
XBWT Tricks

Giovanni Manzini1,2

1Computer Science Institute, University of Eastern Piedmont, Italy
2IIT-CNR, Pisa, Italy

Abstract

The eXtended Burrows-Wheeler Transform (XBWT) is a data transformation in-
troduced in [Ferragina et al, FOCS 2005] to compactly represent a labeled tree and
simultaneously support navigation and path-search operations over its label structure.

A natural application of the XBWT is to store a dictionary of strings. A recent ex-
tensive experimental study [Mart́ınez-Prieto et al, Information Systems, 2016] shows
that, among the available string dictionary implementations, the XBWT is attrac-
tive because of its good tradeoff between small space usage, speed, and support for
substring searches.

In this paper we further investigate the use of the XBWT for storing a string
dictionary. Our first contribution is to show how to add suffix links (aka failure links)
to a XBWT string dictionary. For a XBWT dictionary with n internal nodes our
suffix links can be traversed in constant time and only take 2n+ o(n) bits of space.

Our second contribution are practical construction algorithms for the XBWT, in-
cluding the additional data structure supporting the traversal of suffix links. Our
algorithms build on the many well engineered algorithms for Suffix Array and BWT
construction and offer different tradeoffs between running time and working space.

1 Introduction

A trie [15] is a fundamental data structure to represent a set of strings. A trie with n
nodes takes O(n log n) bits of space and supports extremely simple and efficient algorithms
to determine whether a string belongs to the set. In this paper we are interested in the
“compressed” version of a trie obtained applying to it the eXtended Burrows Wheeler
Transform (XBWT): a generalization of the BWT introduced in [6, 7, 8] to compactly
represent an arbitrary labeled tree. The XBWT represents an n-node trie in O(n) bits of
space still supporting constant time upward and downward navigation.

In a recent comprehensive study of string dictionaries [18], the authors show that in
many applications we need to handle dictionaries whose size is larger than the available
RAM. In this setting, compression is mandatory to avoid incurring the penalties of external
memory access. In the same paper the authors show that, among the available string
dictionary implementations, the XBWT-trie is particularly attractive because of its good
tradeoff between small space usage, speed, and support for substring searches.

In this paper we present two contributions related to the XBWT-trie. Our first contri-
bution is the observation that we can enrich the XBWT with 2n+ o(n) additional bits in
order to support suffix links. Suffix links, also known as failure links, are useful to speedup
some search operations as in the classical Aho-Corasick algorithm [9, Sect. 3.4].

Our second contribution is related to the problem of computing the XBWT. For a set
of strings x1, . . . , xk of total length m we can compute the XBWT-trie by first building
the n-nodes (uncompressed) trie and then applying the XBWT construction algorithm
from [8]. This approach takes optimal O(m+n) time but it may not work well in practice
because trie construction may constitute a memory bottleneck. Indeed, as shown by the
Suffix-Tree vs Suffix Array debate, pointer based tree structures often have very large
multiplicative constants hidden in the O notation that in practice prevent their use for
large datasets. An indirect confirmation of this state of affairs is that in [18] the authors
report that they were unable to build the trie for the largest dataset due to excessive
memory usage.

In this paper we take advantage of the similarities between XBWT and BWT to derive
alternative algorithms for the construction of the XBWT starting from the Suffix Array
or the BWT. Our motivation is that the algorithms for constructing these data structures
have been widely studied and engineered so there are practical algorithms using very
little working space or even designed for external memory, see [3, 4, 5, 10, 12, 13] and
references therein. Our contribution is to show that given the Suffix Array or BWT we
can compute the XBWT, including the data structure supporting suffix links, in O(m)
time. Combining our algorithms with the available (and future!) Suffix Array and BWT
construction algorithms we obtain a wide range of tradeoffs between running time and
working space for XBWT construction.

2 XBWT trie representation

Given a string x[1, n] over a finite ordered alphabet Σ we write x[i] to denote its i-th
symbol and x[i, j] to denote the substring x[i]x[i+ 1] · · ·x[j]. We write xR to denote the
string x reversed x[n] · · ·x[1]. We write x � y (x ≺ y) to denote that x is lexicographically
(strictly) smaller than y. As usual we assume that if x is a prefix of y then x ≺ y.
Throughout the paper we use the notation rankc(x, i) to denote the number of occurrences
of c in x[1, i], and selectc(x, j) to denote the position of the j-th c in x.

Tries [15] are a fundamental data structure for representing a set of k distinct strings
x1, x2, . . . , xk. A trie efficiently supports the two basic dictionary operations: locate(s)
returning i if s = xi for some i ∈ [1, k] or 0 otherwise, and extract(i) returning the string
xi given an index i ∈ [1, k]. In addition, it supports the operation locatePrefix(s) returning
the strings which are prefixed by s [18]. To simplify the algorithms, and ensure that no
string is the prefix of another one, it is customary to add a special symbol $ 6∈ Σ at the
end of each string xi. A trie for the set of strings {aa, acaa, ba, aba, aac, bc} is shown in
Figure 1.

The eXtended Burrows-Wheeler Transform is a generalization of the BWT designed
to compactly represent a labeled tree. We now show how to compute the XBWT of a trie
T and obtain two arrays L and Last that compactly represent T . Our description of the
XBWT is slightly different (simpler) from the one in [6, 8] that takes as input an arbitrary
labeled tree.

To each internal trie node w we associate the string λw obtained by concatenating the
symbols in the arcs in the upward path from w to the root of T . Hence, if node w has depth
d its associated string has length d. If T has n internal nodes we have n strings overall.
Let Π[1, n] denote the array containing the above set of n strings sorted lexicographically.
Note that Π[1] is always the empty string corresponding to the root of T .

2

a b

a a ccb

$ c a a $ $

a$ $

$

Last L Π

0 a ε
1 b
0 a a
0 b
1 c
0 $ aa
1 c
1 $ aaca
1 $ ab
1 $ aba
1 a aca
0 a b
1 c
1 a ba
1 a ca
1 $ caa
1 $ cb

Figure 1: A trie and its XBWT representation (the arrays Last and L). The array Π is
not stored in the XBWT even if navigation algorithms use it to identify internal nodes.

For i = 1, . . . , n let Li denote the set of symbols in the arcs exiting from the trie node
corresponding to Π[i]. We do not require that the symbols in Li are in any particular
order, but since T is a trie they are distinct. We define the array L as the concatenation
of the arrays L1, . . . , Ln. Clearly if T has n′ nodes, then L has n′ − 1 elements: one for
each trie edge. By construction L contains n−1 symbols from Σ and n′−n occurrences of
$. To keep an explicit representation of the intervals L1, . . . , Ln we define a binary array
Last[1, n′] such that Last[i] = 1 iff L[i] is the last symbol of some interval Lj . Hence Last
contains exactly n 1’s. See Figure 1 for a complete example.

If L[i] 6= $ belongs to the interval Lj then L[i] naturally corresponds to the internal trie
node reachable from the node corresponding to Π[j] following the arc labeled L[i]. Such
a node corresponds to the entry Π[i′] such that Π[i′] = L[i]Π[j]. In other words, there is a
bijection between the symbols in L different from $ and the entries in Π different from the
empty string. For historical reasons this bijection is called the LF -map, and we call LF (i)
the index in Π of the entry corresponding to L[i]. Hence, LF is defined by the relation

Π[LF (i)] = L[i]Π[j]

for every i, j with L[i] ∈ Lj and L[i] 6= $. The following results are a simple restatement
of Properties 1–3 in [8] using the notation of this paper.

Lemma 1 (Order preserving property). For every pair of indices i, k such that L[i] 6= $,
L[k] 6= $, it is

L[i] < L[k] =⇒ LF (i) < LF (k),

L[i] = L[k] =⇒ LF (i) < LF (k) ⇔ i < k.

For any symbol c ∈ Σ let C(c) denote the index of the first position in Π containing a
path starting with symbol c. Lemma 1 makes it possible to compute LF and its inverse

3

LF−1 using rank and select operations. In turn, the LF map makes it possible to navigate
the XBWT-trie, that is to move from the entry in Π representing a trie node to the entries
representing its children and parent.

Lemma 2 (Downward navigation). Let c = L[i] 6= $. Then

LF (i) = C[c] + rankc(L, i− 1).

As a consequence, if node w corresponds to Π[j] and has a child with label c, then such
child corresponds to entry Π[j′] with

j′ = C[c] + rankc(L, select1(Last, j)).

Lemma 3 (Upward navigation). For i > 1 let c denote the first symbol of path Π[i]. Then

LF−1(i) = selectc(L, 1 + i− C[c]).

As a consequence, if node w corresponds to the non empty path Π[j] whose first character
is c, the parent of w′ corresponds to the entry Π[j′] with

j′ = 1 + rank1(Last, LF−1(j)− 1) = 1 + rank1(Last, selectc(L, 1 + j − C[c])).

Using downward (resp. upward) navigation we can implement the locate (resp. extract)
trie operation. As observed in [18] it is convenient to take as the ID of xi the rank in L
of the $ occurrence that we reach starting from the root and following xi’s symbols. If we
reorder the strings in reverse lexicographic order (ie so that xR1 ≺ xR2 ≺ · · · ≺ xRk) then
ID(xi) = i.

The most common representation of the array L is a (possibly compressed) Wavelet
tree. We also need a bitarray representation of Last supporting constant time rank1, select1
operations, and a suitable representation of the array C (possibly another bitarray). Using
a balanced uncompressed Wavelet trees for L the space usage is O(n′ log(|Σ|)) bits and
each upward or downward step takes O(log |Σ|) time.

3 Adding suffix links

In addition to pointers to their children and parent, trie nodes may store an additional
pointer called a suffix link. The node corresponding to path α has a suffix link pointing
to the node corresponding to the longest proper suffix of α that is also in T . Hence, if
we have reached the node corresponding to the path c0c1 · · · ci the suffix link makes it
possible to reach in constant time the node corresponding to path cj · · · ci where j > 0 is
the smallest positive integer for which such node exists. Since the root corresponds to the
empty string, a suffix link exists for all internal nodes except for the root itself.

In a XBWT-trie internal nodes are identified with their position in Π. Because of the
ordering of the paths in Π, the target of the suffix link of node Π[i] is the node ` < i such
that Π[`] is the longest proper prefix of Π[i] which is in Π.

To emulate suffix links we build a string P of balanced parentheses of length 2n. We
write a pair of parentheses for each internal node so that the parentheses for node j
enclose those for i iff Π[j] is a prefix of Π[i]. To build P we start with an empty string and
consider Π[i] for i = 1, . . . , n. When we reach Π[i] first we write a) for every ` < i such

4

that the closed parenthesis for Π[`] has not been written and Π[`] is not a prefix of Π[i];
then we write the (corresponding to Π[i]. After we have reached Π[n] we write a closing
parenthesis for all indices ` such that the closed parenthesis for Π[`] has not yet been
written. For example, for the XBWT of Figure 1 it is P = (((())(())())(())(())()).

The following lemma shows that to find the suffix link for node Π[i] it suffices to find
the closest set of parentheses enclosing the (associated to Π[i].

Lemma 4. Let 1 < i ≤ n and α = Π[i]. Define k = select((P, i) and j = enclose(k).
Then, the longest proper prefix of α in Π is α′ = Π[`] with ` = rank((P, j).

Proof. First note that enclose is always defined since the pair P [1] = (, P [2n] =) corre-
sponding to Π[1] encloses every other pair of parentheses.

We need to prove that α′ = Π[`] is the longest proper prefix of α which is in Π. Since
the) for Π[`] is not written when we reach Π[i], by construction Π[`] is a prefix of Π[i].
To prove it is the longest prefix assume by contradiction that Π[`′] is also a prefix of Π[i]
and |Π[`′]| > |Π[`]|. Because of the ordering in Π we would have ` < `′ < i. Also because
of the ordering, for i′ = `′ . . . i Π[i′] would be a prefix of Π[i]. But then the parentheses for
`′ would enclose those for i, which is a contradiction since by construction ` corresponds
to the closest enclosing pair.

Using the range min-max tree from [19] we can represent the balanced parenthesis
sequence P in 2n+ o(n) bits of space and support rank, select, and enclose in O(1) time.
We have therefore established the following result.

Theorem 5. We can add to the XBWT-trie suffix links traversable in constant time using
additional 2n+ o(n) bits.

Since Π only contains internal nodes, the approach described above only provides suffix
links for the trie internal nodes. However, it can be extended to the trie leaves if necessary.
Since the symbol $ appears only at the end of a string, the suffix link of a leaf can only
point to another leaf. Thus, we can build a subsequence Π′ of Π containing only the
internal nodes which have $ among their children. It is easy to see that the parenthesis
array P ′ build on Π′ provides suffix links for the leaves.

4 Alternative construction algorithms

In this section we propose new algorithms for computing the XBWT of the trie containing
the set of distinct strings x1, x2, . . . , xk. Our algorithms derive the XBWT from the Suffix
Array or BWT of the concatenation t = y1$y2$ · · · yk$, where yi = xRi reversed and $ is
assumed to be lexicographically smaller than any symbol in Σ. We denote by SA, LCP and
BWT respectively the Suffix Array, LCP array, and Burrows Wheeler Transform of the
string t (See Figure 2 for an example). Throughout this section let m denote the length
of t, ie m =

∑
i(|xi|+ 1).

Let z be a string not containing the symbol $ and such that z$ is a substring of t. We
denote by [bz, ez] the maximal range of suffix array rows prefixed by z$. For example, in
Figure 2 for z = ε the maximal range is [1, 6], for z = aa the maximal range is [11, 12],
and for z = ca the maximal range is [20, 20].

5

SA LCP BWT RCP MR Sorted suffixes

1 22 – b – 1 $
2 3 1 a 0 0 $aaca$ababacaacb
3 8 2 a 0 0 ababacaacb$
4 11 3 b 0 0 abacaacb
5 15 1 a 0 0 caacb$
6 19 2 a 0 0 cb
7 2 0 a 0 1 a$aaca$ababacaacb
8 7 3 c 1 0 aababacaacb$
9 14 2 b 1 0 acaacb$

10 18 3 a 1 0 acb
11 1 1 $ 1 1 aa$aaca$ababacaacb
12 17 3 c 2 0 aacb
13 4 2 $ 2 1 aacaababacaacb$
14 9 1 $ 1 1 ababacaacb
15 12 2 $ 2 1 abacaacb$
16 5 1 a 1 1 acaababacaacb$
17 21 0 c 0 1 b$
18 10 1 a 1 0 babacaacb
19 13 1 a 1 1 bacaacb$
20 6 0 a 0 1 caababacaacb$
21 16 2 $ 2 1 caacb
22 20 1 $ 1 1 cb$

Figure 2: Suffix array, LCP array, MR array, and BWT for the concatenation t =
aa$aaca$ababacaacb obtained from the set of strings aac, aa, aba, acaa, ba, bc. The
arrays MR and RCP will be introduced later.

Lemma 6. Let [bz, ez] denote the maximal range for the string z. Then ez − bz + 1 is
equal to the number of strings in x1, . . . , xk which have z as a prefix. In addition it is
LCP[bz] < |z| and

LCP[i] ≥ |z|+ 1 for i = bz + 1, . . . , ez.

Proof. By construction the rows prefixed by z$ are in a bijection with the strings yi’s
which have z as a suffix. Since yi = xRi the first part of the lemma follows. Since bz is the
first row prefixed by z$ row bz − 1 must be prefixed by a string lexicographically strictly
smaller than z$. Since $ is the smallest symbol, row bz − 1 cannot be prefixed by z.

Lemma 7. Let T denote the trie representing the strings x1, . . . , xk. There is a one-to-
one (bijective) correspondence between internal nodes of T and maximal row ranges of SA.
Each node w corresponds to a maximal range containing a number of rows equals to the
number of leaves in the subtree rooted at w. The correspondence is order preserving in
the sense that row range [by, ey] precedes [bz, ez] iff the node corresponding to the former
interval precedes the node corresponding to the latter in the array Π used to define the
XBWT.

Proof. For each internal node w let λw denote the string obtained concatenating the
symbols in the upward path from w to the root. The image of node w is the maximal row

6

range associated to λw, that is, the set of SA rows prefixed by λw$. As we have already
observed, the number of rows in this interval is equal to the number of strings x1, . . . , xk
which have λw as prefix which coincides with the number of leaves in the subtree rooted
at w. The correspondence is order preserving since both in Π and in the suffix array the
order is determined by the lexicographic order of λw.

Lemma 8. Let [b, e] denote the maximal row range associated to the internal node w.
Then, the labels on the arcs exiting from w coincide with the set of symbols in the substring
BWT[b, e].

Proof. Let λw denote the string containing the symbols in the upward path from w to the
root. There is an arc with label c ∈ Σ leaving w iff there is at least a string xi prefixed by
λRwc. This implies cλw is a prefix of yi. If j ∈ [b, e] is the row prefixed by λw$yi+1$ · · · yk$
it is BWT[j] = c. Viceversa, if BWT[h] = c for h ∈ [b, e] then at least one yi is prefixed by
cλw, hence λRwc is a prefix of xi and there must be an arc with label c exiting from node w.

Finally, there is an arc with label $ leaving w iff λRw = xh for some h ∈ [1, k]. But
then there will be one SA row prefixed by yh$yh+1$ · · · yk$ and the corresponding BWT
position will contain the symbol $.

From Lemma 8 we can derive a simple strategy to compute the XBWT, that is, the
arrays L and Last defined in Section 2. Assume we are given a binary array MR such
that MR[i] = 1 iff row i is the starting position of a maximal row range (see example in
Figure 2). MR encodes the maximal row ranges and by Lemma 7 each maximal row range
corresponds to an element in the array Π. In Section 2 we have logically partitioned the
array L into L1, . . . , Ln where Li contains the labels in the arcs leaving the internal node
associated to Π[i]. We compute the subarrays L1, . . . , Ln in that order. We scan the array
MR starting from its first position until we find an index j1 such that MR[j1 + 1] = 1.
We know that [1, j1] is the maximal row range corresponding to Π[1]. In O(j1) time we
compute the set of distinct symbols in BWT[1, j1] and we write them to L. By Lemma 8
we have just computed L1 and we complete this phase by writing 0|L1|−11 to Last. Next
we restart the scanning of MR until we find an index j2 such that MR[j2 + 1] = 1. By
construction [j1+1, j2] is the maximal range corresponding to Π[2] so from BWT[j1+1, j2]
we can derive L2 and so on. The above algorithm takes O(m) time and only requires the
arrays BWT and MR.

The bit array MR can be derived from the SA and LCP arrays. However a faster
alternative is to modify one of the algorithms computing the LCP from the SA so that,
instead of the LCP, it computes the RCP (Reduced Common Prefix) array storing the
lengths of the common prefix among lexicographically consecutive suffixes assuming that
all instances of the $ symbol are different. See again Figure 2 for an example.1 The linear
time LCP construction algorithms in [11, 14, 17] can all be easily modified to compute
the RCP values instead of LCP values. The MR array can be computed along with the
RCP array observing that MR[i] = 0 iff LCP[i] > RCP[i]. The latter condition can be
verified even without knowing the LCP values by testing whether t[SA[i] + RCP[i]] =
t[SA[i− 1] + RCP[i]] = $. Indeed, the RCP array satisfies the following lemma which is an
immediate consequence of Lemma 6.

1The RCP array coincides with the LCP array if we build the concatenation t inserting a different symbol
$i at the end of each string xi. However, this approach is not practical since would increase significantly
the size of the alphabet.

7

Compute P
1: S ← empty stack; P ← empty string
2: for i = 1, . . .m do
3: if MR[i] == 1 do // beginning of maximal row range
4: `← RCP[i]
5: while (`top ≥ `) do
6: S.pop() // pop if not prefix of the new string
7: if t[SA[itop] + `+ 1] 6= $ do
8: `← `top
9: S.pop()

10: S.push(i, `)
11: while (S not empty) do
12: S.pop()

Figure 3: Algorithm for computing the parenthesis array P given t, SA, RCP and MR. An
open parenthesis is written to P at each push operation, and a closed parenthesis at each
pop operation. (itop, `top) represents the pair currently at the top of the stack.

Lemma 9. Let [bz, ez] denote the maximal range for the string z ∈ Π. It is

RCP[bz + 1] = RCP[bz + 2] = · · · = RCP[ez] = |z|

and RCP[bz] = lcp(z, z′) where z′ is the string immediately preceding z in the Π array.

Note that computing the RCP array is faster than computing the LCP array (the
common prefixes are shorter) and its storage takes less space since each entry takes at
most dlog(maxi |xi|)e bits.

We have established that with a single scan of the BWT and MR array we can compute
the arrays L and Last. We now show that using the RCP array we can also compute the
parenthesis string P that supports suffix links emulation as described in Section 3. The
algorithm for computing P is described in Figure 3. To prove its correctness we first
establish the following Lemma.

Lemma 10. In the algorithm of Fig. 3 let (i1, `1), (i2, `2), . . . , (ih, `h) denote the pairs
stored in the stack at any given moment, and let z1, z2, . . . , zh denote the corresponding
strings, i.e. zj corresponds to the maximal row range [ij , ej]. Then, for i = 2, . . . , h we
have that zi−1 is a proper prefix of zi and |zi−1| = `i.

Proof. Initially the stack is empty so the hypothesis is true. Assume now the stack
(i1, `1), (i2, `2), . . . , (ih, `h) satisfies the hypothesis and we have reached position i which
is the beginning of the next maximal row range which corresponds to the string z. Note
that ih is the starting point of the immediately preceding row range. Hence, setting
` = RCP[i] we have ` = lcp(zh, z). In addition, for j < h since zj is a prefix of zh it is
lcp(zj , z) = min(`, |zj |). Clearly if `j ≥ `, zj cannot be a prefix of z since

|zj | > |zj−1| = `j ≥ ` ≥ lcp(zj , z)

so it is correct to remove (ij , `j) from the stack at Line 6. If `j < ` then zj is a prefix of
z iff ` = |zj | which is the condition tested at Line 7. If this is the case we push (i, `) to

8

the stack and the invariant is maintained. If zj is not a prefix of z then zj−1 certainly is,
since it is a proper prefix of zj [1, `] = z[1, `], and we add to the stack (i, `j) after having
removed (ij , `j) thus maintaining the invariant.

Theorem 11. The algorithm of Figure 3 correctly computes the array P in O(m) time.

Proof. Because of the order preserving correspondence between maximal row ranges and
paths in Π, scanning the array MR is equivalent to scanning the array Π. Lemma 10
ensures that we write an open parenthesis for each path Π[i] and that the corresponding
closed parenthesis is written immediately before the opening parenthesis of the first path
Π[h] with h > i such that Π[i] is not a prefix of Π[h]. This is exactly how P is defined in
Section 3 and the correctness follows.

To see that the running time is O(m) observe that in addition to the outer loop we
only have push and pop operations on the stack. Since we push one pair (i, `) for each 1
in MR, and once popped from the stack pairs are discarded, the overall time is O(m).

For the construction of P , in addition to the input arrays, the algorithm needs extra
storage only for the stack. Since the values in the stack are strictly increasing, it uses
at most O(` log `) bits where ` = maxi RCP[i]. Summing up, we are able to compute the
XBWT with simple sequential scans using the SA and LCP (actually RCP) arrays. Since
there are many well engineered algorithms for computing the SA and LCP array, we believe
our solution is the most practical choice when the working space is not an issue. Indeed,
its working space is dominated by the space required for the storage and computation of
the SA which is still O(m logm) bits but in practice it could be much less than the space
required for storing a pointer based representation of the trie T .

We now describe an alternative XBWT construction algorithm that only uses the
BWT of the string t = y1$y2$ · · · yk$. Since the BWT takes m log |Σ| bits and can be
computed using o(m logm) bits of working space, our algorithm provides new time/space
trade-offs for XBWT construction. In addition, our algorithm works without modification
if the BWT of t is replaced by the Multi String BWT [10] of {x1, . . . , xk}. Although
BWT algorithms have been studied for a longer time, Multi String BWT algorithms are
potentially faster and have recently received much attention, see [1, 10, 16] and references
therein.

The idea of our algorithm is to compute the MR array emulating a depth first visit of
the trie T using the BWT. Since each internal trie node corresponds to a maximal row
range, the visit will give us all maximal row ranges, ie, the bit array MR. Our solution
is inspired by the algorithm in [2] that computes the LCP array emulating a breadth first
visit on the suffix trie using the BWT.

Assuming the BWT is stored in a balanced Wavelet Tree we can use the algorithm
getInterval from [2] to compute, given the maximal row range corresponding to an internal
node w, the maximal row ranges corresponding to w’s children. This computation takes
O(d log |Σ|) time, where d is the number of w’s children. Using getInterval, the computation
of the MR array can be done by the algorithm in Figure 4 whose running time is O(m+
n log |Σ|) where n is the number of internal trie nodes. The working space of the algorithm,
in addition to the BWT and MR arrays, is dominated by the stack for the depth first visit
which takes (maxi |xi|)|Σ| words. After the computation of MR, the arrays L and Last can
be obtained in O(m+ |Σ|) time as described above.

To compute also the parenthesis array P we use the following approach. Our starting
point is the observation that the algorithm in Figure 3 only uses the RCP values for the

9

Compute MR (lightweight)
1: for i = 1, . . .m
2: MR[i]← 0 // Clear the MR array
3: df visit(1, k, ε)

df visit(bz, ez, z)
1: MR[ez]← 1 // mark the endpoint of the maximal row range
2: foreach c 6= $ in BWT[bz, ez] do
3: [bcz, ecz] ← maximal row range for cz
4: df visit(bcz, ecz, cz)

Figure 4: Algorithm for computing the MR array given the BWT.

Compute P (lightweight)
1: S ← empty stack; P ← empty string
2: for i = 1, . . . n do
3: `← RCP′[i]
4: while (`top ≥ `) do
5: S.pop() // pop if not prefix of the new one
6: if LEN′[itop] 6= ` do
7: `← `top
8: S.pop()
9: S.push(i, `)

10: while (S not empty) do
11: S.pop()

Figure 5: Algorithm for computing the parenthesis array P given RCP′ and LEN′.

entries i such that MR[i] = 1. In addition, the SA is only used at Line 7 to check if the
string that prefixes row itop is a prefix of the string that prefixes row i. This property can
be tested also by checking if the length of the string at itop is equal to RCP[i].

This observation suggests that after the computation of MR we count the number
of 1’s in it: this gives us the number n of internal trie nodes. Then, we allocate two
length-n arrays RCP′ and LEN′ where we store the RCP and the length of the entries in
Π with MR[i] = 1. These arrays take O(n log(maxi |xi|)) bits and can be computed in
O(n log |Σ|) time using a straightforward modification of the LCP construction algorithm
from [2]. Using RCP′ and LCP′ we can compute the parenthesis array P using the algorithm
of Figure 5 which is derived from the one in Figure 3 but has a simpler structure since,
instead of scanning MR skipping the 0 entries, it scans directly RCP′ and LEN′.

5 Concluding remarks

With the advent of applications that use very large string dictionaries the XBWT-trie
becomes a valid alternative for their storage. In this paper we have presented two contri-
butions that can increase the practical appeal of this data structure. We believe there are
other improvements to the original XBWT-trie design that can make this data structure

10

even more appealing to practitioners. For example, it is relatively simple to support the
contraction of unary paths. The computation of the XBWT also deserves further investi-
gations: we have shown how to compute it from the SA or the BWT but we are currently
working on the design of efficient and lightweight direct construction algorithms.

References

[1] Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight algorithms for constructing and
inverting the BWT of string collections. Theor. Comput. Sci. 483 (2013) 134–148

[2] Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest common
prefix array based on the Burrows-Wheeler transform. J. Discrete Algorithms 18
(2013) 22–31

[3] Beller, T., Zwerger, M., Gog, S., Ohlebusch, E.: Space-efficient construction of the
Burrows-Wheeler transform. In: SPIRE. Volume 8214 of Lecture Notes in Computer
Science., Springer (2013) 5–16

[4] Crochemore, M., Grossi, R., Kärkkäinen, J., Landau, G.M.: Computing the Burrows-
Wheeler transform in place and in small space. J. Discrete Algorithms 32 (2015)
44–52

[5] Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression in
external memory. Algorithmica (2011)

[6] Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proc. 46th IEEE Symposium on Founda-
tions of Computer Science (FOCS). (2005) 184–193

[7] Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and search-
ing XML data via two zips. In: Proc. 15th International World Wide Web Conference
(WWW). (2006) 751–760

[8] Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and indexing
labeled trees, with applications. J. ACM 57 (2009)

[9] Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

[10] Holt, J., McMillan, L.: Constructing Burrows-Wheeler transforms of large string
collections via merging. In: BCB, ACM (2014) 464–471

[11] Kärkkäinen, J., Manzini, G., Puglisi, S.: Permuted longest-common-prefix array. In:
Proc. 20th Symposium on Combinatorial Pattern Matching (CPM), Springer-Verlag,
LNCS n. 5577 (2009) 181–192

[12] Kärkkäinen, J., Kempa, D.: Engineering a lightweight external memory suffix array
construction algorithm. In: ICABD. Volume 1146 of CEUR Workshop Proceedings.,
CEUR-WS.org (2014) 53–60

[13] Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Parallel external memory suffix sorting. In:
CPM. Volume 9133 of Lecture Notes in Computer Science., Springer (2015) 329–342

11

[14] Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-
prefix computation in suffix arrays and its applications. In: Proc. 12th Symposium on
Combinatorial Pattern Matching (CPM ’01), Springer-Verlag LNCS n. 2089 (2001)
181–192

[15] Knuth, D.E.: Sorting and Searching. Second edn. Volume 3 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, USA (1998)

[16] Li, H.: Fast construction of FM-index for long sequence reads. Bioinformatics 30
(2014) 3274–3275

[17] Manzini, G.: Two space saving tricks for linear time LCP computation. In: Proc.
of 9th Scandinavian Workshop on Algorithm Theory (SWAT ’04), Springer-Verlag
LNCS n. 3111 (2004) 372–383

[18] Mart́ınez-Prieto, M.A., Brisaboa, N.R., Cánovas, R., Claude, F., Navarro, G.: Prac-
tical compressed string dictionaries. Inf. Syst. 56 (2016) 73–108

[19] Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees. ACM
Transactions on Algorithms 10 (2014) article 16

12

	Introduction
	XBWT trie representation
	Adding suffix links
	Alternative construction algorithms
	Concluding remarks

