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1. INTRODUCTION 

 

1.1 ISCHEMIA -REPERFUSION (I/R) INJURY OF THE LIVER 
 

Hepatic ischemia/reperfusion (I/R) injury is defined as the phenomenon during which cellular 

damage in an organ, caused by hypoxia, is paradoxically exacerbated after the restoration of 

oxygen delivery (Peralta et al., 2010). It is a dynamic process which involves the two interrelated 

phases of local ischemic insult and inflammation-mediated reperfusion injury (Zhai et al., 2013).  

This concept occurs in several organ systems such as the central nervous system, liver, heart, lung, 

intestine, skeletal muscle and kidney (Eltzschig et al., 2004). 

Hepatic I/R injury is a frequent and major complication in clinical practice, which compromise 

liver function and increases postoperative morbidity, mortality, recovery and overall outcome 

(Serracino-Inglott et al., 2001). Liver, being an organ with high energy requirements, is highly 

dependent on oxygen supply and susceptible to hypoxic or anoxic conditions (Teoh et al., 2011). 

Extensive researches have investigated the mechanisms responsible for liver damage by I/R. I/R 

affect liver tissue for the combined alterations occurring during the ischemic period as well as 

during the reperfusion phase.  The lack of oxygen during the ischemic period causes mitochondrial 

de-energization, ATP depletion and impairment of H
+
, Na

+
 and Ca2

+
 homeostasis (Selzner et al., 

2007).  

Upon oxygen re-admission, the formation of reactive oxygen species (ROS) by uncoupled 

mitochondria promotes oxidative stress and mitochondrial permeability transition, and results in a 

decreased capacity to synthesize ATP. These events are responsible for caspase activation, 

necrosis and apoptosis. Concomitantly, the activation of Kupffer cells releases ROS, nitric oxide 

(NO) and pro-inflammatory cytokines. The pro-inflammatory cytokines, in concert with the 

increased expression of adhesion molecules by sinusoidal endothelial cells, promote liver 

neutrophil infiltration that contributes to the progression of parenchymal injury (Jaeschke et al., 

2003; Urakami et al., 2007).  

I/R can induce liver dysfunction or failure that is still a significant clinical problem after tissue 

resection and transplantation surgery. In Europe over 1853 patients are waiting for a liver graft, 

while only about 1591 liver donors become available per year (European Liver Transplant 

Registry. 2014: http://www.eltr.org; Euro transplant Annual Report 2013-2014). Such dramatic 

organ shortage for transplantation, forces consideration of steatotic grafts, however meta-analysis 
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on total of 1000 patients shows that patients with steatosis have an up to two fold increased risk of 

postoperative complications, and those with excessive steatosis had an almost three fold increased 

risk of death (de Meijer et al., 2010).  

 

1.2 NON ALCOHOLIC FATTY LIVER DISEASE (NAFLD) 

 

Non-alcoholic fatty liver disease (NAFLD) is defined when lipids exceed 5% of the total liver 

weight (Reid et al., 2001). In a subset of the patients, NAFLD further evolves in non-alcoholic 

steatohepatitis (NASH) characterized by cell death by either apoptosis and necrosis and lobular 

inflammation with alteration or failure of hepatic functions. 

At present, NAFLD/NASH represents the hepatic manifestation of the so called Metabolic 

Syndrome which is a complex of clinical manifestations associated with obesity and over-weights 

that includes diabetes, hypertension and hyper triglyceridemia. 

 

1.2.1 PATHOGENESIS AND EPIDEMIOLOGY OF NAFLD  

 

Based on the clinical and experimental data available at the time, the so called „two hit‟ model of 

progressive NAFLD was proposed in 1998. This model considered the development of steatosis to 

be the „first hit‟ increasing the sensitivity of the liver to the putative „second hits‟ leading to 

hepatocyte injury, inflammation and fibrosis. The best candidates for these second hits were 

considered to be oxidative stress and associated lipid peroxidation and cytokines; principally 

TNFα. Studies published over the subsequent seven years have led to revisions in this model of 

pathogenesis, although oxidative stress and cytokines retain a central role. The most important 

modifications to the model have come from an increased understanding of the sources of oxidative 

stress and cytokines, in particular the prominent role of insulin resistance, free fatty acids (FFA) 

and adipose tissue inflammation (Cortez-Pinto et al., 2006). Oxidative stress inhibits the 

replication of mature hepatocytes which results in expansion of the hepatic progenitor cell (oval 

cell) population. These cells can differentiate into hepatocyte-like cells, and both oval cell and 

intermediate hepatocyte-like cell numbers are strongly correlated with fibrosis stage, suggesting 

that cumulative hepatocyte loss promotes both accumulation of progenitor cells and their 

differentiation towards hepatocytes (Roskams et al., 2003). In chronic liver injury, the 

development of fibrosis/cirrhosis is dependent on the efficacy of hepatocyte regeneration, and 

therefore cell death with impaired proliferation of hepatocyte progenitors represents the proposed 

third hit in NAFLD pathogenesis (Jou et al., 2008). 
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The numerous clinical situations that have been associated with NAFLD can be grouped into 6 

etiological groups (Bellentani et al., 2010) (Table 1).  

 

TABLE 1: CLASSIFICATION OF DIFFERENT CAUSES ASSOCIATED WITH NAFLD  

 

Genetic and 

metabolic 

diseases 

 

Drugs Environ-

mental 

Extra hepatic 

conditions 

 

 

Nutritional 

conditions 

Infections 

 

 

Obesity  

Diabetes mellitus  

Hyperlipidemia  

Wilson disease  

Lipodystrophy  

Christian disease- 

Weber  

Hemochromatosi

s  

Storage disease- 

cholesterol esters  

 

Corticosteroids  

Estrogens  

NSAIDs  

Calcium- 

antagonists  

Amiodarone  

Tamoxifen  

Tetracycline‟s  

Chloroquine  

Antiretroviral  

Perhexiline  

 

Environ-

mental 

toxins 

Heart failure  

Inflammatory 

bowel disease  

Bacterial 

overgrowth 

syndrome  

Hypothyroidis

m  

Polycystic 

ovary 

syndrome  

Pregnancy  

Neoplastic 

diseases  

Jejunoileal- 

bypass  

Total-

parenteral 

nutrition  

Prolonged- 

fasting  

Protein- 

malnutrition  

Carbohydrate- 

diet  

 

Hepatitis 

B and C  

HIV 

infection 

 

 

NAFLD  is common in Europe and now is the most frequent hepatic lesion in Western countries 

with prevalence rates reported to be anywhere between 2-44% in the general population and 42.6-

69.5% in people with type 2 diabetes and rising up to 90% in morbidly obese individuals 

(Machado et al., 2006). About 15-20 % patients accounts for the pathological evolution form of 

NASH from the NAFLD with possible progression to cirrhosis or hepatocellular carcinoma. The 

more severe and clinically significant form of NASH is less common, affecting an estimated 2–3% 

of the general population and up to 37% of the morbidly obese (Neuschwander-Tetri et al., 2003). 

The particular concern with significant implications for future disease burden is the increasing 

prevalence of NAFLD in children and young adults. Studies have reported a 3% prevalence of 
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NAFLD in the general pediatric population, rising to 53% in obese children (Tominaga et al., 

1995; Franzese et al., 1997). Recent surveys show that the prevalence of NAFLD across the Asia-

Pacific region is at least 10%, and in some regions as many as one-third of individuals could be 

affected (Liu et al., 2012; Amarapurkar et al., 2007). Likewise, the reported prevalence of NAFLD 

ranges from 16% in Mexico, 23% in Italy, 30% in Israel, and 9.3% in Japan, respectively (Lazo et 

al., 2008). The epidemiological significance of NAFLD streams from the data published by the 

United States Centre for Disease Control and Prevention that estimates that about 66% of US 

adults in are overweight and half of those are obese. The prevalence of obesity is projected to 

increase in the United States up to 45% by 2025. Similarly, by 2030 the projected percent increase 

in type 2 diabetes mellitus is 32% in Europe, 72% in the United States, and 150% or greater in 

sub-Saharan Africa, India, and the Middle East. 

As obesity and diabetes are important risk factors for NAFLD, it is likely that the prevalence of 

NAFLD will rise in the near future to epidemic proportions. A recent prospective cohort study 

using ultrasound and liver biopsy determined the prevalence of NAFLD in asymptomatic middle-

aged patients to be 46.0% (Williams et al., 2011). Although hospital-based studies are flawed 

because of ascertainment bias, population-based studies using non-invasive imaging studies (e.g., 

sonography) suffer the poor specificity of sonography for the diagnosis of NAFLD. Recently, 

magnetic resonance imaging has been used to quantify the extension of hepatic steatosis. And 

using this technique, it is estimated that 31% of the U.S. population has NAFLD. In contrast, 

depending on the definition used, between 2.8% and 24% of U.S. adults have NAFLD according 

to a comprehensive National Health and Nutrition Examination Survey III (NHANES III) data 

set–based analysis. 

 

1.2.2 MECHANISMS OF STEATOSIS 

 

The accumulation of triglycerides (TG) originating from the esterification of free fatty acids 

(FFAs) and glycerol within the hepatocyte is a key point for NAFLD onset.  

The contributing factors for the accumulation of FFAs within the liver include dietary sources, 

enhanced lipolysis in the adipose tissue, insulin resistance and “de novo” lipogenesis in the liver 

(Postic et al., 2008).  

Available evidence suggests that fatty liver results from derangements in fatty acid metabolism in 

both the liver and the adipose tissue consequent to insulin resistance (Fabbrini et al., 2010; Sanyal 

et al., 2005; Tilg et al., 2008). In fact, insulin resistance promotes lipolysis in the adipose tissue 
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increasing circulating free fatty acid (FFA) levels and affects hepatocyte FFA metabolism (Tilg et 

al., 2008). Liver FFA influx through the portal circulation along with decreased FFA oxidation 

and enhanced “de novo” lipogenesis promote triglyceride accumulation within the hepatocytes 

(Sanyal et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 1: Schematic mechanisms of metabolic defects leading to the development of hepatic steatosis 

 

1.3 LIVER TRANSPLANTATION AND MARGINAL LIVER AVAILMENT 

 

The lack of available organs for liver transplantation (LT) associated with the increased death rates 

among patients on most waiting lists for LT has triggered the use of so-called extended criteria 

donor (ECD) grafts, previously called „„suboptimal grafts‟‟. Among the wide range of these ECD 

livers, hepatic steatosis is one of the most frequent disorders (Nocito et al., 2006), which is mostly 

related to an increasing prevalence of NAFLD. The decision to implant or reject a steatotic liver 

for LT, however, is difficult, due to a risk of impaired graft function or even failure after 

implantation. How much and what types of fat represent a significant risk for primary non 

function (PNF) of the graft remains under debate. Ploeg et al originally suggested a classification 

of fatty change as mild (<30% of visualized hepatocytes involved), moderate (30% to 60 %), and 

severe (>60%), a system approximately applied by most transplantation Centre‟s (Ploeg et al, 

1993).  
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The reserves of transplant steatotic livers are based on the strong association with primary non 

function (PNF) after a period of cold preservation, initially described by Todo (Todo et al., 1989). 

However, if a valid and standard method of assessment could be developed, it may be possible to 

maximize the use of fatty livers while simultaneously minimizing their risk to the recipient. In the 

early 1990s, four studies examined the relationship of fatty change to PNF. (D‟Alessandro et al., 

1991; Markin et al., 1993; Ploeg et al., 1993). The largest of these assessed 390 frozen section 

biopsy specimens and found that 13% of grafts showing greater than 30% steatosis showed PNF 

compared with 2.5% of non steatotic grafts. Progressive deterioration in graft survival was 

observed from mild to massive steatosis. Thus, it was concluded that grafts with severe steatosis 

should be discarded, and those with moderate change should be evaluated in conjunction with 

other criteria, such as the condition of the recipient and availability of organs at that time. The 

institution involved, in line with most others worldwide, found no contraindication to 

transplanting livers with minimal change. This concurs with the findings of  Ploeg et al, who 

found PNF rates as high as 80% in severely steatotic organs, but more worryingly, initial poor 

function rates as high as 30% in moderately steatotic livers. 

 

1.3.1 STEATOTIC GRAFTS 

 

Steatotic grafts are considered a risk factor for dysfunction or even primary non function of liver 

transplants; grafts with more than 50% fatty infiltration are routinely discarded. Steatosis is 

typically characterized quantitatively and qualitatively. The quantitative evaluation is based on the 

percentage of hepatocytes containing cytoplasmic fat inclusions. In the clinical setting, steatosis is 

usually reported as mild, moderate or severe if, respectively less than 30%, between 30% and 

60%, or more than 60% of hepatocytes contain fat vacuoles within the cytoplasm (Nocito et al., 

2006; McCormack et al., 2005;Selzner et al., 2001). In addition, fatty infiltration is divided 

quantitatively into two categories: microsteatosis and macrosteatosis. In microsteatosis (MiS), the 

cytoplasm of the hepatocytes contains tiny lipid vesicles without nuclear dislocation. MiS are 

usually encountered in mitochondrial disruption following acute viral, toxin- or drug-induced 

injury, sepsis and in some metabolic disorders (Silva et al., 2009). Macrosteatosis (MaS) is 

characterized by a single, bulky fat vacuole in hepatocytes, displacing the nucleus to the edge of 

the cell. This type is most commonly associated with obesity, diabetes, and hyperlipidemia and 

alcohol abuse. The underlying pathogenesis is related to an excessive triglyceride accumulation in 

the liver, mainly due to an increased uptake of fatty acids released from adipose tissue or 
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augmented by “de novo” synthesis (Nocito et al., 2006; McCormack et al., 2005; Selzner et al., 

2001). Additionally, a defective hepatic export caused by reduced lipoprotein synthesis or 

impaired β-oxidation of fatty acids, further increases hepatic triglyceride content. Hence the use of 

grafts with MaS has been associated with increased rates of initial poor function (IPF), primary 

non function (PNF), and poorer outcome (Marsman et al., 1996). Estimation of steatosis using 

haematoxylin and eosin (H&E)-stained frozen section liver biopsy has been reported to be difficult 

and subjective (Franzen et al., 2005; Urena et al., 1999). Even Organ Procurement and 

Transplantation Network (OPTN) data regarding steatosis are recorded in broad ranges and until 

recently, did not differentiate between macro vesicular and micro vesicular steatosis (Feng et al., 

2006). Therefore the reported variability in both the numbers and grading of steatotic donor livers 

may reflect differences in both qualitative and quantitative evaluations between different Centers 

(Selzner et al., 2001; Urena et al., 1998). Some experts believe that physical inspection of an 

expert in assessing the fat content is equivalent to biopsy (Cameron et al., 2006). However, this 

has not yet been validated and remains largely subjective. Body mass index (BMI) per se 

correlates weakly with presence and severity of steatosis (Ryan et al., 2002). Imaging studies 

alone are not proper tools for the accurate quantification of hepatic fat in all donor candidates 

(Kim et al., 2006). It has been suggested that differential quantification of color pixels in Oil Red 

O (ORO) stained liver biopsies using a computer methodology yields more objective and 

consistent estimation of liver fat content compared with visual interpretation of H&E stained 

sections (Fiorini et al., 2004), although these computer methods determine the total amount of fat 

and not the size of the fat droplet (i.e., micro vesicular vs. macro vesicular steatosis). Similarly, the 

additional negative influence of older donor age and hepatic steatosis has been underlined (De 

Carlis et al., 1999). A large retrospective single-center study has suggested that recurrent hepatitis 

C is more common in recipients of moderate and severe steatotic donor livers (Verran et al., 

2003). Currently, a macro vesicular fat content of 30% in liver graft, a value with a historical basis 

resting on early nineties‟ observations is widely accepted for transplantation (D‟Alessandro et al., 

1991). Grafts with moderate MaS (30–60%) may be utilized in the absence of additional risk 

factors in the donor or recipient livers with more than 60%, MaS should probably be excluded 

(Burke et al., 2004). There are recommendations to allocate livers of different degrees of steatosis 

based on the Model for End-Stage Liver Disease (MELD) scores of the candidates; these 

recommendations are however yet to be verified by multivariate analysis (Briceno et al., 2005).  
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The Organ Transplant Registry update as of 2014 gives information that in the last five years the 

number of liver donors has decreased at the same time the waiting list for liver transplantation also 

increased and this disparity between available organs for transplantation and 12 to 24 months 

waiting list mortality have forced the clinicians to use marginal livers (Steatotic grafts) and even 

cadaveric grafts for liver transplantation. 

 

TABLE 2: LIVER DONORS 

 

 

 

 

 

 

 

 

TABLE 3 WAITING LISTS 

 

 

 

 

 

 

 

 

 

1.4 ISCHEMIA-REPERFUSION (I/R) INJURY IN STEATOTIC LIVER 

 

Hepatic I/R injury can be categorized into warm and cold ischemia. Warm ischemia occurs in the 

setting of transplantation, trauma, shock and selective liver surgery, in which hepatic blood supply 

is temporarily interrupted. It may also occur in some types of toxic liver injury, sinusoidal 

obstruction and Budd-Chiari syndrome (Fernandez et al., 2012). Cold storage ischemia occurs 

during organ preservation before transplantation (Nickkholgh et al., 2008; Kupiec-Weglinski et 



11 

 

al., 2005). Mitochondrial dysfunction has been reported after prolonged cold ischemia in steatotic 

livers (Caraceni et al., 2004) and also low ATP levels in steatotic livers after transplantation 

(Jimenez-Castro et al., 2011). 

Steatotic livers have been reported to be more susceptible to cold ischemia injury (Schemmer et 

al., 1999; Fukumori et al.,1999) and moderate to severe MaS steatosis has been observed as the 

leading cause of severe liver preservation injury (Briceno et al., 2005). In one experience with 

MaS steatotic livers, every additional hour of total ischemia time longer than 10 hours 

significantly increased the relative risk of graft and patient loss (Salizzoni et al., 2003). This 

highlights the difficult issue of acceptance steatotic livers previously evaluated and refused by 

other Centers, as in these cases ischemia times were always much longer.  

Steatotic livers have been shown to be more susceptible to IR injury also after transplantation. 

During cold ischemia, structural changes attributable to the disruption of hepatic microcirculation 

caused by fat droplets and hepatocellular swelling, results in occlusion of the sinusoids. After 

reperfusion, loss of viable endothelial cells and activation of Kupffer cells are accentuated over the 

non steatotic graft. The migration of leukocytes and adherence to the vascular endothelium is an 

early and key step in I/R injury and is mediated by three classes of adhesion molecules: selectins, 

integrin, and immune globulins. 

The major event of re-perfusion injury in steatotic livers are due to the abnormal accumulation of 

fat within the cytoplasm of hepatocytes, resulting in increased hepatocellular volume and 

narrowing of sinusoid, compromising the suitable graft revascularization and viability after 

transplantation. Moreover, several evidences indicated that an increased sensitivity of fatty 

hepatocytes to the harmful effects of reactive oxygen species (ROS) plays a pathogenic role in this 

event (Domenicali et al., 2005). Where Selzner et al showed the increased susceptibility of fatty 

livers to reperfusion injury is associated with a change in hepatocytes death form, where the lean 

rat liver had a prevalence of apoptosis death, while steatotic liver had more massive necrosis 

present after an ischemic insult (Selzner et al., 2000). After major liver resection, steatosis is 

associated with mortality higher than 14% respect to the 2% using normal liver. Several 

hypotheses have been suggested to explain the decreased tolerance of steatotic liver to I/R injury 

compared with normal livers. These include increased lipid peroxidation, neutrophil infiltration, 

and release of pro-inflammatory mediators and the alteration of micro circulation (Serafin et al., 

2002). The end result is multiple alterations in the steatotic liver finally rendering it more 

susceptible to I/R.  The donor medical history factors may enhance pre preservation injury. They 
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include a history of donor alcohol or drug abuse, presence of a fatty liver, cardiovascular 

instability after brain death, hypotension during the donor operation, and surgical trauma at the 

time of harvest.     

IR injury is the underpinning of graft dysfunction that is seen in the marginal organ. On restoring 

the blood supply, the liver is subjected to insult, aggravating injury already caused by the initial 

ischemia (Clavien et al., 1992; Serracino et al., 2001). I/R injury to endothelial cells disrupts the 

sinusoidal microcirculation by up-regulating the attraction, activation, adhesion, and migration of 

neutrophils (polymorph nuclear cells [PMN]) causing local tissue destruction by release of 

proteases and oxygen-free radicals. I/R in liver transplantation lead to PNF/IPF and increased 

rejection, and contribute to high morbidity. Preservation injury in liver allografts occurs at four 

stages: (1) pre preservation injury, (2) cold preservation, (3) rewarming, and (4) reperfusion 

injury. Cold preservation is also associated with injurious effects. The Kupffer cells, endothelial 

cells, and Ito cells are more susceptible to cold IR injury as compared with hepatocytes. Sinusoidal 

endothelial cells undergo apoptosis and coagulated necrosis after cold storage followed by 

reperfusion of liver grafts (Gao et al., 1998). The sinusoidal cell lining, which is most sensitive to 

cold ischemia, becomes deficient, exposing the hepatocyte microvilli (Clavien et al., 1998). White 

blood cells attach where the sinusoidal cells vacated and obstruct the sinusoids and liver blood 

flow. Additionally, PMNs release numerous mediators, amplifying the inflammatory response 

(Engler et al., 1983; Varani et al., 1989, Cywes et al., 1993). Platelets, which adhere to the 

sinusoids, almost immediately on reperfusion aggravate the degree of preservation injury via a 

mechanism of procoagulant activity and cytokine release, which results in hepatocyte hypoxia 

(Cywes et al., 1993). Additionally, on reperfusion, Kupffer cells become activated, generating 

inflammatory mediators such as cytokines and oxygen-derived free radicals, which are injurious to 

endothelial cells and hepatocytes. The energy stores of the liver (e.g., ATP, glycogen) are 

depleted, severely compromising hepatocyte function (Lemasters et al., 1995; Kukan et al., 2001). 

Furthermore, morphologic changes to the endothelial cells are observed, resulting in an 

endothelin/ nitric oxide imbalance during the reperfusion period, which has been correlated with 

decreased liver blood flow (Serracino et al., 2001; Clavien et al., 1998; Chazouilleres et al., 1993). 
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1.5 STRATEGIES OF PROTECTION 

 

1.5.1 ISCHEMIC PRECONDITIONING (IP) 

 

The term ischemic preconditioning (IP) refers to the increase in tissue tolerance to 

ischemia/reperfusion (I/R) damage that can be induced by the pre-exposure to brief periods of 

ischemia followed by re-oxygenation (Yellon et al., 2005). This phenomenon was first described 

by Murry in the myocardium (Murry et al., 1986), but was subsequently observed in many other 

tissues (Yellon et al, 2005). In liver, studies in rodents have shown that 10 min interruption of 

blood supply followed by 10 min reperfusion reduces hepatic injury and inflammation during a 

subsequent extended period of I/R. Recent studies have shown that the effects of IP can be 

observed also by the application of a brief ischemia during the reperfusion period. This 

phenomenon, known as post-conditioning, demonstrates that the mechanisms of hepatoprotection 

induced by ischemic preconditioning may also act when hepatic damage has already started and 

suggests the possibility to activate these mechanisms also in case of liver damage different from 

I/R when surgical application of IP is not practicable.  

The protection induced by IP takes place in two different phases. The first phase known as early 

preconditioning immediately follows the preconditioning stimulus and modulates different cellular 

functions. The second phase is known as delayed or late preconditioning; it starts 12-24 hours 

after the pre-conditioning stimulus, can last up to 3-4 days, and is characterized by gene 

transcription and “de novo” protein synthesis (Peralta et al., 1997). Despite these differences, both 

phases of preconditioning can be initiated by the same stimuli and partially share the same 

intracellular signal pathways. 

 

 

 

 

 

 

 

   

Figure 2: Liver preconditioning with a brief cycle of ischemia-reperfusion (I/R) (10 minutes of ischemia + 

10 minutes of reperfusion) prevents hepatocyte cell death induced by a subsequent prolonged ischemia. 
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 “In vivo” and “in vitro” studies have clearly established that the onset of IP is triggered by the 

production of adenosine and by the subsequent stimulation of adenosine A2a receptor (Peralta et 

al., 1997; Nakayama et al., 1999; Hart et al., 2008; Carini et al., 2000; Carini et al., 2001). This 

was confirmed in our Laboratory with experiments using primary rat hepatocytes pre-conditioned 

with 10 minutes of hypoxia plus 10 minutes of re-oxygenation. In this model, the released 

adenosine to extra-cellular space induced hepatocyte protection by the autocrine stimulation of 

A2a receptors. 

Surgical ischemic preconditioning raised hopes that it could be applied to patients to prevent the 

side-effect of major liver surgery, but the first application of IP in clinical trials have given 

conflicting results and in some cases IP did not afford protection and in some cases its protective 

effects were extremely variable. These contrasting outcomes of the clinical studies, the different 

protocols of IP application in humans, and the variable clinical settings have not allowed a 

definitive demonstration of the benefit of the clinical application of IP (Amador et al., 2007; 

Azoulay et al., 2005; Cescon et al., 2006; Koneru et al., 2007; Franchello et al., 2009; Jassem et 

al., 2006). Hence this observation has inhibited now, the routine use of IP in human liver surgery 

and has indicated the need of more efficient approaches to activate IP in patients. 

In this regard, the pharmacological induction of liver preconditioning by targeted activation of one 

or more of the critical molecular mediators of IP may represent a more reliable technique to 

activate the intrinsic system of hepatoprotection in patients. 
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1.5.2 ADENOSINE AND ADENOSINE RECEPTORS 

 

Adenosine is an endogenous purine nucleoside that modulates many physiological processes.  

Extracellular adenosine concentrations in normal cells are approximately 300 nM but these 

concentrations are elevated quickly during tissue damage and inflammatory reactions. 

 

                      

 

 

 

 

 

                                  

Figure 3: Adenosine molecular structure.      

                                                                  

The released adenosine interacts with different subtype of adenosine receptors that modulate cell 

protection, inflammation and immunological responses. There are four kinds of adenosine 

receptors (ARs) A1, A2A, A2B and A3 that are of purinergic class and G protein coupled 

receptor. ARs have traditionally been classified based on their differential coupling to adenylyl 

cyclase to regulate cyclic AMP levels. The A1 and A3aRs are coupled to Gi proteins, while 

A2aAR and A2b AR are coupled to Gs proteins (Fredholm et al., 2011). Therefore, activation of 

the A2A and A2B ARs increase cyclic AMP production, resulting in activation of protein kinase 

A (PKA) and phosphorylation of the cyclic AMP response element binding protein (CREB). In 

contrast, activation of the A1 and A3AR inhibits cyclic AMP production and decreases PKA 

activity and CREB phosphorylation (Cunha et al., 2001; Fredholm et al., 2011; Paes-De-Carvalho 

et al., 2002).  

The animal studies have, all together, shown that a brief ischemic stress induces a profound 

phenotypic modification that makes liver cells resistant to damage, and inhibits hepatic 

inflammatory reactions. Despite the nearly 25 year‟s research on liver IP, the knowledge of the 

proteomic modifications responsible for its production is still poor. To date a well-established 

notion is the role of the adenosine A2a receptor (A2aR) as a first inductor of rodent liver 

preconditioning.  Since from the early study of Peralta et al (Peralta et al., 1997), a number of 
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studies “in vivo” and “in vitro” have in fact clearly established that the brief ischemic stress 

triggers the onset of IP by inducing the release of adenosine in the extracellular space with 

subsequent stimulation of the A2aR of liver cells. By using primary rat hepatocytes 

preconditioned with a brief hypoxia-reoxygenation in the last years we have begun to analyse the 

signal network that following A2aR stimulation induces hepatocyte resistance hypoxic damage 

(Figure 4). This network involves Gs protein, adenylate cyclase and protein kinase A (PKA) that 

phosphorylates ADR2A and shifts its coupling to Gi protein and Src kinase and activates 

phosphatidyl-inositole-3-kinase (PI3K) and its downstream effector Akt. This allows the 

stimulation of phospholipase C, the recruitment of the specific isoforms and of protein kinase 

C (PKC) and the activation of p38 MAPK. Full activation of preconditioning responses also needs 

an A2R-induced down modulation of inhibitory enzymes of PKC and PI3K. Hypoxic 

preconditioning as well as A2aR stimulation, in fact, induces a RhoA-GTPase-dependent 

inhibition of the diacylglycerol kinases  thus increasing diacylglycerol (DAG) and sustaining 

activation of the DAG-dependent PKC and . A2aR also induces the degradation of the PI3K 

inhibitor, phosphatase and tensin homologue deleted from chromosome 10 (PTEN) by an NADPH 

oxidase-dependent mechanism, allowing the maintenance of the PI3K-dependent signals (Alchera 

et al., 2010). These observations represent the first data on the modulation of constitutive 

hepatocyte signal proteins upon hypoxic preconditioning and their role in hepatocyte resistance to 

hypoxia. The knowledge on the induction of gene expression and protein synthesis in 

preconditioned liver is even lower. “In vivo” studies have shown that liver IP is associated with a 

stimulation of nuclear factor-κB (NF-κB) activity in the ischemic phase and its inhibition during 

hepatic reperfusion. The pro regenerative and protective effect of liver preconditioning are instead 

associated to the activation of the signal transducer and activator of transcription (STAT)/IL6 axis. 

Hypoxia-inducible factor 1 (HIF-1) is the main regulator of tissue adaptation to oxygen 

deprivation and it is found increased in human transplanted livers exposed to IP. Consistently the 

delayed protective effect of hepatocyte preconditioning is related to an A2aR/PKC/PI3K-

dependent non hypoxic HIF-1 activation and to the consequent production of its target protein, 

carbonic anhydrase IX (Alchera et al., 2015).  

 

 

 



17 

 

 

 

 

Figure 4: Molecular mechanisms involved in hypoxic injury of primary rat hepatocytes and their 

protection upon A2aR stimulation. Hypoxic damage: ATP depletion causes intracellular acidosis, 

inhibition of the Na
+
/K

+
 ATPase, and activation of the Na

+
/H

+
 exchanger with an increase in intracellular 

Na
+
 content and activation of the K

+
 channel. For A2aR protection: A2aR stimulation induces the 

sequential activation of PKA, Gs and Gi protein, Src, PI3K, PLC, PKC𝛿, and 휀 and p38 MAPK. A2aR also 

inhibits the negative regulators of PKC and PI3K, DGK, and PTEN. PI3K activates V-ATPase that 

maintains intracellular pH avoiding the activation of the Na
+
/H

+
 exchanger and Na

+
 overload. PI3K and 

PKC 𝛿 and 휀 activate HIF with production of CAIX. CAIX converts CO2 into bicarbonate that enters into 

hepatocyte through the Cl
−
/HCO3

−
 exchanger. This neutralizes intracellular pH without activation of the 

Na
+
/H

+
 exchanger and the consequent Na

+
 increase. (Alchera et al. Biomed Res Int. 2015) 
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The cytoprotective effects of adenosine during preconditioning are only part of the effects of 

adenosine. A separate bulk of researches have indeed demonstrated that adenosine dramatically 

increases at extracellular levels during tissue damage, ischemia and inflammation and by 

interacting with one or more of the four adenosine receptors (A1, A2a, A2b, A3), elicits autocrine 

and paracrine modulation not only of cell survival but also of inflammatory and immunological 

reactions (Fredholm et al., 2007; Hasko et al., 2008). Several studies show that adenosine may 

play pro-inflammatory or anti-inflammatory role depending on the type of adenosine receptor is 

engaged. Interestingly, some findings indicate that the different adenosine receptors might have 

dissimilar or even opposite effects. Well characterized is the pro-inflammatory activity of A1 and 

A2b receptor and in contrast, the immune suppressive action of the A2a receptor. A1R exerts a 

pro-inflammatory response by enhancing phagocytosis (Salmon et al., 1993), promoting 

chemotaxis (Schnurr et al., 2004; Rose et al., 1988) and enhancing neutrophils adherence to 

endothelium during inflammatory process (Cronstein et al., 1992). By contrast A2aR have a major 

role in suppressing immune response. Engagement of A2aR inhibits neutrophils adherence to 

endothelium during inflammation (McColl et al., 2006) and inhibits the activation of neutrophils, 

monocytes platelets and T-cells (Sullivan et al., 2001; Cooper et al., 1995; Koshiba et al., 1997). 

In animal models, A2aR-agonists can prevent lethal response to bacterial LPS and sepsis (Sullivan 

et al., 2004; Mazar et al., 2005). In macrophages, A2aR mediate inhibition of TNF-alpha and 

augment IL-10 production (Haskò et al., 2000; Ryzhov et al., 2008; Nemeth et al., 2005). 

The adenosine receptors have contradictory effects on liver steatosis and lipotoxicity. In A1 KO 

mice ethanol-induced hepatic steatosis is reduced compared to WT mice, indicating a pro-steatotic 

action of A1 (Peng et al., 2009). On the other hand, recent studies in our laboratory have shown 

the protective effect of A2aR stimulation in lipoapoptotic liver presence (Imarisio et al., 2012). 

As described above, adenosine and ARs play a dynamic role in regulating normal cell physiology 

and also act as modulators in disease processes. A better understanding of the functions of these 

receptors, especially the newly identified receptor homomers and heteromers, could stimulate 

development of new therapies for the treatment of diseases.  
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1.6 CYTOTOXICITY SIGNAL MEDIATORS 

 

1.6.1 ENDOPLASMIC RETICULUM (ER) AND ER STRESS 

 

The endoplasmic reticulum (ER) is a central organelle of each eukaryotic cell responsible for 

protein folding, maturation, quality control and trafficking. Proteins of the plasma membrane, 

secreted proteins as well as proteins of the Golgi apparatus and lysosomes fold into their tertiary 

and quaternary structure in the ER. The ER is the major signal transducing organelle that senses 

and responds to changes of the homeostasis (Voeltz et al., 2002). Conditions interfering with the 

function of ER are collectively called ER stress. ER stress is induced by accumulation of unfolded 

protein aggregates (unfolded protein response, UPR) or by excessive protein traffic usually caused 

by viral infection (ER overload response, EOR). In eukaryotic cells, UPR -caused by formation of 

unfolded protein aggregates -uses an evolutionarily conserved signaling pathway during which the 

signal of unfolded proteins activates a set of ER-located sensors (Zhang et al., 2011). 

The adaptive UPR comprises signal transduction pathways initiated by ER proximal UPR 

transmembrane proteins: inositol-requiring kinase 1 (IRE1α), activating transcription factor 6 

(ATF6), and double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum 

kinase (PERK) in an attempt to restore homeostasis and normal ER functions (Schroder et al., 

2005). These UPR transducer proteins are negatively regulated by the chaperone GRP78/BIP 

(immunoglobulin heavy chain binding protein) in unstressed or healthy ER at their luminal ends 

(amino terminal), however, increase in unfolded proteins causes dissociation of 78-kD glucose-

regulated/binding immunoglobulin protein Grp78/BIP thereby releasing the inhibition and thus 

eliciting the response to stimuli that divert ER chaperones to misfolded proteins, IRE1, PERK and 

ATF6 initiate signal transduction processes. These events promote the expression of genes 

required to fold newly synthesized proteins and to degrade the unfolded proteins. Moreover, 

homeostasis and normal ER function are restored. However, when injury is excessive, the same 

ER stress signal in response transduction pathways can also induce cell death (Bertolotti et al., 

2000; Pfaffenbach et al., 2011) (Figure 5). 
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Figure 5: Unfolded protein response pathways. 

 

It has been demonstrated that the UPR is a fundamental intracellular signal transduction response 

that is critical for health and disease. ER stress and other cellular stress responses, such as 

inflammation and oxidative stress, are integrated in many pathophysiological processes. The ER 

stress response has recently been recognized in a wide spectrum of experimental models of liver 

injury, which is an emerging field of interest in the pathogenesis of nearly all types of human liver 

disease. In the liver, hepatocytes, similar to other secretory cells, are rich in ER. Due to its high 

capacity for protein synthesis, the UPR/ER stress response plays important roles in both 

preventing and mediating pathological changes in various liver diseases (Zhang et al., 2014). 

NAFLD implies that the ability to resolve ER stress has been compromised. Particularly, recent 

research demonstrated that ER stress and the UPR signaling are critically involved in the initiation 

and progression of nonalcoholic fatty liver disease (NAFLD). Under metabolic stress conditions, 

the UPR regulates transcriptional and translational programs that are associated with hepatic 

steatosis and inflammation; the major characteristics of NAFLD (Pagliassotti et al., 2012).Toxic 

lipids such as free fatty acids, diacylglyceride, phospholipids and free cholesterol activate several 

cellular stress pathways. The maintenance of ER function requires high concentrations of intra-ER 
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Ca
2+

, which is actively controlled by sarcoplasmic (endo) reticulum Ca
2+

-ATPase (SERCA). Free 

cholesterol accumulation triggers ER stress by altering the critical free cholesterol-to-phospholipid 

ratio of the ER membrane, which is needed to maintain its fluidity. Among the ER enzymes, 

SERCA ATPase is particularly sensitive to ER membrane cholesterol contents that can inhibit 

SERCA conformational changes and activity. Such changes induce a decrease in physiologically 

high intra-ER Ca
2+

. 

The presence of ER stress and activation of the UPR in chronic diseases such as obesity is one of 

the most important factors for disease progression in NASH along with hepatocyte apoptosis and 

hepatic stellate cell (HSC) or Kupffer cell activation.  

Moreover, in liver cells, ER response is involved in hepatic ischemia-reperfusion injury (I/R) that 

promotes protein unfolding and hence triggering as documented by the activation of XBP1 and 

ATF6 in the parenchyma of livers (Brenner et al., 2013). Accumulating evidence suggests 

perturbations at the ER as a novel sub cellular effector, possibly involved in promotion of cell 

death in various pathologies including the pathophysiology of organ preservation. 

 

 

1.6.2 TUMOR NECROSIS FACTOR RECEPTOR (TNF-R) ADAPTOR FACTOR 2 -

TRAF2 

 

The tumor necrosis factor (TNF) receptor adaptor factor (TRAF) family of proteins plays a pivotal 

role in different biological processes, including immunity, inflammation and apoptosis. The 

mammalian TRAF family comprises seven members: TRAF1 though TRAF7. Among these, 

TRAF2 and TRAF6 have been most extensively studied. In particular, TRAF2 associates, directly 

or indirectly, with members of the TNF receptor (TNFR) super family, including TNFR1 and 

TNFR2, RANK (a receptor that mediates differentiation and maturation of osteoclasts), and CD40 

(a receptor important for the proliferation and activation of B cells). TRAF2 play a central role in 

the cellular response to stress and cytokines via their regulation of stress kinases, resulting in the 

activation of key transcription factors, including NF-κB, c-Jun and ATF2 (Xia et al., 2005). The 

function of TRAF2 and TRAF5 is best characterized in TNFR1 signaling, whereas TRAF6 and 

TRAF3 have been extensively studied in IL-1R or TLR signaling, TRAF3 has been demonstrated 

to be critical for virus-induced activation of IRF3-IRF7 and interferon production. 

It has been known that ER stress can lead to altered lipid metabolism and hepatic steatosis. In 

particular, the IRE1α-XBP1 pathway has been reported to be required for the maintenance of 
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hepatic lipid homeostasis under ER stress conditions (Zhang et al., 2014). The association of ER 

stresses signaling and hepatic steatosis has been proven through the IRE1α/XBP1 pathway and the 

ER protein translocation pathway. When IRE1α is activated induces the unconventional splicing 

of the mRNA encoding X-box-binding protein 1 (XBP-1). The cytosolic domain of activated IRE1 

binds TRAF2 and triggers the activation of the c-Jun N-terminal kinase (JNK), MAPK p38 and 

caspase-12. Fumihiko et al demonstrated that stress-induced oligomerization and activation of 

IRE1 could lead to clustering of TRAF2 that is bound to the COOH-terminal cytoplasmic portion 

of the IRE1, one of the ER transmembrane proteins involved in initiating signals from the ER. 

(Urano et al., 2000). 

Mediating cellular response to ER stress has been proposed based upon the observation that 

ectopic expression of a domain negative mutant of TRAF2 lacking the N terminus Ring finger 

domain blocks ER stress-induced NF-κB and JNK/SAPK activation, and the mouse embryonic 

fibroblast derived from TRAF2 knock-out mice failed to activate NF-κB following ER stress 

(Mauro et al., 2006). TRAF2 is not only investigated in a contest of steatotic liver injury. In 

literature is not well know the exact relationship of ER stress-mediated cell death and cold I/R 

injury in liver transplantation, but results presented implicate ER stress on a broad scale as an 

important factor in this injury (Mosbah et al., 2012), shown that activation of the IRE-1 pathway 

regulates pro-apoptotic responses by activation of stress kinase JNK and mitogen-activated protein 

kinases. Finally, it has been demonstrated that the use of specific inhibitors of ER stress could 

represent effective strategies to reduce hepatic I/R injury (Peralta et al., 2010). 

 

 

1.6.3 APOPTOSIS SIGNAL-REGULATING KINASE 1 (ASK1) 

 

All living organisms are exposed to numerous physicochemical stressors during their lifetime and 

appropriate responses to stress at the cellular level are essential for the maintenance of 

homeostasis. The mitogen-activated protein kinase (MAPK) cascades are thought to be crucial 

among the major signaling pathways that regulate cellular stress responses. Apoptosis signal-

regulating kinase 1 (ASK1) is a member of the mitogen activated protein kinase kinase kinase 

(MAP3K) family that activates downstream MAP kinases (MAPKs). MAPKs control a wide 

variety of cellular functions, including proliferation, differentiation, migration and apoptosis 

(Hattori et al., 2009). 
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ASK1 is activated in response to various stresses, such as oxidative stress, ER stress, calcium 

overload and inflammatory signals including those induced by tumor necrosis factor α (TNFα) 

lipopolysaccharide (LPS), and Ang II (Fig.6) (Hayakawa et al.,2012). Activated ASK1 in turn 

activates the downstream p38 and JNK pathways and induces various cellular responses, including 

cell death, inflammation, differentiation and survival ASK1 is involved in the IRE1α pathway, one 

of the adaptive ER proximal UPR transmembrane proteins. IRE1a collaborates with adaptor-like 

tumor necrosis factor  receptor (TNFR)-associated factor2 (TRAF2) and recruits ASK1 that has 

been shown to relay various stress signals to the downstream activating among others Jun N-

terminal kinase (JNK) and p38 MAP kinase (Derijard et al., 1995; Nishitoh et al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Overview of the functions of ASK1. 

 

Unfolded/misfolded/mutated proteins (Hetz et al., 2006), disturbance in cellular redox regulation, 

endogenous reactive oxygen species (ROS) production (Fedoroff et al., 2006) and hypoxia 

(Sawada et al., 2008) act as stress signals altering ER homeostasis, if the stress signal is severe 

and/or prolonged, ER triggers cell death pathways (Szegezdi et al., 2006; Kim et al., 2008; Cheng 

et al., 2011; Benbrook et al., 2012). 

ASK1 is highly conserved among eukaryotes and its activation mechanism appears to be common 

among the ASK family of proteins, i.e., ASK1, ASK2, NSY-1, and DASK1. ASK1 is a 

serine/threonine protein kinase activated by phosphorylation of a threonine residue (Thr838 in 
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human ASK1) within the activation loop. In the past decade, various regulatory mechanisms of 

ASK1 have been elucidated. It has been reported that ASK1 activity is regulated by many ASK1-

interacting proteins, among which thioredoxin (Trx) plays an important role. Trx is a redox protein 

that changes its structure depending on the cellular redox state. Only the reduced form of Trx 

binds to the N-terminus of ASK1 and inhibits ASK1 activity by inhibiting homophilic interaction 

through the N-terminal coiled-coil domains in the pre-existent ASK1 oligomer under unstimulated 

conditions (Hattori et al., 2009).  

Upon ROS stimulation, the ASK1 signalosome unbinds from Trx and forms a fully activated 

higher-molecular-mass complex, in part by recruitment of tumor necrosis factor receptor-

associated factor 2 (TRAF2) and TRAF6. However, the precise mechanisms by which Trx inhibits 

and TRAF2 and TRAF6 activate ASK1 have not been elucidated fully (Fujino et al., 2007; Hattori 

et al., 2009). ASK1 activation in response to TNF and LPS signaling has been reported to depend 

on ROS generation, suggesting that ROS play a key role in the regulation of ASK1 activity 

(Hattori et al., 2009). Investigations will be necessary to determine whether simple steatosis and 

progression from isolated fatty liver to NASH be preceded by higher ROS generation (Nassir et 

al., 2014). Kim et al demonstrated that ASK1 is a substrate for phosphorylation by Akt and that 

this phosphorylation in a consensus sequence at Ser83 level is associated with a decrease in 

stimulated ASK1 kinase activity. So, the negative regulation of ASK1 activity and consequent 

activation of downstream signaling molecules can be negatively regulated by Akt stimulation. 

This regulatory event has measurable consequences for ASK1 downstream signaling, including 

apoptosis induced by ASK1. ASK1 may be a physiological target of Akt and raise the intriguing 

possibility that the ability of Akt to inhibit stress-activated kinases in specific cell contexts is a 

consequence of this interaction (Kim et al., 2001). 

 

 

 

 

 

 Figure 7: The domain structures of ASK1. The binding domains of Trx and TRAF exist in N terminus of 

ASK1. Two coiled coil domains (NCC and CCC) are important for the homomeric interaction and activation of 

ASK1. 
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1.6.4 C-JUN N-TERMINAL KINASES –JNK 

 

C-Jun N-terminal kinases (JNKs), were originally identified as Kinases that bind and 

phosphorylate c-Jun on Ser 63 and Ser-73 within its transcriptional activation domain. They 

belong to the mitogen activated protein kinase family, and are responsive to stress stimuli, such as 

cytokines, ultraviolet irradiation, heat shock, and osmotic shock. They also play a role in T cell 

differentiation and the cellular apoptosis pathway. Activation occurs through a dual 

phosphorylation of threonine (Thr) and tyrosine (Tyr) residues within a Thr-Pro-Tyr motif located 

in kinase subdomain VIII. Activation is carried out by two MAP kinases, MKK4 and MKK4 and 

JNK can be inactivated by Ser/Thr and Tyr protein phosphatases (Tony et al., 1998). 

The c-Jun N-terminal kinases consist of ten isoforms derived from three genes: JNK1 (four 

isoforms), JNK2 (four isoforms) and JNK3 (two isoforms) (Waetzig et al., 2005). Each gene is 

expressed as either 46 kDa or 55 kDa protein kinases, depending upon how the 3' coding region of 

the corresponding mRNA is processed. There have been no functional differences documented 

between the 46 kDa and the 55 kDa isoform, however, a second form of alternative splicing occurs 

within transcripts of JNK1 and JNK2, yielding JNK1-α, JNK2-α and JNK1-β and JNK2-β. 

Differences in interactions with protein substrates arise because of the mutually exclusive 

utilization of two exons within the kinase domain (Tony et al., 1998). C-Jun N-terminal kinase 

isoforms have the following tissue distribution: 

JNK1 and JNK2 are found in all cells and tissues; JNK3 is found mainly in the brain, but is also 

found in the heart and the testes (Bode et al., 2007). 

Inflammatory signals, changes in levels of reactive oxygen species, ultraviolet radiation, protein 

synthesis inhibitors, and a variety of stress stimuli can activate JNK. One way this activation may 

occur is through disruption of the conformation of sensitive protein phosphatase enzymes; specific 

phosphatases normally inhibit the activity of JNK itself and the activity of proteins linked to JNK 

activation (Vlahopoulos et al., 2004).  JNKs can associate with scaffold proteins JNK interacting 

proteins as well as their upstream kinases JNKK1 and JNKK2 follows their activation. JNK, by 

phosphorylation, modifies the activity of numerous proteins that reside at the mitochondria or act 

in the nucleus. Downstream molecules that are activated by JNK include c-JUN ATF2, ELK1, 

SMAD4, p53 and HSF1.The downstream molecules that are inhibited by JNK activation include 

NFAT4, NFATC1 and STAT3. By activating and inhibiting other small molecules in this way, 
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JNK activity regulates several important cellular functions including cell growth, differentiation, 

survival and apoptosis. 

 

 

1.7 CELL SURVIVAL SIGNAL MEDIATOR 

 

1.7.1 PHOSPHOINOSITIDE 3-KINASE (PI3K) AND PROTEIN KINASE B (PKB)-AKT 

AXIS 
 

Phosphoinositide 3-kinases (PI3Ks)  are a family of intracellular signal transducers characterized 

by the capacity of generating phosphatidylinositol (3,4,5)-triphosphate (PIP3) that in turn acts as a 

second messenger activating several kinases implicated in the regulation of cell proliferation, 

survival and metabolism (Cantley et al., 2002). The importance of PI3K in preventing hepatic 

injury has emerged from a number of observations showing that PI3K-mediated signals are 

important in preventing hepatocytes apoptosis as well as in ameliorating liver reperfusion injury 

(Webster et al., 2001; Hateno et al, 2002; Muller et al 2003). Consistently, recent studies have 

shown that ischemic preconditioning activates PI3K signaling in rodent livers, while the block of 

this kinase abolishes the protective action of preconditioning both in isolated hepatocytes and in 

the whole organs (Izuishi et al., 2006; Carini et al., 2004). 

By using primary rat hepatocytes preconditioned with a brief hypoxia-reoxygenation in the last 

years we have begun to analyze the signal network that following A2aR stimulation induces 

hepatocyte resistance to hypoxia.  This network involves Gs protein, adenylate cyclase and protein 

kinase A (PKA) that phosphorylates A2AR and shifts its coupling to Gi protein and Src kinase and 

activates PI3K and its downstream effector Akt (Alchera et al., 2010) 

The lipid product of PI3K, PIP3, facilitates phosphorylation of Akt, also known as Protein kinase 

B (PKB) by PDK1. This phosphorylation stimulates the catalytic activity of Akt, resulting in the 

phosphorylation of a host of other proteins that affect cell growth, cell cycle entry, and cell 

survival (Cantley et al., 2002). 

Akt, is a Serine /threonine- specific protein kinase that. It is one of the key molecules downstream 

of the phosphoinositide 3-kinase (PI3K) signaling pathway. In mammals, Akt comprises of three 

highly homologous members, including Akt1 (PKBα), Akt2 (PKBβ) and Akt3 (PKBU), which are 

encoded by three different genes located on different chromosomes (Dillon et al., 2010; Nicholson 

et al., 2002; Hanada et al., 2004, Schultze et al., 2011). The Akt kinases control an array of diverse 

functions including cell growth, survival, proliferation and metabolism (Gonzalez et al., 2009). 
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Akt1 and Akt2 are widely expressed, whereas Akt3 expression is restricted to brain, testis, lung, 

fat, mammary glands and pancreatic islets (Schultze et al., 2011). In the liver, only Akt1 and Akt2 

are expressed, with Akt2 as the major isoform (accounting for approximately 70% of total Akt 

protein) (Schultze et al., 2011). Several growth factors and cytokines are known to confer 

resistance to Fas-induced liver injury by activation of the Akt pathway (Schulze et al., 2004, 

Moumen et al., 2007). Akt1 is involved in cellular survival pathways, by inhibiting apoptotic 

processes. Akt1 is also able to induce protein synthesis pathways and is therefore a key signaling 

protein in the cellular pathways. Since it can block apoptosis, and thereby promote cell survival, 

Akt1 has been implicated as a major factor in many types of cancer. Akt (now also called Akt1) 

was originally identified as the oncogene in the transforming retrovirus AKT8 (Staal et al., 1977). 

Akt is involved in the PI3K/AKT/mTOR pathway and other signaling pathways. Akt possesses a 

protein domain known as a PH domain, or pleckstrin homology domain, named after pleckstrin, 

the protein in which it was first discovered. This domain binds to phosphoinositides with high 

affinity. In the case of the PH domain of Akt, it binds either PIP3 (phosphotidylinositol (3, 4, 5) -

triphosphate, Ptdins (3, 4, 5) P3) or PIP2, phosphotidylinositol (3, 4) bisphosphate, PtdIns (3, 4) 

P2) (Franke et al., 1997). Once correctly positioned at the membrane via binding of PIP3, Akt can 

then be phosphorylated by its activating kinases, phosphoinositide dependent kinase 1 (PDPK1 at 

Thr308) and the mammalian target of rapamycin complex 2 (mTORC2 at Ser473) (Sarbassov et 

al., 2005). 
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2. AIMS OF THE PROJECT 

 

The increasing prevalence of NAFLD in the general population translates directly into an 

increasing graft steatosis, affecting both, the quality and the quantity of donor livers available for 

transplantation. Ischemia-Reperfusion (IR) injury of liver results in hepatocytes irreversible 

damage occurring during surgical procedures that include hepatic resections and liver 

transplantation. In particular, the use of steatotic livers for transplantation is associated with an 

increased risk for primary nonfunction or dysfunction after surgery respect to a normal liver 

because steatotic livers tolerate poorly I/R injury. Ischemic Preconditioning (IP) has shown to be 

an effective method that reduces liver injury induced by I/R, but its application to human surgery 

has given conflicting results. Thus, a better understanding of the mediators and pathways involved 

in IP might represent a way to optimize strategies against IR damage in normal and fatty livers.  

On the base of these considerations, the aims of my project were: 

 To understand the phenotypic changes occurring in the liver during I/R or as a response to 

preconditioning treatments. 

 To set up a cellular model able to reproduce “in vitro” the ischemia/reperfusion (I/R) 

damage using normal and steatotic primary mouse hepatocytes and to characterize the 

molecular mediators and pathways which could sensitize the steatosis for the exacerbation 

effect of I/R injury in fatty liver. 

 To investigate the protective action of different adenosine receptor agonists during hypoxia 

reoxygenation damage in normal and fatty liver. 
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PAPER-1 

Mouse hepatocytes and LSEC proteome reveal novel mechanisms of  

ischemia/reperfusion damage and protection by A2aR stimulation 

Summary  

Ischemia-reperfusion (IR) of liver results in irreversible damage of hepatocytes (HP) and 

sinusoidal endothelial cells (LSEC). Ischemia/reperfusion damage causes up to 10% of early organ 

graft failure, following liver transplantation, and can lead to a high incidence of both acute and 

chronic rejections. Minimizing the adverse effects of this injury could significantly increase the 

number of transplantable livers, improving graft outcome. Previous studies have shown that 

Ischemic Preconditioning (IP) protects IR damage upon stimulation adenosine A2a receptor 

(A2aR) enhancing cell tolerance against hepatic IR damage. These effects are also mimicked by 

the A2aR agonist CGS21680. Understanding the phenotypic changes that underlie hepatocellular 

damage and protection is critical for optimizing strategies against IR. This work describes, for the 

first time, the proteome alterations of mouse HP and LSEC isolated from murine livers exposed to 

IR in the presence or absence of A2aR stimulation, elucidating the liver cell contribution to IR 

damage and hepatoprotection by pharmacological preconditioning.  To this aim the proteome of 

HP and LSEC isolated from sham or IR exposed mice receiving or not the A2aR agonist 

CGS21680 (0.5 mg/kg b.w) was analysed by 2-D DIGE/MALDI-TOF. Using this procedure we 

identified 64 proteins involved in cytoprotection, regeneration, energy metabolism and response to 

oxidative stress; among them, 34 were associated with IR injury and A2aR protection. The main 

pathways, down regulated by IR and up regulated by CGS21680 in HP and LSEC, were related to 

carbohydrate, protein and lipid supply and metabolism. In LSEC, IR reduced stress response 

enzymes that were instead up regulated by CGS21680 treatment. Functional validation 

experiments confirmed the metabolic involvement and showed that the inhibition of pyruvate 

kinase, 3-chetoacylCoA thiolase, and arginase affected the protection exerted by CGS21680 on “in 

vitro” hypoxia-reoxygenation injury, whereas hepatocyte supplementation with the metabolic 

products of these pathways reduced IR-induced liver cell damage. Moreover, LSEC, but not HP, 

were sensitive to H2O2-induced oxidative damage and CGS21680 protected against this effect. 

Taken together the results of this study show that IR injury is characterized by specific 

modifications of HP and LSEC proteomes that are partially reverted by A2aR stimulation 

providing novel insides in the pathways leading to liver protection by preconditioning treatments.   
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Chiara Riganti4, Alberto Bianchi3, Francesco Novelli1,2,, Antonia Follenzi3,, Rita Carini3, 

Department of Health Science, University of Piedmont Orientale, Novara, Italy 

Journal of Hepatology 2015 vol. 62: 573–580 

ABSTRACT  

Background & Aims: Ischemia-reperfusion (IR) of liver results in hepatocytes (HP) and sinusoidal 

endothelial cells (LSEC) irreversible damage. Ischemic preconditioning protects IR damage upon 

adenosine A2a receptor (A2aR) stimulation. Understanding the phenotypic changes that underlie 

hepatocellular damage and protection is critical to optimize strategies against IR.  

Methods: The proteome of HP and LSEC isolated from sham or IR exposed mice receiving or not 

the A2aR agonist CGS21680 (0.5 mg/kg b.w.) was analysed by 2-D DIGE/MALDI-TOF 

Key results: 64 proteins were identified involved in cytoprotection, regeneration, energy 

metabolism and response to oxidative stress; among them, 34 were associated with IR injury and 

A2aR protection. The main pathways, down regulated by IR and up regulated by CGS21680 in HP 

and LSEC, were related to carbohydrate, protein and lipid supply and metabolism. In LSEC, IR 

reduced stress response enzymes that were instead up regulated by CGS21680 treatment. 

Functional validation experiments confirmed the metabolic involvement and showed that 

inhibition of pyruvate kinase, 3-chetoacylCoA thiolase, and arginase reduced the protection by 

CGS21680 of in vitro hypoxia-reoxygenation injury, whereas their metabolic products induced 

liver cell protection. Moreover, LSEC, but not HP, were sensitive to H2O2-induced oxidative 

damage and CGS21680 protected against this effect. 

Conclusions: IR and A2aR stimulation produces pathological and protected liver cells phenotypes 

respectively characterized by down- and up- regulation of proteins involved in the response to O2 

and nutrients deprivation during ischemia, oxidative stress and reactivation of aerobic energy 
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synthesis at reperfusion. This provides novel insides in IR hepatocellular damage and protection 

and suggests additive therapeutic options. 

Introduction 

Inflow occlusion during liver surgery, with consequent reperfusion, causes liver ischemia-

reperfusion (IR) injury. IR causes up to 10% early graft dysfunction or failure during liver 

transplantation [1]. IR injury is the result of a complex series of alterations that mainly involve 

hepatocytes (HP) and sinusoidal endothelial cells (LSEC) [2]. Several events contribute to liver 

damage by IR. The lack of oxygen during the ischemic period is associated with mitochondrial de-

energization, ATP depletion that impairs Ca2
+
, H

+
, and Na

+
 homeostasis, with alteration of the 

volume regulatory mechanisms, and eventually necrosis. Upon oxygen readmission, the uncoupled 

mitochondria generate reactive oxygen species (ROS) with oxidative stress, mitochondrial 

permeability transition, and decreased capacity to synthesize ATP. These events, along with 

caspase activation, lead to cell death by both necrosis and apoptosis. Concomitantly, activation of 

the inflammatory reactions is also associated with the onset of IR [3,4]. Minimizing the adverse 

effects of IR could significantly increase the number of transplantable organs and improve the 

outcome of the grafts [5]. Preconditioning is a powerful protective phenomenon able to activate 

endogenous systems that make tissues resistant to a subsequent lethal stress [6]. Liver ischemic 

preconditioning, defined as brief periods of ischemia and reperfusion before sustained hepatic 

ischemia, can preserve energy loss, reduce transaminases release, inhibit inflammatory reactions, 

and promote liver regeneration after IR injury [4,7]. The surgical application of ischemic 

preconditioning represents a promising approach to protect against hepatic IR in humans. 

However, its use has the main disadvantage of inducing trauma to major vessels and stress to the 

target organ [8]; clinical studies have given conflicting results preventing the clinical use of 

ischemic preconditioning [4,8,9]. These observations show the need to explore alternative 

approaches to activate ischemic preconditioning in patients. To this respect, pharmacological 

induction of liver preconditioning could represent a more efficient and reliable technique. In vitro 

and in vivo studies have established a key role of the adenosine A2a receptor (A2aR) stimulation 

as an approach for pharmacological induction of liver preconditioning [4,10-12]. In fact, even 

short periods of hypoxia lead to the enhanced breakdown of adenine nucleotides to adenosine, 

because of the decreased production of ATP. Adenosine accumulation protects tissues from injury 

upon signalling through the adenosine receptor A2aR [4,12]. Expression of new synthesized 
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proteins can also contribute to the production of the protected liver cell phenotypes [13]. The 

changes of protein expression of preconditioned as well as IR injured HP and LSEC are presently 

poorly characterized. With the aim of identifying new targets for the development of innovative 

therapeutic hepatoprotective approaches, the present work analysed the proteomic patterns of 

primary HP and LSEC isolated from mouse liver following IR, with or without pre-treatment with 

the A2aR agonist CGS21680. 

Materials and Methods 

Chemicals and reagents: 

Protease inhibitors, nuclease, ammonium persulfate (APS), bromophenol blue, 

glycerol,N,N,N9,N9-tetramethylethylene-diamine (TEMED), sodium dodecyl sulphate (SDS), 

TRIZMA, urea, 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulphonate (CHAPS), 

dithiothreitol (DTT), iodoacetamide, Dulbecco‟s modified Eagle medium culture medium 

(DMEM), trypan blue, 2p-(2-carboxyethyl)-phenyl- amino-5-N-ethylcarboxya-mido-adenosine 

(CGS21680), palmitic acid, nonessential amino acid mixture (AA, 100X), suramine (SUR), 

norvaline (NRV), pyruvate, trimetazidine (TMZ), 2,7-dichlorofluorescin diacetate (DCFH-DA), 

BCA kit, Enzymatic Assay of Pyruvate Kinase kit and ATP Bioluminescent Assay kit were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). DC Protein Assay kits, acrylamide, 

agarose, ready-made immobilized pH gradient (IPG) strip (17-cm IPG strips, pH 3-10NL) were 

purchased from Bio-Rad (Hercules, CA, USA). Ampholine pH 3.5–10, Western blot detection 

system, membranes for blotting, anti-rabbit and anti-mouse IgG horseradish-peroxidase-labelled 

antibodies were obtained from GE Healthcare (MI, Italy). Rabbit antibody against arginase 1 was 

purchased from Thermo Scientific (Illkirch Cedex, France), rabbit antibody against 3-ketoacyl- 

CoA thiolase from Aviva System Biology (San Diego, CA, USA). TaqMan gene expression 

master mix and TaqMan gene expression probes for mouse 3-ketoacyl- CoA thiolase, arginase 1, 

α-enolase and β-actin or 18S were purchased from Applied Biosystems Italia (Monza, Italy). 

Animals: 

Male C57BL/6 mice used for this study were purchased from Harlan SRL, Italy. All experiments 

involving animals were approved by the Italian Ministry of Health and the ethical committee for 

animal care of the University del Piedmont Orientale „„A. Avogadro‟‟. 
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Ischemia-reperfusion injury: 

Mice were exposed to a non-lethal (70% of the total liver volume) hepatic ischemia for 30 min, 

followed by 120 min reperfusion, as previously described [14]. Pharmacological A2aR activation 

was induced by I.P. injection of CGS21680 (0.5 mg/kg of body weight) 20 min before ischemia 

induction. Liver injury was assessed by measuring the ALT serum transaminase activity, with a 

commercial kit (Gesan Production, Italy), and the morphological alterations by histological 

observation. Details are provided in Supplementary Materials. 

Liver cells isolation and treatment 

 Liver cells were isolated by liver perfusion with collagenase digestion, from sham operated mice 

or mice exposed to IR, pre-treated or not with CGS21680. HP were obtained by differential 

centrifugation at 50g for 5 min at 4
°
C and LSEC by immunomagnetic separation, using a negative 

selection with a mouse anti-CD45, and a positive selection with anti-CD146 antibodies linked to 

immunomagnetic beads (Miltenyibiotec, Calderana di Reno, BO, Italy), as previously reported 

[15] and described in details in Supplementary Materials. Isolated HP and LSEC for proteomic 

analysis were stored at 80°C until solubilisation. For evaluation of hypoxia-reoxygenation injury, 

primary HP and LSEC were resuspended (106/ml cell density) in Viaspan solution (University of 

Wisconsin solution without additives), fluxed with 95% N2/ 5% CO2 and maintained at 4
0
C for 16 

hrs in sealed flasks. For reoxygenation, cells were transferred to an oxygenated Krebs-Henseleit 

buffer containing 20 nmol/L N-(2-hydroxyethyl)-piperazine- N0-(2-ethanesulfonic acid) (pH 7.4 

at 37
0
C), and the incubation flasks were further fluxed with a 95% air/5% CO2 gas mixture. When 

indicated, liver cells, suspended in the Viaspan solution, were preincubated 15 min at 37
0
C before 

cold preservation with CGS21680 (5 μmol/L) and/or suramine (SUR, 20 μmol/L), norvaline 

(NRV, 50 μmol/L), trimetazidine (TMZ, 100 μmol/L), pyruvate (10 μmol/ L), Palmitic acid (PA, 2 

μmol/L) or non-essential amino acid mixture (AA, 10%). To evaluate oxidative damage, HP or 

LSEC in Krebs-Henseleit buffer were treated with H2O2 (500 μmol/L) in the presence or absence 

of CGS21680 (5 μmol/L) and incubated for 30 min at 37
0
C under a 95% air/5% CO2 gas 

atmosphere.  
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Determination of cell viability  

Cell viability was estimated by the determination of nuclear fluorescence staining with propidium 

iodide using a FACScan analyser (Becton-Dickinson, San Jose, CA) and Cell Quest software 

(Becton-Dickinson) [13].  

Measurement of reactive oxygen species (ROS) 

 Intracellular ROS production was measured as reported in [14], by quantifying the DCFH-DA 

(2,7-dichlorofluorescin diacetate) fluorescence intensity with a Hitachi F-4500 fluorescence 

spectrophotometer. Details are provided in Supplementary Materials. 

Data analysis: 

Statistical analysis was performed with In Stat 3 statistical software (Graph Pad Software, Inc., 

San Diego, CA) by 1-way analysis of variance, testing with Bonferroni correction for multiple 

comparisons when more than 2 groups were analysed. The distribution normality of all groups was 

preliminarily verified with the Kolmogorov and Smirnov test. Significance was established at the 

5% level. 

Proteomic analysis: 

Two-dimensional gel electrophoresis (2-DE) on ready-made IPG strip (17-cm IPG strips, pH 3-

10NL) was performed as described [16]. For 2-D DIGE analysis, fifty micrograms of each sample 

(control, CGS21680, IR or CGS21680+IR) was minimally labelled with CyDye DIGE Fluors 

following manufacturer‟s instructions (GE Healthcare). For 2DE Coomassie stained gel, 1 mg of 

total liver protein was loaded. Destaining and in-gel enzymatic digestion of G-stained spots were 

performed as previously described [16]. All digests were analysed by MALDI-TOF (Tof Spec SE, 

Micro Mass). Details are provided in Supplementary Materials. To verify the significance of 

protein expression variations, two-sided Student‟s t test was used. Experiments were performed in 

triplicate. Statistical significance was set at p 60.05. Proteins were classified as differentially 

expressed if ratio in spot intensity was greater than 1.5-fold (protein overexpressed) or lower than 

0.5-fold (protein under expressed). The protein and RNA levels of ketoacyl-CoA thiolase, arginase 

1, and α-enolase were evaluated by Western blotting and RT-PCR as described in Supplementary 

materials. 
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Enzymatic assays: 

Aldolase B activity was measured as described in [17], with minor modifications. α-enolase 

activity was measured accordingly to [18]. The activity of pyruvate kinase was detected with the 

Enzymatic Assay of Pyruvate Kinase kit, following manufacturer‟s instructions. Fatty acids b-

oxidation was measured as previously reported [19], with minor modifications. The activity of 

carbamoyl phosphate synthase I was measured on mitochondrial extracts, isolated as previously 

reported [20]. Arginase activity was measured with a spectrophotometric method [21]. To measure 

the isocitrate dehydrogenase activity, 25 μg mitochondrial proteins was resuspended in 0.3 ml of 

Tris-acetate (pH 7.4), containing 5 mM/L DL-isocitrate trisodium salt and 5 mM/L MgCl2. The 

reaction was started by adding 0.5 mMol/L NAD
+
 and the absorbance at 340 nm was followed for 

5 min. Results were expressed as nM  NADH/mg mitochondrial proteins. The rate of cytochrome 

c reduction was measured according to [22] with minor modifications. The ATP level in 

mitochondria extracts was measured with the ATP Bioluminescent Assay Kit. Additional details 

are provided in Supplementary Materials. 

 

Results 

Analysis of liver injury following IR and A2aR stimulation 

Mice exposure to 30 min of hepatic ischemia, followed by 120 min reperfusion, caused substantial 

liver injury as determined by the serum ALT (alanine transaminase) release and hepatic histology 

(Supplementary Fig. 1). In accordance to previous observations [4, 12], stimulation of adenosine 

A2 receptors by mouse treatment with CGS21680 (0.5 mg/kg b.w.) before IR, significantly 

reduced the serum ALT increase and markedly attenuated the signs of hepatocyte necrosis and 

sinusoidal congestion detected by hematoxylin and eosin staining (Supplementary Fig. 1). 

 Proteomic analysis following IR and A2aR stimulation 

2-D DIGE proteomic analysis was performed, to elucidate the phenotypic changes of HP and 

LSEC isolated from mice livers exposed to IR, with or without A2aR stimulation (Supplementary 

Fig. 2, Supplementary Tables 1–3).  

By comparing HP and LSEC of sham operated mice vs. mice undergoing IR, we observed that 16 

proteins were down regulated (Fig. 1, Supplementary Table 1). In particular, in both HP and 
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LSEC, IR reduced the level of proteins involved in glycid, lipid and mitochondrial metabolism 

(Krebs cycle and oxidative phosphorylation). Notably, IR decreased, in LSEC specifically, two 

proteins related to the response to oxidative stress (Fig. 1).  

Compared to control, treatment with the A2aR agonist CGS21680 alone affected the expression of 

metabolic proteins: 6 were up regulated and 1 was down-regulated (Fig.1, Supplementary Table 

2). 

 The treatment with CGS21680 and IR vs. control, with the exception of three proteins that were 

down regulated in HP, up regulated 10 proteins, mostly metabolic enzymes associated with ATP 

synthesis, glycolysis, lipid and amino acid catabolism, and cell response to stress (Fig.1, 

Supplementary Table 3). Notably, the CGS treatment completely rescued the expression of the 16 

proteins down regulated by IR, with 14 proteins that recovered control level and two that were up 

regulated (Fig.1, Supplementary Table 3).  

It is noteworthy that a more complex and unexpected scenario was seen when cell extracts 

obtained from mice receiving CGS21680 with IR were compared to those exposed to IR alone. 

We found, that further 19 proteins, including metabolic, stress related and folding-related proteins, 

and were up regulated (Fig. 1, Supplementary Table 3). 
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Fig.1 Differentially expressed proteins upon IR, A2aR stimulation or A2aR stimulation plus IR.    

Down regulated (black) and up regulated (white) identified proteins associated or not (other) to metabolism 

(glycid, lipid, mitochondrial and amino acid metabolism) or stress-response/folding processes in control 

conditions or upon A2aR stimulation with the A2aR agonist CGS21680 or IR, in the presence or absence of 

CGS21680 treatments. All pair conditions were examined. 

   Also the comparison IR plus CGS21680 vs. CGS21680 did not reproduce the protein profile of 

IR alone (Fig. 1, Supplementary Tables 1 and 3). We detected the modulation of 41 proteins and, 

most intriguingly, 34 of them were up regulated, while in IR vs. control, all proteins were down 

regulated. Among the up regulated proteins, we evidenced metabolic and stress related enzymes. 

Altogether, in both HP and LSEC, A2aR stimulation by CGS21680 alone and at a greater extent 
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when followed by IR up regulated proteins associated with DNA synthesis and cytoprotection; 

intriguingly, the main involved pathways were related to cell response to stress, and more 

markedly to the carbohydrate, lipid, and amino acids supply and catabolism (Fig. 2). This 

suggested a possible role of antioxidant and catabolic enzymes in the hepatoprotective effects of 

A2aR stimulation. Proteomic data have been validated by Western blot and RT PCR analysis on 

three key metabolic enzymes (ENOA, THIM, and ARGI1) (Supplementary Fig. 3). 

 

Fig.2 Graphical abstract of the main pathways involved in IR and A2aR stimulation in HP and 

LSEC. Identified proteins are indicated. Functional validation of the metabolic effect of A2aR stimulation 

on HP and LSEC 

 

Proteomic data showed that A2aR stimulation increased the expression of several catabolic 

enzymes that were instead reduced following IR (Fig. 1, Supplementary Tables 1–3). To 

functionally confirm this observation, the activity of several enzymes referred to glycid, lipid, 

amino acid and mitochondrial metabolism was assayed. 



39 

 

The activity of glycolytic enzymes aα-enolase (ENOA) and pyruvate kinase (KPYR) was down 

regulated by IR and up regulated by IR plus CGS21680 in HP and LSEC, while that of fructose- 

bisphosphate aldolase B (ALDOB) was down regulated by IR and up regulated by IR plus 

CGS21680 in HP only (Fig. 3). 

 

Fig.3 Effects of IR, A2aR stimulation or A2aR stimulation plus IR on metabolic activities. Enzymatic 

activities of (A) fructose-bisphosphate aldolase B (ALDOB), α-enolase (ENOA), and pyruvate kinase (KPYR), 

(B) β-oxidation reactions, (C) carbamoyl-phosphate synthase (CPSM) and arginase 1 (ARGI1) and (D) isocitrate 

dehydrogenase (IDHC), cytochrome C, and ATP production were evaluated in HP and LSEC. The results are 

means ± SD of four experiments. ⁄p <0.01, #p < 0.05. 
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For lipid metabolism, we analysed the products of b-oxidation reactions that were down regulated 

by IR and up regulated by IR plus CGS21680 in HP and LSEC (Fig. 3).     

For amino acid catabolism, we evaluated the activity of two enzymes linked to urea cycle, namely 

carbamoyl-phosphate synthase (CPSM) and arginase 1 (ARGI1). The activity of CPSM was 

reduced by IR (although not significantly in LSEC) and strongly up regulated by IR plus 

CGS21680 (Fig. 3). The activity of ARGI1 was significantly down regulated by IR and up 

regulated by IR plus CGS21680 in HP only. 

 For mitochondrial metabolism, the activity of isocitrate dehydrogenase (IDHC) and cytochrome 

C, and ATP production were measured. The activity of IDHC and cytochrome C was significantly 

down regulated by IR and up regulated by IR plus CGS21680 in both HP and LSEC, while ATP 

production was the same but only in HP (Fig. 3). 

 These data clearly indicate that IR strongly reduces the metabolism and that CGS21680 rescues it, 

in both HP and LSEC, confirming the observations obtained by the proteomic approach. 

Functional validation of the cytoprotective role of metabolic enzymes in A2aR-induced resistance 

to death of HP and LSEC  

To evaluate the cytoprotective meaning of the up regulation of the metabolic enzymes in HP and 

LSEC, obtained from mice treated with CGS21680 before hepatic IR, we applied an in vitro 

model of IR injury, using primary HP and LSEC preserved in hypoxic conditions in VIASPAN 

solution, and then reoxygenated in Krebs-Hanslet at 37
0
C. As shown in Fig. 4A, chemical 

inhibition of the 3 key enzymes of carbohydrate, lipid and amino acids catabolism, pyruvate 

kinase (KPYR), 3-ketoacyl- CoA thiolase (THIM), and arginase 1 (ARGI1) by suramine (SUR, 20 

μM/L), trimetazidine (TMZ, 100 μM/L), and norvaline (NRV, 50 μM/L) respectively, 

significantly reduced the protective effect of CGS21680 against reperfusion damage Similarly, 

supplementing VIASPAN solution with palmitic acid (2 μM/L), a non-essential amino acid 

mixture (10%), or Pyruvate (10 μM/L), significantly reduced HP and LSEC mortality induced by 

60 min reoxygenation, partially reproducing the cytoprotective action of CGS21680 (5 μM/L) 

supplementation (Fig. 4B). 
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Functional validation of the antioxidant effect of A2aR stimulation on LSEC 

Proteomic data showed that A2aR stimulation increased the expression of several antioxidant 

enzymes that were instead reduced following IR, particularly in LSEC (Fig. 1, Supplementary 

Tables 1–3). These observations were functionally confirmed by evaluating the susceptibility to 

oxidative stress of primary mouse HP and LSEC upon 30 min exposure to H2O2 (500 mol/L). 

H2O2 treatment significantly increased ROS and cell damage in LSEC, but not in HP. The 

stimulation of A2aR with CGS21680 abolished ROS production and prevented loss of LSEC 

viability induced by H2O2 exposure (Fig. 5). 
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Fig. 4 A2aR stimulation protects HP and LSEC against hypoxia-reoxygenation injury by promoting 

glycid, lipid and amino acid catabolism. Viability of primary mice HP and LSEC conserved for 16 h in cold 

hypoxic conditions and exposed to 60 min of warm reoxygenation. HP and LSEC were conserved in VIASPAN 

solution in the presence or absence of (A) 3-ketoacyl-CoA thiolase inhibitor trimetazidine (TMZ, 100 μmol/L), 

arginase inhibitor norvaline (NRV, 50 μmol/L) and pyruvate kinase inhibitor suramine (SUR, 20 μmol/L), with 

or without the A2aR agonist CGS21680 (5 μmol/L) or (B) Palmitic acid (2 μmol/L) (PA), non-essential amino 

acid mixture (10%) (AA), pyruvate (10 μmol/L) or CGS21680 (5 μmol/L). The results are means ± SD of four 

experiments. ⁄p <0.001, #p <0.01 
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Fig.5 CGS21680 prevents oxidative species production and oxidative damage of LSEC. Intracellular 

oxidative species production evaluated as (A) DCFH-DA intracellular fluorescence intensity and (B) viability of 

primary mice HP and LSEC after 30 min exposure to H2O2 (500 μmol/L). The results are means ± SD of four 

experiments. p <0.001,  #p <0.01.  

 

 

Discussion 

Ischemia/reperfusion damage causes up to 10% of early organ graft failure, following liver 

transplantation, and can lead to a high incidence of both acute and chronic rejections. Minimizing 

the adverse effects of this injury could significantly increase the number of transplantable livers, 

improving graft outcome [5–7]. Ischemic preconditioning demonstrated its efficacy in several 

models [2–7] and different pharmacological preconditioning approaches have been developed to 

overcome limitations of surgical preconditioning [2–7,13]. Previous studies have shown that 

pretreatment with the A2aR agonist CGS21680 enhanced tolerance against hepatic IR damage [4, 

11]. This work describes, for the first time, the proteome alterations of mouse HP and LSEC 

isolated from livers exposed to IR in the presence or absence of A2aR stimulation, elucidating the 

liver cell contribution to IR damage and hepatoprotection by pharmacological preconditioning.  

Our work has shown profound modifications of HP and LSEC proteome and enzymatic activities, 

highlighting critical processes involved in IR injury and liver preconditioning, and implementing 
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and dissecting previous observation obtained in the liver [5,23– 28]. Considering all identified 

proteins, few of the affected proteins were shared between HP and LSEC, highlighting the 

diversity of these cells and the importance of analysing them separately. However, the pathways 

involved were almost the same (metabolism, stress response, protein folding and regeneration), 

showing the existence of a general common response, but with the prevalence of metabolic effects 

in HP and stress-related effects in LSEC. Notably, the profiling of the enzymatic and functional 

activities, reduced by IR and rescued by CGS21680, almost completely overlapped with those 

observed by proteomics. 

The severe ATP depletion during ischemic phase in HP has been generally ascribed to the lack of 

O2 and glycolytic substrate supply, consequent to blood interruption [2–4]. However, such 

alteration is prevented in the preconditioned ischemic liver, indicating that the block of blood 

supply is not per se sufficient to justify ATP loss. In addition, one of the most striking alterations 

of the IR-injured liver is its incapability of recovering aerobic ATP production at blood flow re-

establishment with reperfusion. The observations that 1) glycolytic enzymes and ATP synthase 

subunits were decreased in HP and LSEC derived from a liver exposed to IR, and 2) CGS21680 

treatment combined to IR up regulated the glycolytic and mitochondrial pathways, endorses the 

hypothesis that IR damage is not merely due to a reduction of blood flow requirement, but to a 

coordinate perturbation of metabolic enzyme expression, which is rescued by preconditioning. 

 Furthermore, the liver acts as a major organ for lipid metabolism and the hepatic aerobic ATP 

synthesis is strictly dependent on lipid supply and catabolism. Interestingly, we found that 

CGS21680 treatment is able to promote lipid transport and β-oxidations, which were instead down 

modulated by IR. It would be interesting in the future to evaluate the impact of β-oxidation 

modulation in preventing IR injury. 

We observed up regulation of urea cycle enzymes and increase of activity of two key enzymes of 

this pathway (CPSM and ARGI1) following CGS21680 treatment. This suggests that the 

improvement of amino acid catabolism could represent a response of HP and LSEC to ATP 

deprivation caused by IR. 

All together, these results indicate that the down regulation of key metabolic enzymes can explain 

the ATP loss caused by IR. Therefore, A2aR stimulation provides a general metabolic advantage 

to HP and LSEC, demonstrated by ATP production increase, not only rescuing the metabolic 
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alteration induced by IR but, in some cases, enhancing the expression of enzymes required for 

energy production. 

The relevance of our observations about the metabolic advantage provided by CGS21680 is also 

supported by the fact that the cytoprotective action of CGS21680 is reverted by the inhibition of 

pyruvate kinase (KPYR), 3-ketoacyl-CoA thiolase (THIM), and arginase (ARGI1) – three 

enzymes of glycolysis, β-oxidation and urea cycle respectively that are impaired by IR. 

Furthermore, cell supplementation with the glycolic end-product pyruvate, the free fatty acid 

Palmitic acid or amino acid mixture demonstrated to mimic partly the protective effects of 

CGS21680 against HP and LSEC hypoxia-reoxygenation damage.  

Notably, among the 28 metabolic proteins identified, only 14 were already connected to IR and 

preconditioning (FABPL, ATPB, FABPI, ENOA, ATPA, ARGI1, ALDOB, ETFA, THIM, 

CPSM, TPIS, OTC, HINT, FABP5) [5,24–26,28–32], while the others are completely new 

(GLYC, IDHC, KPYR, DHSO, FAAA, S2542, PGK1, CLC4F, ODBA, NDKB, ATP5H, PROSC, 

ECH1, AL4A1).  

Another fundamental aspect is the role of antioxidant enzymes in the protection against IR injury 

by preconditioning. We detected several proteins involved in liver cell response to oxidative 

stress. Many of these proteins (GRP75, GSTP1, SBP2, PPIA, GSTM1, CATA, PRDX6, CH60, 

PDIA3) were already known to be involved in IR and preconditioning processes [5,24–28]. 

Catalase, GSTP1, GSTP2, and GSTM1 are directly linked to detoxification of ROS, and GSH is 

known as a highly effective antioxidant present in elevated concentrations in HP [33]. PRDX6 is 

another well-known antioxidant normalizing mitochondrial respiration during IR [26]. Finally, the 

chaperones GRP75, PDIA1, PDIA3, and CH60 can be involved in protein folding repair 

mechanism, together with the 2 proline isomerase PPIA and FKB1B, since ROS are known to 

cause protein misfolding [34]. The majority of stress proteins that we have identified have 

mitochondrial origin, in agreement with previous observations [28, 35]. We observed that 

CGS21680 treatment generally increased the antioxidant defences, particularly in LSEC, while IR 

depressed the antioxidant enzymes content in LSEC exclusively, and that CGS21680 treatment of 

these cells prevented oxidative damage following in vitro addition of H2O2. These results may 

explain the high sensitivity of LSEC to cold ischemia and the microcirculatory disturbance 

induced by IR damage as well as the rescuing action of ischemic preconditioning [2].  
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An intriguing aspect that may deserve further analysis is that the combined treatment of 

CGS21680 plus IR often results in more effective production of protective protein modifications 

than that with CGS21680 alone. This suggests that the genomic changes induced by A2aR 

stimulation accomplish a full-protected phenotype only in presence of cell stress. Indeed, recent 

results showed that A2aR stimulation might also effectively prevent pathological conditions 

different from IR through the activation of noxious-specific mechanisms of protection [36].  

 In conclusion, this study contributed to the understanding of the molecular bases of IR injury and 

cytoprotection by A2aR stimulation, showing specific modifications of HP and LSEC proteomes. 

The great number of new proteins identified demonstrates the strength of our experimental 

approach. Finally, showing the importance of glycid, lipid, amino acid and antioxidant availability 

in IR injury and in A2aR-induced liver cell protection, this study suggests the protective potential 

of supplementing organ preservation solutions with energy-linked metabolites and natural or 

synthetic antioxidants.  
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SUPPORTING INFORMATION 

 

EXPERIMENTAL PROCEDURES 

Ischemia-reperfusion injury 

Male C57BL6  mice were anesthetized with isoflurane, the abdominal cavity was opened, the liver 

vessels were exposed and normothermic partial hepatic ischemia was induced by the clamping of 

portal structures to the left and median lobes with a micro vascular clip; this yielded 

approximately 70% of hepatic ischemia. The abdomen was covered with saline-humidified gauze 

during the ischemic period. After 30 minutes of partial hepatic ischemia, the clip was removed to 

initiate hepatic reperfusion, the abdominal cavity was closed with a 4-0 silk suture and metal clips 

were applied to the skin. The temperature was maintained at 37°C during hepatic ischemia and in 

the post-surgical period with a warming pad. Sham-operated mice underwent the same procedure 

without clamping of the pedicle of the liver lobes. Mice were randomly assigned to 1 of 4 groups 

with a sample size of 4 mice per group. CGS21680 (0.5 mg/kg) was administered by 

intraperitoneal injection 20 min before the ischemia procedure. Mice were killed 120 min after 

reperfusion or employed for the procedures of liver cells isolation. For the “in vivo” analysis of 

liver injury, before mice sacrifice, blood was collected for serum ALT transaminase activity 

determination. Tissues from ischemic lobes were fixed in 4% formaldehyde and then embedded 

into paraffin. Sections were cut and stained with hematoxylin and eosin for histological analysis.  

 

Liver cells isolation 

Liver cells were isolated from sham operated mice or mice exposed to hepatic 

ischemia/reperfusion and treated or not with the A2aR agonist CGS21680 (0.5 mg/kg), after liver 

perfusion by collagenase digestion. After liver digestion, cells were dispersed and HP recovered 
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by differential centrifugation. An initial immunomagnetic separation by a mouse anti-CD45 

antibody linked to immunomagnetic beads (Miltenyi biotec.) was used to collect hematopoietic 

cells. The negative fraction of the CD45+ cells was used to isolate LSEC by positive selection 

with anti-CD146 antibody linked to immunomagnetic beads. Typically, the yield of LSEC cells 

was 5x10
6
 per mouse liver and average of 40x10

6
 HP (15). 

Cell viability estimated at the beginning of the experiments, ranged from 82% to 90%.  Isolated 

HP and LSEC for proteomic analysis were stored at -80°C until solubilization. 

 

Measurement of Reactive Oxygen Species (ROS) 

Cells were incubated for 10 minutes at 37°C with 5mol/L DCFH-DA in phosphate-buffered 

saline. After 2 washes with phosphate-buffered saline, cells were transferred to a fluorometer 

cuvette, and the fluorescence was recorded with a Hitachi F-4500 fluorescence spectrophotometer 

(490-nm excitation and 530-nm emission). ROS production was calculated as a percentage of the 

DCFH-DA fluorescence intensity versus untreated control cells. 

 

Proteomic analysis 
 

Samples preparation  

Samples were solubilized in a solution containing 9 M urea, 4% w/v CHAPS (3-[(3-

cholamidopropyl) dimethylammonio]-1-propanesulphonate), protease inhibitors and nuclease. The 

sample was incubated O.N. at 4°C and spun down at 13,800 g for 10 min at 4°C. The clear 

supernatant recovered, quantified with DC Protein assay kit and stored at -20°C until analysis. 

 

Two-dimensional gel electrophoresis (2-DE) coomassie-stained gels 

2-DE was performed using ready-made IPG strip (17-cm IPG strips, pH 3-10NL). Each sample (1 

mg of total liver protein) was applied onto an IPG gel by in-gel rehydration for 20 h, adding DTT 

1% w/v, final concentration and ampholine pH 3.5–10, 2% v/v, final concentration. Isoelectric 

focusing, strips equilibration and second dimension were performed as previously described (16). 

Gels were stained with colloidal Coomassie (18% v/v ethanol, 15% w/v ammonium sulfate, 2% 

v/v phosphoric acid, 0.2% w/v Coomassie G-250) for 48 h. 

 

2D DIGE 

Samples were labelled with CyDye DIGE Fluors following the manufacturer‟s instruction (GE 

Healthcare). Fifty micrograms of each sample was minimally labelled with 400 pmol of either Cy 
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2 or Cy3 or Cy5. Cy3 and Cy5 were alternately used for samples, whereas Cy2 was used for the 

internal standard (a pooled standard containing total liver proteins treated or not with CGS21680). 

Labelling reactions were performed in the dark for 30 min on ice and then quenched with the 

addition of 10mM lysine. Three 2D DIGE experiments (containing one gel each) were performed 

to analyse three biological replicates of control and CGS21680 or IR and CGS21680+IR samples. 

2-DE was performed as described above.  

 

Image analysis 

Gel images were acquired with Chemi Doc Imaging System (Bio-Rad). Image analysis was 

performed using PD-Quest software (version 7.2, Bio-Rad) according to the manufacturer‟s 

instructions. Normalization of each individual spot was performed according to the total quantity 

of the valid spots in each gel, after subtraction of the background values. The spot volume was 

used as the analysis parameter to quantify protein expression. 

 

Protein identification by mass spectrometry and database search 

Coomassie G-stained spots were excised from 2-DE preparative gels; distaining and in-gel 

enzymatic digestion performed as previously described (16). All digests were analysed by 

MALDI-TOF (TofSpec SE, MicroMass) equipped with a delayed extraction unit. Peptides 

solution was prepared with equal volumes of saturated a-cyano-4-hydroxycinnamic acid solution 

in 40% v/v acetonitrile-0.1% v/v trifluoroacetic acid. The MALDI-TOF was calibrated with a mix 

of PEG (PEG 1000, 2000 and 3000 with the ratio 1:2:2) and mass spectra were acquired in the 

positive-ion mode. Peak lists were generated with Protein Lynx Data Preparation (Protein Lynx 

Global Server 2.2.5) using the following parameters: external calibration with lock mass using 

mass 2465.1989 Da of ACTH, background subtract type adaptive combining all scans, performing 

de isotoping with a threshold of 1%. The 25 most intense masses were used for database searches 

against the SWISSPROT database using the free search program MASCOT 

(http://www.matrixscience.com). The following parameters were used in the searches: taxa Mus 

musculus, trypsin digest, one missed cleavage by trypsin, carbamido methylation of cysteine as 

fixed modification, methionine oxidation as variable modifications and maximum error allowed 

100 ppm. Were taken on to consideration only protein with a Mascot score≥56. 
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Western blotting 

 

Lysates containing equal amounts of proteins (30 g), containing Laemmli buffer, were subjected 

to SDS/PAGE (12% gel). The separated proteins were transferred to a nitrocellulose membrane. 

The blot was blocked using 5% w⁄ v dried no fatty milk in PBS containing 0.1% Tween-20, and 

probed using rabbit antibody against arginase 1 (diluted 1:1000), mouse antibody 

againstenolase (diluted 1:5000), rabbit antibody against 3-ketoacyl-CoA thiolase (diluted 

1:3000) overnight at 4°C. After washing using PBS containing 0.1% Tween-20 for 30 min, the 

blot was incubated for 1 h with horseradish-peroxidase labelled antibodies against rabbit or mouse 

IgG (diluted 1:10000), and immune reactivity was detected using an enhanced chemiluminescence 

kit. 

 

Real-time quantitative RT-PCR 

 

Total RNA was  isolated from frozen isolated HP and LSEC taken from sham liver or liver 

exposed to ischemia-reperfusion from mice treated or not with CGS21680, using the Charge 

Switch® Total RNA Cell Kit (Applied Biosystems Italia, Monza, Italy) following manufacturer‟s 

instructions. RNA was reverse transcribed for first-strand complementary DNA (cDNA) synthesis 

using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems Italia, Monza, Italy) 

according to the manufacturer‟s recommendations. Quantitative real-time polymerase chain 

reaction (RT-PCR) was performed in the CFX96 Touch™ Real-Time PCR Detection System-Bio-

Rad (Bio-Rad Laboratories S.r.l, Milan, Italy) using TaqMan Gene Expression Master Mix and 

Taqman Gene Expression probes for mouse 3-ketoacyl-CoA thiolase (THIM), arginase1 (ARGI1), 

-enolase (ENOA), and β-actin or 18S as control genes (Applied Biosystems Italia, Monza, Italy). 

All samples were ran in duplicate, and the relative gene expression calculated as 2
-ΔCt 

is expressed 

as fold increase over control samples. Values were normalized to those of β-actin for ENOA or to 

those of 18S for THIM and ARGI1 and expressed by using the comparative 2
-ΔCt 

method. 

 

Enzymatic assays 

 

Glycid metabolism 

Cells were rinsed with PBS, sonicated with 10 bursts of 1 s, centrifuged at 13,000 x g for 5 min, 

re-suspended in 100 mMol/L Tris (pH 7.4). A 50 µL aliquot was used for the protein 
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quantification with the BCA Kit (Sigma Chemical Co., St. Louis, MO). 50 µg of whole cell lysates 

were used in each assay.  Aldolase B activity was measured as described in (17), with minor 

modifications: samples were incubated at 37°C, in the presence of 100 mMol/L K2HPO4 (pH 7.2), 

1 mMol/L fructose 1,6-biphosphate, 10 mMol/L EDTA, 2 mg/mL α-glycerophosphate 

dehydrogenase, 2 mg/mL triose phosphate isomerase, 100 µg/mL bovine serum albumin, 0.15 

mMol/L NADH, in a final volume of 300 µL. The rate of NADH oxidation was followed for 5 

min, monitoring the absorbance at 340 nm with a Packard microplate reader EL340 (Bio-Tek 

Instruments, Winooski, VT). Results were expressed as mMol NADH produced/min/mg cell 

proteins. Enolase A activity was measured accordingly to (18). Results were expressed as nMol 

NAD
+
/min/mg cell proteins. The activity of pyruvate kinase was detected with the Enzymatic 

Assay of Pyruvate Kinase kit, following the manufacturer‟s instruction. Results were expressed as 

nMol NAD
+
/min/mg cell proteins. 

 

Lipid metabolism 

 

Fatty acids β-oxidation was measured as previously reported (19), with minor modifications. Cells 

were washed twice with PBS, detached with trypsin/EDTA (0.05/0.02% v/v) and centrifuged at 

13,000 x g for 5 min. A 50 µL aliquot was collected, sonicated and used for the intracellular 

protein quantification. The remaining sample was re-suspended in culture medium containing 0.24 

mMol/L fatty acid-free bovine serum albumin, 0.5 mMol/L L-carnitine, 20 mMol/L Hepes, 2 µCi 

[1-
14

C]Palmitic acid (3.3 μCi/mMol) and transferred into test tubes tightly sealed with rubber caps. 

After 2 h incubation at 37°C, 0.3 mL of a 1:1 v/v phenyl ethylamine/methanol solution was added 

into each sample by a syringe, followed by 0.3 mL of 0.8 N HClO4. Samples were incubated for 1 

hr further at room temperature, and then centrifuged at 13,000 x g for 10 min. Supernatants, 

containing 
14

CO2, and precipitates, containing 
14

C-acid soluble metabolites (ASM), were 

collected. The radioactivity of each sample was counted by liquid scintillation. Results were 

expressed as pmol of [
14

CO2] or 
14

C-ASM/h/mg cell proteins. 

 

Amino acid metabolism 

 

The activity of carbamoyl phosphate synthetase I was measured on mitochondrial extracts, 

isolated as reported previously (20). Samples were sonicated and a 50 µL aliquot was used for 

protein quantification. 25 µg of mitochondrial proteins were incubated in 0.5 mL of the assay 
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buffer (87 mMol/L Tris/HCl, 87 mMol/L KCl, 25 mMol/l MgCl2, 10 mMol/L ATP, 20 mMol/L 

NH4Cl, 0.8 mMol/L dithiothreitol, 6.5% v/v dimethyl sulfoxide, 2.2% v/v glycerol) with 4 µCi 

[
14

C]-NaHCO3 (54 μCi/mMol) for 30 minutes at 37°C. The reaction was stopped by adding 0.2 

mL of 80% w/v trichloroacetic acid. To remove the unincorporated 
14

CO2, the tubes were heated 

at 85°C for 3 h; the remaining samples, containing [
14

C]-carbamoyl phosphate, were analyzed by 

liquid scintillation counting. Results were expressed as pmol carbamoyl phosphate/min/mg cell 

proteins.  Arginase activity was measured on 50 µg of whole cell lysates by a spectrophotometric 

method (21). Results were expressed as µMol urea/mg cell proteins. 

 

Mitochondrial metabolism 

 

Mitochondria were isolated as reported above. To measure the isocitrate dehydrogenase activity, 

25 µg mitochondrial proteins were re-suspended in 0.3 mL of Tris-acetate (pH 7.4), containing 

5mMol/L DL-isocitrate trisodium salt and 5 mMol/L MgCl2. The reaction was started by adding 

0.5 mMol/L NAD
+
 and the absorbance at 340 nm was followed for 5 minute. Results were 

expressed as nMol NADH/mg mitochondrial proteins. 

The rate of cytochrome c reduction was taken as an index of the activity of the electron flux from 

complex I to complex III, and was measured according to (22) with minor modifications. 50 µg of 

non-sonicated mitochondrial samples, re-suspended in 0.59 mL buffer A (5 mMol/L KH2PO4, 5 

mmol/L MgCl2, 5% w/v bovine serum albumin), were transferred into a quartz spectrophotometer 

cuvette. Then 0.38 mL buffer B (25% w/v saponin, 50 mMol/L KH2PO4, 5 mMol/L MgCl2, 5% 

w/v bovine serum albumin, 0.12 mMol/L cytochrome c-oxidized form, 0.2 mMol/L NaN3) were 

added for 5 min at room temperature. The reaction was started with 0.15 mMol/L NADH and was 

followed for 5 min, reading the absorbance at 550 nm by a Lambda 3 spectrophotometer 

(PerkinElmer).The ATP level in mitochondria extracts was measured with the ATP 

Bioluminescent Assay Kit, using a Synergy HT Multi-Mode Microplate Reader (Bio-Tek 

Instruments). ATP was quantified as arbitrary light units and converted into nMol 

ATP/mitochondrial proteins, according to the calibration curve previously set. 
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LEGENDS TO SUPPLEMENTARY FIGURES 

 

The administration of CGS21680 ameliorates liver IR injury. Liver IR damage was induced by 30 

minutes of warm ischemia followed by 120 minutes of reperfusion. CGS21680 (0.5 mg/kg) was injected 

intraperitoneal 20 min before liver ischemia. Sham-operated mice were used as controls. Hepatic injury 

was evaluated by the measurement of serum ALT release or at histology. Results are mean ± SD of 6 

experiments. * p< 0.05. 
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2D-DIGE. Representative images (of three independent experiments) of 2DE DIGE gels. HP (A) and 

LSEC (B) proteins expression were studied in control conditions and upon A2aR stimulation with the 

A2aR agonist CGS21680 (CGS) or IR in presence (CGS+IR) and in absence (IR) of CGS21680. Internal 

standard gels are also reported. 
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Western blot and RT-PCR analysis of ENOA, THIM and ARGI1: (A) Representative western 

blot (of three independent experiments) with anti-ENOA, anti-THIM and anti-ARGI1 antibodies. HP and 

LSEC proteins expression were analyzed in control conditions (control) or upon A2aR stimulation with the 

A2aR agonist CGS21680 (CGS) or IR in presence (CGS+IR) or in absence (IR) of CGS21680. (B) Total 

RNA was isolated from HP and LSEC from sham mice (control) or mice exposed to IR and pretreated or 

not with CGS21680 (CGS) and ENOA, THIM and ARG-1 were determined by quantitative RT- PCR. 

Results are mean ± SD of 3 independent experiments. * p< 0.05. 
 

PROTEINS ABBREVIATIONS: 
 

ABHEB (Abhydrolase domain-containing protein 14B); ALDH2 (Aldehyde dehydrogenase, 

mitochondrial); AL4A1 (Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial); 

ALDOB (Fructose-bisphosphate aldolase B); ATPA (ATP syntase A), ATPB (ATP syntase B); 

ATP5H (ATP synthase subunit d, mitochondrial); ARGI1 (Arginase-1); ASXL3 (Putative 

Polycomb group protein ASXL3); CAH3 (Carbonic anhydrase 3); CALM (Calmodulin); CATA 

(Catalase); CATB (Cathepsin B); CH60 (60 kDa heat shock protein, mitochondrial); CHD1 

(Chromodomain-helicase-DNA-binding protein 1); CJ088 (Uncharacterized protein C10orf88 

homolog); CK054 (Ester hydrolase C11orf54 homolog); CLC4F (C-type lectin domain family 4 

member F); CPSM (Carbamoyl-phosphate synthase [ammonia], mitochondrial); DHSO (Sorbitol 

dehydrogenase); DNM3A (DNA (cytosine-5)-methyltransferase 3); ECH1 (Delta(3,5)-Delta(2,4)-

dienoyl-CoA isomerase, mitochondrial); EF1B (Elongation factor 1-beta); EF2 (Elongation factor 

2); ENOA (Alpha-enolase); ETFA (Electron transfer flavoprotein subunit alpha, mitochondrial); 

FAAA (Fumarylacetoacetase); FABP5 (Fatty acid-binding protein, epidermal); FABPI (Fatty 

acid-binding protein, intestinal); FABPL (Fatty acid-binding protein, liver); FKB1B (Peptidyl-

prolyl cis-trans isomerase FKBP1B); GLYC (Serine hydroxymethyltransferase, cytosolic); 
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GRP75 (Stress-70 protein, mitochondrial); GSTM1 (Glutathione S-transferase Mu 1); GSTP1 

(Glutathione S-transferase P 1); GSTP2 (Glutathione S-transferase P 2); 3HAO (3-

hydroxyanthranilate 3,4-dioxygenase); HINT1 (Histidine triad nucleotide-binding protein 1); 

IDHC (Isocitrate dehydrogenase [NADP] cytoplasmic); IPYR (Inorganic pyrophosphatase); 

K2C8 (Keratin, type II cytoskeletal 8); KPYR (Pyruvate kinase isozymes R); MCM2 (DNA 

replication licensing factor MCM2); MIC1 (Uncharacterized protein C18orf8 homolog); MUP8 

(Major urinary proteins 8 (Fragment)); NDKB (Nucleoside diphosphate kinase B); ODBA (2-

oxoisovalerate dehydrogenase subunit alpha, mitochondrial); OTC (Ornithine 

carbamoyltransferase, mitochondrial); PDIA1 (Protein disulfide-isomerase); PDIA3 (Protein 

disulfide-isomerase A3); PEBP1 (Phosphatidylethanolamine-binding protein 1); PGK1 

(Phosphoglycerate kinase 1); PPIA (Peptidyl-prolyl cis-trans isomerase A); PRDX6 

(Peroxiredoxin-6); PROSC (Proline synthase co-transcribed bacterial homolog protein); RGN 

(Regucalcin); ROA2 (Heterogeneous nuclear ribonucleoproteins A2); S2542 (Solute carrier 

family 25 member 42); SBP2 (Selenium-binding protein 2); SNX5 (Sorting nexin-5); THIM (3-

ketoacyl-CoA thiolase); TPIS (Triosephosphate isomerase); VDAC1 (Voltage-dependent anion-

selective channel protein 1). 

Table1. 

 

IR modulated spots :Spot number (SSP), accession number on Swiss Prot database (AC), name, 

densitometry ratio between IR and control sample, p value, biological function, number of 
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matched mass values (match. pept.) on number of total mass values searched (25), coverage 

percentage and Mascot score are indicated. 

Table 2. 

 

CGS modulated spots: Spot number (SSP), accession number on Swiss Prot database (AC), 

name, densitometry ratio between CGS and control sample, p value, biological function number of 

matched mass values (match. pept.) on number of total mass values searched (25), coverage 

percentage and Mascot score are indicate  

Table:3                     
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PAPER- 2 

ISCHEMIA/REPERFUSION INJURY ON MICE STEATOTIC 

HEPATOCYTES AND DIFFERENTIAL EFFECTS OF ADENOSINE A2A 

AND A1 RECEPTORS STIMULATION 

Summary 

Ischemia re-perfusion injury is regarded as a major cause of liver dysfunction or failure, after 

tissue resection and transplantation and these problems are particularly evident in patients with 

fatty livers. The lack of available organs has forced the use of steatotic liver for transplantation 

despite their higher susceptibility to ischemia-reperfusion injury. In order to elucidate the 

variability of the protective action of Ischemic Preconditioning (IP), we investigated the effect of 

separate adenosine receptors stimulation on JNK-dependent lipotoxicity and on hypoxia/ 

reoxygenation (H/R) injury of steatotic mice hepatocytes. 

In this study mice hepatocytes were exposed to Palmitic acid (50 μM) to induce steatosis and then 

incubated in presence or absence of the adenosine A2 receptor agonist CGS21680b [2-p-(2-

carboxyethyl)phenethylamino-5-Nethyl carboxyamidoadenosine] (5μM)  or the A1 receptor 

agonist CCPA [2-Chloro-N6-cyclopentyl adenosine] (100μM) and stored at 4°C for hypoxia 

induction. After cold ischemic preservation, steatotic hepatocytes were exposed to reoxygenation 

at 37°C. For “in vivo” experiments, mice were fed with HFD diet for 9 weeks and treated with or 

without CCPA (1.5 mg/kg) and CGS21680 (0.5 mg/kg) and ASK1 inhibitor NQDI-1 (50μM) and 

subjected to liver ischemia/reperfusion.  

The results obtained indicated that damage of steatotic hepatocytes exposed to H/R is mediated by 

the activation of the ASK1-JNK axis and increased sensitivity of steatotic hepatocytes to H/R 

injury is related to an augmented and ROS-dependent stimulation of this cytotoxic pathway.  

CGS21680 A2aR stimulation protected steatotic hepatocytes exposed to H/R by activating the 

PI3K-Akt axis, which blocks ASK-1/JNK axis through inhibitory phosphorylation of Ask-1 in 

Ser83. On the contrary, CCPA A1R stimulation was unable to exert hepato-protection being 

unable to induce the Akt dependent negative regulation of Ask-1. In HFD fed steatotic mice 

subjected to I/R, NQDI-1 or CGS21680 treatment showed to prevent liver damage induced by 

steatosis and I/R and inhibit ASK1 and JNK activation, while CCPA treatment further increases 

liver damage due to an augmented JNK and Ask1 activation  

Altogether these observations suggest A2aR activation and Ask1 inhibition as effective protective 

conditions against I/R injury of steatotic liver and suggest that pharmacological interventions 

aimed to directly stimulate A2aR or block ASK1 can represent a novel and efficient therapeutic 

approach to prevent the injurious consequences of I/R application in fatty livers.  
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ISCHEMIA/REPERFUSION INJURY ON MICE STEATOTIC    

HEPATOCYTES AND DIFFERENTIAL EFFECTS OF 

ADENOSINE A2A AND A1 RECEPTORS STIMULATION 

 

Bangalore R Chandrashekar, Chiara Imarisio, Elisa Alchera, and Rita Carini* 

Department of Health Science, University of Piedmont Orientale, Novara, Italy 

 

A B S T R A C T 

Hepatic steatosis is a major risk factor after liver surgery because steatotic livers poorly tolerate 

ischemia/reperfusion (I/R) injury and is the main cause of both initial poor function and primary 

non function of liver allograft. In the light of the growing need for new therapeutic options 

specific for protective strategies for the I/R injury of steatotic livers during liver transplantation, 

we investigated the pharmacological preconditioning action of different adenosine receptors 

against IR injury on steatotic liver. The effects of the A2aR agonist CGS21680b[2-p-(2-

carboxyethyl)phenethylamino-5-Nethyl carboxyamidoadenosine] and A1R agonist CCPA-2-

Chloro-N6-cyclopentyl adenosine were evaluated „in vitro‟ in liver cells exposed to PA (Palmitic 

acid) and „in vivo‟ in mice with steatosis induced by 9 weeks of feeding with an HFD diet (high 

fat diet). In primary mice steatotic hepatocytes, CGS21680- A2aR stimulation protected fatty 

hepatocytes exposed to I/R by activating the PI3K-Akt axis which blocks ASK-1/JNK axis 

through inhibitory phosphorylation of Ask-1 in Ser83. On the contrary, CCPA -A1R stimulation 

was unable to exert hepato-protection being unable to induce the Akt dependent negative 

regulation of Ask-1. In mice receiving the HFD diet, the development of steatosis was associated 

with JNK-1/2 activation. CGS21680 (0.5 mg/kg of body weight, intraperitoneal) but not CCPA 

(1.5 mg/kg of body weight, intraperitoneal) administration to HFD-fed mice, effectively reduced 

HFD-associated ALT (alanine aminotransferase) release and prevented JNK-1/2 and Ask1 

activation. Taken together, these results indicate that pharmacological interventions aimed to 

directly stimulate A2aR or block ASK1 can represent a novel and efficient therapeutic approach to 

prevent the injurious consequences of I/R application in fatty livers.   
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1. INTRODUCTION 

Hepatic ischemia/reperfusion (I/R) injury is defined as the phenomenon during which cellular 

damage in an organ, caused by hypoxia, is paradoxically exacerbated after the restoration of 

oxygen delivery [1]. It is a dynamic process which involves the two interrelated phases of local 

ischemic insult and inflammation-mediated reperfusion injury [2]. Hepatic I/R injury is a frequent 

and major complication in clinical practice, which compromises liver function and increases 

postoperative morbidity, mortality, recovery and overall outcome and is the main cause of both 

initial poor function and primary non function of liver allograft [3]. Liver, being an organ with 

high energy requirements, is highly dependent on oxygen supply and susceptible to hypoxic or 

anoxic conditions [4]. The shortage of organs has led to expand the criteria for the acceptance of 

marginal donors, including the use of steatotic grafts [5]. 

Moreover hepatic steatosis is a major risk factor after liver surgery because steatotic livers tolerate 

poorly I/R injury. After major liver resection, steatosis is associated with mortality higher than 

14% respect to the 2% using normal liver. The tolerance of the liver to I/R injury is reduced 

dramatically due to the presence of fatty infiltration. Several hypotheses have been suggested to 

explain the decreased tolerance of steatotic liver to I/R injury compared with normal livers. These 

include increased lipid peroxidation, neutrophil infiltration, and release of pro-inflammatory 

mediators and the alteration of micro circulation [6]. The latter process is the major event of re-

perfusion injury in steatotic livers, and is due to the abnormal accumulation of fat within the 

cytoplasm of hepatocytes, resulting in increased hepatocellular volume and narrowing of sinusoid, 

compromising the suitable graft revascularization and viability after transplantation. Moreover, 

several evidences indicated that an increased sensitivity of fatty hepatocytes to the harmful effects 

of reactive oxygen species (ROS) plays a pathogenic role in this event. All together, these studies 

suggested different therapeutic strategies to prevent loss of liver functions and failed to focus more 

on the search of specific protective strategies for the steatotic livers. 

   A short period of ischemia with subsequent re-perfusion triggers natural defense mechanism 

against future ischemic insults and protects the organ against the IR damage (IR). This 

phenomenon is regarded as ischemic preconditioning (IP) [8]. IP can be applied intermittently or 

as a single short period of 5-10 ten minutes of ischemia followed by 10-15 minutes re-perfusion 

[9]. 

   “In vivo” and “in vitro” studies have clearly established that the onset of IP is triggered by the 

release of adenosine and by the subsequent stimulation of adenosine A2a receptor [10-14]. This 

was confirmed in our laboratory with experiments using primary rat hepatocytes. In this model, 

the released adenosine to extra-cellular space induced hepatocyte protection by the autocrine 

stimulation of A2a receptors [15]. Ischemic preconditioning has also shown to be effective in 

reducing re-perfusion damage during hepatic resection in humans, as well as to improve the 

outcome of hepatic transplants in experimental animals. These beneficial effects are particularly 

evident in fatty livers where preconditioning reduced by about 50%, the transaminase release and 

histological evidence of necrosis [6]. Surgical ischemic preconditioning raised hopes that it could 
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be applied to patients to prevent the side-effect of major liver surgery, but the  application of IP in 

clinical trials have given conflicting results as in some cases IP did not afford protection and in 

other its protective action was variable [16-21]. 

      Thus the mechanism by which steatosis increases the sensitivity of the liver to ischemia-re-

perfusion injury is poorly understood. More specifically, the primary event responsible for the 

exacerbated response has not been identified, at the same time the surgical ischemic 

preconditioning gave promising results in animal models but when applied on human, often failed 

to induce reliable graft protection. This gave a rationale to investigate the effects of adenosine 

receptor agonist on steatotic mice hepatocytes in order to evaluate the possible use of these agents 

for liver pharmacological preconditioning. 

 

MATERIALS AND METHODS 

Hepatocytes isolation, preparation and treatments: 

 

Male mice C57BL/6 weighing 20-30g were anesthetized i.p. with Zoletil/Xilazine mixture (Zoletil 

43mg/Kg; Xilazine 17,2mg/Kg) were used for isolating primary murine hepatocytes by perfusing 

liver with collagenase. The liver was washed via the portal vein at first with T1 buffer at 37°C and 

later with T2 buffer containing collagenase for liver digestion. The hepatocytes were purified from 

the other cells by centrifugation at 500 rpm for 5 minutes followed by a further 3 minutes 

centrifugation at 1050 rpm through a layer of Percoll. Cell purity was assessed according to 

Benten [22] Cell viability, estimated at the beginning of experiments, ranged between 82% and 

90%. Details provided in Supplementary Materials. After counting, isolated hepatocytes were 

centrifuged and resuspended in Viaspan solution (University of Wisconsin Solution without 

additives) at 1x10
6 

cells/ml. Hepatocytes suspended in Via Span solution were kept for 16hrs in 

hypoxic atmosphere (95%N2 and 5%CO2 ) at 4°C (H). Palmitic Acid (50µM) was added in 

Viaspan solution to induce steatosis in hepatocytes. Isolated hepatocytes, where indicated, were 

treated with the following drugs: CGS21680 (5µM) and CCPA (100µM), the A2a and A1a 

receptors agonist respectively, JNK inhibitor - SP600125 (10M), ASK1 inhibitor-NQDI1 

(500nM), ER stress inhibitor- APY29 (285nM), DPPD (5M), PI3K inhibitor-Wortmannin 

(250nM). After 16hrs of cold storage, the hepatocytes were reoxygenated by fluxing (95%air and 

5%CO2) gas mixture in DMEM  medium on the heater at 37°C (R) for 0, 15 and 30 minutes time 

course  analysis (H/R T0‟, T15‟, T30‟). 

Determination of cell viability  

Cell viability was estimated by microscope-counting of the hepatocyte by Trypan blue excluding 

test and viability was also estimated by the determination of nuclear fluorescence staining with 

propidium iodide using a FACScan analyser (Becton-Dickinson, San Jose, CA) and Cell Quest 

software (Becton-Dickinson). Details provided in the Supplementary Materials. 

 



69 

 

Steatosis colorimetric assay: 

 

Intracellular lipid accumulation in the mouse hepatocytes was evaluated using the Steatosis 

Colorimetric Assay Kit (Cayman Chemical), according to the manufacturer‟s instructions. To 

evaluate the intracellular lipid distribution in mouse hepatocytes steatosis slides were prepared 

using ORO staining. Details provided in the Supplementary Materials. 

 

Measurement of Reactive Oxygen Species (ROS): 

Intracellular ROS quantity was measured by the method of Jakubowski and Bartosz [23], with 

minor modifications, by quantifying the DCFH-DA (2,7-dichlorofluorescin diacetate) fluorescence 

intensity with Victor X4 2030 multi reader (Perkin Elmer). Details provided in the 

Supplementary Materials. 

 

C1C7: Transfection and Treatment:  

The C1C7 mice Hepatocarcinoma cell line was obtained from the European Collection of Cell 

Cultures and cultured on modified DMEM medium containing 10% FBS (fetal bovine serum), 1% 

penicillin/streptomycin. Murine ASK1 SiRNAs (small interfering RNA) were purchased from 

Sigma-Mission (Milan, Italy). Sequences are as follows: SiRNA2 sense:  

CAGAUAGUCCACCGGGAUAdTdT and antisense: UAUCCCGGUGGACUAUCUGdTdT. 

Control siRNA was used as negative control of transfection. C1C7 cells were transfected using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer recommendations. Transfection 

efficacy was analyzed after 48 hrs using BLOCK-iT Fluorescent Oligo (Invitrogen) and the 

transfection efficiency of C1C7 cells was more than 75%. Details provided in the 

Supplementary Materials. 

Data analysis: 

Statistical analysis was performed with InStat 3 statistical software (Graph Pad Software, Inc., San 

Diego, CA) by 1-way analysis of variance, testing with Bonferroni correction for multiple 

comparisons when more than 2 groups were analysed. The distribution normality of all groups was 

preliminarily verified with the Kolmogorov and Smirnov test. Significance was established at the 

5% level. 

In Vivo Studies: 

Male C57BL/6 mice used for this study were purchased from Harlan SRL, Italy. All experiments 

involving animals were approved by the Italian Ministry of Health and the ethical committee for 

animal care of the University del Piedmont Orientale „„A. Avogadro‟‟. Mice were fed with an 

isocaloric control diet or an high fat diet to induce steatosis (HFD: 58% of energy derived from 

fat, 18% from protein, and 24% from carbohydrates; 5.6 kcal/g) (Laboratorio Dottori Piccioni, 
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Gessate, Milan, Italy) for 9 weeks. From the second week control or steatotic mice were treated by 

intraperitoneal injection twice a week either with sterile saline or CGS21680 (0.5 mg/kg of body 

weight in sterile saline) or CCPA (1.5 mg/kg of body weight in sterile saline) or NQDI-1 (50M). 

At the end of the dietary and pharmacological treatments, mice were subjected to 

ischemia/reperfusion injury.  At the end of the treatments mice were exposed to a non-lethal (70% 

of the total liver volume) hepatic ischemia for 30 min, followed by 120 min reperfusion as 

previously described (Mandili et al., 2015). Immediately after the reperfusion period, blood was 

collected to assess liver injury by measuring the ALT serum transaminase activity, with a 

commercial kit (Gesan Production, Italy), and then mice were sacrificed and the liver fragments 

immediately frozen in liquid nitrogen for WB analysis and triglyceride content determination. 

Details provided in the Supplementary Materials. 

Liver triglyceride accumulation and hepatocyte injury as serum transaminase activity were 

assessed by measuring with a commercial kit (Gesan Production, Italy) according to the 

manufacture instructions.    

Analysis of the phosphorylation state of AKT, JNK, TRAF2 and ASK1:  

 

Akt, JNK and TRAF2 and ASK1 Protein extracts were electrophoresed by SDS/PAGE (10% gel) 

and, after blotting on to nitrocellulose membranes, the membranes were probed with antibodies 

against phospho-Akt (Ser473), Akt, phospho-JNK (Thr183/Tyr185), JNK, TRAF2 (Cell Signaling 

Technology). Phospho-ASK1 (Thr845) (Biorbyt), inhibitory phospho-ASK1 (Ser83) (Sigma-

Aldrich) and ASK-1 (Santa Cruz Technology).The β-actin monoclonal antibody (Sigma-Aldrich) 

was used to assess equal protein loading. The antigens were detected by Western Lightning 

Chemiluminescence Reagent plus (ECL) (PerkinElmer) and VersaDoc 3000 quantitative imaging 

system (BioRad Laboratories). The results were expressed as ratios. Details provided in the 

Supplementary Materials. 

 

RESULTS 

 

Effect of Palmitic Acid supplementation on hypoxia/reoxygenation injury of primary mouse 

hepatocytes  

To investigate the mechanisms of ischemia/reperfusion (I/R) damage in the presence of steatosis 

we developed “in vitro” models of I/R by employing primary mouse hepatocytes. The hepatocytes 

were isolated by mouse liver perfusion with collagenase and were suspended in the University of 

Wisconsin Solution (UWS), the most commonly used graft preservation solution in clinical 

practice, and  to reproduce the phase of ischemic liver graft preservation stored at 4°C for 16 hours 

in hypoxic conditions using flasks fluxed with N295 CO2 5% (H). To evaluate the effect of I/R 

injury on steatotic hepatocytes, Palmitic acid (C16:0) (PA; 50uM) one of the most abundant 

circulating fatty acids (FFAs) in patients with nonalcoholic fatty liver disease (NAFLD) was 

added to the UWS solution.  The reperfusion phase was then mimicked, exposing the hepatocytes, 
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previously preserved in the UWS, to an oxygenated atmosphere (O2 95% and CO2 5%) at 37°C in 

DMEM (R).  

 

 

Figure 1: Effect of Palmitic Acid supplementation 

on hypoxia/reoxygenation (H/R) injury of primary 

mouse hepatocytes  

A) Steatosis was detected by Oil Red O staining (ORO) 

on murine primary hepatocytes exposed to 16hrs of 

hypoxia and to 30’ of reoxygenation at 37°C and 

incubated with or without Palmitic acid (PA; 50μM). The 

images (20X) represent the two conditions after 30 min 

of reoxygenation. B) Steatotic hepatocytes (treated with 

PA 50μM: S-Hp) and non steatotic hepatocytes (Hp) 

were stored at 4°C in hypoxic conditions for 16hrs and 

reoxygenated at 37°C for 15 and 30 min. Cells viability 

was evaluated before hypoxic storage or after hypoxia 

(H/R T0’) and after 15 and 30 min of reoxygenation (H/R 

T15’ and T30’). The results are expressed as mean of 3 

experiments ± SD.*p<0.05 vs Control; #p<0.05 vs Hp. 

 

As shown in the figure 1A PA (50 μM) treatment of primary hepatocytes exposed to H/R 

increased the intracellular lipid content, measured by Oil Red O staining, as compared to control 

primary hepatocytes exposed to H/R without PA treatment. Upon cold hypoxic storage cell 

viability was reduced by 20% and further decreased by another 20% following 30 min of warm 

reoxygenation (Fig 1B). In presence of PA cell damage was further increased by an additional 

15%-20% after both hypoxia and reoxygenation.  
 

 

Role of endoplasmic reticulum stress and JNK activation on hypoxia/reoxygenation damage 

of steatotic and non steatotic hepatocytes 
 

Recent studies show that both ischemia/reperfusion (I/R) injury and hepatic steatosis can induce 

endoplasmic reticulum stress (ER). The adaptor protein tumour necrosis factor-receptor associated 

factor 2 (TRAF2) plays a central role in regulating cellular responses to death stimuli from the ER 

stress activating among other the JNK/SAPK pathway.  
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Figure 2: Role of TRAF2 and JNK in H/R damage 

of control and steatotic hepatocytes  

Steatotic hepatocytes (PA 50M) and non steatotic 

hepatocytes were stored at 4°C in hypoxic conditions 

for 16hrs and then reoxygenated at 37°C for 15’-30 

min in presence or  absence of APY29(285nM) ER 

stress inhibitor or SP600125(10μM) JNK inhibitor.  

A) TRAF2 expression was evaluated before hypoxic 

storage (C) and after 15 min of reoxygenation at 37°C 

(H/R T15’). The results are expressed as ratio 

TRAF2/β-actin, and represent the mean of 3 

experiments ± SD.*p<0.001 vs Control; # p<0.05 vs 

Hp+H/R T15’ or S-Hp+H/R T15’ 

B) JNK activation was evaluated before hypoxic 

storage (C) and after 30 min of reoxygenation (H/R 

T30‟). JNK activation was evaluated as 

phosphorylation on Thr183/Tyr185. The results 

represent the mean of 3 experiments ± SD.*p<0.001 vs 

Control §p<0.05 vs Hp+H/R T30’; #p<0.05 vs 

Hp+H/R T30’ or vs S-Hp +H/R T30’ 

C) Cells viability was evaluated before hypoxic 

storage (C) and after 16 hrs of hypoxia and 30 min of 

reoxygenation (H/R T30’). The results are expressed 

as mean of 3 experiments ± SD. *p<0.001 vs Control; 

§p<0.05 vs Hp+H/R T30’ #p<0.05 vs Hp+H/R T30’ 

or S-Hp+H/R T30’. 

 

 

Accordingly, we observed an increase of TRAF2 expression in both control and steatotic 

hepatocytes exposed to hypoxia and subsequent 15 min of reoxygenation (Fig 2A), that was 

inhibited by the treatment with the ER stress inhibitor APY29 (285nM). 

 Furthermore, the measurement of JNK activation expressed as increased phosphorylation on 

Thr183/Tyr185 showed that subjecting hepatocytes to hypoxia/reoxygenation (H/R), induced a 

significant activation of JNK after 30‟ min of reoxygenation (Fig 2B). Interestingly we found that 

steatosis further augmented JNK activation and such process was independent from ER stress, 

since APY29, an ER stress inhibitor, abolished JNK activation only induced by H/R but did not 

affect the further increase of JNK activation induced by PA. 

The role of ER stress and JNK in the development of H/R injury in steatotic and not steatotic 

hepatocytes was then investigated. As shown in figure 2C, APY29 significantly reduced the 

damage induced by H/R but did not decrease the further increase of toxicity induced by PA. On 

the contrary JNK inhibition by SP600125 protected the H/R damage both in control and in 

steatotic hepatocytes (Fig 2C). This indicated that H/R damage depended on ER stress related-
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JNK activation both in control and in steatotic hepatocytes, but that the exacerbation of H/R 

damage in steatotic hepatocytes was still dependent by JNK but not induced by ER stress. 
 

ROS-dependent and independent Ask1 and JNK activation mediates the 

hypoxia/reoxygenation injury of steatotic hepatocytes 

 

Upon ER stress, ASK1 is the upstream mediator responsible for TRAF2-mediated JNK activation. 

Different studies also show that ASK1 activation can be induced by a mechanism related to an 

increased production of reactive oxygen species (ROS) [33]. These observations prompted us to 

evaluate the activation of ASK1 and its role in the development of H/R damage in our models of 

steatotic and non steatotic hepatocytes. As shown in the (Fig 3A), hypoxia followed by 15 min of 

reoxygenation induces the stimulation of ASK1, evaluated as increased phosphorylation of 

Thr845, in both control and steatotic hepatocytes. In steatotic hepatocytes, however, ASK1 

stimulation is significantly greater than non steatotic cells. Moreover, the exposure to H/R in 

presence of APY29 entirely inhibited ASK1 activation in control hepatocytes, but only reduced 

ASK1 activation in steatotic hepatocytes. On the contrary, the treatment with the antioxidant 

DPPD decreased ASK1 activation but only in steatotic hepatocytes. This suggested that steatosis 

could induce an increase of oxidative stress that was involved in exacerbating the stimulation of 

ASK1. Indeed, the DCFH-DA fluorimetric determination of reactive oxygen species (ROS) (Fig 

3B), evidenced that in steatotic hepatocytes exposed to H/R there was an increase of ROS 

production and as shown in figure 3B, ROS production was entirely prevented by DPPD addition. 

Additionally, we observed that PA 50μM exposure of mouse hepatocytes cultured 16 hours in 

normoxic conditions in DMEM at 37°C induced a significant increase of ROS production that was 

inhibited in presence of DPPD. This indicated that, independently from H/R exposure, steatosis is 

a condition “per se” sufficient to induce oxidative stress.  

We next evaluated the role of the ROS-mediated ASK1 stimulation, on the JNK activation over 

the increased damage of steatotic hepatocytes exposed to H/R. As shown in figure 3C-a, DPPD 

prevented both the enhanced JNK activation (Fig 3C-a) and the increased toxicity induced by PA 

(Fig 3C-b). On the other hand, ASK1 inhibition prevented JNK activation and the H/R damage in 

both control and steatotic hepatocytes. All together these data indicated that ASK1 activation has a 

central role in the development of the H/R injury in steatotic hepatocytes and that the exacerbation 

of H/R damage in steatotic hepatocytes is due to a further increase of ASK1 stimulation.  
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Figure 3: Effect of ROS production on ASK1 

and JNK activation and H/R damage of 

steatotic and non steatotic hepatocytes  

A) Steatotic hepatocytes (PA50μM) and non steatotic 

hepatocytes were stored at 4°C for 16 hrs in hypoxic 

conditions and reoxygenated at 37°C, in presence or 

absence of the antioxidant DPPD (5M) or of the ER 

stress inhibitor APY29(285nM). The stimulation of 

ASK1 was evaluated as phosphorylation in Thr845 

before hypoxic storage (C) and after hypoxia (H/R 

T0’) and after 15’ of reoxygenation (H/R T15’). The 

results represent the mean of 3 experiments ± SD. 

*p<0.01 vs Control; §p<0.01 vs Hp+H/R T15’; 

#p<0.05 vs Hp+H/R T15’ or S-Hp+H/R T0’ and T15’. 
 

B) Steatotic hepatocytes (PA 50M) and non steatotic 

hepatocytes were stored at 4°C in hypoxic conditions 

for 16 hrs (H/R T0’) and reoxygenated at 37°C for 30 

min (H/R T30’), in presence or in absence of the 

antioxidant DPPD. In other experiments steatotic 

hepatocytes (PA 50M) and non steatotic hepatocytes 

were maintained  for 16 hrs in normoxic condition 

(O2) in presence or in absence of the antioxidant 

DPPD. ROS production was evaluated as DCFH-DA 

fluorescence. The results represent the mean of 3 

experiments ± SD. *p<0.05 vs Control; #p<0.05 vs S-

Hp+ O2 or S-Hp+H/R T0’ or S-Hp+H/R T30’. 
 

C) Steatotic hepatocytes (PA 50μM) and non steatotic 

hepatocytes were stored at 4°C in hypoxic conditions 

for 16 hrs and reoxygenated at 37°C for 30 min (H/R 

T30’), in presence or in absence of the antioxidant 

DPPD (5M) or of the ASK1 inhibitor NQDI-

1(500nM). a)JNK activation evaluated as 

phosphorylation on Thr183/Tyr185 and (b)Cell 

viability. The results represent the mean of 3 

experiments ± SD. *p<0.001 vs Control; #p<0.05 vs S-

Hp+H/R T30’; §p<0.001 vs Hp+H/R T30’ or S-

Hp+H/R T30’. 
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Critical role of ASK 1 in hypoxia/reoxygenation injury of steatotic and non steatotic mice 

hepatoma cells  

 

To confirm the critical role of ASK1 in the H/R injury of steatotic hepatocytes, we carried out 

experiment of silencing of ASK1. We decreased ASK1 expression with specific SiRNA in C1C7 

hepatoma cells, treated with PA (700M) for 16 hrs and exposed them to H/R. As shown in figure 

4 the down regulation of ASK1 expression significantly reduced the damage of steatotic C1C7 

cells exposed to H/R. 

 

 

Figure 4: ASK1 down regulation in C1C7 reduces 

the hypoxia/reoxygenation injury of steatotic C1C7 

cells.  

A) WB analysis of Ask1 expression after C1C7 

transfection with Control SiRNA or two different ASK1 

SiRNAs (SiRNA1 and SiRNA2). B) Steatotic C1C7 cells 

(PA 700μM) (S-C1C7) and non steatotic C1C7 cells, 

transfected with control SiRNA or SiRNA 2  stored at 

4°C for 16 hrs in hypoxic conditions and reoxygenated at 

37°C for 30 min (H/R T30’). The results represent the 

mean of 3 experiments ± SD. *p<0.01 vs C1C7 control 

SiRNA; #p<0.05vs C1C7 control SiRNA+H/R T30’; 

§p<0.01 vs S-C1C7 control SiRNA+H/R T30’. 

 

Differential effects of A1 and A2a receptor activation in hypoxia/reoxygenation injury of 

steatotic hepatocytes 

 

The effect of A1 and A2a adenosine receptors stimulation on cell damage induced by subjecting 

steatotic hepatocytes to cold hypoxic storage and subsequent reoxygenation, were analyzed using 

specific pharmacological agonists of the two adenosine receptors, CCPA and CGS21680 

respectively. Specifically, isolated hepatocytes were incubated in Wisconsin Solution at 4°C for 

16 hrs with PA 50M in presence or absence of CGS21680 (5M) and CCPA (100M) for 

hypoxic state and then exposed to reoxygenation at 37°C. As illustrated in Figure 5A, in steatotic 

hepatocytes exposed to hypoxia/reoxygenation (H/R), CGS21680 significantly reduced cell 

damage (25%), whereas CCPA increases it of 10%.  
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Although an increase of TRAF2 expression and JNK activation were associated to the 

development of the H/R injury of steatotic hepatocytes neither the treatment with A1 nor A2a 

adenosine receptors agonists, CCPA and CGS21680 was able to modulate TRAF2 expression 

induced by H/R (Fig 5B). On the contrary, the measurement of JNK activation showed that the 

activation of JNK induced by subjecting steatotic hepatocytes to H/R damage was significantly 

prevented by CGS21680 treatment and further increased by CCPA treatment (Fig 5C). 

 

 

Figure 5: Effects of CGS21680 and CCPA treatment on 

cell viability, TRAF2 expression and JNK activation in 

steatotic hepatocytes exposed to hypoxia/reoxygenation. 

A) Steatotic hepatocytes (PA 50μM) were stored at 4°C 

for 16 hrs in hypoxic conditions and reoxygenated at 

37°C, in presence of CGS21680 (5μM) or CCPA 

(100μM). Control cells viability was evaluated before 

hypoxic storage. In the other samples cell viability was 

evaluated after 16hrs of hypoxia and after 15’ and 30’ of 

reoxygenation time course (H/R T0’-15’-30’). The results 

are expressed as mean of 3 experiments ± SD. *p<0.001 

vs Control; #p<0.05 vs S-Hp + H/R T0’, 15’ and 30’; § 

p<0.01 vs S-Hp + H/R T0’, 15’ and 30’ 

B) TRAF2 expression was evaluated in control 

hepatocytes (C) before storage in hypoxic conditions, or 

stored at 4°C  per 16 hrs with  PA (50µM) in hypoxic 

conditions in presence or absence of CGS21680 (5µM) 

or CCPA (100µM) and then exposed to 15’ of 

reoxygenation at 37°C. The results are expressed as 

ratio TRAF2/β-actin, and represent the mean of 3 

experiments ± SD. #p<0.001 vs Control. 

C) JNK activation was evaluated as phosphorylation on 

Thr183/Tyr185 in control hepatocytes (C) before storage 

in hypoxic conditions or stored at 4°C  per 16 hrs with  

PA (50µM) in hypoxic conditions in presence  of 

CGS21680 (5μM), CGS21680 + Wortmannin (250nM),  

CCPA(100µM) or NQDI-1 (500nM) and then 

reoxygenated at 37°C for 30 min.. The results represent 

the mean of 3 experiments ± SD *p<0.001 vs Control; 

#p<0.005 S-Hp+H/R T30’or S-Hp+H/R 

T30’+CGS21680+WRT; §p<0.01 vs S-Hp+H/R T30’. 

 



77 

 

Role of PI3K/AKT and ASK1 in the production of the cytoprotective effects of A2aR 

activation and effect of A1 and A2a adenosine receptors agonists on steatosis. 

 

Previous studies from our and other laboratories have evidenced that PI3K/Akt axis plays a key 

role in the production of hepatoprotection induced by preconditioning and in the cytoprotection of 

hepatocytes after A2a adenosine receptors stimulation. Hence by measuring the phosphorylation 

of Ser 473 on Akt as a marker of  PI3K stimulation, we evidenced that in steatotic hepatocytes 

exposed to hypoxia followed by 15 minutes of reoxygenation, A2a receptors stimulation with 

CGS21680 induced a significant increase of Akt phosphorylation (Fig 6A), while A1 receptors 

stimulation with CCPA did not produce any effect (Fig 6A). 
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Figure 6: Different effects of A1R and A2aR 

stimulation on Akt activation, Ask1 inhibition, 

intracellular steatosis and hepatocytes viability.  

A) Akt activation in Control hepatocytes (C) or 

hepatocytes treated with PA (50µM), 

PA+CGS21680 (5µM) or PA+CCPA (100µM) in 

hypoxic conditions at 4°C for 16 hrs and then 

exposed to 15’ of reoxygenation at 37°C, measured 

as ratio Phospho Akt (Ser473)/Akt. The results 

represent the mean of 3 experiments ± SD.*p<0.001 

vs Control and vs S-Hp+H/R T15’. 

B) Inhibitory phosphorylation of ASK1 in 

hepatocytes treated with PA (50µM), 

PA+CGS21680 (5µM) in presence or not of 

Wortmannin (250nM) and PA+CCPA (100µM) 

exposed to 15’ of reoxygenation,  evaluated as 

phosphorylation of Ser83 on ASK1. The results 

represent the mean of 3 experiments ± SD. *p<0.001 

vs Control and S-Hp+H/R T15’; #p<0.005 vs S-

Hp+H/R T15’+CGS21680. 

C) Cell viability of Steatotic hepatocytes (PA 50M) 

stored at 4°Cfor 16 hrs in hypoxic conditions and 

reoxygenated at 37°C, in presence or in absence of 

NQDI-1 (500nM), SP600125 (10µM) or CGS21680 

(M) or CGS21680 + Wortmannin (250nM). The 

results represent the mean of 3 experiments ± SD. 

*p<0.001 vs Control; #p<0.05 vs S-Hp+H/R or S-

Hp+H/R+WRT.  

D) a)Steatosis  detected by  Oil Red O staining 

(ORO) in murine primary hepatocytes exposed to 

16hrs of hypoxia and to 15’-30’ of reoxygenation at 

37°C and incubated  with or without Palmitic acid 

(PA; 50μM), PA+CGS21680(5μM), 

PA+CCPA(100μM). The images (20X) represent 

each condition after 30’ of reoxygenation. b) 

Steatosis quantified spectrophotometrically by the 

measurement of absorbance from dye ORO at 

490nm. The results are expressed as mean of 3 

different experiments ± SD. *p<0.01 vs Hp; §p<0.01 

vs S-Hp.+H/R. 
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We have shown that a TRAF2-dependent and a ROS-dependent ASK1 activation is responsible 

for JNK stimulation and for the production of H/R damage of steatotic hepatocytes. In this regard, 

it is interesting to note that Kim et al [34] reported that the mediators of cytoprotection, PI3K/Akt, 

can produce an inhibitory phosphorylation on Ser 83 of ASK1, avoiding its activation. Starting 

from these observations, we evaluated the levels of the phosphorylation of Ser 83 on ASK1 in 

steatotic hepatocytes treated with or without CGS21680 or CCPA and subjected to 

hypoxia/reoxygenation. As shown in figure 6B, the treatment with hypoxia/reoxygenation in 

presence or absence of CCPA did not modify the levels of ASK1 phosphorylation on Ser 83. On 

the contrary, hepatocyte incubation with CGS21680 induced a significant increase of the 

inhibitory phosphorylation of ASK1 that was prevented by the concomitant inhibition of PI3K 

with Wortmannin (250nM). To confirm the involvement of PI3K in ASK1 and JNK inhibition in 

the production of the cytoprotective effects of CGS21680, we investigated the effect of PI3K 

inhibitors on cellular damage and compared the capacity of ASK1 and JNK inhibitors to reproduce 

CGS21680 cytoprotection. As shown in Figure 6C, pharmacological inhibition of ASK1 with 

NQDI-1 (500nM) simulated the protective effects of A2a receptor stimulation with CGS21680 

and at the same time, inhibited JNK activation (Fig 5B). Similarly, the treatment with the JNK 

inhibitor SP600125 (10M) prevented cell death induced by hypoxia/reoxygenation in steatotic 

hepatocytes, reproducing the effect of NQDI-1 and CGS21680. By contrast, the treatment with the 

PI3K inhibitor Wortmannin (250nM) abolished the protective effects of CGS21680 on cell 

damage (Fig 6B,) and on JNK activation (Fig 5B). 

In previous studies about alcoholic steatohepatitis [24] mice KO for A1 adenosine receptors have 

been shown to be protected from hepatic steatosis. On the light of these data, we investigated, in 

our “in vitro” model of hepatocytes treated with PA and exposed to hypoxic/reoxygenation 

damage, the effect of A1 and A2a receptors stimulation on lipid intracellular accumulation. 

Our results indicated that the treatment of steatotic hepatocytes exposed to 16 hrs of hypoxia and 

15‟-30‟of reoxygenation, with A2aR agonist, CGS21680 5M, did not modify the lipid 

intracellular content induced by PA alone. On the contrary, the treatment with A1R agonist, CCPA 

100M, increased hepatocyte steatosis induced by PA (figure 6D-a). Intracellular lipid 

accumulation in steatotic hepatocytes exposed to hypoxia/reoxygenation was also quantified with 

spectrophotometer by measurement of absorbance at 490 nm and the results (figure 6D-b). The 

data obtained confirmed the observations shown by the ORO visualization showing the capacity of 

CCPA to increase the lipid content of about 30%. Thus we investigated whether the increased 

lipid content of CCPA treated hepatocytes was associated to the increase of ROS production, 

cytotoxicity, ASK1 and JNK activation. As shown in figure 7, steatotic hepatocytes exposed to 

CCPA and H/R showed an increased production of ROS (Fig 7A) and an increased ASK1 (Fig 

7C) and JNK phosphorylation (Fig 7D) that were inhibited by DPPD treatment. Consistently 

DPPD also prevented the stimulation of cell death induced by CCPA treatment (Fig 7B). 
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Figure 7: Effect of CCPA treatment on ROS 

production, cytotoxicity, ASK1 and JNK activation 

in steatotic hepatocytes exposed to 

hypoxia/reoxygenation .  

 

Steatotic hepatocytes (PA 50M) were stored at 4°C 

for 16 hrs in hypoxic conditions and reoxygenated at 

37°C until 30’ min, in presence of CCPA (100M) 

with or without DPPD (5M). A) ROS production was 

evaluated as DCFH-DA fluorescence after 16hrs of 

hypoxia and after 30’ of reoxygenation. B) Viability 

evaluated in Control cells before hypoxic storage and 

in the other samples after 16hrs of hypoxia and after 

30’ of reoxygenation. C) Stimulation of ASK1 

evaluated as phosphorylation on Thr845 after 15’ of 

reoxygenation. D) JNK activation evaluated as 

phosphorylation on Thr183/Tyr185 after 30’ of 

reoxygenation. The results represent the mean of 3 

experiments ± SD.*p<0,001 vs Control §p<0.05 vs S-

Hp; $p< 0.05 vs S-Hp; #p<0.05 Vs S-Hp or S-

Hp+CCPA. 

 

In Vivo Studies   

To confirm in vivo the observations obtained in the cellular systems, we employed a model liver 

ischemia/reperfusion injury on mice fed with a standard diet or high fat diet (HFD) for 9 weeks. 

The effect of the stimulation of A1R or A2aR or the inhibition of ASK1 was evaluated in mice 
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treated respectively with CCPA (i.p. 1.5mg/Kg), CGS21680 (i.p. 0.5mg/kg) or NQDI-1 (i.p. 

50mM). Hepatic steatosis induced by feeding HFD, as evaluated as liver triglyceride content, was 

not significantly affected neither by I/R or NQDI-1 and CGS21680 treatment (Figure 8B). By 

contrast, CCPA treatment further increased the lipid content of steatotic livers (figure 8B), 

confirming the in vitro observations obtained with steatotic hepatocytes treated with CCPA. In 

HFD-fed mice, both NQDI-1 and CGS21680 treatment showed to prevent liver damage induced 

I/R, as evaluated as serum ALT releases (Fig 8A). Moreover, both NQDI-1 and CGS21680 

treatments inhibited Ask1 and JNK activation (Fig 8 C&D). On the contrary, CCPA treatment 

further increased ALT release and such effect was associated to an augmented JNK and Ask1 

activation. On the other hand, liver damage protection induced by CGS21680 was associated to an 

increased phosphorylation of Akt (Fig 8F) and of Ask1 in Ser 83 (Fig 8 E). 

 

 

Figure 8: Effect of ASK1 inhibition or A2aR or 

A1R activation on hepatic I/R injury of steatotic 

mice. 

 

Mice fed with normal or high fat diet for 9 weeks, 

treated with I.P. injection of CGS21680 (0.5mg/Kg), 

CCPA(1.5mg/Kg), NQDI-1 (50M) were subjected to 

30’ of ischemia followed by 120’(I/R) of reperfusion 

and A)Hepatic damage evaluated by serum ALT 

release after I/R. B)Hepatic steatosis evaluated as 

triglyceride content after mice sacrifice. C) Stimulation 

of ASK1 evaluated as phosphorylation on Thr845 after 

I/R. D)JNK activation evaluated as phosphorylation on 

Thr183/Tyr185 after I/R. E)  inhibitory 

phosphorylation of ASK1 on Ser83 evaluated after I/R. 

F)Akt activation evaluated as phosphorylation of Akt 

after I/R. The results represent the mean of 3 

experiments ± SD;  A: *p<0,001 vs Control; #p<0.05 

vs HFD+I/R;  B: *p<0,001 vs Control; #p<0.05 vs 

Control or HFD+I/R;  C: *p<0,001 vs Control ; 

§p<0,01 vs Control; #p<0.05 vs HFD+I/R;  D: 

*p<0,001 vs Control ; #p<0.05 vs Control or  

HFD+I/R;  E and F: *p<0,001 vs Control. 
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DISCUSSION 

This study investigated the molecular mechanisms involved in I/R injury of fatty livers showing a 

central role of ROS-dependent and -independent ASK1 activation in promoting hepatocyte injury. 

We observed, in fact, that in the cellular model of steatotic hepatocytes (S-Hp) exposed to cold 

hypoxia/warm reoxygenation (H/R) as well as “in vivo” in mice with fatty liver undergoing I/R, 

hepatocellular injury was associated to an increased activation of ASK1. We additionally observed 

that genetic or pharmacological inhibition of ASK1 reduced H/R or I/R injury.  In vitro data also 

demonstrated that ASK1 activation was induced by two different mechanisms: one was dependent 

from the endoplasmic reticulum (ER) stress and associated to TRAF2 expression and the other 

related to an increased production of reactive oxygen species (ROS). The critical role of the 

TRAF2-dependent signaling in I/R hepatic damage is in agreement with the recent findings of 

Zhang and colleagues [25]. These Authors by employing TRAF-1 KO mice demonstrated a 

significant prevention of I/R injury and an inhibition of the ASK1-JNK axis. Accordingly, our 

data showed that H/R increases TRAF2/ASK1/JNK pathway and that its inhibition prevented I/R 

injury. However, we additionally demonstrated that such effect was evident only during 

reoxygenation, and this indicated the TRAF2/ASK1/JNK cytotoxic pathway was specifically 

implicated in the damaging effects of reperfusion, independently from the alterations produced 

during the ischemic phase. Our data also enlightened that steatosis induced an additional increase 

of ASK1 activation that was associated to an exacerbation of hepatocellular and hepatic damage. 

On this later, we showed that such steatosis-dependent increase of ASK1 was unrelated to ER 

stress and TRAF2 expression, but was instead associated to ROS production. We found, in fact, 

that the antioxidant DPPD entirely prevented the increased activation of ASK1 as well as the 

increased cytotoxicity induced by steatosis. Moreover, the activation of ASK1 induced by 

steatosis was associated to an increased oxidative stress. We also showed that H/R was not “per 

se” able to increase the ROS content of control hepatocytes and that on the contrary, the increased 

lipid content in hepatocytes incubates with Palmitic acid promoted ROS production. Such 

observation is in agreement with previous researches that correlated the increase of intracellular 

fatty acids and the promotion of oxidative stress as consequence of their increased catabolism.  

Hepatocytes have been, in fact, shown to respond to the excess of intracellular fatty acids by 

storing them as triglycerides and by boosting their catabolism through mitochondrial and 

peroxysomal -oxidation [26]. These processes are instrumental to the removal of fat but also 

augment the generation of ROS and specifically of superoxide anion [27].   

Also the pathophysiology of IR is, however, characterized by conditions that encompass ROS 

production. The most relevant of them in term of entity of oxidative stress, are related to the ROS 

production by activated Kupffer cells and by infiltrating leucocytes. However, in the early phase 

of reperfusion, liver cells too, can produce ROS by a process independent from inflammation. 

Such process is, in fact, due to the increased superoxide anion formation by the uncoupled 

mitochondrial as consequence of the oxygen re-admissions [28]. In this regard, we recently 

observed that, by comparing the sensitivity of liver sinusoidal cells (LSECs) and hepatocytes to 

oxidative stress and H/R, only LSECs were sensitive to oxidative stress [29]. These observations, 



83 

 

along with the present results indicate that intracellular production of ROS is not relevant for 

hepatocyte damage during I/R of control liver.  This study, however, enlighten that steatotic 

hepatocytes produce ROS that are, in turn responsible for ASK1 activation and for the consequent 

stimulation of JNK. Thus, the intracellular production of ROS appears responsible for the 

detrimental effects associated to I/R in fatty liver. 

 

JNK is an established mediator of tissue and hepatic injury and it has been found involved in both 

I/R injury [30] and lipotoxicity [31,15], JNK is activated by phosphorylation, translocate to the 

nucleus and activates target gene like c-Jun that, by inducing AP-1, is involved in the transcription 

of several apoptotic proteins [32]. Consistently to such cytotoxic role of JNK, we here showed that 

JNK inhibition significantly reduced S-Hp death induced by H/R and that the hepatoprotective 

effects of ASK1 inhibition were associated, both in the cellular and in the in vivo models, to the 

prevention of JNK stimulation.  

This study also elucidated the effect of the A1 adenosine receptor (A1R) activation on H/R injury 

in I/R damage of fatty liver. We found, that in contrast to the A2aR agonist CGS21680, the A1R 

agonist CCPA failed to protect the lethal I/R injury of steatotic liver and hepatocytes. Such effect 

was associated to the incapability of CCPA to activate Akt and to inhibit JNK stimulation. 

Notably, A1R stimulation by CCPA increased hepatotoxicity and JNK activation. Such an effect 

was associated intracellular lipid accumulation and to an increased ROS production, with 

consequent further stimulation of the ASK1/JNK cytotoxic pathway.  

In conclusion, the results illustrated in the present study strongly indicate A2aR activation and 

ASK1 inhibition as effective protective conditions against I/R injury of fatty liver and suggest that 

pharmacological interventions aimed to directly stimulate A2aR or block ASK1 can represent a 

novel and efficient therapeutic approach to prevent the injurious consequences of I/R application 

in fatty livers.   
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ISCHEMIA/REPERFUSION INJURY ON MICE STEATOTIC 

HEPATOCYTES AND DIFFERENTIAL EFFECTS OF 

ADENOSINE A2A AND A1 RECEPTORS STIMULATION 

Supplementary materials 

Supplementary Experimental Procedures 

Hepatocytes isolation, preparation and treatments 

Male mice C57BL/6 weighing 20-30g (Harlan Italy S. Pietro al Natisone (UD), Italy) anesthetized 

i.p. with Zoletil/Xilazine mixture (Zoletil 43mg/Kg; Xilazine 17,2mg/Kg) were used for isolating 

primary murine hepatocytes by perfusing liver with collagenase. The Italian Ministry of health 

approved the use and care of the animals. The liver was washed via the portal vein at first with T1 

buffer at 37°C containing NaCl 143mM, KCl 7mM, Hepes 10mM at pH 7. 4. After T1, the organ 

was perfused with the T2 buffer containing NaCl 100 mM, KCl 40 mM, CaCl2 5 mM, Hepes–

NaOH 50 mM, and EGTA, pH 7.4 with collagenase type IV 0.05% for liver digestion Finally, the 

liver was removed from the animal and resuspended in the medium and scrapped. The dissociated 

liver cells suspended in the medium were passed through a filter. Later, the hepatocytes were 

purified from the other cells by centrifugation at 500 rpm for 5 minutes followed by a further 3 

minutes centrifugation at 1050 rpm through a layer of Percoll. Cell purity was assessed according 

to Benten (Benten et al., 2005). Cell viability, estimated at the beginning of experiments, ranged 

between 82% and 90%.  

After counting, isolated hepatocytes were centrifuged and resuspended in Viaspan solution 

(University of Wisconsin Solution without additives) at 1x10
6
cells/ml. Hepatocytes suspended in 

Via Span solution were kept for 16hrs in hypoxic atmosphere (95%N2 and 5%CO2 ) at 4°C (H). 

Palmitic Acid (50µM) was added in Viaspan solution to induce steatosis in hepatocytes. Isolated 

hepatocytes, where indicated, were treated with the following drugs: CGS21680 (5µM) and CCPA 

(100µM), the A2a and A1a receptors agonist respectively, JNK inhibitor - SP600125 (10M), 

ASK1 inhibitor-NQDI1 (500nM), ER stress inhibitor- APY29 (285nM), DPPD (5M), PI3K 

inhibitor-Wortmannin (250nM). After 16hrs of cold storage, the hepatocytes were reoxygenated 

by fluxing (95% air and 5% CO2) gas mixture in DMEM  medium on the heater at 37°C (R) for 0, 

15 and 30 minutes time course  analysis (H/R T0‟, T15‟, T30‟). 

 
 

Determination of cell viability  

 

Cell viability was estimated by microscope-counting the hepatocyte excluding Trypan blue and by 

the determination of nuclear fluorescence staining with propidium iodide. 

 

Trypan Blue 

Trypan Blue test is routinely used cell stain to assess cell viability using the dye exclusion test. 

This test is often performed while counting cells with the Burker slide during routine sub-

culturing.  The results were confirmed by flow Cytometry evaluation of the cells Propidium iodide 

(PI). Briefly, aliquot of 1 x 10
6
 cells/100 μL are harvested into FACS tubes and washed by adding 

2 mL of PBS, centrifuged at 1000rpm for 5 minutes, and then the buffer decanted from the 

pelleted cells. The cells are resuspended in 100 µL of Flow Cytometry Staining Buffer. 5 - 10 µL 
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of PI staining solution was added to each sample just prior to analysis. The stop count was setted 

on the viable cells from a dot-plot of forward scatter versus PI. Cell viability was estimated by the 

determination of nuclear fluorescence staining with propidium iodide using a FACScan analyzer 

(Becton-Dickinson, San Jose, CA) and Cell Quest software (Becton-Dickinson). 

 
 

Steatosis Colorimetric Assay:  

 

Intracellular lipid accumulation in the in mouse hepatocytes treated or not with PA in presence or 

absence of CGS21680 or CCPA was evaluated using the Steatosis Colorimetric Assay Kit 

(Cayman Chemical), according to manufacturer's instructions of the kit. This assay provides a 

convenient tool for evaluating steatosis, where the neutral lipids are stained using oil red O (ORO) 

stain and quantified the lipid accumulation with the dye extraction solution. The dye extracted 

from the lipid droplets was quantified in spectrophotometer at 490 nm. 

Steatosis Assay: At the end of the treatments, medium was removed and the cells were washed 

with the PBS 1X twice. Later the cells are fixed to the plate with 1X fixative agent and the wells 

are subjected to washing with wash solution for 5 minutes on the basculant. The air dried wells are 

treated with the oil red solution (60% in water) and incubated for 20 minutes. Later the oil red 

solution is removed and the wells are washed with tap water until the wash solution contains no 

visible pink color. Then wells are washed twice for 5 minutes each with wash solution and 

completely air dried for 20 minutes. Lipid accumulation inside the cells are quantified by adding a 

100 l/well lipid droplets assay dye extraction solution and incubated for 30 minutes on the 

basculant and the final absorbance is read in spectrophotometer Victor X4 2030 multi reader  

(Perkin Elmer) at 490nm.  To evaluate the intracellular lipid distribution in mouse hepatocytes 

treated or not with PA and in presence or absence of CGS and CCPA  the steatosis slides prepared 

with ORO staining as indicated in the data sheet kit. After the staining procedure done, the lipid 

accumulation and distribution inside the cells were analyzed. 

At the end of the treatments, from wells medium is removed and the cells were washed with the 

PBS 1X twice. Later the cells are fixed to the cover glass with 1X fixative agent and the wells are 

subjected to washing with wash solution for 5 minutes on the basculant. The air dried wells are 

treated with the oil red solution (60% in water) and incubated for 20 minutes. Later the oil red 

solution is removed and the wells are washed with distilled water until the wash solution contains 

no visible pink color. Then wells are washed twice for 5 minutes each with wash solution and 

completely air dried for 20 minutes. Then intracellular distribution of lipid droplets were examined 

by staining with L of hematoxylin to each well and immediately washed with tap water. Later 

the cells were allowed to develop nuclear staining under tap water for ten minutes. The slides were 

prepared by taking out the glass dish with plated cells and gently placed on glass slide. Later slides 

are used to capture the pictures at microscope of intracellular lipid distribution. 

 

Measurement of Reactive Oxygen Species (ROS) 

 

Intracellular ROS quantity was measured by the method of Jakubowski and Bartosz (Jakubowski 

et al., 2000) with minor modifications. In primary normal or steatotic hepatocytes exposed to I/R 

injury in the presence or absence of DPPD, DCFH-DA (10M) was added and incubated for 30 

minutes at 37
°
C. Then, the samples were washed with PBS 1X. The fluorescence was measured at 

excitation and emission wavelengths of 495 and 525 nM respectively in the Victor X4 2030 multi 

reader (Perkin Elmer). DCFH-DA is a non-polar compound that is converted into non-fluorescent 
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polar derivative (H2DCFH) by cellular esterases after incorporation into cells. H2DCFH is rapidly 

oxidized to the highly fluorescent DCF in presence of intracellular hydrogen peroxide and other 

peroxides (Bass et al., 1983). ROS production was calculated as a percentage of the DCFH-DA 

fluorescence intensity versus untreated control cells. 

 

C1C7: Transfection and Treatment  

 

The HEPA-1 wild type C1C7 Hepatocarcinoma cell line was obtained from the European 

Collection of Cell Cultures and cultured on modified DMEM medium containing 10% FBS       

(fetal bovine serum), 5% penicillin/streptomycin, non-essential amino acid, 1% vitamin solution 

and 1% sodium pyruvate. Later the cells were collected, centrifuged and re-suspended in the 

medium and cell count performed. 1x10
5
cells (70% covering approximately) were plated in six 

multiwells plate and allowed 24hrs for the attachment of the cells in the incubator. 

Later the cells were used for small interference RNA (SiRNA) transfection procedure as described 

below. 

Murine ASK1 SiRNAs were purchased from Sigma-Mission (Milan, Italy). Sequences are as 

follows:  

SiRNA1 sense:       GUACUUCCGGGAAUCCAUAdTdT 

SiRNA1 antisense:  UAUGGAUUCCCGGAAGUACdTdT 

SiRNA2 sense:       CAGAUAGUCCACCGGGAUAdTdT 

SiRNA2 antisense:  UAUCCCGGUGGACUAUCUGdTdT. 

Control siRNA was used as negative control of transfection. C1C7 cells were transfected using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer recommendations. Transfection 

efficacy was analyzed after 48 hrs using BLOCK-iT Fluorescent Oligo (Invitrogen) and the 

transfection efficiency of C1C7 cells was more than 75%. After 48hrs of SiRNA transfection we 

treated the C1C7 cells with PA at 700M as final concentration in Viaspan solution and we 

incubated the six multiwells at 4°C for 16hrs. At the end of the cold hypoxia we started the 

reoxygenation until 30 minutes at 37°C (H/R). At the end of the treatments we performed the cell 

viability assay. 

 

Ischemia-reperfusion injury 

 

Mice were anesthetized and the abdomen opened with a mid-line incision. The Branches of 

hepatic artery and portal vein to the left lateral and median lobes were occluded with a non-

traumatic micro vascular clip for 30 mins of ischemic state resulting in deprivation of blood flow 

to approximately 70% of the liver. The abdomen was covered with saline-humidified gauze during 

the ischemic period. After 30 minutes of partial hepatic ischemia, clip will was removed, to initiate 

hepatic reperfusion, later the abdominal cavity was closed with a 4-0 silk suture and metal clips 

were applied to the skin. And the mice was allowed to recover spontaneously and fed the standard 

chow diet and water ad libitum for 120 minutes of reperfusion time.The temperature was 

maintained at 37°C during hepatic ischemia and in the post-surgical period with a warming pad. 

Immediately after the reperfusion period, blood was collected to evaluate the liver injury, as ALT 

release, and then mice were sacrificed and the liver fragments immediately frozen in liquid 

nitrogen for WB analysis and triglyceride content determination.  
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Analysis of the phosphorylation state of AKT, JNK, TRAF2 and ASK1  
 

 

Western blot is often used in research to separate and identify proteins. In this technique a mixture 

of proteins is separated based on molecular weight through gel electrophoresis. At the end of the 

treatments, hepatocytes were collected by centrifugation, washed twice with PBS 1X and treated 

with lysing buffer. For “in vivo” experiments at the end of the treatment   mice were sacrificed and 

liver pieces were collected and homogenized in the specific buffer. Protein concentration was 

determined by modified Lowry method (Lowry et al., 1951) and equal amounts (40-60 μg) of 

protein were subjected to gel electrophoresis. 

The samples were electrophoretically transferred to a nitrocellulose membrane and later incubated 

with blocking buffer (5% non-fat milk) for 1hr at room temperature and then washed with TBS 

Tween (0.1% Tween-20) 1X buffer and then incubated with the primary antibody of interest 

overnight at 4°C. In particular, we used as primary antibody: phospho-Akt (Ser473), Akt, 

phospho-JNK (Thr183/Tyr185), JNK and TRAF2 (Cell Signaling Technology). Phospho-ASK1 

(Thr845) (Biorbyt), inhibitory phospho-ASK1 (Ser83) (Sigma-Aldrich) and ASK-1 (Santa Cruz 

Technology). The β-actin monoclonal antibody (Sigma-Aldrich) was used to assess equal protein 

loading. The bound primary antibodies are then detected by using secondary antibodies, anti-rabbit 

or anti-mouse, incubated at room temperature for 1hr. developing the blot after washing the 

membrane 3 times with TBS-T (Tris, NaCl and 0.1% Tween-20) of 5 minutes each. The proteins 

of interest were detected using an chemiluminescence-based immunodetection of alkaline 

phosphatase (AP) or horse radish peroxidase (HRP) on western blots or dot blots detection kit 

(ECL) (Invitrogen) at Versa Doc 3000 quantitative imaging system (BioRad Laboratories) and 

analyzed with the Quantity-One software (Bio Rad, Hercules, CA). The results are expressed as 

ratio of phosphorylated protein on the correspondent basal protein or, for TRAF2 expression, as 

ratio of total TRAF2 and β-Actin 
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5 GENERAL DISCUSSIONS 
 

Ischemia/reperfusion (IR) injury is one of the most critical complications commonly associated 

with liver surgery. I/R can induce liver dysfunction or failure following major liver surgery. 

Hepatic I/R injury is a complex, multifaceted process that occurs during the ischemic period as 

well as during the reperfusion phase. Compared with healthy livers, steatotic livers are vulnerable 

to IR injury. Hepatic I/R injury is a frequent and major complication in clinical practice, which 

compromise liver function and increases postoperative morbidity, mortality, recovery and overall 

outcome (Serracino-Inglott et al., 2001). Hepatic ischemia/reperfusion (I/R) injury can be defined 

as the phenomenon during which cellular damage in an organ, caused by hypoxia, is paradoxically 

exacerbated after the restoration of oxygen delivery (Peralta et al., 2010). This concept occurs in 

several organs such as brain, liver, heart, lung, intestine, skeletal muscle and kidney (Eltzschig et 

al., 2004). Ischemia/reperfusion (IR) injury is a dynamic process which involves the two 

interrelated phases of local ischemic insult and inflammation-mediated reperfusion injury (Zhai et 

al., 2013). Liver, being an organ with high energy requirements, is highly dependent on oxygen 

supply and susceptible to hypoxic or anoxic conditions (Teoh et al., 2011). Liver steatosis is a 

frequent condition in western countries and fatty livers poorly tolerate cold and warm 

ischemia/reperfusion (I/R) injury;  thereby steatosis  is  associated with an higher mortality after 

major liver surgery and including liver transplantation (Feng et al., 2006). 

Early researches from our Group analyzed the molecular mechanisms involved in I/R injury 

employing an “in vitro” model of primary rat hepatocytes exposed to hypoxic damage. 

Hepatocytes death upon ATP depletion during the lack of oxygen is precipitated by the 

deregulation of Na
+
 homeostasis. Na

+ 
alterations that follow ATP depletion are the result of a 

combined block of the ATP-dependent Na
+
 efflux through the Na

+
/K

+
 ATPase and of the 

activation of Na
+
/H

+
 exchanger and Na

+
/HCO3

−
 co-transporter in response to cytosolic 

acidification. In the phase that precedes death, hepatocytes respond to the progressive increase of 

intracellular Na
+
 with the stimulation of the volume regulatory decrease mechanisms, that is, 

activation of the K
+
 channels and K

+
 efflux. The decrease of intracellular K

+
 under a critical 

threshold definitively impairs the volume regulatory systems and leads to a sudden increase of 

hepatocytes volume, with osmotic lysis and death of hepatocytes (see for review: Alchera et al., 

2010). Upon oxygen readmission, ROS production by uncoupled mitochondria promotes oxidative 
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stress and mitochondrial permeability transition and is associated with a decreased capacity to 

synthesize ATP (Jaeschke et al., 2003). 

As reported in paper1, we analyzed the proteome alterations of murine cell isolated from liver 

exposed to I/R elucidating their contribution to I/R damage. Our results showed deep 

modifications in the proteomic pattern of hepatocytes and LSEC and in the enzymatic activities. In 

particular we demonstrated that I/R reduced the expression of enzymes involved in the 

carbohydrate, lipids and mitochondrial metabolism (Krebs cycle and oxidative phosphorylation) in 

hepatocytes and in LSEC and decreased proteins related to oxidative stress that is particularly 

evident in LSECs. On this respect the severe ATP depletion occurring in hepatocytes during 

ischemic phase has been generally ascribed to the lack of oxygen and glycolytic substrates, 

consequent to blood interruption (Peralta et al., 2013; Jaeschke et al., 2003; Alchera  et al 2010). 

However, ATP loss was prevented in the preconditioned liver, indicating that the block of blood 

was not per se sufficient to justify ATP loss. In addition, one of the most striking alterations of the 

IR-injured liver is the incapability of recovering aerobic ATP production when blood flow is re-

establishment with reperfusion. Our observations that glycolytic enzymes and ATP synthase 

subunits were decreased in HP and LSEC obtained from liver exposed to IR, and that CGS21680 

treatment up regulated the glycolytic and mitochondrial pathways, endorses the hypothesis that IR 

damage is not merely due to a reduction of blood flow, but also involves a coordinate perturbation 

of metabolic enzymes, which can be rescued by preconditioning. Beside to the effect on glucose 

metabolism, we found that CGS21680 treatment is able to promote lipid transport and beta-

oxidation, as well as an up regulation of urea cycle. This suggests that the improvement of amino 

acid and lipid catabolism could represent a response of HP and LSEC to ATP deprivation caused 

by IR. Therefore, A2aR stimulation provides a general metabolic advantage to HP and LSEC, 

demonstrated by ATP production increase, not only rescuing the metabolic alteration induced by 

IR but, in some cases, enhancing the expression of enzymes required for energy production.  The 

relevance of these observations is also supported by the fact that the cytoprotective action of 

CGS21680 is reverted by the inhibition of pyruvate kinase (KPYR), 3-ketoacyl-CoA thiolase 

(THIM), and arginase (ARGI1), three enzymes involved in respectively, glycolysis, β-oxidation 

and urea cycle. Furthermore, cell supplementation with the glycolic end-product pyruvate, the free 

fatty acid Palmitic acid or amino acid mixture demonstrated to mimic partly the protective effects 

of CGS21680 against HP and LSEC hypoxia-reoxygenation damage.   
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Beside the effect of A2aR activation on energy rescue and mantainance, a further critical aspect 

enlightened by our studies was the capacity of A2aR stimulation to improve the antioxidants 

defence of liver cells. Interestingly we additionally demonstrated that I/R itself also affected 

hepatic antioxidant defences and that such effect was specific for LSEC. Accordingly we 

demonstrated that CGS21680 treatment of LSEC prevented oxidative damage following in vitro 

addition of H2O2. These results are particularly interesting since they may represent the molecular 

explanation of the high sensitivity of LSEC to cold ischemia, the microcirculatory disturbance 

induced by IR damage and finally the rescuing action of ischemic preconditioning (Peralta et al., 

2013).  

 I/R are a still a significant clinical problem after transplantation surgery. The dramatic organ 

shortage for transplantation forces consideration of steatotic grafts, which have a higher 

susceptibility to I/R. Hepatic steatosis is usually an asymptomatic condition but is a significant 

risk factor in liver transplantation; in fact, greater than 30% steatosis constitutes one of the single 

greatest risk factors, similar to the risk associated with donors after cardiac death for liver 

transplantation (Busuttil et al., 2003). Transplanted steatotic livers exhibit increased rates of 

primary nonfunction and initial poor graft function and the current consensus is that donors with 

greater than 60% fat content should not be used (Adam et al., 1991; Todo et al., 1989; Chui et al., 

2001).  

Based on steatotic animal models, fatty livers tend to have enlarged hepatocytes due to 

cytoplasmic lipid droplets with a concomitant reduction in sinusoidal space, as well as reduced 

total hepatic blood flow and microvascular perfusion (Takeda et al., 1991; Saefalien et al., 1999). 

Furthermore, experimental animal data suggest that steatotic livers are much more sensitive to 

ischemia-reperfusion than normal “lean” livers. For example, hepatic warm ischemia in obese 

Zucker rats had a much more pronounced effect on animal survival and led to more hepatocyte 

necrosis, microvascular disruption, and oxidative damage than in lean animals (Koneru et al., 

1995). Rats fed a choline- and methionine deficient diet (CMDD) exhibited more functional 

impairment after ischemia-reperfusion in situ, and increased oxidative stress compared to animals 

fed a normal diet (Koneru et al., 1995., Nakana et al 1997). Studies using the same animal model 

on the effect of cold storage of liver followed by rewarming and perfusion also show more 

extensive damage in fatty livers than in lean livers, and a reduced “safe” preservat ion time before 

transplantation (Nakana et al 1997., Hayashi et al., 1993). The mechanism whereby steatosis 

increases the sensitivity of the liver to ischemia-reperfusion injury is poorly understood. More 
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specifically, the primary event responsible for the exacerbated response has not been identified, 

and it is unclear whether the enhanced inflammatory response is the result of or a causative factor 

in this response. Previous studies have shown that fatty livers exhibit serious microcirculatory 

disturbances after ischemia-reperfusion (Hasegawa et al., 1997; Ijaz et al 1995; Sun et al, 2001). 

Furthermore, there is evidence of a greater inflammatory response in fatty livers after 

transplantation (Mokuno et al., 2004), while treatments that reduce the inflammatory response, 

such as heat shock (Mokuno et al., 2006) and endotoxin antibodies (Fiorini et al., 2004), improve 

survival of fatty livers. None of these studies has, however, identified the primary or triggering 

event leading to hepatic failure. 

We employed a cellular model to investigate the molecular mechanisms involved in I/R injury of 

steatotic hepatocytes. The results of our study (paper2) indicate that the damage of fatty 

hepatocytes exposed to I/R is mediated by the activation of the ASK1-JNK axis and that increased 

sensitivity of fatty hepatocytes to I/R injury is related to an augmented and ROS-dependent 

stimulation of this cytotoxic pathway. (Fig 8) 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: hepatic damage of fatty hepatocytes exposed to I/R is related to an augmented and ROS-

dependent stimulation of the cytotoxic ASK1-JNK axis. 
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Preclinical studies have shown several strategies able to reduce hepatic damage by individually 

targeting the different alterations that contribute to I/R injury (Jaeschke et al, 2003; Alchera et al, 

2010; Selzner et al., 2003). 

The discovery of ischemic preconditioning (IP) has shown the existence of intrinsic systems of 

cytoprotection whose activation can stave off the progression of irreversible tissue damage.  

Besides its conceptual interest, deciphering the molecular mediators that underlie the 

cytoprotective, pro-regenerative and anti-inflammatory effects of preconditioning can open 

important therapeutic possibilities.  Pharmacological activation of critical mediators of IP emulate 

or even to intensify its salubrious effects. Thus pharmacological preconditioning could become a 

novel therapeutic procedure to be applied when surgical IP is not clinically applicable.  

Studies "in vitro" and "in vivo" have clearly demonstrated a key role of the adenosine A2a 

receptor (A2aR) as main trigger of liver IP.  In previous studies we illustrated some molecular 

mechanisms involved in the prevention of hypoxic hepatocyte injury by A2aR. Such mechanisms 

were responsible for the maintenance of intracellular pH by a p38 MAPK and a PI3K-dependent 

activation of the vacuolar ATPase that acting as Na
+
-independent alternative pH buffering system 

avoided a toxic Na
+
 accumulation. Also the delayed protective effects of A2aR were mediated by 

PI3K and were dependent by an HIF-1 induced prevention of the hypoxic pH and Na
+
 alterations. 

HIF-1, in fact, by inducing the expression of CAIX maintained the physiological cytosolic pH and 

prevented Na
+
 accumulation (see for review: Carini et al., 2003; Alchera et al., 2010 and 2015).  

The use of proteomic analysis allowed us to evidence profound changes of hepatocytes and 

LSECs proteome, providing new insights into some critical aspects of I/R injury and IP-induced 

hepatoprotection. Our  results showed that hepatic cells isolated from liver exposed to I/R develop 

a “pathological phenotype” characterized by a decrease of the metabolic enzymes involved in the 

aerobic and anaerobic ATP production and, in the specific case of LSECs, an additional decrement 

of antioxidant defenses. On the contrary, A2aR stimulation induces the expression of a “protected 

phenotype” characterized by an enhancement of enzymes necessary for energy production and 

ROS detoxification. This gives a sort of metabolic and antioxidant advantage to precondition 

compared to non-preconditioned cells and can account for the increased resistance to death of 

preconditioned hepatic tissue during I/R exposure. 

Previous studies demonstrated an interesting effect of the application of IP to fatty livers. IP, in 

fact, almost halved transaminase release and the histological evidence of liver cell death showing a 
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greater efficacy of IP in steatotic liver compared to normal liver (Serafin et al., 2002). In the past 

we demonstrated the capacity of A2aR stimulation to prevent lipoapoptosis of primary rat 

hepatocytes and to inhibit the development of nonalcoholic steatohepatitis in rat fed with MCD 

(methionine choline-deficient) diet preventing JNK-1/2 activation by a PI3K/Akt-mediated block 

(Imarisio et al., 2012). 

In the present study, we investigated the effects of the pharmacological preconditioning with 

adenosine A2aR on I/R injury of steatotic hepatocytes. A2aR agonist CGS21680 prevented 

hepatocellular injury in both S-HP and fatty liver upon H/R and I/R. The hepatoprotective activity 

of CGS21680 depended on the inhibition of Ask1 and induced, as consequence, the prevention of 

JNK activation.  

 

Figure 9: CGS21680 A2aR stimulation protects fatty hepatocytes exposed to I/R by the PI3K-Akt axis activation 

able to block ASK-1/JNK axis through inhibitory phosphorylation of Ask-1 in Ser83.  

 

These results show for the first time, a novel mechanism of protection of the main inductor of IP, 

the activated A2aR. The mechanism involves a PI3K/Akt mediated block of the cytotoxic axis 

ASK1 vs. JNK. CGS21680 in fact prevents ASK1 activation without interfering with the toxic 

mechanisms upstream ASK1 activation, i.e. ER stress with increased  TRAF2 expression or ROS 
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production, and is the result of the Akt- mediated inhibitory phosphorylation of ASK1 on Ser83 

(Fig 9). 

In conclusion the data emerging from the molecular analysis of the effects induced by A2aR 

stimulation suggest novel potential pharmacological strategies to be applied human hepatic 

surgery, as transplantation. First, the findings of the multiple mechanisms of liver cell protection 

induced by A2aR activation strongly enforce the idea to translate A2aR agonists to the clinical 

practice as hepatoprotective tool. 
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Ischemic preconditioning (IP) of the liver by a brief interruption of the blood flow protects the damage induced by a subsequent
ischemia/reperfusion (I/R) preventing parenchymal and nonparenchymal liver cell damage. The discovery of IP has shown the
existence of intrinsic systems of cytoprotection whose activation can stave off the progression of irreversible tissue damage.
Deciphering the molecular mediators that underlie the cytoprotective effects of preconditioning can pave the way to important
therapeutic possibilities. Pharmacological activation of critical mediators of IP would be expected to emulate or even to intensify
its salubrious effects. In vitro and in vivo studies have demonstrated the role of the adenosineA2a receptor (A2aR) as a trigger of liver
IP. This review will provide insight into the phenotypic changes that underline the resistance to death of liver cells preconditioned
by pharmacological activation of A2aR and their implications to develop innovative strategies against liver IR damage.

1. Ischemia/Reperfusion Injury of the Liver

Inflow occlusion during liver surgery with consequent reper-
fusion causes ischemia/reperfusion (I/R) injury of the liver.
I/R injury is recognised as a main risk factor after major
hepatic surgery and liver transplantation since it may affect
patients recovery and carries a risk of poor postoperative out-
come [1].

Hepatic I/R injury is a complex, multifaceted process that
occurs during the ischemic period as well as during the reper-
fusion phase. During ischemia, mitochondrial deenergiza-
tion, ATP depletion, and ionic and volume alterations lead to
liver cell necrosis. Upon oxygen readmission, reactive oxygen
species (ROS) production by uncoupled mitochondria pro-
motes oxidative stress andmitochondrial permeability transi-
tion and is associated with a decreased capacity to synthesize
ATP. Caspase activation, necrosis, and apoptosis of liver cells
and activation of the inflammatory reactions follow these
events. Resident Kupffer cells and infiltrating neutrophils and

lymphocytes release ROS, proteases, and cytokines and fur-
ther contribute to the progression of hepatic injury [2–4].
Preclinical studies have shown several strategies able to
reduce hepatic damage by individually targeting the different
alterations that contribute to I/R injury [2–6].Their potential
adverse effects and their focused approach have inhibited,
however, their translation to patients and, to date, no defini-
tive methods have become part of the clinical practise [1, 2].

2. Hepatic Ischemic Preconditioning

The term ischemic preconditioning (IP) refers to the increase
in tissue tolerance to ischemia/reperfusion (I/R) damage
that can be induced by the preexposure to brief periods of
ischemia followed by reperfusion [7]. This phenomenon was
first described by Murry et al. in the myocardium [8], but
it was subsequently observed in many other tissues [7]. In
liver, studies in rodents have shown that 10min interruption
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of blood flow followed by 10min reperfusion reduces hep-
atic injury, oxidative stress, microvascular disturbances, and
inflammation during a subsequent extended period of I/R [1–
8].

The demonstration of the pleiotropic protective effects of
IP in the experimental models has raised hopes that it could
be a useful and easy technique to reduce I/R injury in human
liver surgery. IP surgical application, however, has the disad-
vantage of inducing trauma to major vessels and stress to the
target organ [9]. Moreover the contrasting outcomes of the
first clinical studies, the different protocols of IP application
in humans, and the variable clinical settings have not allowed
a definitive demonstration of the benefit of the clinical
application of IP [9–13].

This observation has inhibited, by now, the routine use of
IP in human liver surgery and has indicated the need of more
efficient approaches to activate IP in patients. In this regard,
the pharmacological induction of liver preconditioning by
targeted activation of one or more of the critical molecular
mediators of IP may represent a more reliable technique to
activate the intrinsic system of hepatoprotection in patients.

3. Adenosine A2a Receptor Activation:
A Main Trigger of Hepatic Preconditioning

The nearly 25 years’ research on liver IP has demonstrated
that its applications induce deep modifications of liver tissue
that make liver cells resistant to damage. The knowledge of
the molecular changes responsible for the production of such
protected liver cell phenotypes is however still incomplete. To
date one of the established notions is the role of the adenosine
A2a receptor (A2aR) activation as an inductor of liver pre-
conditioning. Adenosinemainly originates by the breakdown
of adenine nucleotides and even a transient damage of cell
membranes, like that induced by the brief ischemic stress of
IP, leads to massive ATP increase in extracellular space with
rapid formation of adenosine [14]. Since the early reports of
Peralta et al. [15, 16], in vivo and in vitro studies have shown
that IP increases extracellular adenosine levels that in turn
triggers IP protective effects upon stimulation ofA2aRof liver
cells. Consistently pretreatment with adenosine A2 receptor
agonists enhances liver tolerance against hypoxia and I/R
damage, while pharmacological or genetic inhibition of A2aR
activation prevents the beneficial effects of IP [15–25].

The mechanisms responsible for A2aR-mediated hepato-
protection during IP are both indirect and direct.The indirect
mechanisms depend on themaintenance of nitric oxide (NO)
synthesis [15, 16] induced by preventing the downregulation
of NO synthase of liver endothelial cells induced by I/R [26].
The direct effects are due to the activation of intracellular
survival pathways as a consequence of the stimulation of the
A2aR expressed on liver cells.

4. Adenosine A2a Receptor Activation Protects
Hepatocyte Hypoxic Damage

In the past years, we have employed the in vitro model
of primary rat hepatocytes preconditioned with a brief

hypoxia-reoxygenation period to investigate the intracellu-
lar mechanisms responsible for the direct hepatoprotective
action of A2aR stimulation. These studies have shown that
A2aR stimulation activates a complex array of protective sig-
nals that contribute to the induction of hepatocytes resistance
to hypoxic damage (Figure 1). Upon A2aR stimulation, with
adenosine or pharmacological agonists, the activation of Gs
protein and consequently of adenylate cyclase and protein
kinase A (PKA) occurs [19, 20, 27]. PKA phosphorylates
A2aR and shifts its coupling to Gi protein and Src kinase
thus activating the surviving mediator phosphatidylinositol-
3-kinase (PI3K) and its downstream effector Akt [21]. This
allows the stimulation of phospholipase C, the recruitment
of the specific isoforms 𝛿 and 𝜀 of protein kinase C (PKC),
and the activation of p38 MAPK [19, 20, 27]. Full activation
of preconditioning responses also needs downmodulation of
inhibitory enzymes of PKC and PI3K. Hypoxic precondition-
ing as well as A2aR stimulation induces, in fact, a RhoA-
GTPase-dependent inhibition of the diacylglycerol kinases 𝜃,
thus increasing diacylglycerol (DAG) and sustaining activa-
tion of the DAG-dependent PKC 𝛿 and 𝜀 [28]. Consistently
recent “in vivo” studies with specific PKC 𝛿 inhibitors
confirmed the critical role of PKC and, particularly, of PKC 𝛿
inmediating the protective effect of IP [25]. A2aR stimulation
also induces the degradation of the PI3K inhibitor, phos-
phatase and tensin homologue deleted from chromosome 10
(PTEN), through a NADPH oxidase-dependent mechanism,
thus allowing themaintenance of the PI3K-dependent signals
[29]. The above observations indicate a key role played by
PI3K and p38 MAPK in hepatocyte preconditioning as also
confirmed by in vivo studies that reported a marked increase
in the dual phosphorylation of hepatic p38 MAPK [30] and
demonstrated the implication of PI3K in mediating hepato-
protection in preconditioned liver [31].

Biochemical studies shed light on mechanisms by which
these protective signal networks induce the increased resis-
tance of preconditioned hepatocytes to hypoxic injury.

As illustrated in Figure 1, hepatocytes death upon ATP
depletion is precipitated by the deregulation of Na+ home-
ostasis [32]. An irreversible increase of intracellular Na+ pro-
motes, in fact, hepatocytes killing induced by several insults
including oxidative stress, mitochondrial toxins, and warm
and cold hypoxia and at the first phases of reoxygenation
[32–35]. Na+ alterations that follow ATP depletion are the
result of a combined block of the ATP-dependent Na+ efflux
through the Na+/K+ ATPase and of the activation of Na+/H+
exchanger and Na+/HCO

3

− cotransporter in response to
cytosolic acidification [32]. In the metastable phase that pre-
cedes death, hepatocytes respond to the progressive increase
of intracellular Na+ with the stimulation of the volume regu-
latory decrease mechanisms, that is, activation of the K+
channels andK+ efflux.Thedecrease of intracellularK+ under
a critical threshold definitively impairs the volume regulatory
systems and leads to a sudden increase of hepatocytes volume,
with osmotic lysis and death of hepatocytes [35].

Interestingly hypoxic preconditioning and A2aR acti-
vation prevent the irreversible Na+ increase that precedes
hypoxic hepatocytes damage. As shown in Figure 1, A2aR
stimulation allows the maintenance of intracellular pH and
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− exchanger. This neutralizes intracellular pH without activation of the Na+/H+ exchanger and the consequent Na+ increase. (See
also text and [19, 20, 27, 28, 36, 37, 40].)

prevents the activation of the Na+-dependent systems of pH
regulation [19, 36]. Such effect is p38 MAPK- and PI3K-
dependent and is due to the activation and translocation to
the plasma membrane of the vacuolar ATPase (V-ATPase).
V-ATPase acts as alternative pH buffering system and allows
proton extrusion avoiding the irreversible Na+ accumulation
that precipitates hypoxic hepatocytes death [36, 37].

The protective effects of A2aR stimulation can be either
immediate (early preconditioning) or delayed (late pre-
conditioning). Early preconditioning allows hepatocytes to
respond to a pathogenic stress that immediately follows
the preconditioning stimulus and involves the activation
of constitutive molecular systems. Late preconditioning is,
instead, able to increase hepatocytes resistance to hypoxia up
to 24 hours after the preconditioning stimulus and involves
DNA transcription and de novo protein synthesis. Hypoxia-
inducible factor 1 (HIF-1) is the main regulator of tissue
adaptation to oxygen deprivation [38] and it is found to be
increased in human transplanted livers exposed to IP [39].

Consistently we found that late hypoxic preconditioning
of primary cultured hepatocytes is mediated by an A2aR-
dependent nonhypoxic HIF-1 activation and the consequent
production of its target protein carbonic anhydrase IX
(CAIX) [34]. As shown in Figure 1, A2aR induces a PI3K-
and PKC-dependent nuclear translocation, DNA binding,
and activation of the nuclear transcription factor HIF-1. In
turn, HIF-1 induces the expression of CAIX that converts
CO
2
into bicarbonate in the extracellular milieu. Bicarbonate

then is transported into the hepatocytes through the Cl−/CO
3

exchanger and neutralizes the intracellular acids, thus main-
taining the physiological cytosolic pH and preventing Na+
accumulation [40].

5. Adenosine A2a Receptor Activation
Protects Hepatocytes Lipotoxicity

The shortage of organs for liver transplantation has led to
expansion of the criteria for the acceptance of marginal
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donors, including the use of steatotic grafts [41]. Steatosis is
characterized by accumulation of excess fat, that is, when the
lipid content in cell exceeds 5% of lipid of total liver weight.
Steatosis is the most frequent hepatic lesion in western
countries with prevalence in the general population ranging
from 3% to 15% but reaching up to 70% among overweight
individuals [41, 42]. Importantly the presence of fatty infil-
tration dramatically reduces the tolerance of the liver to I/R
injury in experimental models [43] increasing pathological
consequences of I/R upon human liver surgery. Indeed clin-
ical meta-analysis shows that patients with steatosis have an
up to twofold increased risk of postoperative complications,
and those with excessive steatosis have an almost threefold
increased risk of death [44]. Several factors such as an
increase of oxidative stress, mitochondrial alterations, and
ATP depletion can participate in the decreased tolerance of
steatotic liver to I/R injury compared with normal livers [45–
48]. The accumulating lines of evidence on the phenomenon
known as lipotoxicity [49] indicate that the hepatotoxic
effects of free fatty acids may represent further attractive
mediators of this process. The pathophysiological picture of
steatosis is, in fact, characterized by an increase of circulating
nonesterified free fatty acids and their metabolites [50] which
have been shown to induce hepatic cell apoptosis through
JNK activation [45].

The application of IP to fatty livers has demonstrated
interesting results. IP, in fact, almost halved transaminase
release and the histological evidence of liver cell death
showing a greater efficacy of IP in steatotic liver compared
to normal liver [48]. The mechanisms responsible for these
beneficial effects are, however, unclear.

In recent studies, we evaluated the capacity of A2aR stim-
ulation to prevent lipoapoptosis of primary rat hepatocytes
and to inhibit the development of nonalcoholic steatohepati-
tis in rat fed with MCD (methionine choline-deficient) diet
[51]. The treatment of primary rat hepatocytes with the free
fatty acid, stearic acid (SA), promoted apoptosis by inducing
MKK4 (mitogen activated protein kinase kinase-4)/SEK1
(stress-activated protein kinase/extracellular-signal regulated
kinase kinase-1) and JNK-1/2 (c-Jun N-terminal kinase-1/2)
activation (Figure 2). The pharmacological A2aR stimula-
tion prevented JNK-1/2 activation by a PI3K/Akt-mediated
block of MKK4/SEK1 and also protected lipoapoptosis in
vitro (Figure 2) and the progression of steatosis to steato-
hepatitis in vivo [45]. These findings may have multiple
implications. First, A2aR activation is able to exert separate
protective effects against lipotoxicity associated steatosis and
against I/R. This may account for additive protective action
of A2aR activation and for the increased efficacy of IP in pre-
venting I/R injury in fatty liver (researches are in progress to
investigate this point). In addition, the capacity of amolecular
inductor of IP to protect against hepatic insults also different
from I/R injury potentially broadens the field of clinical appli-
cation of IP. The activation of IP by pharmacological stimu-
lation of one or some of its mediators would allow, in fact,
its employment in all the clinical settings where the chirurgi-
cal IP is not applicable.

6. Proteome Reveals Protection Mechanisms in
Preconditioned Hepatocytes and LSECs

An important approach to identify new protein mediators
of liver preconditioning is the use of the proteomic analysis.
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In a recent research we evaluated the proteomic patterns of
primary hepatocytes and sinusoidal endothelial cells (LSECs)
isolated from mice liver following I/R with or without pre-
treatment with theA2aR agonist CGS21680 [52]. Hepatocytes
and LSECs are themain targets of I/R injury and of the benefi-
cial effects of IP. In comparison to hepatocytes, the knowledge
of the molecular mechanisms responsible for the effects of
I/R and IP on LSECs is very limited [53]. LSECs, however,
have been demonstrated to be largely sensitive to ischemic
preservation and I/R [54]. Early studies showed that cultured
LSECs exposed to hypoxia-reoxygenation produce high level
of oxidative species that can lead to LSECs damage [54].More
recently, ischemic preservation of LSECs demonstrates the
downregulation of the transcription factor Kruppel-like fac-
tor 2 (KLF2) [55] that is involved in the induction of
a number of protective genes including the transcription
factor Nrf2 that controls the expression of several antioxi-
dant enzymes such as NAD(P)H dehydrogenase, quinone 1
(NQO1), glutathione peroxidase (GPX), or heme-oxygenase
1 (HO-1) [56]. Consistently recent reports show that remote
or intestinal preconditioning prevents hepatic I/R injury
via HO-1 mediated mechanisms [57, 58]. In addition the
microcirculatory disturbances are a hallmark of hepatic I/R
injury [59] and IP application was demonstrated to prevent
both LSECs damage and microcirculatory alteration [60, 61].

The employment of proteomic analysis allowed us to evi-
dence profound changes of hepatocytes and LSECs proteome,
providing new insights into some critical aspects of I/R injury
and IP-induced hepatoprotection. In particular, we observed
the modulation of several proteins involved in response
to apoptosis and in regeneration and cell signalling and,
more importantly, we found major modifications in enzymes
involved in oxidative stress protection and energy produc-
tion, two fundamental processes affected by I/R and IP.

Previous studies clearly showed an increased production
of oxidative species during hepatic I/R as well as the capacity
of IP to prevent such damaging process [1, 4, 5, 56, 62].
Consistently we evidenced themodulation of several proteins
involved in cell response to oxidative stress such as catalase,
glutathione transferases GSTP1, GSTP2, and GSTM1, and
peroxiredoxin 6. Notably we observed that I/R depressed
the antioxidant enzymes content in LSECs exclusively, while
A2aR stimulation generally increased the antioxidant defen-
ces in both LSECs and hepatocytes. These findings provide a
rational base to the greater susceptibility of LSECs to oxida-
tive stress [54] and are consistent with the possible down-
modulation of Nrf2 [56]. Our observations indicate, more-
over, that the ability of preconditioning to protect against
I/R-induced oxidative stress can be explained by an increased
antioxidant enzymes expression.

Another critical process is the decrease of ATP content
in liver exposed to I/R and its prevention upon preexposure
to IP [1–5]. Consistently the proteomic analysis shed light
on large modification of enzymes involved in the transport
and catabolism of metabolites necessary for energy pro-
duction. We have observed that I/R induces in hepatocytes
and LSECs a decrease of enzymes involved in carbohydrate
and lipid catabolism. On the contrary, A2aR stimulation

not only rescued the enzymes downregulated by I/R, but
even increased enzymes associated with carbohydrate and
aminoacids and lipid supply and catabolism. In the specific
case of the glycolytic metabolism we found that almost the
entire pathway was upregulated in both hepatocytes and
LSECs.

The severe ATP depletion of liver tissue exposed to I/R is
generally ascribed to the lack of O

2
and glycolytic substrates

supply consequent to blood interruption during ischemia [1–
3]. Our results indicate that the decrease in the efficiency of
the pathways involved in the anaerobic ATP production can
significantly exacerbate this process. On the other hand, the
rescue or increase of the same pathways by A2aR stimu-
lation can explain the maintenance of the ATP content of
preconditioned liver. Another critical aspect is the inability of
I/R-injured liver to recover aerobic ATP production at blood
flow reestablishment during reperfusion and, on the other
hand, the ability of IP to prevent such alteration [1–3]. We
observed that I/R inhibited in both hepatocytes and LSECs
ATP synthesis downmodulating the regulatory subunit B of
ATP synthase and also affecting the catalytic subunit A that is
essential for completion of the synthase activity. On the other
hand, CGS21680 upregulated in hepatocytes and LSECs both
ATPA and ATPB and also, in LSECs, the additional catalytic
subunit D (ATPH5). Furthermore, in both cells, CGS21680
increased the electron transfer flavoprotein subunit alpha
(ETFA), active in oxidative phosphorylation, and, in hepa-
tocytes, S2542, a carrier mediating the transport of CoA in
mitochondria that will then enter in the Krebs cycle to pro-
duce ATP.This indicated that I/R, by decreasing the enzymes
of the mitochondrial metabolism, affects the capacity to syn-
thesize ATP also in presence of O

2
and that A2aR activation

restores this process by rescuing or even increasing these
enzymes.

Altogether, these results showed that hepatic cells isolated
from liver exposed to I/R develop a “pathological pheno-
type” characterized by a decrease of the metabolic enzymes
involved in the aerobic and anaerobicATPproduction and, in
the specific case of LSECs, an additional decrement of antiox-
idant defences (Figure 3). On the contrary, A2aR stimulation
induces the expression of a “protected phenotype” character-
ized by an enhancement of enzymes necessary for energy pro-
duction and ROS detoxification (Figure 3). This gives a sort
of metabolic and antioxidant advantage to preconditioned
compared to nonpreconditioned cells and can account for the
increased resistance to death of preconditioned hepatic tissue
during I/R exposure.

7. Clues for Novel Pharmacological
Approaches to Minimize
Ischemia/Reperfusion in Patients

The analysis of the molecular changes induced by A2aR stim-
ulation suggests novel potential pharmacological strategies to
be applied in human hepatic surgery. First, the findings of the
multiplemechanisms of liver cell protection induced byA2aR
activation strongly enforce the idea to translate A2aR agonists
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to the clinical practise as hepatoprotective tool. In addition to
the chemical A2aR agonists such as CGS21680, apadenoson
(ALT-146), and ATL-313 largely employed in the preclinical
models (see [63] for review), pharmacological agents leading
toA2aR activation are already available for clinical purpose in
humans. For example, the compound known as regadenoson
(CVT-3146) is already approved by the U.S. Food and Drug
Administration and it is in use as coronary vasodilator [64,
65].

Additionally, the molecular identification of pleiotropic
effects of A2aR stimulation implicates the possibility to
intensify these beneficial effects by a concomitant stimulation
of theirmediators.Moreover, in relation to the needed clinical
setting, itmight be of interest to achieve a focused stimulation
of specific protective signals. For example, in case of short sur-
gical hepatic interventions, itmight be favourable to stimulate
the protective network of early preconditioning. The choice
could be then a simultaneous treatment with A2aR agonists
and DGK and PTEN inhibitors in order to sustain the A2aR-
induced repression of the negative regulators of PKC and
PI3K that are activated within the first hour after stimulation
of A2aR. In case of prolonged interventions, like those neces-
sary for major liver surgery and transplantation, the cocktail
treatment could additionally include items able to sustain
HIF activation such prolyl hydroxylase inhibitors that appear
to be well tolerated in patients [66]. Critical would be also
the exploitation of antioxidant and metabolic advantages of
preconditioned liver cells. In particular, the increased antiox-
idant enzymatic efficiency of A2aR preconditioned liver cells
could be improved by the inclusion in liver graft conservation
solutions of natural or synthetic antioxidants [67]. On the
other hand, the increased metabolic activities of precondi-
tioned liver cells can take a further advantage by the sup-
plementation with energy-linked metabolites to sustain the

glucidic, aminoacids, and lipid catabolism and thus anaerobic
and aerobic ATP production.

Abbreviations

IP: Ischemic preconditioning
I/R: Ischemia/reperfusion
A2aR: Adenosine A2a receptor
ROS: Reactive oxygen species
PKA: Protein kinase A
PI3K: Phosphatidylinositol-3-kinase
PKC: Protein kinase C
DGK: Diacylglycerol kinases
DAG: Diacylglycerol
PTEN: Phosphatase and tensin homologue deleted

from chromosome 10
V-ATPase: Vacuolar ATPase
HIF-1: Hypoxia-inducible factor 1
CAIX: Carbonic anhydrase IX
SA: Stearic acid
MKK4: Mitogen activated protein kinase kinase-4
SEK1: Stress-activated protein kinase/extracellular-

signal regulated kinase kinase-1
JNK 1/2: c-Jun N-terminal kinase-1/2
LSECs: Sinusoidal endothelial cells
KLF2: Kruppel-like factor 2
GST: Glutathione transferase
NQO1: NAD(P)H dehydrogenase quinone 1
GPX: Glutathione peroxidase
HO-1: Heme-oxygenase 1
ETFA: Electron transfer flavoprotein subunit alpha.

Conflict of Interests

The authors declare no conflict of interests.



BioMed Research International 7

Acknowledgment

This work was supported by Fondazione Cariplo (Grant no.
2011-0463).

References

[1] O. De Rougemont, K. Lehmann, and P. A. Clavien, “Precon-
ditioning, organ preservation, and postconditioning to prevent
ischemia-reperfusion injury to the liver,” Liver Transplantation,
vol. 15, no. 10, pp. 1172–1182, 2009.

[2] T. Karatzas, A. A. Neri, M. E. Baibaki, and I. A. Dontas, “Rodent
models of hepatic ischemia-reperfusion injury: time and per-
centage-related pathophysiological mechanisms,” Journal of
Surgical Research, vol. 191, no. 2, pp. 399–412, 2014.

[3] H. Jaeschke, “Molecular mechanisms of hepatic ischemia-
reperfusion injury and preconditioning,” American Journal of
Physiology—Gastrointestinal and Liver Physiology, vol. 284, no.
1, pp. G15–G26, 2003.

[4] E. Alchera, C. Dal Ponte, C. Imarisio, E. Albano, and R. Carini,
“Molecular mechanisms of liver preconditioning,” World Jour-
nal of Gastroenterology, vol. 16, no. 48, pp. 6058–6067, 2010.

[5] N. Selzner, H. Rudiger, R. Graf, and P.-A. Clavien, “Protective
strategies against ischemic injury of the liver,”Gastroenterology,
vol. 125, no. 3, pp. 917–936, 2003.

[6] M. Akhtar, T. Henderson, A. Sutherland, T. Vogel, and P. Friend,
“Novel approaches to preventing ischemiareperfusion injury
during liver transplantation,” Transplantation Proceedings, vol.
45, no. 6, pp. 2083–2092, 2013.

[7] D. M. Yellon and A. Dana, “The preconditioning phenomenon:
a tool for the scientist or a clinical reality?”Circulation Research,
vol. 87, no. 7, pp. 543–550, 2000.

[8] C. E. Murry, R. B. Jennings, and K. A. Reimer, “Preconditioning
with ischemia: a delay of lethal cell injury in ischemic myocar-
dium,” Circulation, vol. 74, no. 5, pp. 1124–1136, 1986.

[9] X. Song, N. Zhang, H. Xu, L. Cao, and H. Zhang, “Combined
preconditioning and postconditioning provides synergistic pro-
tection against liver ischemic reperfusion injury,” International
Journal of Biological Sciences, vol. 8, no. 5, pp. 707–718, 2012.

[10] A. Franchello, N. Gilbo, E. David et al., “Ischemic Precon-
ditioning (IP) of the liver as a safe and protective technique
against Ischemia/Reperfusion Injury (IRI),” American Journal
of Transplantation, vol. 9, no. 7, pp. 1629–1639, 2009.

[11] O. Scatton, S. Zalinski, D. Jegou et al., “Randomized clinical
trial of ischaemic preconditioning in major liver resection with
intermittent Pringle manoeuvre,” British Journal of Surgery, vol.
98, no. 9, pp. 1236–1243, 2011.

[12] S. O’Neill, S. Leuschner, S. J. McNally, O. J. Garden, S. J.
Wigmore, and E. M. Harrison, “Meta-analysis of ischaemic
preconditioning for liver resections,” British Journal of Surgery,
vol. 100, no. 13, pp. 1689–1700, 2013.

[13] M. J. Chu, R. Vather, A. J. Hickey, A. R. Phillips, and A. S.
Bartlett, “Impact of ischemic preconditioning on outcome in
clinical liver surgery: a systematic review,” BioMed Research
International, vol. 2015, Article ID 370451, 13 pages, 2015.

[14] B. B. Fredholm, “Adenosine, an endogenous distress signal,
modulates tissue damage and repair,” Cell Death and Differenti-
ation, vol. 14, no. 7, pp. 1315–1323, 2007.

[15] C. Peralta, G. Hotter, D. Closa, E. Gelpı́, O. Bulbena, and J.
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of simvastatin to cold storage solution prevents endothelial
dysfunction in explanted rat livers,” Hepatology, vol. 55, no. 3,
pp. 921–930, 2012.

[56] H. Jaeschke and B. L. Woolbright, “Current strategies to mini-
mize hepatic ischemia-reperfusion injury by targeting reactive
oxygen species,” Transplantation Reviews, vol. 26, no. 2, pp. 103–
114, 2012.

[57] Y. Wang, J. Shen, X. Xiong et al., “Remote ischemic precondi-
tioning protects against liver ischemia-reperfusion injury via
heme oxygenase-1-induced autophagy,” PLoS ONE, vol. 9, no.
6, Article ID e98834, 2014.

[58] S. Kageyama, K. Hata, H. Tanaka et al., “Intestinal ischemic pre-
conditioning ameliorates hepatic ischemia/reperfusion injury
in rats: role of heme oxygenase 1 in the second window of
protection,” Liver Transplantation, vol. 21, no. 1, pp. 112–122,
2015.

[59] J. C. Cutrn, M.-G. Perrelli, B. Cavalieri, C. Peralta, J. Rosell
Catafau, and G. Poli, “Microvascular dysfunction induced by
reperfusion injury and protective effect of ischemic precondi-
tioning,” Free Radical Biology & Medicine, vol. 33, no. 9, pp.
1200–1208, 2002.

[60] M. Glanemann, B. Vollmar, A. K. Nussler, T. Schaefer, P.
Neuhaus, and M. D. Menger, “Ischemic preconditioning pro-
tects from hepatic ischemia/reperfusion-injury by preservation
of microcirculation and mitochondrial redox-state,” Journal of
Hepatology, vol. 38, no. 1, pp. 59–66, 2003.



BioMed Research International 9

[61] R. S. Koti, W. Yang, G. Glantzounis, A. Quaglia, B. R. Davidson,
and A. M. Seifalian, “Effect of ischaemic preconditioning on
hepatic oxygenation, microcirculation and function in a rat
model of moderate hepatic steatosis,” Clinical Science, vol. 108,
no. 1, pp. 55–63, 2005.

[62] W. Y. Lee and S. M. Lee, “Ischemic preconditioning protects
post-ischemic oxidative damage to mitochondria in rat liver,”
Shock, vol. 24, no. 4, pp. 370–375, 2005.

[63] C. E. Müller and K. A. Jacobson, “Recent developments in ade-
nosine receptor ligands and their potential as novel drugs,”
Biochimica et Biophysica Acta, vol. 1808, no. 5, pp. 1290–1308,
2011.

[64] R. C. Hendel, T. M. Bateman, M. D. Cerqueira et al., “Initial
clinical experience with regadenoson, a novel selective A2A
agonist for pharmacologic stress single-photon emission com-
puted tomography myocardial perfusion imaging,” Journal of
the American College of Cardiology, vol. 46, no. 11, pp. 2069–
2075, 2005.

[65] C. A. Thompson, “FDA approves pharmacologic stress agent,”
American Journal of Health-System Pharmacy, vol. 65, no. 10,
article 890, 2008.

[66] W. M. Bernhardt, M. S. Wiesener, P. Scigalla et al., “Inhibition
of prolyl hydroxylases increases erythropoietin production in
ESRD,” Journal of the American Society of Nephrology, vol. 21,
no. 12, pp. 2151–2156, 2010.

[67] H. Malhi and G. J. Gores, “Molecular mechanisms of lipotoxic-
ity in nonalcoholic fatty liver disease,” Seminars in Liver Disease,
vol. 28, no. 4, pp. 360–369, 2008.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


