
Forensic Analysis of the ChatSecure Instant Messaging

Application on Android Smartphones

Cosimo Anglanoa,∗, Massimo Canonicoa, Marco Guazzonea

aDiSIT - Computer Science Institute,
University of Piemonte Orientale, Alessandria (Italy)

Abstract

We present the forensic analysis of the artifacts generated on Android smart-
phones by ChatSecure, a secure Instant Messaging application that provides
strong encryption for transmitted and locally-stored data to ensure the pri-
vacy of its users.

We show that ChatSecure stores local copies of both exchanged messages
and files into two distinct, AES-256 encrypted databases, and we devise a
technique able to decrypt them when the secret passphrase, chosen by the
user as the initial step of the encryption process, is known.

Furthermore, we show how this passphrase can be identified and extracted
from the volatile memory of the device, where it persists for the entire execu-
tion of ChatSecure after having been entered by the user, thus allowing one
to carry out decryption even if the passphrase is not revealed by the user.

Finally, we discuss how to analyze and correlate the data stored in the
databases used by ChatSecure to identify the IM accounts used by the user
and his/her buddies to communicate, as well as to reconstruct the chronology
and contents of the messages and files that have been exchanged among them.

For our study we devise and use an experimental methodology, based on
the use of emulated devices, that provides a very high degree of reproducibil-
ity of the results, and we validate the results it yields against those obtained
from real smartphones.

∗Corresponding author. Address: viale T. Michel 11, 15121 Alessandria (Italy). Phone:
+39 0131 360188.

Email addresses: cosimo.anglano@uniupo.it (Cosimo Anglano),
massimo.canonico@uniupo.it (Massimo Canonico), marco.guazzone@uniupo.it
(Marco Guazzone)

Preprint submitted to Digital Investigation September 19, 2016



Keywords: Mobile forensics, ChatSecure, Android, Instant Messaging,
Secure Instant Messaging

1. Introduction

Instant Messaging (IM ) applications are very popular among smartphone
users because of the level of convenience they provide in interpersonal com-
munications. Quite sophisticated IM applications are available today for the
prominent smartphone platforms (e.g., Android, iOS, and Windows Phone,
to name a few) that allow users to exchange text and files in (pseudo) real
time.

In addition to legitimate uses, however, IM applications are increasingly
being used to carry out illicit activities (United Nations Office on Drugs
and Crime, 2013). Therefore, the forensic analysis of these applications has
received considerable attention in the recent past. IM-based evidence may
indeed prove crucial in all those cases where an IM application has been used
by the parties involved in a crime, i.e. by a perpetrator to interact with its
victims, or by criminals in the attempt to escape interception when they
communicate.

Generally speaking, the forensic analysis of an IM application is based
on the availability of various types of artifacts (metadata and content of
exchanged messages and files, log files, etc.) stored by that application on
the local storage of smartphones. By locating, extracting, and analyzing such
artifacts, quite often it is possible to recover a significant amount of potential
evidence (Al Barghuthi and Said, 2013; Anglano, 2014; Husain and Sridhar,
2010).

This situation, however, is rapidly changing. The increasing awareness of
the fact that IM communications may be intercepted when transiting over
the infrastructure of the service provider, is stimulating the interest towards
secure IM applications (Guardian Project, 2015a; Telegram Inc, 2015; Open
Whispers System, 2015; Gliph Inc, 2015; Wickr Inc, 2015). These application,
unlike standard ones, provide suitable privacy-preserving and user security
mechanisms, such as strong encryption for transmitted and locally-stored
data, secure user authentication, plausible deniability, forward secrecy, and
so on. Secure IM applications pose new challenges to the forensic analyst,
that has to deal with the issues posed by the privacy-preserving features of
these applications.

2



Among these applications, one that is receiving increasing attention is
ChatSecure (Guardian Project, 2015a), which is available both for Android
and iOS. There are various reasons for its success: (a) it is open-source (so
it is possible to audit its code), (b) it provides message encryption, partner
authentication, deniability and perfect forward secrecy thanks to the use of
the Off-The-Record (OTR) (Borisov et al., 2004) messaging system (which
has gained an excellent reputation in the privacy-concerned user communi-
ties), (c) it encrypts locally stored data with SQLCipher (Zetetic LLC., 2015)
and IOCipher (Guardian Project, 2016a), and (d) it has been ranked as one
of the most secure IM applications by the Electronic Frontiers Foundation
(EFF) (Electronic Frontier Foundation).

Given these characteristics, the interest on the forensic analysis of Chat-
Secure is evident, since there is no publicly known way of decrypting OTR-
encrypted data once they are in transit over the network. Thus, forensic
analysis of the devices used to communicate with ChatSecure may be the
only option available to retrieve IM-based evidence.

To the best of our knowledge, there is no published work addressing the
forensic analysis of ChatSecure on the Android platform. In this paper we
fill this gap by describing which artifacts ChatSecure are stored in the local
memory of the device, and how they can be decoded and correlated among
them to infer information of potential investigative interest.

The original contributions of this paper can be summarized as follows:

• we show that ChatSecure stores locally copies of all the messages and
files that are exchanged between the user and her contacts into two
encrypted SQLite v.3 (SQLite Consortium, 2013) databases;

• we analyze the encryption procedure used for these databases, and we
develop and implement an algorithm able to decrypt them using the
secret passphrase set by the user;

• we show how the passphrase can be retrieved from the volatile memory
of an Android device;

• we discuss the decoding and the interpretation of all the artifacts gen-
erated by ChatSecure, and we show how they can be correlated to
perform various forensic reconstructions, such as the chronology and
contents of exchanged files and messages, the set of IM accounts used
by the ChatSecure user, as well as the list of contacts associated with
each one of them;

3



• we show that it is not possible to recover the information deleted by
ChatSecure users because of the use of secure deletion techniques in
SQLCipher and IOCipher;

• we devise and use an experimental methodology, based on the use of
emulated devices, that provides a very high degree of reproducibility of
the results, and we validate the results it yields against those obtained
from real smartphones.

The rest of the paper is organized as follows. In Sec. 2 we review existing
work, while in Sec. 3 we describe the methodology and the tools we use in
our study. Then, in Sec. 4 we discuss the forensic analysis of ChatSecure
and, in Sec. 5, we conclude the paper.

2. Related works

Smartphone forensics has been widely studied in the recent literature,
which mostly focuses on Android and iOS forensics (Tamma and Tindall,
2015; Epifani and Stirparo, 2015), given the pervasiveness of these platforms.
As a result, well known and widely accepted methodologies and techniques
are available today that are able to properly deal with the extraction and
analysis of evidence from smartphones. In this paper we leverage this vast
body of work for extracting and analyzing the data generated by ChatSecure
during its usage.

The importance of the forensic analysis of smartphone IM applications
has been also acknowledged in the literature, where a significant number of
papers on this topic has been published. (Anglano, 2014) discusses the foren-
sic analysis of WhatsApp Messenger. (Husain and Sridhar, 2010) focuses on
the forensic analysis of three IM applications (namely AIM, Yahoo! Messen-
ger, and Google Talk) on the iOS platform. (Al Barghuthi and Said, 2013)
presents the analysis of several IM applications on various smartphone plat-
forms, aimed at identifying the encryption algorithms used by them. (Tso
et al., 2012) discusses the analysis of iTunes backups for iOS devices aimed
at identifying the artifacts left by various social network applications. (Wal-
nycky et al., 2015) discusses the analysis of the data transmitted or stored
locally by 20 popular Android IM applications.

None of these papers, however, covers the forensic analysis of ChatSecure
on Android platforms, which is instead the focus of this paper. The closest
work to ours is (Quarkslab SAS, 2015), that is focused on the iOS platform.

4



However, the results discussed there do not apply to Android, given the sig-
nificant differences existing between the Android version and the iOS version
of ChatSecure.

3. Analysis methodology and tools

The study described in this paper has been performed by carrying out a
set of controlled experiments, each one referring to a specific usage scenario
(one-to-one communication, group communication, file exchange, etc.), dur-
ing which typical user interactions have taken place. After each experiment,
the internal memory of the sending and receiving devices has been examined
in order to identify, decode, and analyze the data generated by ChatSecure
in that experiment. In all the experiments, we run ChatSecure v. 14.2.3 (the
last one available on Google Play at the moment of this writing).

The data generated by ChatSecure are stored into an area of the internal
device memory that is normally inaccessible to users (see Sec. 4.2). Therefore,
suitable methodologies and tools need to be adopted in order to access and
acquire this area. Tools like UFED (Cellebrite LTD, 2016), XRY (MSAB,
2016), and Oxygen Forensics Detective (Oxygen Forensics, Inc, 2016), among
others, are able to perform this acquisition in a forensically-sound manner.

However, this approach presents some limitations, namely:

• limited generality: to gain confidence into the generality of the re-
sults, a suitably large number of devices and Android versions should
be used for the experiments. The resulting high costs both in terms
of purchase and of the time required to replicate the experiments on
a large set of devices, however, practically limits the number of de-
vices used for the experiments, thus potentially casting doubts on the
generality of the results;

• limited replicability: a third party wanting to reproduce the results
needs to use the same set of devices, operating systems versions, and
forensic acquisition tools to repeat experiments This, however, may be
problematic, both because of device availability and of the cost of the
acquisition tools;

• limited controllability: smartphones are complex devices, running
a multitude of applications and services, whose behavior and interac-
tions are hard to characterize. As a consequence, it may be difficult

5



not only to reproduce the exact conditions holding at the moment of
each experiment, but also to exclude with certainty possible data cross-
contaminations among different applications that use the same file sys-
tem (as in Android).

To overcome the above limitations, in this work we carry out experi-
ments using emulated mobile devices instead of physical ones. In particular,
we use the Android Mobile Device Emulator (Google, 2016c) to create vari-
ous Android Virtual Devices (AVDs), that are emulated smartphones behav-
ing exactly like real physical devices that can be customized with different
hardware characteristics and Android versions. The status of AVDs can be
monitored by means of the Android Device Monitor (Google, 2016b) (ADM,
in the following).

The use of emulated devices provides many advantages, and allows us
to overcome the limitations discussed above. First, generality of results is
benefited since it is simple and cost-effective to run experiments on a variety
of different AVDs (featuring different hardware and software combinations),
and to quickly extract the contents of their internal memory. Second, also
replicability is greatly benefited, since a third-party can configure AVDs ex-
actly as we did, thus reproducing the same conditions of our experiments.
Finally, also controllability is enhanced: the configuration of AVDs (that in-
clude both hardware/software features, as well as a set of services and apps
running in the background) is under total control of the experimenter by
means of the ADM, thus allowing us (as well as a third-party replicating our
experiments) to precisely determine the operational conditions holding on
each AVD at the moment of the experiment.

For our experiments, we use the three AVDs configurations shown in
Table 1 below, that are characterized by different Android versions, processor
families, and volatile and persistent storage sizes. To carry out our analysis,

Table 1: Characteristics of the AVDs used in the experiments.

Characteristics of AVDs used for experiments
Processor RAM (MB) Internal storage (MB) Android version

ARM (armeabi-v7a) 512 2047 4.4 (API 19)
Intel Atom (x86) 1536 1024 5.1 (API 22)

Intel Atom (x86 64) 1536 1024 6.0 (API 23)

6



we run all the experiments on these AVDs and, at the end of each experiment,
we extract the data generated by ChatSecure using the pull functionality of
the File Explorer of the ADM, that allows one to recursively extract entire
folders, or individual files. Alternatively, this task can be carried out using
the Android Debug Bridge (Google, 2016a) (ADB, in the following) to pull
data out from the AVD using a command-line interface.

In order to validate the results obtained with AVDs, we compare them
against results obtained running experiments on a real device. More pre-
cisely, we run experiments on a Samsung SM-G350 Galaxy Core Plus smart-
phone running Android 4.4.2, and we use the Cellebrite UFED4PC plat-
form (Cellebrite LTD, 2015b) to perform device memory extraction, and the
UFED Physical Analyzer (Cellebrite LTD, 2015a) to decode its contents. In
all the experiments we performed, the results collected from this smartphone
were identical to those obtained from the emulated devices we considered.

In addition to the analysis of the persistent device memory, we also exam-
ine its volatile memory to verify whether encryption keys or secret passwords
are stored there, and to identify and extract them. In particular, as discussed
in Sec. 4.7, we use LiME (504ENSICS Labs, 2016) to dump the contents of the
volatile memory of the AVDs used in the experiments, and Volatility (Volatil-
ity Foundation, 2016) to analyze these dumps. We perform memory analysis
experiments only for the ARM architecture (row 1 of Table 1) since, at the
moment of this writing, LiME supports this architecture only. Note that in
order to work, LiME requires the device to be rooted. For AVDs, however,
this is not an issue, since they are pre-configured to allow root access to the
user.

We do not validate the memory analysis results against real devices, since
LiME requires an Android kernel supporting dynamic module loading. To
enable this functionality, the kernel source must be reconfigured and recom-
piled. For a real smartphone, the stock Android kernel is not sufficient,
as vendors typically customize it to suit the specific hardware configuration
of the device. Unfortunately, the kernel source for the Samsung SM-G350
Galaxy Core Plus smartphone we used for validation was not available to us,
so we could not configure such a device to work with LiME.

Finally, the source code of ChatSecure (which is freely available from
(Guardian Project, 2015b)) has been examined to verify our hypothesis about
its behavior, or to understand how to decode the data it generates.

For the sake of reproducibility of the experiments we discuss in this paper,
in (Anglano et al., 2016) we describe how to concretely configure and use the

7



various tools that we rely upon to create and run an AVD, and to carry out
the analysis of its persistent and volatile memory.

4. Forensic analysis of ChatSecure

ChatSecure is an IM application that allows its users to communicate se-
curely via their existing accounts on IM providers that use the XMPP (XMPP
Standards Foundation, 2015) protocol (e.g. Google Talk or Jabber).

To ensure privacy, ChatSecure provides end-to-end message encryption
with OTR and encrypts with SQLCipher 1 and IOCipher 2 the SQLite
databases it uses to store the information it generates. Furthermore, it can
provide user untraceability by means of the TOR network (TOR Project,
2016) via the Orbot application (Guardian Project, 2016c).

A ChatSecure user may define several IM accounts (corresponding to one
or more IM providers), and use them at the same time to communicate with
a set of buddies (i.e., other IM accounts (s)he is in contact with).

ChatSecure provides the typical functionalities of all IM applications,
namely: (a) contact management (i.e., inviting and removing contacts, ac-
cepting or denying invitations, etc.), (b) point-to-point communication, (c)
group chats creation and participation, and (d) file transfer, as well as addi-
tional functionalities related to security management (toggling OTR encryp-
tion on and off, verification of the partner identity, etc.).

In this section we provide a detailed forensic analysis of ChatSecure that
is aimed at identifying all the relevant artifacts it generates, interpreting
them, and using them to reconstruct the activities carried out by its users.

In particular, after describing a fictitious scenario to give an investigative
context to the analysis techniques described in this paper, we describe the
set of artifacts generated by ChatSecure, and where they are stored on the
memory of the device (Sec. 4.2). Next, we illustrate how to reconstruct the
set of ChatSecure accounts utilized by the user (Sec. 4.3), as well as the set of
the corresponding buddies (Sec. 4.4). Then, we move to the reconstruction
of the chronology and contents of exchanged messages (Sec. 4.5) and files
(Sec. 4.6). After that, we deal with the problem of decrypting the SQLite

1SQLCipher is open-source extension to SQLite that provides transparent 256-bit AES
encryption of SQLite database files

2IOCipher is a library that implements encrypted virtual disks using an SQLCipher
database (more details can be found in Sec. 4.7)

8



databases where ChatSecure artifacts are stored (Sec. 4.7) by describing both
a decryption algorithm we devised, and how the passphrase allowing decryp-
tion can be retrieved from the volatile memory of the device. Finally, we
conclude with Sec. 4.8, where we report our findings concerning the dele-
tion of the data generated by ChatSecure, that show the impossibility of
recovering them after they have been deleted.

4.1. Investigative scenario

To illustrate how the techniques discussed in this paper can be applied in
the context of a digital investigation, we consider the fictitious investigative
scenario reported below.

We consider the case where ChatSecure is found to be installed on a seized
Android smartphone, and we need to answer the following set of typical
investigative questions (for each one of them, we also indicate the section of
the paper where we discuss how to obtain the corresponding answer):

1. How many distinct XMPP accounts did the user configure and use with
ChatSecure? (Sec. 4.3)

2. Who are the ChatSecure contacts of the local user? (Sec. 4.4)

3. What messages have been exchanged with each one of the above con-
tacts, and when did each communication occur? (Sec. 4.5)

4. Did the local user exchange any file with its contacts? If so, when did
these exchanges occur? What is the content of the files that have been
exchanged? (Sec. 4.6)

5. How to decrypt ChatSecure databases? (Sec. 4.7)

6. How to recover deleted data? (Sec. 4.8).

4.2. Location and format of ChatSecure artifacts

During its use, ChatSecure stores several artifacts into various files and
databases that are located into the
info.guardianproject.otr.app.im folder. This folder is located into the
/data/data directory of the Android file system, 3 that contains the sub-
folders shown in Fig. 1.

The data of forensic interest generated by ChatSecure are the following
ones:

3This directory corresponds to the user data partition of the internal device memory
and is inaccessible to standard users, unless the smartphone has been rooted.

9



Figure 1: Structure of the main folder of ChatSecure.

• The main database, where ChatSecure stores the information concern-
ing the accounts used by the ChatSecure, the list of the corresponding
buddies, and local copies of the messages that have been exchanged.
It consists in an SQLCipher-encrypted SQLite v.3 database, named
impsenc.db, which is stored in the databases folder and contains 21 dif-
ferent tables. As resulting from our findings, only 11 out of these 21
tables contain information of forensic interest, namely tables accounts,
accountStatus, providers, providerSettings, contacts, contactList, pres-
ence, avatars, chats, messages, and inMemoryMessages. The informa-
tion stored in these tables, as well their structure, interpretation, and
analysis, are discussed in Secs. 4.3–4.5, where we show how to use the
data they store to perform various forensic reconstructions. The anal-
ysis of these tables has been performed by inspecting the source code
of ChatSecure, 4 and by performing a set of controlled experiments in
order to validate our findings. It is worth pointing out that the user
may opt for not using encryption; this decision must be taken when
ChatSecure is started for the first time after installation, and cannot
be undone (in this case the database is named imps.db).

• The encrypted virtual disk : in addition to exchanged messages, Chat-
Secure stores locally also copies of the files that its user has exchanged
with her contacts. To prevent unauthorized parties from accessing these
files, ChatSecure stores them into an encrypted virtual disk, which is
implemented via IOCipher. The analysis of this encrypted virtual disk
is discussed in Sec. 4.6.

4In particular, files Imps.java and ImpsProvider.java, stored in the src/info/guardian-
project/otr/app/im/provider directory of the ChatSecure source tree.

10



• The stored secret file: ChatSecure stores the information it needs to
decrypt the main database and the virtual disk into a file, named
info.guardianproject.cacheword.prefs.xml, which is located in folder shared prefs.
In Sec. 4.7 we show how this information can be decoded and used to
carry out the above decryption.

For the sake of completeness, we mention also files account.xml (storing the
information concerning the ChatSecure account) and
info.guardianproject.otr.app.im preferences.xml (storing ChatSecure settings
and preferences), located in the shared prefs folder.

4.3. Reconstructing user accounts

As mentioned before, ChatSecure allows its users to create various IM
accounts, each one corresponding to a specific IM provider. From the inves-
tigative point of view, the information about all the active accounts is rele-
vant for various reasons, including determining the identity of the providers
to which additional sources of evidence (e.g., log files) can be asked, and cor-
relating evidence with that retrieved from the devices of other ChatSecure
users with whom the user has exchanged communications.

The information associated with each account (name, credentials, etc.)
are stored in the main database, where they are spread across four distinct
tables (namely, accounts, accountStatus, providers, and providerSettings).
The structure of these tables and the meaning of their fields are reported in
Tables 2–5.

Tables accounts and accountStatus jointly store the information concern-
ing the IM accounts created by the ChatSecure user. In particular, accounts
stores the properties of these accounts (e.g., the credentials for the authenti-
cation), while accountStatus stores the information concerning their status.
These two tables are linked together by means of the foreign key of table
accountStatus (i.e., field account, see Table 3).

Tables providers and providerSettings, instead, jointly store the informa-
tion about the IM providers corresponding to the above IM accounts. In
particular, the former table stores the information about these providers,
while the latter one stores the settings of each provider (one record per set-
ting). These two tables are joined together by means of the foreign key of
table providerSettings (i.e., field provider, see Table 5).

To illustrate how to reconstruct the information concerning the ChatSe-
cure accounts, let us consider the scenario shown in Fig. 2.

11



Table 2: Structure of the accounts table.

Table accounts
Name Role Type Meaning
id Primary Key int unique record identifier

name – text name of the account as chosen by the user
provider Foreign Key int value of the id field of the record, in ta-

ble providers, corresponding to the provider
of this IM account

username – text username (on the service provider) for the ac-
count

pw – text password (on the service provider) for the ac-
count

active – int 1 if the account is active, 0 otherwise
locked – int 1 if the account is locked (i.e., it is not ed-

itable), 0 otherwise
keep signed in – int 1 if ChatSecure keeps the account logged in

between executions, 0 otherwise
last login state – int either 0 or 1

Table 3: Structure of the accountStatus table.

Table accountStatus
Name Role Type Meaning
id Primary Key int unique record identifier

account Foreign Key int value of the id field of the record, in the
accounts table, corresponding to the account
this status information refers to

presenceStatus – int visibility of the account to its buddies. Pos-
sible values are: 0 (offline), 1 (invisible), 2
(away), 3 (idle), 4 (do not disturb), and 5
(available)

connStatus – int status of the connection to the XMPP
provider. Possible values are: 0 (offline), 1
(connecting), 2 (suspended due to temporary
network unavailability), and 3 (online)

12



Table 4: Structure of the providers table (fields category and signup url have been omitted
because of their lack of forensic value).

Table providers
Name Role Type Meaning
id Primary Key int unique record identifier

name – text name of the IM provider (e.g. GTalk, AIM, etc.)
fullname – text full name of the IM provider

Table 5: Structure of the providerSettings table.

Table providerSettings
Name Role Type Meaning
id Primary Key int unique record identifier

provider Foreign Key int value of the id field of the record, in the providers
table, corresponding to the IM provider this setting
refers to

name – text name of the setting
value – text value of the setting

13



Figure 2: Reconstruction of ChatSecure user accounts.

This scenario features two distinct ChatSecure accounts, named
chat.secure.user and test1chatsecure (see the records stored in table accounts
in Fig. 2). Both these accounts are active (i.e., they are currently used), as
indicated by the value 1 stored in fields active, and are never logged out of
the respective IM provider during a ChatSecure session, as indicated by the
value 1 stored in fields keep signed in.

To determine the IM provider associated with each account we need
to join tables accounts and providers. The results of this operation show
that user chat.secure.user is associated with IM provider no. 1 and that au-
thenticates with it using username CS.test.user and password “X-GOOGLE-
TOKEN. . . ” (password shortened for readability purposes), while user
test1chatsecure is associated with IM provider no. 2 and authenticates with it
using username test1chatsecure and password “#t&st.p@sswd!”. Note that
the passwords used to authenticate with IM providers are stored in cleart-
ext, and as such may be readily used to authenticate with the IM providers
outside the ChatSecure application once recovered from this database.

To determine the identity of the IM providers used by the various ac-
counts we need to join tables providers and providerSettings. The results of
this operation indicate that provider no. 1 corresponds to Google’s GTalk
IM service (see record no. 28 of table providerSettings in Fig. 2), and that
its account domain is gmail.com (see record no. 29 of table providerSet-
tings). From this, we determine that the ChatSecure user chat.secure.user

14



corresponds to the GTalk user CS.test.user@gmail.com. Furthermore, we
also determine that provider no. 2 corresponds to the ChatMe IM service
(it uses the chatme.im server), and that its account domain is chatme.im,
meaning that ChatSecure user test1chatsecure corresponds to ChatMe user
test1chatsecure@chatme.im.

Finally, to determine the status of each account we need to join tables
accounts and accountStatus. From the results of this operation we determine
that both users chat.secure.user and test1chatsecure are offline because of the
unavailability of the network when the memory of the device was acquired
(see the values stored in fields presenceStatus and connStatus in the records
of table accountStatus).

4.4. Reconstructing contact lists

Each ChatSecure account is typically associated with a set of contacts,
i.e. remote users with whom (s)he can exchange messages and files. The evi-
dentiary value of contact information is notorious, as it allows an investigator
to determine who the user was in contact with.

Each one of the contacts is associated with its nickname (i.e., the name
used by the ChatSecure user to denote the buddy), its username (that iden-
tifies the contact on the corresponding IM provider), and an optional avatar
(i.e., a picture, chosen by the corresponding user, which is downloaded by
ChatSecure and displayed together with the nickname).

The information concerning user contacts is stored in the main database,
and is spread across four distinct tables, namely contacts, avatars, presence,
and contactsList, whose structure and meaning is reported in Tables 6–9.

In particular:

• tables contacts and presence store the information about the various
contacts and on the corresponding status, respectively, and are linked
together via the foreign key of table presence (i.e., field contact id, see
Table 7);

• table avatars stores the information about the avatars of the various
contacts and, as reported in Table 8, it is linked to various tables,
namely contacts, providers, and accounts, via the corresponding foreign
keys;

• table contactList stores the information about how the contacts of the
ChatSecure users are organized into lists, and is linked to both tables

15



Table 6: Structure of the contacts table (fields qc and rejected have been omitted because
of their lack of forensic value).

Table contacts
Name Role Type Meaning
id Primary Key int unique identifier of the contact

username Secondary Key text username of this contact on the corre-
sponding IM provider

nickname – text name displayed by ChatSecure for this
contact

provider Foreign Key int value of field id of the record, in table
providers, this contact is an account of

account Foreign Key int value of field id of the record, in ta-
ble accounts, corresponding to the lo-
cal ChatSecure account this contact be-
longs to

contactList Foreign Key int value of field id of the record, in table
contactList, corresponding to the con-
tact list this contact belongs to

type – int contact type: 0 (normal), 1 (tempo-
rary, not in contacts but subscribed to
receive updates), 2 (temporary group
chat contact), 3 (blocked), 4 (hidden),
5 (pinned)

subscriptionStatus – int status update receipt from this contact:
0 (none), 1 (requested to subscribe), 2
(requested to unsubscribe)

subscriptionType – int exchange of status updates with this
contact: 0 (no interest in update), 1
(stop receiving updates), 2 (receive up-
dates), 3 (contact wants updates from
the user), 4 (mutual interest in receiv-
ing updates), 5 (pending invitations)

otr – int status of the OTR encryption; possible
values are: 0 (off), 1 (on, don’t know
who turned it on), 2 (on, enabled by the
user), 3 (on, enabled by the contact)

16



Table 7: Structure of table presence (fields jid resource and priority have been omitted
because of their lack of forensic value).

Table presence
Name Role Type Meaning
id Primary Key int unique identifier of the record

contact id Foreign Key int value of field id of the record, in table contacts
table, corresponding to the contact this presence
information refers to

client type – int type of the client; possible values are: 0 (default),
1 (mobile), 2 (android)

mode – int presence status of the contact; possible values are:
0 (offline), 1 (invisible), 2 (away), 3 (idle), 4 (do
not disturb), and 5 (available)

status – text status message of the contact

Table 8: Structure of the avatars table.

Table avatars
Name Role Type Meaning
id Primary key int unique avatar identifier

contact Foreign Key text value of field username of the record, in table con-
tacts, this avatar belongs to

provider Foreign Key int value of field id of the record, in table providers,
corresponding to the provider this contact is user of

account Foreign Key int value of field id of the record, in table accounts,
corresponding to the account the contact owning this
avatar is buddy of

hash – text SHA-1 hash of the picture used as avatar by this
contact

data – blob raw image data of the avatar

17



Table 9: Structure of table contactList.

Table contactList
Name Role Type Meaning
id Primary Key int unique identifier of the record

name – text display name of this contact list
account Foreign Key int value of field id of the record, in table accounts,

corresponding to the ChatSecure account this list
belongs to

provider Foreign Key int value of field id of the record, in table providers ta-
ble, corresponding to the provider of the ChatSecure
account this contact list belongs to

accounts and provider (to associate the list with the specific ChatSecure
user the list belongs to) via the corresponding foreign keys (see Table 9).

To illustrate how to reconstruct the information about the contacts of a
ChatSecure user, let us consider the scenario shown in Fig. 3, where 9 distinct
contacts belonging to the two ChatSecure accounts shown in Fig. 2 (namely,
chat.secure.user and test1chatsecure) are stored in table contacts.

From records no. 1, . . . , 5 and 9, we see that six contacts are associated
with user account no. 1 (chat.secure.user) and provider no. 1 (Google GTalk),
while the remaining three contacts (corresponding to records no. 6, 7, and 8)
are associated with user account no. 2 (test1chatsecure) and provider no.
2 (ChatMe). Furthermore, we also see that all these contacts are of the
“normal” type (field type=0), with the exception of contact no. 9 (nick-
name=‘grptest1 ’) that is a temporary contact created purposely to denote
a group chat (type=2, see Table 6) corresponding to the remote IM account
grptest1@conference.chatme.im.

Avatar pictures may have evidentiary value as well: they can be indeed
used to link a ChatSecure contact to the real identity of the person using it
(for instance, if the avatar displays the face of the user, or any location or
item that can be uniquely associated with that person).

To determine the avatars associated with each contact, we join tables
contacts and avatars. The results of this operation indicate that only con-
tact no. 8 (user test2chatsecure@chatme.im) is associated with an avatar,
whose picture is stored (as a “blob” of bytes) in field data; the avatar can be
extracted from this field, and visualized using a standard image viewer.

18



Figure 3: Reconstruction of ChatSecure contact lists.

19



Also the status information of a contact may have evidentiary value. For
instance, the textual status message may provide information about the real
identity of the contact, and also its presence status at the moment of the last
update may provide information about the behavior of that contact.

To determine the status of each contact, as reported by the last time this
information was updated locally, we have to join tables contacts and presence.
From the results of this operation, we see that (a) group chat contacts (i.e.,
contact no. 9 in our example scenario) have no associated status, (b) the sta-
tus all the other contacts is “offline” (the value 0 is stored in the correspond-
ing mode field), with the exception of contact test2chatsecure@chatme.im
(contact no. 8), whose status is instead “available” (mode field contains 5).
We also observe that none of these contacts is associated to a textual status
message (fields status are empty).

Finally, also contact lists may be important from the evidentiary point
of view, as they allow to link each contact to the corresponding ChatSecure
account used by the local user.

To reconstruct the contact lists, we have to join tables contacts and con-
tactList. From the results of this operation, we see that these contacts are
organized in two distinct lists: the first one includes contacts no. 1, . . . , 5
and 9, and belongs to the ChatSecure account no. 1, while the second one
includes the remaining contacts, and belongs to account no. 2. In both cases,
the name of the list is Contacts.

4.5. Reconstructing the chronology and contents of chat messages

Reconstructing the time in which each message was sent or received,
the content of that message, and the communication partner, is of obvious
investigative importance.

Each time a message is sent or received, ChatSecure stores in the main
database a record containing both its textual content and various metadata
(e.g., the identifier of the corresponding buddy, and the date and time when
the exchange occurred). This information is spread across two distinct tables
of the main database, namely messages and inMemoryMessages, that have
the same structure, 5 that is described in Table 10 together with the inter-
pretation of its fields. The reason for which two distinct tables are used is

5The main database includes also another chat-related table, named chats, that has
not been described here since the information it stores is redundant being it repeated in
tables messages and inMemoryMessages.

20



unclear; however, the messages they contain do not overlap, so both of them
needs to be analyzed to recover all the messages that have been exchanged.

Table 10: Structure of the inMemoryMessage and messages tables (fields packet id and
shown ts have been omitted because of their lack of forensic value).

The inMemoryMessages and messages tables
Name Type Meaning
id int unique identifier of the message

thread id int identifier of the contact this message has been exchanged with
nickname text used for group chat messages only to indicate the nickname cho-

sen by the local ChatSecure user in that group chat (empty for
one-to-one messages)

body text body of the message
date int the date this message has been sent or received (13-digits Unix

epoch format)
type int type of the message: 0 (outgoing), 1 (incoming), 2 (presence

became “available”), 3 (presence became “away”), 4 (presence
became “busy”), 5 (presence became “unavailable”), 6 (message
converted to a group chat), 7 (status message), 8 (message cannot
be sent now, will be sent later), 9 (OTR is turned off), 10 (OTR
is turned on), 11 (OTR turned on by the user), 12 (OTR turned
on by the communicating partner), 13 (incoming encrypted), 14
(incoming encrypted and verified), 15 (outgoing encrypted), 16
(outgoing encrypted and verified)

err code int error code (0 = no error)
err msg text error message (if any)
is muc int flag indicating whether it is a group chat message (1) or not (0)
is delivered int flag indicating whether a “delivered” confirmation was received

(1) or not (0)
mime type text type of data exchanged (null for text message, non-null for trans-

ferred files (see Sec. 4.6)

From the analysis of the meaning of the various fields (and, in particular,
of the possible values of field type), we see that ChatSecure messages belong
to two distinct categories, namely:

• notification messages, i.e. messages that do not carry any user-generated
content, but that instead carry updates about the status contact, such
as changes of his/her status (message types 2, 3, 4 and 5), or of his/her
OTR encryption status (message types 9, 10, 11 and 12).

21



• chat messages, that carry user-generated textual content. These mes-
sages correspond to records whose type fields stores values in the set
{0, 1, 13, 14, 15} (see Table 10) to denote clear text outgoing (type=0)
or incoming (type=1) messages, encrypted incoming message sent by
an unverified (type=13) or a verified (type=14) partner, and encrypted
outgoing messages sent to an unverified (type=15) or verified (type=16)
partner.

The chronology of message exchanges can be reconstructed by means
of the values stored in the date field, that store date and time of message
transmission or receipt encoded as a 13-digits Unix epoch format. This holds
true both for notification and chat messages, so it is possible to reconstruct
not only the chronology of messages exchanged by users, but also when a
notification message arrived.

To illustrate how to reconstruct the chronology of exchanged messages
and the corresponding contents, let us consider the scenario depicted in Fig. 4
that shows 10 exchanged messages, which are stored in Tables messages (4
messages) and inMemoryMessages (6 messages).

Figure 4: Reconstruction of chronology and content of exchanged messages.

From this figure, we see that the first record in table inMemoryMes-
sage, corresponds to an outgoing encrypted message (type=15) that was sent
on Oct. 1st, 2015 at 9:32:35.617 a.m. UTC (date=‘1443691955617 ’) to con-
tact no. 2 (thread id=2) (that corresponds to the contact whose nickname is
Second, see Fig. 3); the message body was “Message 1 ”, and has been suc-
cessfully delivered to (i.e., visualized by) its recipient (is delivered=1). The

22



second record of inMemoryMessages correspond instead to an incoming en-
crypted message (type=13), that was received by the same user and carried as
textual content the string “Message 2 ” on Oct. 1st, 2015 at 9:32:44.099 a.m.
UTC (date=‘1443691964099 ’) that has not been delivered (i.e., visualized)
by the ChatSecure user.

Finally, the first message of table messages (whose body was “Message
no. 17 ”), is an outgoing message sent to the same contact on Oct. 1st, 2015
at 05:46:20.850 a.m. UTC (date=‘1443678380850 ’), but whose transmission
was delayed (type=8) and, as such, had not been successfully delivered to
the recipient (is delivered=0).

Note that ChatSecure stores in tables messages and inMemoryMessages
the messages corresponding to all the local accounts, i.e. chat.secure.user
and test1chatsecure in our example (see Fig. 2). However, the identity of the
local account LA corresponding to a given message can be easily determined
by correlating the unique contact identifier ID stored in the thread id field
with the record of table contact storing ID in its id field; the value of field
account of that record will indicate the local account LA. In this way, in the
examples above we could tell that messages have been exchanged between
contact no. 2 and account chat.secure.user, since this contact is associated
with account no. 1 (see Fig. 2).

Table messages in Fig. 4 also stores messages exchanged in group chats,
corresponding to the last two records of table messages, as indicated by
is muc=1. From these records, we see that the corresponding messages have
been sent to the group chat corresponding to the contact no. 9 of table
contacts (the chat room named grptest@conference.chatme.im), and carried
as textual content the strings “Group chat message no. 1 ” and “Group chat
message no. 2 ”, respectively.

As a final observation, it is worth noticing that ChatSecure stores mes-
sages in clear text, even if they have been encrypted before transmission (see
the contents of field body of all the records in Fig. 4): this is indeed the case
of all the records stored in table inMemoryMessages, that correspond to en-
crypted messages that have been either sent (type=15) or received (type=13).

4.6. Reconstructing the chronology and contents of file exchanges

In addition to textual messages, ChatSecure allows its users to exchange
also files of any type (at the moment of this writing, however, this func-
tionality is available only for one-to-one communications and not for group

23



chats). Determining the chronology of these exchanges, and more impor-
tantly the contents of exchanged files, may be of crucial importance in many
investigations.

Each time a file is exchanged, ChatSecure creates a record that stores
the same information described for chat messages, either in the messages
or in the inMemoryMessages of the main database . Furthermore, it stores
the content of the file into an IOCipher encrypted virtual disk to keep it
inaccessible to an authorized third-party. The file transfer mechanism used
by ChatSecure interfaces directly with its encrypted virtual disk, that is: (a)
before being sent, files are stored on the virtual disk, from which they are
fetched and sent across the network, and (b) received files are stored directly
in the virtual disk.

The message records corresponding to file transfers are identified looking
at the contents of their mime type and body fields. In particular, the former
field stores the MIME media type (Freed et al., 2013) of the transferred file,
while the latter one stores the full path of the file in the encrypted virtual
disk.

IOCipher implements the above virtual disk by using libsqlfs (Guardian
Project, 2016b), a library that in turn implements a POSIX-style file system
by means of an SQLCipher-encrypted SQLite database. This database is
named media.db, and includes only two tables, namely meta data (storing
various file metadata, such as identifier, path name, and timestamps), and
value data (storing the actual file blocks), whose structure and interpretation
is reported in Tables 11 and 12, respectively.

Table 11: Structure of table meta data of the media.db database (fields lacking any forensic
value are omitted).

Table meta data
Name Type Meaning
type text type of the object: directory (dir), file (blob), symbolic

link (symlink)
key text full path of the object in the libsqlfs file system
ctime, mtime, atime int file creation, last modification, and last access time, re-

spectively (10-digits Unix epoch format)
size int file size (in bytes)
block size int block size (in bytes)

24



Table 12: Structure of table value data of the media.db database (fields lacking any forensic
value are omitted).

Table value data
Name Type Meaning
key text full path of the file in the libsqlfs file system, as stored in the

corresponding meta data table
block no int sequence number of the file block stored in this record
data block binary data stored in the file block corresponding to this record

To reconstruct the chronology and the contents of the files that have been
exchanged, it is necessary to analyze and correlate the records stored both
in the main database impsenc.db and the media.db database implementing
the encrypted virtual disk.

To illustrate how to perform this reconstruction, let us consider Fig. 5,
that shows the records generated during the download of a file (for the upload
case, the situation is similar).

Figure 5: Reconstruction of a downloaded file.

First, it is necessary to identify the records of tables messages and in-
MemoryMessages corresponding to file transfers by examining the values
stored in the mime type and body fields. Fig. 5 shows the record correspond-
ing to the transfer of a JPEG image (mime type=‘image/jpeg’ ) which has
been stored in the encrypted virtual disk into a file whose full path name

25



is ‘/2/download/58278 ’ (the ‘vfs:’ prefix is not part of the path name, but
only indicates the use of the Android Virtual File System to interface with
the libsqlfs file system). From this record, we can also determine that it was
an incoming encrypted file (type=13 ), received from contact no. 2 on Oct.
1st, 2015 at 09:34:43.731 a.m. UTC (date=‘1443692083731’ ).

After having identified the files that have been exchanged, it is possible
to retrieve the corresponding data by examining the records stored in the
tables of the media.db database. The starting point is table meta data, in
which we search for a record whose key field stores the same path name
stored in the body field of the corresponding inMemoryMessages record, i.e.
‘/2/download/58278 ’. From this record, we can determine that the file of
interest has a size of 143584 bytes, and is stored as a sequence of blocks of
8192 bytes each.

To retrieve these blocks, all the records of table value data whose key
field stores the value ‘/2/download/58278 ’ must be retrieved, and then the
content of their data block field must be extracted to be stored into a single
file according to the corresponding sequence numbers.

4.7. Dealing with encryption

As mentioned before, ChatSecure relies on SQLCipher to encrypt, using
the AES-256 algorithm, both the main database impsenc.db, as well as the
media.db database used by IOCipher to implement the encrypted virtual
disk. Therefore it is necessary to decrypt them in order to analyze their
contents.

The encryption key used by SQLCipher is generated internally by Chat-
Secure, and is never exposed to the user. This key is instead saved in the
internal memory of the device so that it can be retrieved and used by Chat-
Secure to decrypt the above databases. However, to make sure that an adver-
sary cannot decrypt these databases using the saved secret key, ChatSecure
uses the CacheWord (Guardian Project, 2015) library to encrypt it using
a user-defined secret passphrase, and to store it into an XML file named
info.guardianproject.cacheword.prefs.xml located in the shared prefs folder
(see Fig. 1). To decrypt the saved secret key, the passphrase set by the user
needs to be re-entered each time ChatSecure is started.

From the above discussion it follows that to decrypt the ChatSecure
databases three distinct problems must be solved, namely:

1. obtaining the secret passphrase chosen by the user;

26



2. decrypting the secret key stored by CacheWord;

3. decrypting the databases using the secret key.

In the rest of this section, after describing the encryption scheme adopted
by ChatSecure (Sec. 4.7.1), we discuss how to decrypt the secret database
encryption key (Sec. 4.7.2) and how to decrypt the databases using this key
(Sec. 4.7.3). Finally, we show that the passphrase is stored in the volatile
memory of the device from which it can be extracted and used in the decryp-
tion process (Sec. 4.7.4).

4.7.1. The encryption procedure

Before discussing how the secret key can be decrypted, it is necessary to
illustrate the procedure used by ChatSecure to generate, encode, and store
it. This procedure has been reconstructed by analyzing the source code
of ChatSecure (in particular, file WelcomeActivity.java) and of CacheWord
(in particular, files PassphraseSecrets.java and PassphraseSecrectsImpl.java),
and is reported in Algorithm 1 below using pseudo-code, which is executed
only when ChatSecure is used for the first time.

Algorithm 1 ChatSecure secret key generation, encryption, and storage
algorithm.
1: secretKey = AES.generateSecretKey(256)
2: passPhrase = readPassPhraseFromUser()
3: salt = generateRandomSalt()
4: IV = generateRandomInitializationVector()
5: IC = computeIterCount()
6: passPhraseKey = pbkdf2(passPhrase, salt , IV , IC )
7: encryptedSecretKey = AES.encrypt(secretKey , passPhraseKey, IV)
8: serializedSecret = concatenate(IC , salt , IV ,base64Encode(encryptedSecretKey))

9: save(serializedSecret , info.guardianproject .cacheword .prefs.xml)

As shown in Algorithm 1, a 256-bit key is generated first (line 1), and
then the user is asked to provide a passPhrase (line 2).

Starting from this passphrase, a 256-bit derivate key) named passPhraseKey
in Algorithm 1) is computed (line 6) by means of the Password-Based Key
Derivation Function 2 (PBKDF2) (IETF Network Working Group, 2000)
algorithm. This latter algorithm requires four distinct parameters, namely

27



the passphrase and three additional values, namely a randomly-chosen 128-
bit salt (line 3), a randomly-chosen 96-bit initialization vector (IV), and a
32-bit integer iteration counter (IC) computed as function of the speed of
the processor of the device.

Then, the derivate key passPhraseKey is used to encrypt the secret key
used for database encryption (line 7) with AES-256, and the result is stored
in the encryptedSecretKey variable. Finally, the values of IC, salt, and IV are
concatenated with the Base64 encoding of encryptedSecretKey, and are saved
(as a sequence of bytes) into the
info.guardianproject.cacheword.prefs.xml file.

An example of the resulting serializedSecret is shown in Fig. 6, where it
is highlighted using a square box drawn around it.

Figure 6: The serializedSecret generated and saved by Algorithm 1.

4.7.2. Decrypting the SQLCipher encryption key

To decrypt the ChatSecure databases, the secret key used with SQLCi-
pher must be known. Given that this key is unknown to the user, it must be
decrypted from the serializedSecret stored in the
info.guardianproject.cacheword.prefs.xml file.

Assuming that the user passphrase is known, this decryption can be car-
ried out by means of Algorithm 2, that we devised starting from Algorithm 1.

To decrypt the secret AES key from the serializedSecret, first the user-
generated passphrase is obtained in some way (either by the user or, as dis-
cussed in Sec. 4.7.4, by extracting it from the volatile memory of the device).
Then, the serializedSecret is read from the
info.guardianproject.cacheword.prefs.xml file (line 2), and is subsequently de-
composed into its constituent elements, namely IC, salt, IV, and encryptedSe-

28



Algorithm 2 ChatSecure secret key decryption algorithm.
1: passPhrase = getPassPhrase()
2: serializedSecret = readFromFile(info.guardianproject .cacheword .prefs.xml)
3: IC = extractFromSequence(serializedSecret , 0)
4: salt = extractFromSequence(serializedSecret , 32)
5: IV = extractFromSequence(serializedSecret , 160)
6: encryptedSecretKey = extractFromSequence(serializedSecret , 256)
7: passPhraseKey = pbkdf2(passPhrase, salt , IV , iterCount)
8: decodedSecretKey = base64Decode(encryptedSecretKey)
9: decryptedSecretKey = AES.decrypt(decodedSecretKey , passPhraseKey , IV )

cretKey (lines 3–6). The second parameter of function extractFromSequence
indicates the offset (expressed in bits) from the beginning of the serializedSe-
cret sequence where each element is stored (and it is computed by considering
the size of each component).

To decrypt encryptSecretKey, the derived key passPhraseKey used to en-
crypt it (see Algorithm 1, line 7) is computed first by means of the PBKDF2
function (line 7) using the same values of salt, IV, and IC used to generate
it in Algorithm 1 (line 7), as well as the passPhrase.

Then, to obtain the SQLCipher encryption key, we first Base64-decode
the value stored in encryptedSecretKey (recall that in Algorithm 1 this key is
Base64-encoded before being stored, see line 8). The result of this operation
is stored in variable decodedSecretKey (line 8), which is finally decrypted to
yield the SQLCipher key decryptedSecretKey (line 9).

As an example, the decryption of the serializedSecret shown in Fig. 6
yields the SQLCipher key ‘62 9B 8D BF 3F 26 13 1B 2F B6 96 19 FD 4C
F9 92 A1 D2 D0 12 96 B5 73 BA 34 59 FA FF 8A 12 CD 89 ’ (expressed as
a sequence of bytes in hexadecimal encoding).

We have implemented the above decryption algorithm as an Android
app that exploits parts of the CacheWord source code (in particular, file
PassphraseSecrectsImpl.java), which is freely available upon request. The
choice of implementing it for Android and not for another platform stems
from the fact that the CacheWord source code does not correctly compile
outside the Android development environment.

4.7.3. Decrypting ChatSecure databases

Once the encryption key used with SQLCipher has been obtained by
means of Algorithm 2, the ChatSecure databases can be decrypted using any

29



SQLite v.3 client that supports SQLCipher.
In Fig. 7 we show how the main database impsenc.db can be decrypted

on a Linux system by means of the SQLCipher command line tool (freely
available from (Zetetic LLC., 2015)).

Figure 7: Decrypting ChatSecure impsenc.db with SQLCipher.

After launching the SQLCipher client, the encrypted database is opened
first by means of the .open impsenc.db command. Then, it is decrypted by
means of the PRAGMA key = “x‘KEY BYTES’”; command, where
KEY BYTES denotes the hexadecimal encoding of the sequence of bytes
corresponding to encryption key. The last .tables command shown in Fig. 7
serves only to verify that decryption has been correctly performed, as in the
case of a wrong key the PRAGMA directive fails silently.

The decryption procedure for the media.db database is slightly different,
as shown in Fig. 8. In particular, a textual key is used in place of the 256-
bit SQLCipher key used for the impsenc.db database (where the key was
passed to the PRAGMA key command as a hexadecimal sequence). This
textual key is obtained by first converting the 256-bit SQLCipher key into
a lower-case textual string (by translating each hexadecimal digit into the
corresponding ASCII character), and then by truncating it to the leftmost
32 characters. After this key has been computed, the media.db is decrypted
by means of the PRAGMA key=“TXT KEY” command (where TXT KEY
denotes it) followed by the PRAGMA cipher page size = 8192; command 6

6The value of 8192 for the page size for the encrypted database is a design choice of
the libsqlfs library (see function sqlfs t init in the sqlfs.c file of the libsqlfs source tree).

30



Figure 8: Decrypting ChatSecure media.db with SQLCipher

(that, instead, was not required for the impsenc.db database), as shown in
Fig. 8.

4.7.4. Extracting the passphrase from volatile memory

As discussed before, Algorithm 2 needs the user-defined passphrase to
decrypt the SQLCipher encryption key, that must be gathered in order to
proceed with database decryption and analysis.

If the ChatSecure user is unwilling to reveal the passphrase, this problem
becomes hard to solve, since this passphrase is never stored on the persistent
memory of the device, so it cannot be retrieved from there. However, as
discussed below, the passphrase persists in the volatile memory of the device
after it has been inserted by the user when ChatSecure is started. Therefore,
if the device is switched on and ChatSecure is running, the passphrase can
be located in the volatile memory, and can be extracted from there.

In this section, we first discuss how we found out that the passphrase
persists in volatile memory, and then we show how it can be identified and
extracted from a dump of its contents.

To verify whether the passphrase persists in the volatile memory of the
ChatSecure device, we performed experiments in which we started ChatSe-
cure, entered the passphrase, put the application in the background, waited a
given amount of time during which the app was not used; then, we extracted
the contents of volatile memory of the ChatSecure process, and searched it
for the passphrase that was entered. Experiments were organized in rounds,
where each round included experiments in which we progressively increased
the amount of time we waited before performing acquisition, up to a maxi-
mum of two hours. We ran different sets of rounds, each one corresponding

31



to a different passphrase. Memory extraction and analysis was carried out
by using the methodology described in (Anglano et al., 2016), using LiME
for extraction and Volatility for analysis.

The results of our experiments can be summarized as follows:

1. the passphrase was always found in the volatile memory of the ChatSe-
cure process, thus proving that it persists there for the entire execution
of ChatSecure;

2. the passphrase is stored as a null-terminated Unicode UTF16-LE string
(an example is shown in Fig. 9 for the passphrase thisisthepassword2016,
which is highlighted by continuous-line box surrounding it);

3. the sequence of bytes encoding the passphrase is preceded by the 16-
bytes signature 50 99 ab b2 00 00 00 00 1a 00 00 00 00 00 00 00
(highlighted in Fig. 9 by a dotted-line box surrounding it);

4. the passphrase and its signature appear twice in the memory space of
the ChatSecure process, as exemplified in Fig. 9.

Figure 9: Passphrase in the volatile memory of the device.

Of course in real cases the passphrase is not known, so it cannot be found
in memory by simply searching for it, as we instead did in our experiments.
We need therefore to define a method allowing us to identify an unknown
passphrase stored in volatile memory.

A natural choice would be that of using the 16-bytes signature mentioned
above as a landmark indicating the position of the passphrase. Unfortunately,

32



the results of our experiments indicate that this method yields a large number
of false positives, since the above signature is present also for other UTF16-
LE null-terminated strings.

However, we can leverage the fact that the passphrase appears twice in
the volatile memory of the ChatSecure process, each time preceded by the
above 16-bytes signature, to prune all the candidate strings that do not occur
twice in the above memory space (they are clearly false positives). Although
we cannot exclude that this procedure will filter out all the false positives, it
is certainly able to greatly reduce their number.

Finally, after all the candidate passphrase have been extracted from the
volatile memory region belonging to the ChatSecure process, we can find
the correct one by first running Algorithm 2 for each one of them, and then
by attempting to decrypt the ChatSecure databases with the secret key it
returns. It is worth noticing that the database decryption procedure can be
implemented by using the SQLCipher API, thus making the above method
fully automatable.

4.8. Dealing with deletions

The last issue we consider is concerned with the recovery of messages
and files deleted by the ChatSecure user. These deletions are performed
by deleting the corresponding records from the impsenc.db and media.db
databases.

It is well-known that in SQLite databases deleted records are kept in the
so-called unallocated cells, i.e. slack space stored in the file corresponding to
the database, from which they can be recovered (Jeon et al., 2012).

Unfortunately this is not the case for ChatSecure databases, since their
records are deleted securely, i.e. they are overwritten upon deletion. As
a matter of fact, in SQLCipher (that, as already discussed, is used both
by ChatSecure and IOCipher to encrypt the impsenc.db and the media.db
databases, respectively), secure deletion is enabled by default, as reported in
its official documentation (sql, 2014), that states:

“(. . . ) as of version 2.0.5, SQLCipher now enables SQLite’s
PRAGMA secure delete=ON option. This causes the freed pages
to be zeroed out on delete to hinder recovery. As before, they re-
main encrypted. Note that this doesn’t imply that the pages are
removed from the database file, just that their content is wiped
when they are marked free.”

33



To verify whether the above holds true in reality, we performed a set of
experiments in which we deleted various messages and files from the above
databases, and then we attempted to recover the corresponding records by
means of specialized tools (Cellebrite LTD, 2015a; Oxygen Forensics, Inc,
2013). Our analysis did not yield any result, thus indicating that secure
deletion is actually working in the current version of ChatSecure.

We have therefore to conclude that the recovery of deleted messages and
files is not possible.

5. Conclusions

In this paper we have discussed the forensic analysis of ChatSecure, a
secure IM application that adopts strong encryption for transmitted and
locally-stored data to ensure the privacy of its users.

In particular, we have shown that ChatSecure stores local copies of both
exchanged messages and files into two distinct databases, that are strongly
encrypted by means of the SQLCipher library. Although the encryption
mechanisms used by ChatSecure is rather complex, we have devised an al-
gorithm able to decrypt these databases starting from the secret passphrase
chosen by the user as the initial step of the encryption process.

We have also shown how this passphrase can be identified and extracted
from the volatile memory of the device, where it persists – after having been
entered by the user – for the entire execution of ChatSecure, thus allowing
one to carry out decryption even if the passphrase is not revealed by the user.

Moreover, we have also shown how to analyze and correlate the data
stored in the databases used by ChatSecure to identify the IM accounts used
by the user and his/her buddies to communicate, as well as to reconstruct the
chronology and contents of the messages and files that have been exchanged
among them.

Finally, we have shown that the data stored in the databases cannot be
recovered after having been deleted, as a consequence of the secure deletion
technique adopted by SQLCipher.

The study reported in this paper has been performed by means of a
methodology that is based on the use of emulated devices and therefore
provides a very high degree of reproducibility of the results. The accuracy
of the method has been assessed by validating the results it yields against
those obtained from real smartphones. We believe that this methodology
represents also a significant contribution of this paper.

34



References

Forensic Recovery of Deleted Data. 2014. Available at
https://discuss.zetetic.net/t/forensic-recovery-of-deleted-data/20.

504ENSICS Labs . Linux memory extractor (lime). 2016. Available at
http://codeload.github.com/504ensicsLabs/LiME/zip/master.

Al Barghuthi N, Said H. Social Networks IM Forensics: Encryption Analysis.
Journal of Communications 2013;8(11):708–15.

Anglano C. Forensic Analysis of WhatsApp Messenger of An-
droid Smartphones. Digital Investigation 2014;11(3):201–13.
doi:10.1016/j.diin.2014.04.003.

Anglano C, Canonico M, Guazzone M. Technical Note to Foren-
sic Analysis of the ChatSecure Instant Messaging Application
on Android Smartphones. Technical Report TR-INF-2016-09-
02-UNIPMN; University of Piemonte Orientale; 2016. Available
at https://www.di.unipmn.it/TechnicalReports/TR-INF-2016-09-02-
UNIPMN.pdf.

Borisov N, Goldberg I, Brewer E. Off-the-Record Communication, or, Why
Not To Use PGP. In: Proc. of the 2004 ACM Workshop on Privacy in the
Electronic Society (WPES). Washington, DC, USA: ACM Press; 2004. p.
77–84. doi:10.1145/1029179.1029200.

Cellebrite LTD . UFED Mobile Forensics Applications. 2015a. Available at
http://www.cellebrite.com/Mobile-Forensics/Applications.

Cellebrite LTD . UFED4PC: The Software-Based Mobile Forensics
Solution. 2015b. Available at http://www.cellebrite.com/Mobile-
Forensics/Products/ufed-4pc.

Cellebrite LTD . Cellebrite Android Forensics. 2016. Avail-
able at http://www.cellebrite.com/mobile-forensics/capabilities/android-
forensics.

Electronic Frontier Foundation . Secure Messaging Scorecard. Available at
https://www.eff.org/secure-messaging-scorecard.

Epifani M, Stirparo P. Learning iOS Forensics. Packt Publishing, 2015.

35



Freed N, Klesin J, Hanses T. Media Type Specifications and Registration
Procedures. 2013.

Gliph Inc . Gliph: Secure Group Messaging and Bitcoin Payments. 2015.
Available at https://gli.ph/.

Google . Android Debug Bridge. 2016a. Available at
https://developer.android.com/studio/command-line/adb.html.

Google . Android Device Monitor. 2016b. Available at
https://developer.android.com/studio/profile/monitor.html.

Google . Run Apps on the Android Emulator. 2016c. Available at
https://developer.android.com/studio/run/emulator.html.

Guardian Project . CacheWord: Passphrase Caching and Management. 2015.
Available at https://guardianproject.info/code/cacheword/.

Guardian Project . ChatSecure: Encypted Messenger for iOS and Android.
2015a. Available at https://chatsecure.org/.

Guardian Project . ChatSecure source code. 2015b. Available at
https://chatsecure.org/developers/.

Guardian Project . IOCipher: Virtual Encrypted Disks. 2016a. Available at
https://guardianproject.info/code/iocipher/.

Guardian Project . libsqlfs. 2016b. Available at
https://github.com/guardianproject/libsqlfs.

Guardian Project . Orbot: TOR for Android. 2016c. Available at
https://guardianproject.info/apps/orbot/.

Husain MI, Sridhar R. iForensics: Forensic Analysis of Instant Messaging
on Smart Phones. In: Goel S, editor. Digital Forensics and Cyber Crime.
Springer Berlin Heidelberg; volume 31 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineer-
ing ; 2010. doi:10.1007/978-3-642-11534-9 2.

IETF Network Working Group . PCKS #5: Password-Based Cryptog-
raphy Specification Version 2.0. RFC n. 2898; 2000. Available at
https://tools.ietf.org/html/rfc2898.

36



Jeon S, Bang J, Byun K, Lee S. A recovery method of deleted records for
SQLite database. Personal and Ubiquotous Computing 2012;16(6):707–15.
doi:10.1007/s00779-011-0428-7.

MSAB . XRY. 2016. Available at http://www.msab.com/xry/xry-current-
version.

Open Whispers System . TextSecure/Signal. 2015. Available at
https://whispersystems.org/.

Oxygen Forensics, Inc . SQLite Viewer. 2013. Available
at http://www.oxygen-forensic.com/en/features/analyst/data-
viewers/sqlite-viewer.

Oxygen Forensics, Inc . Oxygen Forensics Detective. 2016. Available at
http://www.oxygen-forensic.com/en/products/oxygen-forensic-detective.

Quarkslab SAS . ChatSecure security assessment. Technical Report 14-
03-022; 2015. Available at http://blog.quarkslab.com/resources/2015-06-
25 chatsecure/14-03-022 ChatSecure-sec-assessment.pdf.

SQLite Consortium . SQLite Home Page. 2013. Available at
http://www.sqlite.org.

Tamma R, Tindall D. Learning Android Forensics. Packt Publishing, 2015.

Telegram Inc . Telegram: a New Era of Messaging. 2015. Available at
https://telegram.org/.

TOR Project . The TOR Project: Anonymity Online. 2016. Available at
https://www.torproject.org/.

Tso YC, Wang SJ, Huang CT, Wang WJ. iPhone Social Networking for
Evidence Investigations Using iTunes Forensics. In: Proc. of the 6th Inter-
national Conference on Ubiquitous Information Management and Com-
munication. New York, NY, USA: ACM; ICUIMC ’12; 2012. p. 1–7.
doi:10.1145/2184751.2184827.

United Nations Office on Drugs and Crime . Comprehensive Study on Cy-
bercrime. Technical Report; United Nations; 2013.

37



Volatility Foundation . An advanced memory forensics framework. 2016.
Available at http://volatilityfoundation.org/.

Walnycky D, Baggili I, A.Marrington , Moore J, Breitinger F. Net-
work and device forensic analysis of Android social-messaging ap-
plications. Digital Investigation 2015;14, Supplement 1:S77–84.
doi:10.1016/j.diin.2015.05.009; proc. of 15th Annual DFRWS Conference.

Wickr Inc . Wickr: the Most Trusted Messenger in the World. 2015. Available
at https://www.wickr.com/.

XMPP Standards Foundation . XMPP Technologies Overview. 2015. Avail-
able at http://xmpp.org/about-xmpp/technology-overview.

Zetetic LLC. . SQLCipher. 2015. Available at
https://www.zetetic.net/sqlcipher.

38


