 72°C 30 Seconds 

Final Extension 

And rest at 4°C. 

72°c 5 Minutes ̶ 
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EXO/SAP PURIFICATION 

After the reaction all the PCR products were visualized on a 2% agarose gel and purified using 

Exo/SAP-IT enzymatic PCR clean up system (Affymetrix) (Tab.11).   

Table 11: Reagents used for Exo/SAP purification. 

REAGENTS THERMAL CONDITIONS VOLUMES 

PCR Product  

37⁰C – 15 Mins 

80⁰C -  15 Mins 

4⁰C - ∞ 

1µl 

Exo/SAP mix 5µl 

Total Volume 6µl 

 

SEQUENCING  

The purified products were directly sequenced in the forward or reverse direction with Big Dye 

Terminator kit (Applied Biosystems) and analyzed on an ABI PRISM 3100 Genetic Analyzer 

(Applied Biosystems) (Tab.12) 

Table 12: Reagents used for Sequencing Reaction. 

REAGNETS THERMAL CONDITIONS VOLUMES 

Purified PCR products Steps 

Denaturation 

Annealing 

Extension  

Rest  

Temp 

96⁰C 

50⁰C 

60⁰C 

4⁰C 

Time 

15 secs 

5 secs 

4 mins 

∞ 

Cycles 

 

25  

2µl 

Primer (3.2µM) 1µl 

Big Dye Terminator Mix 1µl 

H2O 6µl 
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SITE DIRECTED MUTAGENESIS 

The GLI2-cDNA incorporated pCS2-MT expression vectors used for site directed mutagenesis is 

commercial available. Size of pCS2-MT is 4.3KB and size of GLI2-cDNA is 4.8KB totally 9.1KB 

plasmid size. Two kinds of construct were used for study one pCS2-GLI2FL (Addgene plasmid 

#17648) and another one pCS2-GLI2∆N (Addgene plasmid #17649) [100]. GLI2∆N isoform is 

activated form of GLI2 gene and its expression is higher than that of GLI2-FL construct in 

Luciferase assay.  

Variation p.Y575H: 

We generated mutagenized GLI2-FL and GLI2-∆N constructs by using Stratagene QuikChange® 

Site-Directed Mutagenesis Kit and mismatch complementary primers containing desired mutation.  

Primers used for Mutagenesis:  

Forward GLI2_575HisFN    5’-CTGCACCAAGAGACACACAGACCCCAGCTC-3’ 

Reverse GLI2_575HisRN      5’-GAGCTGGGGTCTGTGTGTCTCTTGGTGCAG-3’ 

Table 13: Reagents used for Mutagenesis for p.Y575H 

                             REAGENTS  VOLUMES 

BUFFER (10x) 5µl 

dNTPs 6µl 

MgSO4 1µl 

Forward Primer (10mM) 1.5µl 

Reverse Primer (10mM) 1.5µl 

PCR Enhancer (10x) 5µl 

Pfx polymerase (2.5 U/µl) 1µl 

H2O 27µl 

Plasmid DNA 2µl (50ng/µl) 
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Table 14: Thermal conditions for Mutagenesis of p.Y575H 

CYCLE STEPS TEMP. TIME NUMBER OF 

CYCLES 

Initial Denaturation 98⁰ C 5 mins 1 

Denaturation 98⁰C 10 secs  

25 Annealing 53⁰C 1 min 

Extension 68⁰C 9 mins (1 min/kb) 

Rest 10⁰C ∞ - 

 

Variation p.A593V: 

We generated mutagenized GLI2-FL and GLI2-∆N constructs by using Stratagene QuikChange® 

Site-Directed Mutagenesis Kit and mismatch complementary primers containing desired mutation.  

Primers used for Mutagenesis:  

Forward GLI2_593ValF     5’-GGTCCACGGCCCAGATGTCCACGTCACCAAGAAGC 3’ 

Reverse GLI2_593ValR       5’-GCTTCTTGGTGACGTGGACATCTGGGCCGTGGACC 3’ 

Table 15: Reagents used for Mutagenesis for p.A593V 

                             REAGENTS  VOLUMES 

BUFFER (10x) 5µl 

dNTPs 6µl 

MgSO4 1µl 

Forward Primer (10mM) 1.5µl 

Reverse Primer (10mM) 1.5µl 

PCR Enhancer (10x) 5µl 

Pfx polymerase (2.5 U/µl) 1µl 

H2O 27µl 

Plasmid DNA 2µl (50ng/µl) 
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Table 16: Thermal conditions for Mutagenesis of p.A593V 

CYCLE STEPS TEMP. TIME NUMBER OF 

CYCLES 

Initial Denaturation 94⁰ C 5 mins 1 

Denaturation 94⁰C 15 secs  

25 Annealing 58⁰C 1 min 

Extension 68⁰C 9 mins (1 min/kb) 

Final Extension  68⁰C 2 mins 1 

Rest 10⁰C ∞ - 

 

Variation p.P386L: 

We generated mutagenized GLI2-FL construct by using New England BioLabs® Q5 Site-Directed 

Mutagenesis Kit and mismatch complementary primers containing desired mutation.  

Primers used for Mutagenesis:  

5’ Phosphorylated Primers:  

Forward GLI2-386Leu-FN   5’-GAGGGCCTGCGGCTGGCCTCCCCTCTGG-3’ 

Reverse GLI2-386Leu-RN     5’-AGGCTCGGTCTTGACCTTGCTGCGCTTG-3’   

Table 17: Reagents used for Mutagenesis for p.P386L 

REAGENTS VOLUMES 

Q5 BUFFER (5x) 

 

5µl  

d-NTP’S (10mM) 

 

0.5µl  

Forward Primer (10mM) 

 

1.25µl  

Reverse Primer (10mM) 

 

1.25µl  

GC Enhancer  

 

5µl  

Q5 Hot Start polymerase (0.02 U/µl) 

 

0.25µl  

H2O 

 

10.75µl  

Plasmid DNA 

 

2 µl (1 ng/µl) 
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Table 18: Thermal conditions for Mutagenesis of p.P386L 

CYCLE STEPS TEMP. TIME NUMBER OF 

CYCLES 

Initial Denaturation 98⁰C 30 secs 1 

Denaturation 98⁰C 10 secs  

25 Annealing 72⁰C 45 secs 

Extension 72⁰C 8 mins 

Final Extension 72⁰C 5 mins 1 

Rest 10⁰C ∞ - 

 

The PCR product obtained by this site directed mutagenesis is linear product to circularize the 

PCR product we performed T4 ligation reaction.  

Table 19: Reagents and thermal conditions for T4-Ligation. 

REAGENTS  

 

VOLUMES  INCUBATION TIME & TEMP. 

T4 ligation buffer 

 

2µl  

 

 

 

16⁰C for Overnight 

T4 ligase 

 

1µl 

H2O 

 

12µl 

Site directed mutagenesis product 

 

5µl 

Total Volume  

 

20µl 

 

BACTERIAL TRANSFORMATION: 

After the reaction, the products were digested with DpnI. DH5α competent cells were transformed 

with the different mutagenized constructs and grown on Luria Broth/ampicillin media. After 

selecting the correct clones by colony PCR, the plasmid DNA was isolated using Miniprep and 

Maxiprep kit (QIAGEN). The desired mutations were confirmed by sequencing.  
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CELL CULTURE AND TRANSFECTION: 

NIH-3T3 mouse fibroblast cell line was used for the transfection experiments [113, 114].  The 

stock culture was grown in DMEM High Glucose (Gibco-Life Technologies) each supplemented 

with 10% fetal calf serum and 1% Penicillin/Streptomycin in 5% CO2 at 37⁰C. A day before 

transfection 1x105 cells were seeded into each well of a 24-well tissue culture plate in 500µl CGM 

(Complete Growth Medium). The wells were previously treated with 1:10 dilution Poly-L-lysine 

solution (Sigma Aldrich) to allow the cells to completely adhere to the plate surface. At 70%-90% 

confluency, cells were tranfected Mutagenized plasmid constructs, reporter plasmid, and as 

internal control pRL-TK renilla plasmids with Lipofectamin 2000 transfection reagent (Life 

Technologies). Green Fluorescent protein construct was used to test transfection efficiency. Whole 

cell lysate was collected for Luciferase assay after 48hrs of transfection and all assays were 

performed in triplicate. 

 

CELL LYSATE  

After 48 Hrs completely medium removed and washed with PBS solution then 1x PLB solution 

added to the respective wells and plate incubated at 37⁰C for 15 mins. The detached cells along 

with PLB collected and centrifuged at 13,000 rpm for 5 mins. Supernatant was transferred to 

another Eppendorf tube which is debris free used for assay.       
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RESULTS:  
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RESULTS: 

We identified 5 mutations in 5 subjects in a cohort of 136 patients with CPHD (3.6%). All the 

following mutations (Fig.6) were at the heterozygous state:  

1) p.P386L (c.1157 C>T) falls within the repressor domain.     

2) p.Y575H  (c.1723 T>C) is within the Zinc Finger Binding domain.    

3) p.A593V (c.1778 C>T) is located at the junction of Zinc Finger Binding Domain and 

Transactivation Domain.   

4) p.V1111Gfs*19 (c.3332delT) is located in the Transactivation domain. It is a single 

nucleotide deletion of a T that causes a frameshift and the presence of a premature stop 

codon 19 amino acids downstream. This mutation removes 475 amino acids of the activator 

domain. 

5) p.R1226* (c.3676 C>T)is located in the Transactivation domain. Also in this case the C-

terminal part of the activator domain is removed [360 amino acids] (Fig.6 – Tab.20). 

 

Figure 6: Schematic representation of mutation’s found in this study on GLI2 Gene.  
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In table 20 are reported the characteristics of the identified mutation and the results of in-silico 

analysis performed by PolyPhen, PROVEAN and SIFT prediction tools for the missense 

mutations. All the three mutations are predicted as probably damaging. 

Table 20: Summary of Gli2 mutation Identified in this study, Allele Frequency Data from dbSNP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amino acid 

Position 

Nucleotide 

Position 

dbSNP ID  Allele 

Frequency 

(%)  

PolyPhen PROVEAN SIFT 

P386L c.1157 C>T rs757467621 0.0001% Probably 

damaging  

Probably 

damaging 

NA 

Y575H c.1723 T>C rs763503195 NA Probably 

damaging 

Probably 

damaging 

Probably 

damaging 

A593V c.1778 C>T rs771880068 0.0001% Probably 

damaging 

Probably 

damaging 

NA 

R1226* c.3676 C>T NR - - - - 

V1111Gfs*19 c.3332delT NR - - - - 
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PATIENTS DETAILS:  

Here are reported the data of the patients carrying a mutation at the time of the diagnosis (in 

parenthesis is indicated the mutation for each patient). 

Patient A (p.P386L) – This patient was a 11.3 years old boy born at term with appropriate for 

gestational age. The parents were non-consanguineous with normal stature. The height at the 

diagnosis was -2.6 SDS. The patient showed GH, TSH and ACTH deficiency and no extra pituitary 

features (Tabl.21).  

Patient B (p.Y575H) - This patient was a 9.4 years old boy born at term with no perinatal 

complications. The bone age was delayed by 1.8 years at diagnosis and the height was -2.2 SDS. 

The parents of the patient were non-consanguineous. The father was normal whereas the mother 

was short stature and presented with polydactyly but, not evaluated for pituitary hormone levels. 

The patient showed GH, TSH and ACTH deficiency. Patient’s Pituitary and cerebral imaging 

showed anterior pituitary hypoplasia. Extra pituitary manifestations were, polydactyly, cranio 

facial abnormalities and hypercholesterolemia. As expected the mutation was inherited from the 

affected mother (Fig.7 – Tab.21). 

            Mother +/-                                               Father +/+                                                               

 

 

 

                 Patient B +/-                                      Brother +/+            

                    

    Wild type Mother and Mutated patient -            Wild type Father and Brother -           

                          Figure 7: Family tree of Patient B.  
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Patient C (p.A593V) - This patient was a female born at term and appropriate for gestational age. 

It was a sporadic case and was born from a non-consanguineous parents. The height at the time of 

the diagnosis was -2.1 SDS. The patient showed GH, TSH, ACTH, LH, and FSH deficiency. This 

patient did not show extra pituitary features.  The DNA of the parents was not available (Tab.21).   

Patient D (p.R1226*) - This patient was a 3 years male, born at term with appropriate for 

gestational age, the parents were non-consanguineous with normal stature (their DNA was not 

available). The height at the diagnosis was -1.8 SDS. The patient showed GH, TSH, and ACTH 

deficiency. The pituitary and cerebral imaging showed anterior pituitary hypoplasia (Tab.21). 

Patient E (p.V1111Gfs*19) - This case was a female born from non-consanguineous parents, and 

was a sporadic case. The patient height was appropriate for gestational age and at term. The 

condition was identified at the age of 10.9. The height at the time of diagnosis was -1.6 SDS. The 

patient showed GH, TSH, ACTH, LH, and FSH deficiency. Pituitary and cerebral imaging of the 

patient showed anterior pituitary hypoplasia. Other pituitary manifestations included congenital 

malformation syndrome, myopia and intellectual disabilities The analysis on the parent’s DNA 

revealed that this mutation was “de novo” as none of them carried it (Tab.21). 
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Table 21: Clinical characteristics of CPHD patients identified in this study with GLI2 Mutation.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AGA – Appropriate for gestational age, NA – Not available, D- Deficiency of the evaluated pituitary axis, PP- Prepubertal status at diagnosis and APH – 

Anterior pituitary hypoplasia. 

Patient ID Patient A Patient B Patient C Patient D Patient E 

Mutation p.P386L p.Y575H p.A593V p.V1111Gfs*19 p.R1226* 

Sex Male Male Female Female Male 

Sporadic/familial Sporadic  Familial Sporadic Sporadic Sporadic 

Consanguinity Yes/No No No No No No 

Birth data  At term, AGA At term, AGA At term, AGA At term, AGA 

Age at diagnosis, year 11.3 9.4 28 10.9 3 

Height SDS at 

diagnosis 

-2.6 -2.2 -2.1 -1.6 -1.8 

Bone age delay at 

diagnosis, year 

 1.8  NA NA NA 

GH 

TSH 

ACTH 

LH, FSH 

PRL 

D 

D 

D 

 

 

D 

D 

D 

PP 

NA 

D 

D 

D 

D 

NA 

D 

D 

D 

D 

NA 

D 

D 

D 

PP 

NA 

Pituitary and cerebral 

imaging 

 APH, EP NA APH, EP APH, EP 

Other Clinical 

Characteristics  

 Polydactyly, Craniofacial 

abnormalities and 

Hypercholesterolemia  

NA Congenital Poly-

malformative syndrome, 

mental retardation and 

myopia.   

NA  



48 
 

FUNCTIONAL ANALYSIS:  

To evaluate the role of the three missense mutations identified in CPHD patients a functional test 

(dual luciferase assay) was performed. For the nonsense and frameshift mutations no assay was 

settled as they are expected to produce C-terminal truncated non-functional protein. Two types of 

plasmids, one bearing the GLI2-cDNA and the other bearing the luciferase reporter gene, were 

used.   

The plasmids bearing the GLI2-cDNA were of two types: one with the GLI2-Full length cDNA 

another with GLI2-∆N cDNA, lacking the repressor NH2-terminal domain, both inserted in the 

pCS2-MT vector (Fig.8). These two types of cDNA correspond to two different isoforms of the 

GLI2 protein as previously mentioned (see introduction). In vertebrate the GLI2 gene undergoes 

alternative splicing to produce different isoforms, of which GLI2-∆N is the most important in the 

SHH pathway as it acts as an activator whereas the GLI2-full length gene (that maintains the 

repressor domain) acts as a repressor.  

 

Figure-8: pCS2-MT expression vectors bearing GLI2-cDNA full length and GLI2-∆N cDNA.   
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The reporter plasmid construct has a backbone of pδ51 LucII pGL4.10 bearing 8x3’- GLI binding 

site from the Hnf3β floor plate enhancer upstream of the chicken δ-crystallin minimal promoter 

[75] (Fig.9). 

 

Figure-9: Reporter plasmid with backbone of pδ51 LucII pGL4.10 bearing 8x3’- GLI-BS. 

The 8-fold repetition of the GLI binding site in the reporter plasmid increases the transcriptional 

activity.  The binding of the GLI2 to the corresponding binding sites on reporter plasmid drives 

the LucII gene transcription and the luminescence correlated to functional activity of the assayed 

GLI2 protein. The pRL-TK Renilla luciferase reporter gene was used as an internal control.  

To investigate the role of each mutation, the three missense mutations were inserted into the wild 

type GLI2-cDNA (full length and ∆N) by site-directed mutagenesis. The activity of the 

mutagenized plasmids was then compared with the wild-type plasmid.  

All the mutagenized and the wild-type expression plasmids bearing either full length GLI2-cDNA 

or ∆N were co-transfected with the 8x3’-GLI BS reporter plasmid in NIH-3T3 mouse fibroblast 

cells. The assay was performed after 48 hours from the whole cell lysate. The luminescence 

obtained for the mutated and wild type constructs were normalized with the internal control renilla 

luciferase signal and the activity of the mutated constructs was reported as percentage with respect 

to the wild-type. The GLI2-∆N induces much higher reporter activity compared with GLI2-full 

length in NIH-3T3 cells. (Fig.10) 
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Figure-10: Comparison of reporter activity between GLI2∆N and GLI2 Full length.  

The first set of experiments was performed by co-transfecting one type of GLI2-cDNA plasmid, 

either mutagenized or wild-type, with the reporter plasmids. Obviously for the p.P386L mutation, 

located in the repressor domain the assay was not performed for the GLI2-∆N construct because it 

lacks repressor domain. (Fig.11) 

None of the plasmid bearing the full length cDNA showed a significant difference in the luciferase 

activity in comparison to the wild-type. Consequently, none of the mutants influence the repressor 

activity of GLI2 including the mutation located within the N-terminal repressor domain, namely 

p.386L.  
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Figure-11: Transcription activity of mutagenized and wild-type bearing the either full length 

GLI2-cDNA or ∆N constructs.  

Expression vectors for mutated GLI2 and wild types proteins (WT-FL - Full length and WT-∆N - N-

terminally truncated) were transiently co-transfected into NIH-3T3 cells with a luciferase reporter gene 

under the control of an 8-fold repeat of the Hnf3β GLI-binding site. Promoter activity was assayed by 

measuring luciferase activity 48 hours after transfection. Negative controls (VO - empty vector without 

promoter) received equivalent amounts of empty vector expression. Activity measured as relative light units 

(RLUs) are the mean of at least triplicate assays and presented in percentage. RLUs normalized and 

compared with activity of the corresponding WT construct. Significance levels are indicated as follows: *, 

P<0.05; N.S., Not significant.   

On the contrary the transcriptional activity was significantly reduced for the two mutants p.A593V 

and p.Y575H (of about 75% and 84% in comparison to the wild-type, respectively) when tested in 

the plasmid containing the GLI2 cDNA lacking the repressor domain. 
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In another set of experiments all the GLI2-cDNA full length and ∆N constructs were co-transfected 

with an equal amount of wild-type GLI2 plasmid.  

 

Figure 12: Transcriptional activity of co-transfected mutated construct with wild type construct. 

Expression vectors for mutated GLI2 and wild types proteins (WT FL - Full length and WT ∆N - N-

terminally truncated) were transiently co-transfected into NIH-3T3 cells with a luciferase reporter gene 

under the control of an 8-fold repeat of the Hnf3β GLI-binding site. Promoter activity was assayed by 

measuring luciferase activity 48 hours after transfection. Negative controls (VO - empty vector without 

promoter) received equivalent amounts of empty vector expression. Activity measured as relative light units 

(RLUs) are the mean of at least triplicate assays and presented in percentage. RLUs normalized and 

compared with activity of the corresponding WT construct. Significance levels are indicated as follows: *, 

P<0.05; N.S., Not significant.  

This was to reproduce in vitro the heterozygous condition of the patients that carry the 50% of the 

mutated alleles. The transcription activity of the p.386P/386L was reduced of only 11% with 

respect to the wild type which and it was not significant (Fig.12).  

In case of p.593A/593V the transcriptional activity was not significantly changed both with the     

GLI2-FL and GLI2-∆N plasmids. Only the GLL2-∆N bearing the p.575H mutation still maintained 

a reduced activity when co-transfected with the wild-type with a reduction of about 25%. 
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DISCUSSION:   
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DISCUSSION: 

The GLI2 protein is one of the member of the GLI family of proteins and has both activation and 

repressive functions depending upon the isoform. GLI2 is a critical member in the downstream of 

sonic hedgehog signaling pathway. Heterozygous loss of function mutations are associated with 

holoprosencephaly like features characterized by abnormal anterior pituitary formation and 

hypopituitarism with inappropriately divided forebrain [22]. Recently, GLI2 mutations have also 

been detected in patients with congenital hypopituitarism without holoprosencephaly [20, 120].  

In the present study we recruited 136 CPHD patients for GLI2 gene screening. Five mutations have 

been identified in 5 subjects (Tab.20) all at the heterozygous state. One was a frameshift, one a 

nonsense and three were missense mutations. 

The frameshift and nonsense mutations (p.V1111Gfs*19 and p.R1226*, respectively) were both 

within the C-terminal transactivation domain.  They both are predicted to generate proteins lacking 

considerable portion of the C-terminal transactivation domain. It has been previously demonstrated 

that the GLI2 transactivation domain has transcriptional activity and constructs carrying C-

terminal deletions exhibited undetectable transcriptional activity in vitro (100). More interestingly, 

these constructs when cotransfected with a wild-type GLI2 construct revealed a strong dominant 

negative effect on wild type GLI2 [100].  Many of the previously identified GLI2   mutations 

include frameshift and nonsense mutations and were proven to be pathogenic with a dominant 

negative effect [115]. Thus it is conceivable that the two truncating mutations detected in our 

patients might have the same effect and we did not further consider them for the functional studies. 
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The in-silico analysis (PROVEAN, SIFT, and POLYPEHN) tools predicted that the three missense 

mutations identified in our study (p.P386L, p.Y575H, p.A593V) to be pathogenic.  

As p.Y575H and p.A593V fall within the binding site, they are supposed  to interfere with the 

DNA binding activity were as the p.P386L included in the repressor domain could affect the  

repressor activity of GLI2. In the evaluation of the intrinsic transcriptional activity of the GLI2 

mutations p.Y575H and p.A593V showed a significant reduction of the transcriptional activity 

was only observed with  the  GLI2-∆N.  This is likely due to location of mutations and these 

mutations does not interfere in the repressive activity of N-terminal domain.   

The p.P386L variant did not show any change in the full length GLI2 plasmid. Thus we can 

hypothesize that this variation does not have an important role in the repressive activity of the 

GLI2 protein. 

The missense mutations are identified in heterozygous state to reproduce in vitro the heterozygous 

condition of the patients that carry the 50% of the mutated alleles the co-transfection was 

performed. The transcription activity of the p.386P/386L was modestly reduced but not significant. 

In case of p.593A/593V the transcriptional activity was not significantly changed both with the 

GLI2-FL and GLI2-∆N plasmids. Only the GLL2-∆N bearing the p.575H mutation still maintained 

a reduced activity when co-transfected with the wild-type with a reduction of about 25%. In co-

transfection assay none of the variants exhibited dominant negative effect. The results were 

significant only for the p.575H mutation. However, this situation might be different in-vivo in 

presence of additional co-factors.     
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The role of p.Y575H and p.A593V in GLI2-∆N, can be better understood by analyzing the position 

of the mutations in the protein crystal structure. The crystal structure of the Zinc finger 4 and 5 

reveals an extensive base contacts in a conserved 9 base-pair region. The tyrosine at position 575 

is critical in making phosphodiester bonding and alanine at 593 critical in overwound region 

(Fig.13). Substitution in the carboxyl terminal portion of α-helix affects the arrangement of 

subsequent linkers transactivational domain [116]. From, the crystal structure it is evident that the 

mutation p.Y575H impacts the phosphodiester bonding in finger 5 and this substitution is likely to 

causes vulnerable β-sheet backbone to backbone contact between DNA and protein. The p.A593V 

mutation which is in overwound region also alters the DNA-protein complex conformation of next 

linkers from transactivation domain. (Fig.13)  

 

 

Figure 13 – (A) Sequence of the GLI zinc finger domain and the DNA-binding site. The five zinc 

fingers of GLI are align to show the conserved residues and secondary structures. The 

approximate position of the α-helix is underlined, and that of β-sheets is indicated by zig-zag lines. 

The position of mutations identified in our study is highlighted in color. (B) Sketch of DNA-Zn 

finger complex showing orientation of fingers.  
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CONCLUSION:  
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CONCLUSION:  

The screening of the GLI2 gene in CPHD patients revealed five heterozygous mutations with a 

mutation frequency of 3.6%. The assay performed on the 3 missense mutations indicated that those 

located within the DNA-binding site (namely, p.Y575H and  p.A593V) lead to a reduction in the 

transcription activity in the GLI2-∆N, the isoform with  transcriptional activation  properties.  As 

the GLI2 gene is highly polymorphic with many missense mutations of uncertain significance 

functional assay should be always performed especially when a molecular diagnosis is requested 

to give a more precise response to the patients.   
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Transfection data for Variation p.A593V: 

  

 PLASMIDS 

(µl) 

GLI B.S 

8X3 

(µl) 

pRL-TK 

(µl) 

LP 

2000 

(µl) 

D-MEM (µl) INCUBATION 

TIME 37⁰ C  

PLB 

(µl) 

WT FL 18  3  2  6  150  48 Hrs 300  

A593V FL 5  3  2  6  150  48 Hrs 300  

WT ∆N 19  3  2  6  150  48 Hrs 300  

A593V ∆N 7.5  3  2  6  150  48 Hrs 300  

pGL4.10 3  - 2 6  150  48 Hrs  300 

GFP 2  - - 6  150  48 Hrs 300  

Neg C - - - - 150  48 Hrs 300  

 

Concentration of Plasmid extracted:  

CONSTRUCTS EXTRACTED  CONCENTRATIONS 

WILD TYPE FL 85 ng/µl 

A593V FL 318 ng/µl 

WILD TYPE ∆N 81 ng/µl 

A593V ∆N 203 ng/µl 

pRL-TK Renilla 40 ng/µl 

GLI B.S 8X3 380 ng/µl 

pGL4.10  500 ng/µl 

GFP 512 ng/µl 
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Co-Transfection data for variation p.A593V: 

 P 1 

(µl) 

P 2 

(µl) 

GLI B.S 

8X3 

(µl) 

pRL-TK 

(µl) 

LP 

2000 

(µl) 

D-MEM 

(µl) 

INCUBATION 

TIME 37⁰ C  

PLB 

(µl) 

WT FL 18  - 3  2  6  150  48 Hrs 300  

A593V 

FL/WT FL 

6.5  9  3  2  6  150  48 Hrs 300  

WT ∆N 19  - 3  2  6  150  48 Hrs 300  

A593V 

∆N/WT ∆N 

8.1  9.5  3  2  6  150  48 Hrs 300  

pGL4.10 3  - - 2  6 150  48 Hrs 300 

GFP 2  - - - 6  150  48 Hrs 300  

Neg C - - - - - 150  48 Hrs 300  

 

Concentration of Plasmid extracted: 

CONSTRUCTS EXTRACTED  CONCENTRATIONS 

WILD TYPE FL 85 ng/µl 

A593V FL 116 ng/µl 

WILD TYPE ∆N 81 ng/µl 

A593V ∆N 92 ng/µl 

pRL-TK Renilla 40 ng/µl 

pGL4.10 500 ng/µl 

GLI B.S 8X3 380 ng/µl 

GFP 512 ng/µl 
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Transfection data for variation p.Y575H:  

 PLASMIDS 

(µl) 

GLI B.S 

8X3 

(µl) 

pRL-TK 

(µl) 

LP 

2000 

(µl) 

D-MEM 

(µl) 

INCUBATION 

TIME 37⁰ C  

PLB 

(µl) 

WT FL 18  7.5  2  6  150  48 Hrs 300  

Y575H FL 8  7.5  2  6  150  48 Hrs 300  

WT ∆N 13  7.5  2  6  150  48 Hrs 300  

Y575H ∆N 10.5  7.5  2  6  150  48 Hrs 300  

pGL4.10 3  - 2 6  150  48 Hrs  300 

GFP 2  - - 6  150  48 Hrs 300  

Neg C - - - - 150  48 Hrs 300  

 

Concentration of Plasmid extracted: 

  

CONSTRUCTS EXTRACTED  CONCENTRATIONS 

WILD TYPE FL 85 ng/µl 

Y575H FL 191 ng/µl 

WILD TYPE ∆N 116 ng/µl 

Y575H ∆N 144 ng/µl 

pRL-TK Renilla 40 ng/µl 

pGL4.10 500 ng/µl 

GLI B.S 8X3 134 ng/µl 

GFP 512 ng/µl 
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Co-Transfection data for variation p.Y575H:  

 P 1 

(µl) 

P 2 

(µl) 

GLI B.S 

8X3 

(µl) 

pRL-TK 

(µl) 

LP 

2000 

(µl) 

D-MEM 

(µl) 

INCUBATION 

TIME 37⁰ C  

PLB 

(µl) 

WT FL 18  - 7.5  2  6  150  48 Hrs 300  

Y575H 

FL/WT FL 

4  9  7.5  2  6  150  48 Hrs 300  

WT ∆N 13  - 7.5  2  6  150  48 Hrs 300  

Y575H 

∆N/WT ∆N 

5.2  6.5  7.5  2  6  150  48 Hrs 300  

pGL4.10 3  - - 2  6 150  48 Hrs 300 

GFP 2  - - - 6  150  48 Hrs 300  

Neg C - - - - -  150  48 Hrs 300  

 

Concentration of Plasmid extracted:  

 

CONSTRUCTS EXTRACTED  CONCENTRATIONS 

WILD TYPE FL 85 ng/µl 

Y575H FL 191 ng/µl 

WILD TYPE ∆N 116 ng/µl 

Y575H ∆N 144 ng/µl 

pRL-TK Renilla 40 ng/µl 

pGL4.10 500 ng/µl 

GLI B.S 8X3 134 ng/µl 

GFP 512 ng/µl 

 

Luciferase assay details:  

Reagents Volume 

Whole Cell Lysate 20 µl 

LAR II 100 µl 

STOP & GLO 100 µl 

Fluorescence captured time 10 sec  
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Transfection data for variation p.P386L:  

 P 1 

(µl) 

P 2 

(µl) 

GLI B.S 

8X3 

(µl) 

pRL-TK 

(µl) 

LP 

2000 

(µl) 

D-MEM 

(µl) 

INCUBATION 

TIME 37⁰C  

PLB 

(µl) 

WT FL 9.2  - 3  3  6  150  48 Hrs 180  

P386L FL 5.3  - 3  3  6  150  48 Hrs 180  

P386L 

FL/WT FL 

2.6  4.6  3  3  6  150  48 Hrs 180  

pGL4.10 3  - - 3  6  150  48 Hrs 180  

GFP 2   - - 6  150  48 Hrs 180  

Neg C -  - - - 150  48 Hrs 180  

 

Concentration of Plasmids Extracted:  

 

CONSTRUCTS EXTRACTED  CONCENTRATIONS 

WILD TYPE FL 164 ng/µl 

P386L FL 284 ng/µl 

pRL-TK Renilla 50 ng/µl 

GLI B.S 8X3 500 ng/µl 

pGL4.10  500 ng/µl 

GFP 512 ng/µl 

 

Luciferase assay details:  

Reagents Volume 

Whole Cell Lysate 5 µl 

LAR II 25 µl 

STOP & GLO 25 µl 

Fluorescence captured time 10 sec  
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