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1. Introduction. We develop accurate analytical pricing formulae for discretely and con-

tinuously monitored arithmetic Asian options under general stochastic asset models, including
exponential Lévy models, stochastic volatility models, and the constant elasticity of variance dif-
fusion. The payoff of the arithmetic Asian option depends on the arithmetic average price of the
underlying asset monitored over a pre-specified period. For more than two decades, much effort has
been put into the research on efficient methodologies for computing the price of this option or, in
general, expected values of functionals of the average value, under different model assumptions for

the underlying. Developing such methods is of considerable practical importance as arithmetic aver-
ages see wide application in many fields of finance. Amongst others, we mention uses in computing
net present value in project valuation (see [72]), optimal capacity planning under average demand
uncertainty for a single firm (see [32]) and stock-swap merger proposals (see [60]). Weighted arith-
metic averages also appear in technical analysis and in algorithmic trading; for example, we recall
the moving average trading rule and its use from an asset allocation perspective (see [75]). Moving
average automatic trading strategies set buying and selling orders depending on the position of

the average price for a given period with respect to the current market price (see [50]). Finally,
weighted arithmetic average indexes are used as trading benchmarks in pension plans (see [11]).

Arithmetic Asian options are very popular among derivatives traders and risk managers. Their
appeal stems mainly from the fact that averaging smooths possible market manipulations occurring
near the expiry date. Moreover, averaging provides suitable volatility reduction and better cash-
flow matching to firms facing streams of cash flows. Due to these nice features, Asian options
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are particularly appropriate for currency, energy, metal, agricultural and freight markets and,
unsurprisingly, represent a large fraction of the options traded in these markets.

To be able to reproduce stylized properties of the asset prices in the various markets, it is nec-
essary in many cases to depart from the basic lognormal model by incorporating, for example,
random jumps, stochastic volatility and mean-reversion in the price dynamics. Unluckily, the pric-
ing of arithmetic Asian options does not admit true analytical solutions, even under the lognormal
model, as the distribution law of the arithmetic average is not known analytically. In fact, the
advantage of a more realistic model specification is often offset by the need to implement compu-
tationally expensive numerical procedures, where available. It is, thus, the main objective of this
paper to present a simple, accurate and fast pricing formula, albeit approximate, for arithmetic
Asian options allowing flexible modelling of the underlying asset price dynamics, filling this way
an important long-standing gap in the literature.

A large volume of publications is devoted to the pricing of Asian options, mainly, with continuous
monitoring in the Black–Scholes economy. Without being exhaustive, we mention Rogers and Shi
[61], who are the first to provide the Asian option price by solving a partial differential equation
(PDE) in one space dimension, but also Večeř [69] and Zhang [74] with improved PDE-based
solutions in low-volatility settings; Linetsky [53] derives an elegant spectral expansion for the
option price; Geman and Yor [42] are the first to give a solution in terms of a single-Laplace
transform, which is re-derived in Dewynne and Shaw [31] where it is shown how to treat the
low-volatility case more effectively. An also accurate double-transform at low volatility levels is
suggested in Fusai [38], whereas Cai and Kou [14] generalize to a double-Laplace transform under
the hyperexponential jump diffusion model, encompassing the Gaussian model and Kou’s double
exponential jump diffusion as special cases. Večeř and Xu [70] show that the option price satisfies a
partial integro-differential equation (PIDE) in the case of exponential Lévy price dynamics, which
is solved numerically in Bayraktar and Xing [9] for the special case of jump diffusion models.
Finally, Ewald et al. [36] propose a solution under the Heston model by means of a PDE and a
Monte Carlo simulation method, whereas Yamazaki [71] a pricing formula based on the Gram-
Charlier expansion. Another stream in the literature is concerned with pricing discretely monitored
Asian options. We mention, amongst others, contributed works by Andreasen [3] and Večeř [69]
based on PDE approaches under lognormal asset price dynamics and the Fourier transform-based
recursive convolution of Carverhill and Clewlow [20] on a reduced state space, whereas enhanced
variations of the latter under general exponential Lévy dynamics appear, for example, in Benhamou
[10], Fusai and Meucci [40], Černý and Kyriakou [21] and Zhang and Oosterlee [73]. Beyond the
Lévy framework, Dassios and Nagaradjasarma [29] and Fusai et al. [39] obtain explicit prices for
Asian options under the square root asset price dynamics ([55] consider a modified version with
independent jumps added), whereas Cai et al. [15] and Sesana et al. [64] develop, respectively, an
efficient asymptotic expansion and a quadrature method applicable to the generalized constant
elasticity of variance (CEV) diffusion.

In this paper, we present an analytical approximation to the price of the Asian option in the form
of a sharp lower bound under discrete or continuous monitoring and general model assumptions.
The idea of such an approximation dates back to the celebrated works of Curran [27, 28] and Rogers
and Shi [61] who derive a lower bound to the option price in the lognormal model using properties
of conditional expectations, where the conditioning variable is represented by the geometric average
with an analytically tractable law. In addition, Rogers and Shi [61] prove an upper bound to the
option price which is considerably strengthened later by Nielsen and Sandmann [58] and Thompson
[67]. Lord [54] revisits these earlier contributions and provides important enhancements, including
identifying and fixing convergence issues in Curran [28] when the strike price of the option tends
to zero or infinity. Novikov and Kordzakhia [59] extend to the case of volume-weighted average
options, where the volume process is independent of the underlying asset price process, and also to
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the cases of non-random deterministic or independent stochastic interest rates. Finally, Lemmens
et al. [52] apply the conditional expectation technique to obtain lower bounds for the prices of
discrete arithmetic Asian options in the general exponential Lévy asset price model.

Although earlier methods relying on Lévy log-increments of the underlying are found to be
impressively fast and accurate (e.g., see [40], [21] and [73]), lack of such an assumption, as, for
example, in the case of stochastic volatility models or the CEV diffusion, poses nontrivial mathe-
matical and computational challenges. Our lower bound price approximation aims to tackle these
difficulties efficiently. Following Curran [28], Rogers and Shi [61], Thompson [67] and Lemmens
et al. [52], we devise suitable conditioning variables under different stochastic dynamic models and
monitoring frequencies (discrete or continuous). In general, our method relies on identifying suitable
averages of the underlying asset prices, for use as conditioning variables, which have analytically
tractable laws and are close proxies to the original arithmetic average so that a tight lower bound
is eventually obtained. More precisely, for exponential Lévy and stochastic volatility models we
use the (log) geometric mean, whereas for the CEV diffusion we resort to the generalized (power)
mean. Using only knowledge of the underlying asset price law (jointly with the stochastic volatility
where assumed) via the associated characteristic function, we provide a general explicit recursive
algorithm which gives us access to the bivariate characteristic function of the asset price and the
new average. Given this, and beyond the original contributions of Curran [28] and Rogers and
Shi [61], we derive an analytical solution for the lower bound in the Fourier domain, similarly to
Lemmens et al. [52] under exponential Lévy models. This is then recovered by a single univariate
inversion and sharpened using simple optimization.

Our proposed method is distinguished from other pricing methodologies for Asian options due
to a number of appealing features. First, it can be applied flexibly to a wide range of non-Gaussian
models, such as pure jump Lévy models, Merton’s normal and Cai and Kou’s generalized hyperex-
ponential jump diffusions, models with/out jumps in the asset price/volatility dynamics, and the
CEV diffusion, without restricting to models admitting time changed Brownian (Lévy) representa-
tions which may not be always common or straightforward to use. Second, we provide interesting
theoretical findings related to the pricing of Asian options in the CEV diffusion model, which
requires special treatment due to its distinct distributional properties. Third, in the absence of
symmetry relations between fixed and floating strike Asian options beyond the exponential Lévy
asset price model (see [34]), by a slight modification of the conditioning variables and a change
of numéraire, we are able to switch from fixed to floating strike option price results. Fourth, with
slight modification of the pricing formulae, we can obtain the option price sensitivities with respect
to parameters of interest. Moreover, for first time in the literature, we provide a formulation which
applies also to continuous Asian options under general model assumptions. The final line of research
that we contribute to in this paper is concerned with deriving a theoretical upper bound to the
error made in our optimized lower bound price approximation that can be calculated numerically.

To verify the efficiency of the proposed methodology, extensive numerical experiments are con-
ducted to compare the accuracy of our optimized lower bound with existing methods in the lit-
erature against benchmarks generated by a very accurate control variate Monte Carlo simulation
strategy which uses as control variate the lower bound itself. To make concrete our analysis, we
investigate the numerical performance of our lower bound in a wide range of Lévy models, volatil-
ity models and the CEV diffusion, for options with varying moneyness and monitoring frequency
(monthly, weekly, daily, continuously). In summary, our numerical experiments demonstrate the
high accuracy of our optimized lower bound, with notable performance even for extremely low
volatilities, and its robustness in all the aforementioned test cases. The method is also fast and
simple to implement requiring a single univariate transform inversion, while the problem dimension
remains unaffected by the additional random volatility factor.

The structure of this paper is as follows. Section 2 summarizes the various market models consid-
ered in this study and provides preliminary transform results for discrete and continuous averages.
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Section 3 presents our transform representations of the lower bounds to the Asian option prices
under different contract specifications (fixed strike or floating strike price), monitoring frequencies
and model specifications. For the same cases, we present in Section 4 expressions for the error
in our lower bound price approximation. Section 5 is devoted to our numerical study. Section 6
concludes.

2. Market models and preliminary results. Assume that the price of the underlying asset
S is observed at the equally spaced discrete times t0 ≡ 0, t1 ≡ ∆, . . . , tj ≡ ∆j, . . . , tN ≡ ∆N = T ,
where T is a fixed time horizon. We assume a filtered probability space (Ω,F ,F ≡ (Ft)t∈[0,T ],P)
where P is the risk neutral probability measure.

2.1. Lévy models. Assume that X ≡ lnS is represented by a Lévy process, i.e., satisfies the
general form

dXt = εdt+σdWt + dLxt ,

where ε ∈ R is deterministic, σ ≥ 0 constant, W a standard Brownian motion and Lx a purely
discontinuous random process. Consider the log-increments of the underlying

lnS∆j − lnS∆(j−1) =X∆j −X∆(j−1) ≡Z∆
j , (1)

so that the price of the underlying asset at tj is

S∆j = S0e
Z∆
1 +···+Z∆

j

for j = 1, . . . ,N . At the level of risk neutral modelling, exponential Lévy asset price models allow
to generate implied volatility smiles and skews similar to the ones observed in market prices. Under
such model assumptions, the increments (1) are independent and identically distributed. By the
celebrated Lévy–Khintchine formula, the characteristic function of Z∆

j has the form

E[exp(iuZ∆
j )]≡ exp(ψ∆(u))≡ exp(iuε∆ +ϕ∆(u)) (2)

for all j, where ϕ∆(u) =ψ∆(u)− iuε∆. Further, we choose

ε= r− q− 1

∆
ϕ∆(−i) = r− q−ϕ1(−i), (3)

where r ≥ 0 and q ≥ 0 denote respectively the constant instantaneous risk-free interest rate and
dividend yield, to ensure that the discounted asset price is a martingale under the probability
measure P, e.g., see Schoutens [62], which is necessary for the risk neutral pricing of derivatives.

For our purposes, it is also necessary to specify the asset price dynamics under the measure P

where the underlying itself represents the numéraire, see Geman et al. [41]. From the numéraire
change formula, the characteristic function of Z∆

j under the measure P has the form

E[exp(iuZ∆
j )] =E[exp(−r∆ + i(u− i)Z∆

j )] = exp(−r∆ +ψ∆(u− i)). (4)

In Table 1, we list several Lévy processes with the associated characteristic exponents ϕ, including
the variance gamma (VG), normal inverse Gaussian (NIG), Carr–Geman–Madan–Yor (CGMY),
Merton jump diffusion (MJD), Kou double exponential jump diffusion (DEJD) and Meixner mod-
els. For extensive descriptions of the various models, we refer to Schoutens [62] and Cont and
Tankov [23].
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2.2. Affine stochastic volatility (ASV) models. When the risk neutral dynamics of the
log-priceX is given by a Lévy process, the implied volatility surface follows a deterministic evolution
(see [23]). Stochastic volatility models can tackle this difficulty. More specifically, diffusion-based
volatility models account for dependence in increments and long-term smiles and skews, but cannot
give rise to realistic short-term implied volatility patterns. This shortcoming can be overcome by
introducing jumps in the returns and in the evolution of the volatility. To this end, a number of
ASV models have been introduced in the literature. Popular examples include the time changed
Lévy processes proposed by [18] and [19], where the time change is given by integrated Ornstein–
Uhlenbeck (OU) or square root variance processes, with special cases being these of the Heston and
Barndorff–Nielsen–Shephard (BNS) models based on time changed arithmetic Brownian motions
(e.g., see [49]), the Bates and Duffie–Pan–Singleton (DPS) models, the Stein–Stein and Schöbel–
Zhu model with mean-reverting Gaussian volatility dynamics, which is affine with the state vector
augmented by the squared volatility (e.g., see [48]), but also members from the affine GARCH
class (see [56]). While our proposed method (see Section 3) can be readily applied to pricing Asian
options under the aforementioned model assumptions requiring only knowledge of the characteristic
function of the driving affine process, for ease of exposition we focus here attention on the Heston,
Bates, DPS and BNS cases.

Under the risk neutral measure, the Heston model [46] is described by the following stochastic
differential equations

dXt = (r− q−Vt/2)dt+
√

Vt(ρdWt +
√

1− ρ2dBt),
dVt = α(β−Vt)dt+ γ

√

VtdWt,

where B,W are independent standard Brownian motions, α,β, γ are positive constants and ρ ∈
[−1,1] is the instantaneous correlation coefficient between the log-asset price process X and the
variance process V . The Bates model [8] is an extension of the Heston model to include jumps in
the (log) asset price dynamics

dXt = (r− q− lk(1)−Vt/2)dt+
√

Vt(ρdWt +
√

1− ρ2dBt) + dLxt ,

where Lx is a time-homogeneous compound Poisson process with intensity l > 0 and normal dis-
tribution of jump sizes ξx with mean µx ∈R and standard deviation σx ≥ 0 and k(u)≡ exp(µxu+
σ2
xu

2/2) − 1. The DPS model introduced in Duffie et al. [33], in addition to the jumps in the
(log) asset price process, includes contemporaneous jumps in the variance process. The governing
equations are

dXt = (r− q− lk(1,0)−Vt/2)dt+
√

Vt(ρdWt +
√

1− ρ2dBt) + dLxt ,

dVt = α(β−Vt)dt+ γ
√

VtdWt + dLvt ,

where Lv and Lx are driven by a common Poisson process, hence jumps occur concurrently in both
processes, however the jump sizes ξv have exponential distribution with mean µv > 0. Also, the
magnitudes of the jumps ξx and ξv have a correlation determined by the parameter ρx,v; given ξv,
the jump sizes ξx are normally distributed with mean (µx + ρx,vξv) and variance σ2

x. Under this
model specification, k(u1, u2) ≡ exp(µxu1 +σ2

xu
2
1/2)/(1− ρx,vµvu1 −µvu2)− 1.

Lévy-driven positive OU processes are also of particular interest in the context of stochastic
volatility modelling. Barndorff-Nielsen and Shephard [6] and Barndorff-Nielsen et al. [5] suggest
the so-called BNS model of the form

dXt = (r− q− lk(ρ)−Vt/2)dt+
√

VtdWt + ρdLt,
dVt = −lVtdt+ dLt, (5)
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where parameters ρ≤ 0, l > 0, W is a standard Brownian motion and L is the background driving
Lévy process, which is a subordinator without drift and is independent of W . We consider two
popular parametric specifications of the BNS model, namely the BNS-Γ and BNS-IG model, where
the OU process (5) respectively has a gamma (Γ) stationary distribution with k(u) ≡ νu/(α− u)
for some ν,α > 0, and an inverse Gaussian (IG) stationary distribution with k(u) ≡ νu/

√
α2 − 2u

for some ν,α> 0.
Affinity of the volatility models described above implies that the characteristic function of the

pair (V,X) has exponentially affine dependence on V and X, i.e., there exist ϕ∆,ψ∆ : iR2 →C such
that

E[exp{iuV∆(j+1) + iυX∆(j+1)}|F∆j ] = exp{ϕ∆(iu, iυ) +ψ∆(iu, iυ)V∆j + iυX∆j},
or, equivalently, from (1)

E[exp{iuV∆(j+1) + iυZ∆
j+1}|F∆j ] = exp{ϕ∆(iu, iυ) +ψ∆(iu, iυ)V∆j}. (6)

Using the numéraire change formula, we also obtain under the measure P

E[exp{iuV∆(j+1) + iυZ∆
j+1}|F∆j ] = exp{−r∆ +ϕ∆(iu, i(υ− i)) +ψ∆(iu, i(υ− i))V∆j}. (7)

In Table 1, we provide the functions ϕ,ψ for the Heston, Bates, DPS and BNS models.

2.3. CEV diffusion model. Among the one-dimensional Markov processes, the CEV diffu-
sion of Cox [24] is an important asset price model which has interesting analytical properties and
can flexibly provide good fits to various shapes of implied volatility curves observed in the market-
place by varying the elasticity parameter γ. Despite its economic importance, the CEV diffusion
has been studied less in the literature of Asian options pricing. In this model, the underlying asset
price dynamics under the risk neutral measure is given by

dSt = (r− q)Stdt+σSγ/2t dWt, σ≥ 0, γ ∈R.

Cox [24] originally studied the case γ < 2, whereas Emanuel and MacBeth [35] extended his analysis
to the case γ > 2 (see also [63]). The special case of γ = 1 corresponds to the well known square
root process of Cox and Ross [25], whereas when γ = 2 we obtain the lognormal model. The CEV
diffusion with γ = 1 has been applied to the pricing of arithmetic Asian options in Dassios and
Nagaradjasarma [29], Fusai et al. [39] and, more recently, in its general form in Cai et al. [15],
Sesana et al. [64] and Cai et al. [16].

A useful property of this model for the purposes of our application in Section 3 is the following:
for X ≡ S2−γ , we get from Itô’s lemma

dXt = (r− q)(γ− 2)

(

σ2(γ− 1)

2(r− q)
−Xt

)

dt+σ(2− γ)
√

XtdWt. (8)

Model (8) is affine in the state variable and can be characterized by its moment generating function
(see [51, Proposition 6.2.4]),

E[e−µX∆(j+1) |F∆j] = exp{ϕ∆(0, µ)−ψ∆(0, µ)X∆j} , (9)

where

ϕ∆(ν,µ) ≡ γ− 1

γ− 2
ln

(

2θe((r−q)(γ−2)−θ)∆/2

(σ2(2− γ)2µ+ (r− q)(γ− 2))(1− e−θ∆) + θ(1 + e−θ∆)

)

, (10)

ψ∆(ν,µ) ≡ (θ(1 + e−θ∆)− (r− q)(γ− 2)(1− e−θ∆))µ+ 2(1− e−θ∆)ν

(σ2(2− γ)2µ+ (r− q)(γ− 2))(1− e−θ∆) + θ(1 + e−θ∆)
(11)

and θ≡ θ(ν)≡ |γ− 2|
√

(r− q)2 + 2νσ2.
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2.4. Discrete average. In light of the lack of analytical tractability of the law of the dis-
crete arithmetic average of the asset prices 1

N+1

∑N

j=0 S∆j, we look for close proxies with known
distributional properties. More specifically, such a proxy is given by

Y∆N ≡ 1

N + 1

∑N

j=0
X∆j, (12)

where X = lnS in the case of the Lévy and ASV models of Sections 2.1 and 2.2, whereas X = S2−γ

in the case of the CEV diffusion of Section 2.3. Important to our arithmetic Asian option pricing
framework of Section 3 is knowledge of the distribution law of the new average (12). In Propositions
1, 2 and 3, we derive key results under the Lévy, ASV and CEV diffusion models for use in Section
3.

Proposition 1. Define

ηj(u,υ) =



















υ
(

1− j
N+1

)

, k ∨n< j ≤N

u+ υ
(

1− j
N+1

)

, k∧n< j ≤ k ∨n
2u+ υ

(

1− j
N+1

)

, 0< j ≤ k ∧n
(13)

and
φk,n,N (u,υ) = E[exp{iu(X∆k +X∆n) + iυY∆N}]

under the risk neutral measure.
(i) (Lévy models). Under the assumption of increments Z∆

j satisfying (2), define

Ψh,∆(u,υ) =
∑N

j=h+1
ψ∆(ηj(u,υ)),

where h= 0, k∧n,k∨n. Then,

φk,n,N (u,υ) = exp{i(2u+ υ)X0 + Ψ0,∆(u,υ)}. (14)

(ii) (ASV models). Under the assumption of increments Z∆
j satisfying (6), define

Ψh,∆(u,υ;V∆h) =
∑N

j=h+1
ϕ∆(ϑj(u,υ), iηj(u,υ)) +ψ∆(ϑh+1(u,υ), iηh+1(u,υ))V∆h,

where h= 0, k∧n,k∨n and ϑj satisfies the recursive equation

ϑj ≡ψ∆(ϑj+1, iηj+1) (15)

for j =N − 1, . . . ,1 with ϑN ≡ 0. Then,

φk,n,N(u,υ) = exp{i(2u+ υ)X0 + Ψ0,∆(u,υ;V0)}. (16)

Proof. See Appendix A. �

Proposition 2. Define

η̄j(u,υ) =







−2u− υ j
N+1

, k ∨n< j ≤N

−u− υ j
N+1

, k ∧n< j ≤ k∨n
−υ j

N+1
, 0< j ≤ k∧n

(17)

and
φ̄k,n,N(u,υ) = E[exp{iu(X∆k +X∆n− 2X∆N) + iυ(Y∆N −X∆N)}]

under the measure P.



Fusai and Kyriakou: General Optimized Bounds for Arithmetic Asian Options
8

(i) (Lévy models). Under the assumption of increments Z∆
j satisfying (4), define

Ψ̄h,∆(u,υ) = exp

{

−r∆(N −h) +
∑N

j=h+1
ψ∆(η̄j(u,υ)− i)

}

,

where h= 0, k∧n,k∨n. Then,
φ̄k,n,N(u,υ) = Ψ̄0,∆(u,υ). (18)

(ii) (ASV models). Under the assumption of increments Z∆
j satisfying (7), define

Ψ̄h,∆(u,υ;V∆h) = exp

{

−r∆(N −h) +
∑N

j=h+1
ϕ∆(ϑ̄j(u,υ), i(η̄j(u,υ)− i))

+ψ∆(ϑ̄h+1(u,υ), i(η̄h+1(u,υ)− i))V∆h

}

,

where h= 0, k∧n,k∨n and ϑ̄j satisfies the recursive equation

ϑ̄j ≡ψ∆(ϑ̄j+1, iη̄j+1)

for j =N − 1, . . . ,1 with ϑ̄N ≡ 0. Then,

φ̄k,n,N (u,υ) = Ψ̄0,∆(u,υ;V0). (19)

Proof. See Appendix A. �

Proposition 3. (CEV model). Define recursive equations

ϑj(µ) = ψ∆(0, ϑj+1(µ)) +
µ

N + 1

for j =N − 1, . . . ,0 with ϑN(µ)≡ µ/(N + 1) and ψ given by (11).
(i) The moment generating function of Y∆(N−k−1) ≡ 1

N+1

∑N

j=k+1X∆j under the risk neutral mea-

sure is given by

E[e−µY∆(N−k−1) |F∆k] = exp

{

∑N

j=k+1
ϕ∆(0, ϑj(µ))−ψ∆(0, ϑk+1(µ))X∆k

}

, (20)

where ϕ is given by (10).
(ii) In addition,

E

[

X
1

2−γ

∆k e−µY∆N

]

=X
1

2−γ

0 exp
{

r∆k+
∑N

j=k+1
ϕ∆(0, ϑj(µ)) +

∑k

j=1
ϕ̄∆(0, ϑj(µ))−ϑ0(µ)X0

}

, (21)

where

ϕ̄∆(ν,µ)≡ γ− 3

γ− 1
ϕ∆(ν,µ) (22)

and ϕ is given by (10).

Proof. See Appendix A. �
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2.5. Continuous average. In the case of the continuous average, the quantity of interest is

Yt≡
1

T

∫ t

0

Xsds,

where X = lnS in the case of Lévy and ASV models, whereas X = S2−γ in the case of the CEV
diffusion.

In the general Lévy model case, it is possible to obtain characteristic functions for the pairs (Xt+
Xz, YT ) and (Xt+Xz− 2XT , YT −XT ), with t, z ∈ [0, T ], similarly to (14) and (18) in Propositions
1 and 2 based, instead, on the discrete average for N monitoring dates. This is possible if we let
N approach infinity while the time spacing ∆ approaches zero, so that T =N∆ remains constant.
This way we get under the risk neutral measure

φt,z,T (u,υ) = E[exp{iu(Xt +Xz) + iυYT }]

= exp

{

i(2u+ υ)X0 +

∫ T

0

ψ
(

u(1[0,t∧z](s) +1[0,t∨z](s)) + υ
(

1− s

T

))

ds

}

(23)

where ψ≡ψ1. The integrals on the exponent can be computed analytically for several Lévy models,
see Table 2, using any symbolic computation package such as Mathematica. Under the measure P,

φ̄t,z,T (u,υ) = E[exp{iu(Xt +Xz − 2XT ) + iυ(YT −XT )}]

= exp

{

−rT +

∫ T

0

ψ
(

−u(1[t∧z,T ](s) +1[t∨z,T ](s))− υ
s

T
− i
)

ds

}

(24)

holds.
In the case of the ASV models considered in this study, obtaining the characteristic functions

based on the continuous average by applying the same limiting argument as in the Lévy model case
on the discrete average-based characteristic functions (16) and (19) is not trivial. Alternatively, it
is necessary to derive first the characteristic function of the triple (V,X,Y ) (see [47] for the case
of ASV models). Given this and by iterated expectations, we can then obtain expressions for the
characteristic functions of (Xt+Xz, YT ) under the risk neutral measure and (Xt +Xz− 2XT , YT −
XT ) under the measure P.

Finally, in the case of the CEV diffusion, the continuous-time analogues of (20) and (21) are
given by

E
[

e−µ(YT−Yt)
∣

∣Ft
]

= exp
{

ϕT−t

(µ

T
,0
)

−ψT−t

(µ

T
,0
)

Xt

}

(25)

(see [51, Proposition 6.2.4]) and

E

[

X
1

2−γ

t e−µYT

]

=X
1

2−γ

0 exp
{

rt+ϕT−t

( µ

T
,0
)

+ ϕ̄t

(µ

T
,ψT−t

(µ

T
,0
))

−ψt

( µ

T
,ψT−t

( µ

T
,0
))

X0

}

(26)

which follows from (25) by iterated expectations and a change to the measure P with ϕ,ψ, ϕ̄ given
by (10), (11), (22).

3. General lower bounds. In this section we derive an optimal lower bound formula for
the price of the arithmetic Asian call option with fixed or floating strike price. Price results for
put-type options can then be obtained via standard put-call parity. The idea for the derivation of
the bound is given in Curran [28] and Rogers and Shi [61] under elementary Black–Scholes market
assumptions, and it is generalized here to Lévy and ASV models and the CEV diffusion. We note
that our results are consistent with those of Lemmens et al. [52] in the case of fixed strike discrete
Asian options under Lévy models. We present first our framework for the discrete average, while
results for the continuous average follow based on the same principles.



Fusai and Kyriakou: General Optimized Bounds for Arithmetic Asian Options
10

3.1. Lower bounds for discrete Asian options. In the case of the discrete average, the
payoff of the arithmetic Asian call option with time to maturity T has form

(

∑N

k=0 S∆k

N + 1
− K̄S∆N −K

)+

≡
(

∑N

k=0 S∆k

N + 1
− K̄S∆N −K

)

1A (27)

consisting of the fixed strike price K ≥ 0 and coefficient K̄ ≥ 0 for floating strike options, with

A≡
{

1

N + 1

∑N

k=0
S∆k > K̄S∆N +K

}

. (28)

The time-0 value of this option, P0, satisfies

P0 = e−rTE

[(

∑N

k=0 S∆k

N + 1
− K̄S∆N −K

)

1A

]

≥ LB0 ≡ e−rTE

[(

∑N

k=0 S∆k

N + 1
− K̄S∆N −K

)

1A′

]

for any A′ ⊂ Ω as 1
N+1

∑N

k=0 S∆k ≤ K̄S∆N +K in A′ \ A. Therefore, the value of the option with
fixed strike (i.e., K > 0, K̄ = 0) or floating strike (i.e., K = 0, K̄ > 0) satisfies respectively

Pfix,0 ≥ LBfix,0 = e−rT
E

[(

∑N

k=0 S∆k

N + 1
−K

)

1A′

]

, (29)

Pfl,0 ≥ LBfl,0 = e−rT
E

[

S∆N

(

∑N

k=0 S∆kS
−1
∆N

N + 1
− K̄

)

1A′

]

= S0E

[(

∑N

k=0 S∆kS
−1
∆N

N + 1
− K̄

)

1A′

]

, (30)

where the last equality in (30) follows by a change to the P measure.
Thus, the choice of a A′ gives us a lower bound for the option price. The idea is that the chosen

A′ relates as closely as possible to the true A, so that the distance between the lower bound and
the true option price is minimized, while at the same time makes the problem more analytically
tractable compared to the original A. In what follows, we explain how A′ is determined depending
on the model choice for the underlying asset price dynamics. For consistency with (29) and (30),
we define a parameter m taking value 0 (1) in the case of the fixed (floating) strike option.

3.1.1. The case of Lévy and ASV models. Given that

1

N + 1

∑N

k=0
S∆kS

−m
∆N ≥

(

∏N

k=0
S∆kS

−m
∆N

)1/(N+1)

(31)

(e.g., see [1, §3.2.1]), we choose

A′ ≡
{

(

∏N

k=0
S∆kS

−m
∆N

)1/(N+1)

> exp(λ)

}

≡
{

1

N + 1

∑N

k=0
lnS∆k−m lnS∆N >λ

}

(32)

in the lower bounds (29) and (30) where λ is a real parameter whose value will be determined in
Theorem 1. The choice of A′ based on the (log) geometric average was originally applied in Curran
[28] and Rogers and Shi [61] in the lognormal model and turned out to be a very accurate choice
due to the high correlation between the arithmetic and (log) geometric averages. The fact that the
log-geometric average also has favourable distributional properties under Lévy and ASV models
(see Propositions 1 and 2), as opposed to the arithmetic average, further motivates its choice.
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3.1.2. The case of the CEV diffusion model. CEV diffusion is treated separately from
Lévy and ASV models as of interest in this case is the quantity 1

N+1

∑N

k=0(S∆kS
−m
∆N )2−γ with useful

distributional properties, as opposed to 1
N+1

∑N

k=0 S∆kS
−m
∆N . Inequalities

1

N + 1

∑N

k=0
S∆kS

−m
∆N ≷

(

1

N + 1

∑N

k=0
(S∆kS

−m
∆N )2−γ

)1/(2−γ)

(33)

which hold for γ ≷ 1 (e.g., see [1, §3.2.4]) motivate the following choice of A′ for λ> 0

A′ ≡







(

1

N + 1

∑N

k=0

(

S∆k

Sm
∆N

)2−γ
) 1

2−γ

>λ
1

2−γ







≡

{

1
N+1

∑N

k=0

(

S∆k

Sm
∆N

)2−γ

>λ

}

1{γ<1}

∪
{

1
N+1

∑N

k=0

(

S∆k

Sm
∆N

)2−γ

>λ

}

1{1<γ<2}

∪
{

1
N+1

∑N

k=0

(

S∆k

Sm
∆N

)2−γ

<λ

}

1{γ>2}

. (34)

The averages 1
N+1

∑N

k=0 S∆kS
−m
∆N and 1

N+1

∑N

k=0(S∆kS
−m
∆N )2−γ are positively correlated for γ < 2,

whereas the correlation becomes negative for γ > 2.

3.2. Lower bound optimization and transform representations for discrete Asian
options. Due to the correlation between the two types of average, i.e., 1

N+1

∑N

k=0 S∆kS
−m
∆N and

1
N+1

∑N

k=0 ln(S∆kS
−m
∆N ) for Lévy and ASV models or 1

N+1

∑N

k=0 S∆kS
−m
∆N and 1

N+1

∑N

k=0(S∆k S
−m
∆N )2−γ

for the CEV model, by replacing A by A′ and additionally optimizing the parameter λ we minimize
the error in the lower bound. In Section 4 we prove an estimate for the error, whereas in Section
5 we demonstrate the effect of the optimal parameter λ in various numerical examples. Next, we
determine the value of parameter λ which maximizes the lower bounds (29) and (30).

Theorem 1. (Optimality conditions). Consider the random variables Y∆N = 1
N+1

∑N

k=0X∆k

and Ȳ∆N , where X = lnS, Ȳ∆N ≡ Y∆N −X∆N under Lévy and ASV models, and X = S2−γ, Ȳ∆N ≡
Y∆NX

−1
∆N under the CEV diffusion. Then, the optimal lower bound is given for

λ∗ ≡ arg max
λ

LB0(λ)

which satisfies the optimality conditions

E

(

∑N

k=0 S∆k

N + 1

∣

∣

∣

∣

∣

Y∆N = λ∗

)

=K and E

(

∑N

k=0 S∆kS
−1
∆N

N + 1

∣

∣

∣

∣

∣

Ȳ∆N = λ∗

)

= K̄, (35)

respectively, for a fixed and a floating strike option under Lévy, ASV and the CEV models.

Proof. We consider the case of the fixed strike option (the floating strike case is proved similarly).
From (29) and the definitions of A′ given in (32) and (34)

E

[(

∑N

k=0 S∆k

N + 1
−K

)

1{Y∆N>λ}

]

=
1

N + 1

∑N

k=0
E[E[S∆k−K|Y∆N ]1{Y∆N>λ}]

(note that opposite inequality sign applies for CEV elasticity γ > 2). Differentiating w.r.t. λ and
interchanging with the expectation yields

1

N + 1

∑N

k=0
E

[

E [S∆k−K|Y∆N ]
d

dλ
1{Y∆N>λ}

]

=
−1

N + 1

∑N

k=0
E(S∆k−K|Y∆N = λ)fN(λ), (36)

where the last equality follows from d1{Y∆N>λ}/dλ= −δ(Y∆N − λ) with δ representing the Dirac
delta function and fN the density function of Y∆N under the risk neutral measure. Then (35)
follows from (36) by setting this equal to zero. �
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We now proceed to derive the transform representations of the lower bounds (29) and (30) with
respect to λ, which can then be inverted to retrieve the lower bounds.

Theorem 2. (Fixed and floating strike discrete Asian options).
(i) (Lévy and ASV models). Suppose X = lnS. The Fourier transform of the lower bound

(29) w.r.t. λ is

Φ(u; δ) ≡
∫

R

eiuλ+δλ
{

e−rT

N + 1

∑N

k=0
E[(eX∆k −K)1{Y∆N>λ}]

}

dλ

=
e−rT

iu+ δ

{

1

N + 1

∑N

k=0
φk,k,N (−i/2, u− iδ)−KφN,N,N(0, u− iδ)

}

, (37)

where constant δ > 0 ensures integrability and φ is given in (14) and (16), respectively, for Lévy
and ASV models.

The Fourier transform of the lower bound (30) w.r.t. λ is

Φ̄(u; δ) ≡
∫

R

eiuλ+δλ
{

eX0

N + 1

∑N

k=0
E[(eX∆k−X∆N − K̄)1{Y∆N−X∆N>λ}]

}

dλ

=
eX0

iu+ δ

{

1

N + 1

∑N

k=0
φ̄k,k,N (−i/2, u− iδ)− K̄φ̄N,N,N(0, u− iδ)

}

, (38)

where φ̄ is given in (18) and (19) for the relevant model cases.
(ii) (CEV model). Suppose X = S2−γ. The (bilateral) Laplace transform of the lower bound

(29) w.r.t. λ is

Φ(iµ; δ) ≡
∫

R

e−µλ+δλ
{

e−rT

N + 1

∑N

k=0
E

[

(X
1/(2−γ)
∆k −K)1{Y∆N≷λ}

]

}

dλ

=
sgn(δ)e−rT

−µ+ δ

{

1

N + 1

∑N

k=0
E

[

X
1/(2−γ)
∆k e−(µ−δ)Y∆N

]

−KE[e−(µ−δ)Y∆N ]

}

, (39)

where µ∈ iR, constant δ ≷ 0 for γ ≶ 2, sgn denotes the signum function and E

[

X
1/(2−γ)
∆k e−(µ−δ)Y∆N

]

and E[e−(µ−δ)Y∆N ] are given in (21) and (20), respectively.
The (bilateral) Laplace transform of the lower bound (30) w.r.t. λ is

Φ̄(iµ; δ)≡
∫

R

e−µλ+δλ

{

X
1/(2−γ)
0

N + 1

∑N

k=0
E

[

((X∆kX
−1
∆N )1/(2−γ) − K̄)1{Y∆NX−1

∆N
≷λ}

]

}

dλ

=
sgn(δ)X

1/(2−γ)
0

−µ+ δ

{

1

N + 1

∑N

k=0
E

[

(X∆kX
−1
∆N )1/(2−γ)e−(µ−δ)Y∆NX−1

∆N

]

− K̄E[e−(µ−δ)Y∆NX−1
∆N ]

}

, (40)

where the expected values in (40) are computed numerically1.
(iii) The lower bounds (29) and (30) are given in terms of the inversion formulae

LBfix,0(λ) =
e−δλ

2π

∫

R

e−iuλΦ(u; δ)du and LBfl,0(λ) =
e−δλ

2π

∫

R

e−iuλΦ̄(u; δ)du, (41)

where Φ (resp. Φ̄) is given in (37) (resp. 38) for Lévy and ASV models and (39) (resp. 40) for the
CEV model.

1 Derivation of explicit expressions for the expected values in (40) is not trivial. Instead, in principle, these can
be computed numerically; such a computation requires derivation of the moment generating function of the triple
(X∆k,X∆N , Y∆N) under the measure P using iterated expectations (details are omitted here for brevity) and transform
inversion using the multivariate version of the algorithm proposed in Choudhury et al. [22].
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Proof. See Appendix A. �

Remark 1 (Price sensitivities). One of the advantages of our method is that, at essentially
no additional computational cost, it lends itself to computing the option price sensitivity with
respect to some parameter κ of interest, e.g., the initial value or volatility of the underlying asset,
the risk-free rate, etc. This is possible: (i) assuming that the interchange of differentiation and
integration in (41) is allowed, a usual assumption in option pricing via Fourier transform; and (ii)
resorting to the envelope theorem2 (see [66, p. 160]). For example, in the case of the fixed strike
Asian option we compute the price sensitivities by

∂LBfix,0(λ
∗;κ)

∂κ
=
e−δλ

∗

2π

∫

R

e−iuλ
∗ ∂Φ(u; δ,κ)

∂κ
du, (42)

where λ∗ satisfies (35) (we change slightly our notation here to make explicit the dependence of Φ
and, hence, LBfix,0 on κ). We highlight that (42) is the derivative of the lower bound for the option
price in (41) w.r.t. κ and does not imply a bound for the corresponding sensitivity.

By sake of exemplification, to compute the delta we require

∂Φ (u; δ,X0)

∂S0

=
∂Φ (u; δ,X0)

∂X0

∂X0

∂S0

,

where ∂Φ (u; δ,X0)/∂X0 is computed using (37) and (14) for Lévy models; (37) and (16) for ASV
models; (39) and (20)–(21) for the CEV model. In addition, ∂X0/∂S0 = exp(−X0) for Lévy and
ASV models; ∂X0/∂S0 = (2− γ)X−1

0 for the CEV model.
Based on the same principles, gamma can be computed by the second derivative of (41) w.r.t.

S0.
Remark 2 (Australian options). It is worth noting that our construction can be adapted

easily to the case of Australian options, i.e., options whose payoff depends on 1
N+1

∑N

k=0 S∆kS
−1
∆N

(e.g., see [36]). Pricing in this case is similar to that of floating strike options (see expression 30,
however with the expected values taken under the risk neutral measure and S0 replaced by e−rT ).

3.3. Lower bounds for continuous Asian options. The results for the continuous average
case are derived with a straightforward application of the same passages as in Section 3.1. In more
details,

e−rT
E

[

(

1

T

∫ T

0

Stdt−K

)+
]

≥ e−rT
E

[(

1

T

∫ T

0

Stdt−K

)

1{YT >λ}

]

, (43)

e−rT
E

[

ST

(

1

T

∫ T

0

StS
−1
T dt− K̄

)+
]

≥ S0E

[(

1

T

∫ T

0

StS
−1
T dt− K̄

)

1{ȲT >λ}

]

, (44)

where YT = 1
T

∫ T

0
Xtdt, ȲT ≡ YT −XT under Lévy and ASV models, ȲT ≡ YTX

−1
T under the CEV

diffusion. Note that opposite inequality sign applies in the indicator functions in (43)–(44) for CEV
elasticity γ > 2. The maximum lower bounds are given for λ= λ∗ satisfying

E

(

1

T

∫ T

0

Stdt

∣

∣

∣

∣

YT = λ∗

)

=K and E

(

1

T

∫ T

0

StS
−1
T dt

∣

∣

∣

∣

ȲT = λ∗

)

= K̄. (45)

2 Changes in the parameters may cause changes in the optimal value λ∗ in Theorem 1 and the maximum lower bound
LB0(λ

∗). The envelope theorem guarantees that changes in λ∗ due to changes in the parameters do not contribute
to changes in LB0(λ

∗).
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Theorem 3. (Fixed and floating strike continuous Asian options).
(i) (Lévy and ASV models). Suppose X = lnS. The Fourier transform of the lower bound

(43) w.r.t. λ is

Φ(u; δ) ≡
∫

R

eiuλ+δλ
{

e−rT

T

∫ T

0

E[(eXt −K)1{YT>λ}]dt

}

dλ

=
e−rT

iu+ δ

{

1

T

∫ T

0

φt,t,T (−i/2, u− iδ)dt−KφT,T,T (0, u− iδ)

}

, (46)

where constant δ > 0 ensures integrability and φ is given in (23) for Lévy models.
The Fourier transform of the lower bound (44) w.r.t. λ is

Φ̄(u; δ) ≡
∫

R

ei(u−iδ)λ
{

eX0

T

∫ T

0

E[(eXt−XT −K)1{YT−XT>λ}]dt

}

dλ

=
eX0

iu+ δ

{

1

T

∫ T

0

φ̄t,t,T (−i/2, u− iδ)dt−Kφ̄T,T,T (0, u− iδ)

}

, (47)

where φ̄ is given in (24) for Lévy models3.
(ii) (CEV model). Suppose X = S2−γ. The (bilateral) Laplace transform of the lower bound

(43) w.r.t. λ is

Φ(iµ; δ) ≡
∫

R

e−µλ+δλ
{

e−rT

T

∫ T

0

E

[

(X
1/(2−γ)
t −K)1{YT≷λ}

]

dt

}

dλ

=
sgn(δ)e−rT

−µ+ δ

{

1

T

∫ T

0

E

[

X
1/(2−γ)
t e−(µ−δ)YT

]

dt−KE[e−(µ−δ)YT ]

}

, (48)

where µ∈ iR, constant δ ≷ 0 for γ ≶ 2, sgn denotes the signum function and E

[

X
1/(2−γ)
t e−(µ−δ)YT

]

and E[e−(µ−δ)YT ] are given in (26) and (25), respectively.
The (bilateral) Laplace transform of the lower bound (44) w.r.t. λ is

Φ̄(iµ; δ) ≡
∫

R

e−µλ+δλ

{

X
1/(2−γ)
0

T

∫ T

0

E

[

((XtX
−1
T )1/(2−γ) − K̄)1{YTX

−1
T

≷λ}

]

dt

}

dλ

=
sgn(δ)X

1/(2−γ)
0

−µ+ δ

{

1

T

∫ T

0

E

[

(XtX
−1
T )1/(2−γ)e−(µ−δ)YTX

−1
T

]

dt− K̄E[e−(µ−δ)YTX
−1
T ]

}

. (49)

(iii) The lower bounds (43) and (44) are given in terms of the inversion formulae

LBfix,0(λ) =
e−δλ

2π

∫

R

e−iuλΦ(u; δ)du and LBfl,0(λ) =
e−δλ

2π

∫

R

e−iuλΦ̄(u; δ)du, (50)

where Φ and Φ̄ are given in (46)–(49) for the relevant models and types of options.

Proof. The proof proceeds along the same lines as that of Theorem 2. �

The option price sensitivities can be obtained as explained in Remark 1.
Remark 3 (Generalized weighted sums). It is worth noting that our lower bound results

can be extended to payoffs which depend on some generalized weighted sum of asset prices
∫ T

0
Stµ(t)dt, where µ(t) represents a measure on the time interval [0, T ] on which we monitor the

underlying asset price process; this encompasses the cases of the continuous Asian option with
µ(t)≡ 1

T
and discrete Asian option with µ(t)≡ 1

N+1

∑N

k=0 δ(∆k)(t) where δ denotes the Dirac delta.
Our lower bound results are readily extendible to other candidates for µ of interest.

3 The derivation of expressions for φ and φ̄ under ASV models is briefly discussed in Section 2.5.
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4. An estimate for the error of the lower bound. In what follows, we derive an estimate,
in the form of an upper bound, for the error when approximating the true Asian option price using
the general lower bound of Section 3 based on the principles set out in Rogers and Shi [61] and
Nielsen and Sandmann [58] in the Gaussian model setting and Lemmens et al. [52] under Lévy
models.

Theorem 4. (Error bounds). Consider the random variables Y∆N = 1
N+1

∑N

k=0X∆k and
Ȳ∆N , where X = lnS, Ȳ∆N = Y∆N −X∆N under Lévy and ASV models, and Ȳ∆N = Y∆NX

−1
∆N with

X = S2−γ under the CEV diffusion. In addition, YT = 1
T

∫ T

0
Xtdt and ȲT = YT −XT or ȲT = YTX

−1
T

for the relevant model case.
(i) (Discrete average, fixed and floating strike options). The error ǫ from approxi-

mating the price of the Asian call option on the discrete average with payoff (27) for a fixed strike
(i.e., K > 0, K̄ = 0) or a floating strike (i.e., K = 0, K̄ > 0) by the corresponding lower bound (29)
or (30) is bounded, respectively, by

0 ≤ ǫfix ≤
e−rT

2(N + 1)
E

{

[

∑N

k,n=1
E(S∆kS∆n|Y∆N )−

(

∑N

k=1
E(S∆k|Y∆N )

)2
] 1

2

1{Y∆N≤λ∗}

}

, (51)

0 ≤ ǫfl ≤
S0

2(N + 1)
E

{

[

∑N

k,n=1
E(S∆kS∆nS

−2
∆N |Ȳ∆N )−

(

∑N

k=1
E(S∆kS

−1
∆N |Ȳ∆N )

)2
] 1

2

1{Ȳ∆N≤λ∗}

}

,(52)

where the expectations in (51) and (52) are taken under the P and P measures, respectively.
(ii) (Continuous average, fixed and floating strike options). The error from approx-

imating the price of the fixed or floating strike Asian call option on the continuous average by the
corresponding lower bound (43) or (44) is bounded, respectively, by

0 ≤ ǫfix ≤
e−rT

2T
E







[

∫

[0,T ]2
E(StSz|YT )d(t, z)−

(
∫ T

0

E (St|YT )dt

)2
]

1
2

1{YT≤λ∗}







, (53)

0 ≤ ǫfl ≤
S0

2T
E







[

∫

[0,T ]2
E(StSzS

−2
T |ȲT )d(t, z)−

(
∫ T

0

E(StS
−1
T |ȲT )dt

)2
]

1
2

1{ȲT≤λ∗}







, (54)

where the expectations in (53) and (54) are taken under the P and P measures, respectively.
(Note that for CEV elasticity γ > 2, the inequality sign in the indicator functions in (51)–(54) is
reversed.)

Proof. See Appendix A. �

From (51)–(54) (see also 67) it is obvious that the more information the conditioning average
contains about the original arithmetic average, the smaller the conditional variance of the arith-
metic average, hence the smaller the error in the lower bound price approximation, becomes. This
confirms our choice of the conditioning average and of A′ to substitute for A in Section 3.

It is possible to obtain analytical expressions for the error bounds (51) and (52). More specifically,
we get

E(S∆kS
m
∆n|Y∆N = y) =

∫

R
e−iυyE(S∆kS

m
∆ne

iυY∆N )dυ
∫

R
e−iυyE(eiυY∆N )dυ

, (55)

E(S∆kS
m
∆nS

−1−m
∆N |Ȳ∆N = y) =

∫

R
e−iυyE(S∆kS

m
∆nS

−1−m
∆N eiυȲ∆N )dυ

∫

R
e−iυyE(eiυȲ∆N )dυ

(56)

for m= 0,1 (see [7, p. 62–63]). Consider the functions φ and φ̄ given respectively by the expressions
(14) and (18) for X driven by a Lévy model; (16) and (19) for X driven by an ASV model. Then,
we have that

E(S∆kS
m
∆ne

iυY∆N ) = φk,m(n−k)+k,N (−i/(2−m), υ),
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E(S∆kS
m
∆nS

−1−m
∆N eiυȲ∆N ) = φ̄k,m(n−k)+k,N (−i/(2−m), υ),

E(eiυY∆N ) = φN,N,N(0, υ) and E(eiυȲ∆N ) = φ̄N,N,N(0, υ).

In the case of the CEV model, for m= 0

E(S∆ke
iυY∆N ) =E(X∆k

1/(2−γ)eiυY∆N ) and E(eiυY∆N )

are given explicitly in (21) and (20), whereas the remaining expected values in (55)–(56) can be
computed numerically or using fractional calculus techniques as 1/(2 − γ) ∈ R, see Cressie and
Borkent [26], subject to certain regularity conditions.

In the case of the continuous average, the error bounds (53) and (54) can also be computed by
means of explicit conditional expectation representations, similar to (55)–(56) for the discrete aver-
age, to the extent these are available for different model specifications under continuous averaging:
for example, see (23)–(24) for Lévy models; (25)–(26) for the CEV model; discussion in Section 2.5
for ASV models.

5. Numerical study. In order to illustrate the performance of our maximum lower bound
(MLB) with optimal parameter λ = λ∗ satisfying (35) or (45), respectively for a discrete or a
continuous average, we perform an extensive pricing exercise across a wide range of stochastic
dynamic models (see Table 3) for varying strike price K and monitoring frequency. In addition,
we consider a suboptimal lower bound (SLB) in which we fix the parameter λ = lnK, for Lévy
and ASV models, and λ=K2−γ, for the CEV diffusion; these choices follow from a comparison of
A given in (28), based on the original average, and A′ in (32) and (34), based on the correlated
average. (In the case of floating strike options, K should be replaced by K̄.) Formulae (41) and
(50), respectively for a discrete and a continuous average, are computed using the (fractional) fast
Fourier transform algorithm (e.g., fft or czt in Matlab, see [21] for more details) which outputs:
(i) lower bound values on a fine, equally spaced grid of parameter λ values, including the MLB
for optimal λ = λ∗ as well as the SLB for λ = lnK or λ = K2−γ; and (ii) the optimal value λ∗.
Computed lower bounds are then compared with benchmark prices generated by a very accurate
control variate Monte Carlo (CVMC) simulation method using as control variates the lower bounds
themselves4; we call these optimized CVMC (with the MLB as CV) and suboptimal CVMC (with
the SLB as CV). We employ CVMC setup with the CV coefficient estimated in a pilot run, e.g.,
see Glasserman [43] and Cont and Tankov [23]. The choice of the CVMC method is justified by
its high accuracy and applicability under various model assumptions for the underlying asset price
process. In Appendix B, we summarize the simulation methodologies we have used in our numerical
study. Note that when estimating the price of the option on the continuous average, we correct
the discretization bias inherent in the simulation using our maximum lower bound based on the
continuous average as the control variate5. The sets of parameter values used for the Lévy models
are from the calibrations of Schoutens [62] and Fusai and Meucci [40]; the ASV models’ parameter
values are from the calibrations of Duffie et al. [33] (see also [13], [2] and [68]) and Nicolato and
Venardos [57]; the CEV parameter sets are taken from Cai et al. [15].

In addition, where applicable, we compare with numerical results from other important methods
in the literature, including, for example, Geman and Yor [42], Zhang [74], Dewynne and Shaw
[31], Cai and Kou [14], Bayraktar and Xing [9], Ewald et al. [36], Cai et al. [15] and Sesana et al.

4 Lower bound price approximations have also been used as control variates in Caldana and Fusai [17] in simulating
spread option prices with substantial variance reduction effect.

5 Fu et al. [37] have implemented previously a similar efficient simulation approach for pricing continuous arithmetic
Asian options in the basic Gaussian model using, instead, the analytically tractable continuous geometric Asian
option as the control variate.
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[64]. We point out that the relevant results consist of various model settings for the underlying,
parameter values for the volatility, interest rate and dividend yield, contract parameters such as
the strike price, and monitoring frequencies (discrete and continuous).

Our computations are conducted on a desktop PC with an Intel Core 2 Duo 2.93 GHz processor
and 2.00 GB of RAM. As our computing platforms, we have chosen Matlab R2010a and, for the
method of Bayraktar and Xing [9], Visual C++ 2010.

5.1. Performance comparisons against Monte Carlo simulation benchmarks. First,
we consider the case of the discrete average. Tables 4–5 give numerical results of prices of Asian
options under various Lévy models (Gaussian, VG, NIG, CGMY, MJD, DEJD, Meixner) and ASV
models (Heston, Bates, DPS, BNS-Γ, BNS-IG). We let the strike vary from 90 to 110 with an
increment of 10 and consider different monitoring frequencies: monthly (N = 12), weekly (N = 50)
and daily (N = 250). It can be seen that the optimized CVMC systematically produces estimates
with lower standard errors than the suboptimal CVMC. For this, in what follows we consider
only the optimized CVMC estimates. In fact, our reported optimized CVMC price estimates are
accurate to 4−5 decimal places (at the 95% confidence level), hence can serve as benchmarks to the
numerical outcomes from alternative pricing methods. However, despite its high accuracy, Monte
Carlo simulation can be computationally intensive, in general, for high monitoring frequencies,
but also in model-specific cases, such as the Meixner, Bates, BNS-Γ and BNS-IG models, by
construction of their simulation procedures with CPU times in excess of 1000 seconds per price
estimate for N = 12. A comparison in terms of the average absolute % relative error (AAPRE) of
the MLB and SLB against the optimized CVMC estimates across strikes and number of monitoring
dates indicates that the MLB generates AAPREs in the range 0.01% − 0.05% under the Lévy
models and 0.02% − 0.03% under stochastic volatility, whereas the SLB produces AAPREs of
0.04% − 0.09% and 0.1% − 0.16% respectively. In summary, Tables 4–5 suggest that the MLB is
consistently more accurate and robust than the SLB across different models, contract specifications
and monitoring frequencies. More importantly, given its high accuracy level and ease of use, the
MLB can be used itself as an efficient and power-saving substitute to the CVMC price.

In Table 6, we extend our analysis to the CEV asset price model. More specifically, we compare
our MLB and SLB results for different elasticities γ with those obtained through the quadrature
method of Sesana et al. [64] and the asymptotic expansion approach of Cai et al. [15]. Based on
the AAPREs computed against the optimized CVMC estimates, the SLB is shown to perform
consistently worse than the MLB. It can be seen that for γ = 1.5 the MLB produces the lowest
AAPRE and also the lowest maximum absolute % relative error (MAPRE), i.e., 0.004% (0.009%),
followed by the quadrature method with 0.005% (0.035%), the SLB with 0.013% (0.028%) and
the expansion formula with 0.051% (0.098%); for γ = 2.5, the AAPREs (MAPREs) are found
to be 0.009% (0.037%), 0.040% (0.087%), 0.045% (0.078%), 0.118% (0.265%), respectively, for
the quadrature method, the MLB, the expansion formula and the SLB. Although very accurate,
the quadrature method by Sesana et al. [64] turns out be computationally expensive requiring
approximately 90 seconds, as opposed to 0.15 seconds required by our MLB, for N = 12, with the
CPU times further increasing with N . On the other hand, the expansion formula of Cai et al. [15]
is very fast, generating one result in less than 0.5 seconds almost independently of N , however its
applicability is limited to one-dimensional diffusion models.

In Table 7, we present numerical results of price sensitivities of Asian options computed as
explained in Remark 1. More specifically, we compare our deltas and gammas under the CEV model
with accurate results from the method of Sesana et al. [64], whereas in the cases of Heston and
CGMY models (for brevity) we compare our deltas with unbiased likelihood-ratio optimized CVMC
estimates (see [12] for the Heston model using conditional Monte Carlo; [44] for the CGMY model
using combined Monte Carlo with transform inversion). Our reports confirm the high precision of
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our method also in this computation: for example, this generates AAPRE of 0.005% under CEV
with γ = 1.5, which is an improvement to the asymptotic expansion approach of Cai et al. [15]
with AAPRE of 0.028% in this case, whereas both methods perform the same under CEV with
γ = 2.5 with AAPRE of 0.013%. Our approximation seems less accurate in the case of the gamma
sensitivity (still acceptable for practical applications) with AAPRE of 0.5% (approx.) for both
γ = 1.5,2.5.

Next, we assess the performance of our MLB in the case of the continuous average. In light of
recent advances on the pricing of continuous Asian options, we compare with the numerical prices
from the inversion of the double-Laplace transform of Cai and Kou [14] under the DEJD model;
the PIDE implementation of Bayraktar and Xing [9] under the MJD and DEJD models; and the
implementation of the PDE developed in Ewald et al. [36], as well as the second-order Taylor 2.0
Monte Carlo price estimates of Ewald et al. [36] under the Heston model. A more detailed analysis
under the Gaussian model dynamics is deferred to Section 5.2. Using the same sets of parameters as
in the aforementioned works, it is shown in Table 8 that the MLB and the double-Laplace transform
algorithm generate nearby AAPREs under the DEJD model with jump arrival rate l= 3 (l = 5),
i.e., 0.02% and 0.01% (0.03% and 0.06%), as opposed to the PIDE method of Bayraktar and Xing
[9] with a persistently higher AAPRE of 0.07% (0.15%). Also, the reported MAPREs follow the
same pattern across the different methods. The CPU times per result are approximately 4, 6 and
6 seconds for the MLB, the double-Laplace transform algorithm and the PIDE method. Under the
MJD model with l = 1, the PIDE method’s AAPRE improves to 0.03%, whereas the AAPRE of
our MLB is only marginally affected and is no greater than 0.04%. In Table 9, we present numerical
results for continuous Asian options under the Heston model. Given the simulation error (RMSE)
reports for the second-order Taylor scheme implemented in Ewald et al. [36], we reach that the
relevant price estimates are accurate to 1−2 decimal places (at the 90% confidence level) with each
estimate taking 310 seconds to compute. In addition, implementing the PDE of Ewald et al. [36]
takes approximately 1000 seconds to generate a price result accurate to 3 decimal places, whereas
our MLB requires approximately 10 seconds for the same level of precision.

5.2. Pricing under the Gaussian model: comparisons for varying volatility. In this
section, we focus attention on the special case of the continuous Asian option under the basic
Gaussian model. To check the accuracy of our MLB, we adhere to the test cases considered in Cai
and Kou [14] and compare against existing methods devoted to the Gaussian dynamics and the
continuous average case.

Table 10 shows that in most of the cases of moderate to high volatility, 0.1 ≤ σ≤ 0.5, our MLB
results agree to 4 decimal places with the prices obtained from the methods of Geman and Yor [42],
Linetsky [53], Cai and Kou [14] (accurate to 10 decimal places), and Večeř [69], Zhang [74] (accurate
to 6 decimal places). Although the MLB seems less accurate than the other approaches (still suffi-
ciently accurate for practical applications), its performance improves substantially with decreasing
volatility to extremely low levels in which case many numerical methods for Asian options per-
form poorly. Here, we extend the previous analysis of Cai and Kou [14] on cross-comparisons of
behaviours for reasonably low volatilities, e.g., σ = 0.05, and extremely low volatilities, σ ≤ 0.01,
to include also our MLB method. Further, we study different cases q < r, q = r, q > r. Table 11
shows that, for σ = 0.05, our MLB, the double-Laplace transform algorithm of Cai and Kou [14],
the Geman–Yor Laplace transform formula implemented as in Shaw [65], the matched asymptotic
expansion of Dewynne and Shaw [31] and the PDE of Zhang [74] coincide with one another to
6 decimal places. When σ ≤ 0.01, Cai and Kou’s algorithm and Shaw’s GY implementations fail,
whereas Dewynne and Shaw’s expansion, Zhang’s PDE and our MLB work notably well agreeing
with each other to 7, 8 and 9 decimal places for q < r, q > r and q = r, respectively. Besides,
to produce one MLB requires about 0.03 seconds, which is no more than what it takes with the
alternative methods.
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In summary, our results confirm the efficiency of our MLB which becomes remarkably sharp at
low volatility levels.

5.3. Upper bounds for Asian option prices. In Section 4, we have derived theoretical

upper bounds to the error ǫ from approximating the true option prices by the lower bounds (see
Theorem 4). For the model cases of Tables 4–6, we report in Table 12 our upper error bounds

computed numerically using the fast Fourier transform algorithm for (i) our maximum lower bound

and (ii) the suboptimal lower bound; we call these optimized and suboptimal error bounds, respec-
tively. Note that, when added to the lower bounds, these error estimates give us also access to

upper bounds to the true option prices.

We observe that in all cases the optimized upper bounds are tighter than the suboptimal ones.

It also appears that the error is an increasing function of the strike price, whereas the impact of
increasing number of monitoring dates to the error is trivial; this is consistent with the results of

Nielsen and Sandmann [58] based on a lognormal underlying asset price and an improvement over

the more conservative upper bound of Rogers and Shi [61] which is independent of the strike price

level. It is worth noting that the same behaviour across strikes and number of monitoring dates is
observed also in the experimental absolute % relative errors reported in Tables 4–6. In addition, the

experimental relative differences between the reported MLBs and the benchmark CVMC estimates

in Tables 4–6 across all strikes and monitoring dates are no greater than 0.0067 for the Lévy models,
0.0004 for the ASV models and 0.0026 for the CEV diffusion, whereas the corresponding computed

theoretical error estimates presented in Table 12 appear higher (in particular, these are smaller

than 0.2390, 0.054 and 0.148) in consistency with the theoretical analysis as the latter represent

upper bounds to the true error.

6. Conclusions. In this paper, an approximation in the form of an acute lower bound is

proposed to price discretely or continuously monitored Asian options, with fixed or floating strike

price, in a general model setting with jumps allowed or not in the underlying asset returns and in
the evolution of the volatility process. Special attention is given to the CEV diffusion model with

distinct distributional properties. An estimate to the error from the lower bound approximation is

also obtained. Extensive numerical experiments across a wide range of stochastic dynamic models,

monitoring frequencies and option moneyness indicate that our proposed method is easy to imple-
ment, fast and accurate compared to other important methods in the literature; and it performs

remarkably well even in the case of extremely low volatilities.

We note that our approach can be applied to exponential Lévy-driven mean-reverting models,
which, although we have only briefly mentioned in the paper, are nevertheless empirically accepted

by several studies as important models for commodity price dynamics. Following a change to the

forward measure, it can be also extended to the case of affine models with stochastic interest rates,

which become more essential in the case of long-dated contracts. Finally, our approximation can
be applied to in-progress options and functions of generalized weighted (discrete or continuous)

sums of asset prices.

Appendix A: Proofs.
Proof of Proposition 1. From (1) we have that for any 0≤ a< b,

X∆b = X∆a +
∑b

j=a+1
Z∆
j , (57)

∑b

j=a+1
X∆j = (b− a)X∆a +

∑b

j=a+1
(b+ 1− j)Z∆

j (58)
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hold. Based on (57)–(58) we are able to write

Y∆N =
1

N + 1

∑N

j=0
X∆j =X0 +

∑N

j=1

(

1− j

N + 1

)

Z∆
j , (59)

X∆(k∧n) +X∆(k∨n) = 2X0 + 2
∑k∧n

j=1
Z∆
j +

∑k∨n

j=k∧n+1
Z∆
j . (60)

Given that X∆k +X∆n≡X∆(k∧n) +X∆(k∨n), we get from (59)–(60)

E[exp{iu(X∆k +X∆n) + iυY∆N}] = E[exp{iu(X∆(k∧n) +X∆(k∨n)) + iυY∆N}]

= exp{i(2u+ υ)X0}E
[

exp

{

i
∑k∧n

j=1

(

2u+ υ

(

1− j

N + 1

))

Z∆
j

+i
∑k∨n

j=k∧n+1

(

u+ υ

(

1− j

N + 1

))

Z∆
j + i

∑N

j=k∨n+1
υ

(

1− j

N + 1

)

Z∆
j

}]

.

(i) Given (2) and (13), (14) follows by stochastic independence of Z∆
j .

(ii) From (6) we have

E[exp{ϑNV∆N + iηNZ
∆
N}|F∆(N−1)] = exp{ϕ∆(ϑN , iηN ) +ψ∆(ϑN , iηN )V∆(N−1)} (61)

and for j =N − 1, . . . , k∨n, . . . , k∧n, . . . ,1

E[exp{ψ∆(ϑj+1, iηj+1)V∆j + iηjZ
∆
j }|F∆(j−1)]

= exp{ϕ∆(ψ∆(ϑj+1, iηj+1), iηj) +ψ∆(ψ∆(ϑj+1, iηj+1), iηj)V∆(j−1)}
= exp{ϕ∆(ϑj, iηj) +ψ∆(ϑj, iηj)V∆(j−1)}, (62)

where the last equality follows from (15). Then, given (59)–(60) and using iterated expectations
applying (61)–(62), we obtain (16).
�

Proof of Proposition 2. Based on (57)–(58) we are able to write

Y∆N −X∆N =
1

N + 1

∑N

j=0
X∆j −X∆N =

−1

N + 1

∑N

j=1
jZ∆

j , (63)

X∆(k∧n) +X∆(k∨n) − 2X∆N = −
∑k∨n

j=k∧n+1
Z∆
j − 2

∑N

j=k∨n+1
Z∆
j . (64)

From (63)–(64) we get

E[exp{iu(X∆k +X∆n− 2X∆N) + iυ(Y∆N −X∆N)}]
= E[exp{iu(X∆(k∧n) +X∆(k∨n) − 2X∆N) + iυ(Y∆N −X∆N)}]

= E

[

exp

{

−i
∑k∧n

j=1
υ

j

N + 1
Z∆
j

−i
∑k∨n

j=k∧n+1

(

u+ υ
j

N + 1

)

Z∆
j − i

∑N

j=k∨n+1

(

2u+ υ
j

N + 1

)

Z∆
j

}]

.

(i)–(ii) Given the arguments above, the proof follows that of parts (i)–(ii) of Proposition 1 using
(4) and (7) instead of (2) and (6).
�

Proof of Proposition 3. (i) The proof of (20) follows that of Proposition 2 in Fusai et al. [39]
given the expression (9) and using iterated expectations.
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(ii) We have

E

[

X
1/(2−γ)
∆k e−µY∆N

]

= E

[

X
1/(2−γ)
∆k e−µY∆kE

[

e−µY∆(N−k−1)
∣

∣F∆k

]

]

= X
1/(2−γ)
0 exp

{

r∆k+
∑N

j=k+1
ϕ∆(0, ϑj(µ))

}

E
[

e−µY∆k−ψ∆(0,ϑk+1(µ))X∆k
]

, (65)

where the second equality follows from a change to the measure P and expression (20). Evaluating
the expected value (65) iteratively under P yields the expression (21).

�

Proof of Theorem 2. (i)–(ii) Applying Fubini’s theorem yields

e−rT

N + 1

∑N

k=0
E

[

(eX∆k −K)

∫ Y∆N

−∞

ei(u−iδ)λdλ

]

=
e−rT

iu+ δ

{

1

N + 1

∑N

k=0
E[eX∆k+i(u−iδ)Y∆N ]−KE[ei(u−iδ)Y∆N ]

}

,

from which (37) follows;

eX0

N + 1

∑N

k=0
E

[

(eX∆k−X∆N − K̄)

∫ Y∆N−X∆N

−∞

ei(u−iδ)λdλ

]

=
eX0

iu+ δ

{

1

N + 1

∑N

k=0
E[eX∆k−X∆N+i(u−iδ)(Y∆N−X∆N )]− K̄E[ei(u−iδ)(Y∆N−X∆N )]

}

,

from which (38) follows; for γ ≶ 2

e−rT

N + 1

∑N

k=0
E

[

(X
1/(2−γ)
∆k −K)

∫ ∞

−∞

e−µλ+δλ1{Y∆N≷λ}dλ

]

=
sgn(δ)e−rT

−µ+ δ

{

1

N + 1

∑N

k=0
E

[

X
1/(2−γ)
∆k e−(µ−δ)Y∆N

]

−KE[e−(µ−δ)Y∆N ]

}

and

X
1/(2−γ)
0

N + 1

∑N

k=0
E

[

((X∆kX
−1
∆N)1/(2−γ)− K̄)

∫ ∞

−∞

e−µλ+δλ1{Y∆NX
−1
∆N

≷λ}dλ

]

=
sgn(δ)X

1/(2−γ)
0

−µ+ δ

{

1

N + 1

∑N

k=0
E

[

(X∆kX
−1
∆N)1/(2−γ)e−(µ−δ)Y∆NX

−1
∆N

]

− K̄E[e−(µ−δ)Y∆NX
−1
∆N ]

}

,

from which the proof of parts (i)–(ii) is completed.
(iii) Application of standard inversion formula, see [45, Theorem 5C].

�

Proof of Theorem 4. For brevity we restrict our attention to the case of the fixed strike Asian
call option on the discrete average, as the extensions to the continuous average and the floating
strike option are straightforward. From Jensen’s inequality

0≤ ǫfix ≡ e−rTE





(

∑N

k=0 S∆k

N + 1
−K

)+


− e−rTE







[

E

(

∑N

k=0 S∆k

N + 1

∣

∣

∣

∣

∣

Y∆N

)

−K

]+






.

From (35)

E

(

∑N

k=0 S∆k

N + 1

∣

∣

∣

∣

∣

Y∆N = y

)

−K (66)
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is equal to zero when y= λ∗. In addition, assuming that the function (66) is strictly increasing in y
(this assumption is numerically verified in all our experiments; more results can be made available
upon request) implies that it is positive for y > λ∗. Hence,

ǫfix = e−rTE





(

∑N

k=0 S∆k

N + 1
−K

)+


− e−rTE

{[

E

(

∑N

k=0 S∆k

N + 1

∣

∣

∣

∣

∣

Y∆N

)

−K

]

1{Y∆N>λ
∗}

}

coincides with the error from approximating the true option price by the lower bound. As noted
in Rogers and Shi [61] and Nielsen and Sandmann [58],

ǫfix ≤
e−rT

2
E



Var

(

∑N

k=0 S∆k

N + 1
−K

∣

∣

∣

∣

∣

Y∆N

)
1
2

1{Y∆N≤λ∗}



 , (67)

from which inequality (51) follows by definition of the variance. �

Appendix B: Monte Carlo simulation methods. In this section, we provide more details
about the simulation methodologies we consider for the purposes of our numerical study. In partic-
ular, the VG and NIG model trajectories are simulated exactly by exploiting their representations
as subordinated arithmetic Brownian motions (see [43], [23]); for the CGMY model we use the
joint Monte Carlo-Fourier transform sampling scheme of Ballotta and Kyriakou [4]; for the MJD
and DEJD models the improved algorithm in Cont and Tankov [23, Section 6.1]; for the Meixner
model the exact acceptance-rejection sampling method of Devroye [30].

Stochastic volatility models are proved harder to simulate accurately and various approaches
have been proposed to this end (e.g., see discussion in [68]). In particular, for the Heston model we
implement the quadratic-exponential method of Andersen [2] to simulate the square root variance
diffusion process with central discretization of the integrated variance, which is the most suitable
for a large number of averaging points (e.g., N = 12,50,250) and also easily extensible to the
models of Bates [8] and Duffie et al. [33] (see [13, Section 6]). In addition, the variance process
in the BNS-Γ model is given by an OU process driven by a compound Poisson subordinator with
exponential jump size distribution which can be simulated exactly; to simulate the variance process
in the BNS-IG model we use an approximate series representation (see [62]); we approximate the
integrated variance in either BNS model using central discretization.

Finally, we refer to Glasserman [43, Section 3.4.4] for the simulation of the CEV process.
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[62] Schoutens, W. 2003. Lévy Processes in Finance: Pricing Financial Derivatives . Wiley Series in Proba-
bility and Statistics, Wiley, Chichester, West Sussex.

[63] Schroder, M. 1989. Computing the constant elasticity of variance option pricing formula. Journal of
Finance 44(1) 211–219.

[64] Sesana, D., D. Marazzina, G. Fusai. 2014. Pricing exotic derivatives exploiting structure. European
Journal of Operational Research 236(1) 369–381.

[65] Shaw, W. T. 1998. Modelling Financial Derivatives with Mathematica. Cambridge University Press,
Cambridge.

[66] Takayama, A. 1974. Mathematical Economics . Cambridge University Press, Cambridge.

[67] Thompson, G. W. P. 1999. Fast narrow bounds on the value of Asian options. Working paper, Cambridge
University.

[68] Tse, S. T., J. W. L. Wan. 2013. Low-bias simulation scheme for the Heston model by Inverse Gaussian
approximation. Quantitative Finance 13(6) 919–937.
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Research 17(1) 79–111.

[72] Zahra, S., R. Reza. 2012. Asian real option: New approach to project economic valuation. 2012 Internat.
Conf. on Information Management, Innovation Management and Industrial Engineering (ICIII), vol. 2.
475–479.

[73] Zhang, B., C. W. Oosterlee. 2013. Efficient pricing of European-style Asian options under exponential
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Table 1. Characteristic exponents.

Model ϕ∆(u,υ) ψ∆(u,υ)

Gaussian − 1
2
σ2u2∆ -

VG −∆
ν
ln(1− θνiu+ νσ2u2/2) -

NIG −δ∆(
√

a2 − (b+ iu)2 −
√
a2 − b2) -

CGMY C∆Γ(−Y )((M − iu)Y −MY +(G+ iu)Y −GY ) -
MJD l∆(exp(iuµx − 1

2
u2σ2

x)− 1)− 1
2
σ2u2∆ -

DEJD (Kou) l∆
(

pη1
η1−iu

+ (1−p)η2
η2+iu

− 1
)

− 1
2
σ2u2∆ -

Meixner 2δ∆ln
(

cos(b/2)
cosh((au−ib)/2)

)

-

Heston
υ
(

r− q− ραβ
γ

)

∆

+αβ
γ2

[

(α−ω2(υ))∆− 2 ln
(

ω1(u,υ)e
−ω2(υ)∆−1

ω1(u,υ)−1

)]

α−υργ−ω2(υ)−ω1(u,υ)e
−ω2(υ)∆(α−υργ+ω2(υ))

(1−ω1(u,υ)e
−ω2(υ)∆)γ2

Bates ϕHes
∆ (u,υ)+ l(k(υ)− k(1)υ)∆ ψHes

∆ (u,υ)

DPS

υ
(

r− q− ραβ
γ

− lk(1,0)
)

∆

+αβ
γ2

[

α∆+ln

(

ω2
2(υ)(1+ω2

1,∆(u,υ))

γ2(2(υργ−α)u+γ2u2+υ(υ−1))

)]

+l
∫∆

0
k(υ,ψs(u,υ))ds

1
γ2 (ω1,∆(u,υ)ω2(υ)+α−υργ)

BNS (r− q− lk(ρ))∆υ+ l
∫∆

0
k(ψs(u,υ)+ ρυ)ds e−l∆u+ 1−e−l∆

2l
(υ− 1)υ

Notes. Heston/Bates: ω1(u,υ) ≡ α−υργ−ω2(υ)−uγ2

α−υργ+ω2(υ)−uγ2 , ω2(υ) ≡
√

(α− υργ)2 + (1− υ)υγ2; DPS:

ω1,∆(u,υ)≡ tan
(

ω2(υ)∆

2
+ arctan

(

υργ−α+uγ2

ω2(υ)

))

, ω2(υ) ≡
√

(υ− 1)υγ2− (α− υργ)2.

Table 2. Integrated characteristic exponents of some Lévy models for use in expression (23).

Model I(s, c, u, υ)

Gaussian iε(cu+ υ− sυ
2T

)s− σ2

2
(cu+ υ)(cu+ υ− sυ

T
)s− s3σ2υ2

6T2

VG

iε(cu+υ− sυ
2T

)s+ T
νυ

(cu+ υ− sυ
T
)
[

ln
(

νσ2

2
(cu+ υ− sυ

T
)2 − iνθ(cu+υ− sυ

T
)+ 1

)

− 2
]

− iTθ
2νσ2υ

ln
(

ν2σ4(cu+υ− sυ
T
)4 +4ν(νθ2 +σ2)(cu+υ− sυ

T
)2 +4

)

+ T
νσ2υ

[

2
√

θ2 + 2σ2

ν
tan−1

(

σ2(cu+υ− sυ
T

)−iθ
√

θ2+ 2σ2

ν

)

− θ tan−1
(

2νθ(cu+υ− sυ
T

)

νσ2(cu+υ− sυ
T

)2+2

)

]

NIG
iε(cu+υ− sυ

2T
)s+ iδT

υ

[√
a2 − b2 − 1

2

√

a2 − (b+ i(cu+ υ− sυ
T
))2

]

(b+ i(cu+ υ− sυ
T
))

− ia2δT
2υ

tan−1

[

b+i(cu+υ− sυ
T

)√
a2−(b+i(cu+υ− sυ

T
))2

]

CGMY
iε(cu+ υ− sυ

2T
)s−CΓ(−Y )(GY +MY )s

+ iT
υ(Y +1)

CΓ(−Y )
[

(G+ i(cu+υ− sυ
T
))Y +1 − (M − i(cu+υ− sυ

T
))Y +1

]

MJD iε(cu+ υ− sυ
2T

)s+ σ2T
6υ

(cu+υ− sυ
T
)3 − ls+ i

√
2πlT

2σxυ
exp

(

− µ2
x

2σ2
x

)

erfi
[√

2
2

(

µx

σx
+ iσx(cu+υ− sυ

T
)
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DEJD (Kou)
iε(cu+ υ− sυ

2T
)s+ σ2T

6υ
(cu+υ− sυ
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)3 − ls+ lTpη1
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[

tan−1
(

η1
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− i
2
ln((cu+ υ− sυ

T
)2T 2 + η21T

2)
]

+ lT (1−p)η2
υ

[

tan−1
(

η2
cu+υ− sυ

T

)

+ i
2
ln((cu+ υ− sυ

T
)2T 2 + η22T

2)
]

Meixner
iε(cu+ υ− sυ

2T
)s+ δT

2aυ
(b+ ia(cu+υ− sυ

T
))2

+ 2δT
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(

−e−a(cu+υ− sυ
T
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− 2δT
aυ
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)− ib) ln

[

cos( b
2 )

(

1+e
−a(cu+υ−
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)

cos( 1
2
(b+ia(cu+υ− sυ

T
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]

Notes. ψ(u) = iuε+ϕ(u), where ϕ is the characteristic exponent of the demeaned Lévy process (see Table 1) for ∆= 1
and ε is the drift (see Eq. 3). Then, from (23),

∫ T

0
ψ(u(1[0,t∧z](s)+1[0,t∨z](s))+υ(1− s

T
))ds=

∫ t∧z

0
ψ(2u+υ(1− s

T
))ds+

∫ t∨z

t∧z
ψ(u+υ(1− s

T
))ds+

∫ T

t∨z
ψ(υ(1− s

T
))ds= I(t∧z,2, u, υ)−I(0,2, u, υ)+I(t∨z,1, u, υ)−I(t∧z,1, u, υ)+I(T,0, u, υ)−

I(t∨ z,0, u, υ). MJD: erfi(z)≡−ierf(iz) is the imaginary error function; Meixner: Li2(z) is the polylogarithm of order 2
and argument z.



Fusai and Kyriakou: General Optimized Bounds for Arithmetic Asian Options
28

Table 3. Model parameter sets.

Model Parameters

Gaussian σ
0.17801

VG ν θ σ
0.736703 −0.136105 0.180022

NIG a b δ
6.1882 −3.8941 0.1622

CGMY C G M Y
0.0244 0.0765 7.5515 1.2945

MJD σ l µx σx

0.126349 0.174814 −0.390078 0.338796
DEJD (Kou) σ l p η1 η2

0.120381 0.330966 0.20761 9.65997 3.13868
Meixner a b δ

0.3977 −1.494 0.3462
Heston α β γ ρ

√
V0

6.21 0.019 0.61 −0.7 0.101
Bates α β γ ρ

√
V0

3.99 0.014 0.27 −0.79 0.094
l µx σx

0.11 −0.1391 0.15
DPS α β γ ρ

√
V0

3.46 0.008 0.14 −0.82 0.087
l µx σx µv ρx,v

0.47 −0.0865 0.0001 0.05 −0.38
BNS-Γ l ν α ρ

√
V0

1.6787 1.0071 116.01 −4.4617 0.065883
BNS-IG l ν α ρ

√
V0

2.4958 0.0872 11.98 −4.7039 0.064262
CEV γ σ

1.5, 2.5 0.25S
1−γ/2
0
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Table 4. Prices of arithmetic Asian options with discrete monitoring under Lévy models.

Lower bound CVMC prices
N K MLB exp(λ∗) Abs. rel SLB Abs. rel CV Std. err. CV Std. err.

err. (%) err. (%) MLB ×10−5 SLB ×10−5

Gaussian model
12 90 11.90462 89.74 0.0025 11.90386 0.0088 11.90491 0.848 11.90493 1.861
12 100 4.88168 99.84 0.0059 4.88121 0.0155 4.88197 0.790 4.88197 1.372
12 110 1.36255 109.70 0.0346 1.36143 0.1165 1.36302 1.217 1.36299 2.479
50 90 11.93265 89.75 0.0025 11.93199 0.0080 11.93294 0.853 11.93294 1.726
50 100 4.93693 99.84 0.0054 4.93646 0.0149 4.93720 0.734 4.93722 1.359
50 110 1.40204 109.72 0.0358 1.40105 0.1061 1.40254 1.282 1.40248 2.339

250 90 11.94027 89.76 0.0023 11.93964 0.0076 11.94054 0.809 11.94056 1.704
250 100 4.95189 99.84 0.0053 4.95142 0.0148 4.95215 0.735 4.95215 1.336
250 110 1.41289 109.72 0.0336 1.41194 0.1009 1.41337 1.222 1.41337 2.356

AAPRE 0.014 0.044

VG model
12 90 12.52729 89.42 0.0162 12.52572 0.0287 12.52932 4.806 12.52959 6.916
12 100 5.09210 99.87 0.0197 5.09180 0.0255 5.09310 2.898 5.09321 3.300
12 110 1.00625 109.83 0.0598 1.00569 0.1151 1.00685 1.986 1.00729 2.679
50 90 12.56931 89.44 0.0162 12.56791 0.0274 12.57135 4.783 12.57159 6.770
50 100 5.13879 99.88 0.0183 5.13850 0.0239 5.13973 2.749 5.13983 3.120
50 110 1.02897 109.85 0.0612 1.02855 0.1020 1.02960 1.958 1.02999 2.553

250 90 12.58064 89.45 0.0162 12.57929 0.0270 12.58269 4.879 12.58293 6.750
250 100 5.15158 99.88 0.0183 5.15130 0.0237 5.15252 2.826 5.15260 3.168
250 110 1.03535 109.87 0.0598 1.03497 0.0971 1.03597 1.966 1.03633 2.507

AAPRE 0.032 0.052

NIG model
12 90 12.61912 89.42 0.0112 12.61729 0.0257 12.62053 6.593 12.61932 8.607
12 100 5.05926 99.85 0.0136 5.05889 0.0208 5.05994 3.225 5.05964 3.566
12 110 1.01328 109.77 0.0296 1.01231 0.1248 1.01358 1.668 1.01298 2.174
50 90 12.65800 89.44 0.0075 12.65633 0.0208 12.65896 6.590 12.65771 8.284
50 100 5.10239 99.85 0.0107 5.10203 0.0178 5.10294 2.815 5.10261 3.086
50 110 1.03743 109.79 0.0291 1.03661 0.1079 1.03773 1.730 1.03720 2.093

250 90 12.66852 89.45 0.0081 12.66688 0.0210 12.66954 6.815 12.66873 8.333
250 100 5.11425 99.85 0.0107 5.11389 0.0176 5.11480 3.219 5.11446 3.468
250 110 1.04421 109.79 0.0271 1.04343 0.1017 1.04449 1.592 1.04405 2.123

AAPRE 0.016 0.051

CGMY model
12 90 12.70022 89.45 0.0516 12.69871 0.0635 12.70678 62.492 12.70675 65.195
12 100 5.03301 99.88 0.0344 5.03273 0.0402 5.03475 20.262 5.03470 20.589
12 110 1.02053 109.76 0.0617 1.01954 0.1587 1.02116 7.138 1.02116 9.467
50 90 12.73374 89.47 0.0527 12.73237 0.0635 12.74046 63.739 12.74031 65.902
50 100 5.07405 99.88 0.0480 5.07376 0.0537 5.07649 33.347 5.07644 33.527
50 110 1.04613 109.77 0.0754 1.04529 0.1561 1.04692 12.203 1.04693 13.531

250 90 12.74288 89.49 0.0518 12.74155 0.0623 12.74949 56.644 12.74995 61.557
250 100 5.08542 99.88 0.0377 5.08512 0.0435 5.08734 28.555 5.08727 28.968
250 110 1.05332 109.79 0.0664 1.05251 0.1431 1.05402 11.692 1.05400 12.927

AAPRE 0.053 0.087

MJD model
12 90 12.70606 89.37 0.0363 12.70440 0.0493 12.71067 9.542 12.71070 11.930
12 100 5.00959 99.88 0.0345 5.00929 0.0405 5.01132 5.364 5.01133 5.709
12 110 1.05101 109.76 0.0589 1.05003 0.1518 1.05163 2.366 1.05160 3.110
50 90 12.73639 89.42 0.0343 12.73493 0.0457 12.74076 9.370 12.74081 11.562
50 100 5.05080 99.88 0.0324 5.05050 0.0385 5.05244 5.302 5.05242 5.575
50 110 1.07898 109.77 0.0557 1.07814 0.1331 1.07958 2.201 1.07960 2.978

250 90 12.74465 89.43 0.0360 12.74324 0.0471 12.74924 9.719 12.74916 11.606
250 100 5.06218 99.88 0.0329 5.06187 0.0389 5.06384 5.219 5.06385 5.519
250 110 1.08679 109.77 0.0553 1.08599 0.1288 1.08739 2.406 1.08739 3.099

AAPRE 0.042 0.075
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Table 4. Continued.

Lower bound CVMC prices
N K MLB exp(λ∗) Abs. rel SLB Abs. rel CV Std. err. CV Std. err.

err. (%) err. (%) MLB ×10−5 SLB ×10−5

DEJD model
12 90 12.70750 89.38 0.0387 12.70583 0.0519 12.71242 11.664 12.71244 13.708
12 100 5.01540 99.88 0.0369 5.01510 0.0429 5.01725 6.436 5.01726 6.689
12 110 1.04083 109.76 0.0558 1.03986 0.1495 1.04141 2.281 1.04144 3.109
50 90 12.73911 89.41 0.0403 12.73762 0.0520 12.74424 11.979 12.74421 13.667
50 100 5.05648 99.88 0.0335 5.05618 0.0395 5.05818 5.891 5.05820 6.208
50 110 1.06821 109.77 0.0572 1.06738 0.1352 1.06883 2.615 1.06883 3.201

250 90 12.74770 89.42 0.0389 12.74626 0.0503 12.75267 11.472 12.75256 12.971
250 100 5.06782 99.88 0.0353 5.06752 0.0412 5.06961 6.524 5.06962 6.856
250 110 1.07587 109.79 0.0554 1.07507 0.1295 1.07647 2.542 1.07649 3.167

AAPRE 0.044 0.077

Meixner model
12 90 12.59519 89.41 0.0090 12.59325 0.0243 12.59632 5.688 12.59484 7.743
12 100 5.06225 99.85 0.0124 5.06186 0.0202 5.06288 2.554 5.06253 2.805
12 110 1.01599 109.76 0.0338 1.01497 0.1347 1.01634 1.586 1.01569 2.153
50 90 12.63551 89.43 0.0023 12.63373 0.0164 12.63580 5.491 12.63376 7.411
50 100 5.10569 99.85 0.0128 5.10530 0.0205 5.10635 2.962 5.10600 3.272
50 110 1.03957 109.79 0.0301 1.03870 0.1138 1.03988 1.513 1.03934 2.040

250 90 12.64640 89.43 0.0070 12.64466 0.0208 12.64728 5.943 12.64648 7.659
250 100 5.11763 99.85 0.0127 5.11724 0.0203 5.11828 2.811 5.11791 3.046
250 110 1.04619 109.79 0.0290 1.04536 0.1085 1.04650 1.697 1.04598 2.139

AAPRE 0.017 0.053

Notes. Maximum LB (MLB) are optimized lower bounds to the option prices, λ∗ are the corresponding
optimal bound parameters; suboptimal LB (SLB) are lower bounds to the option prices obtained for λ= lnK;
CVMC prices are Monte Carlo simulation estimates based on 1,000,000 paths simulations with (i) MLB or
(ii) SLB used as control variate, std. err. are the standard errors of the CVMC price estimates. Abs. rel. err.
(%) are absolute percentage relative errors computed against the CVMC price estimates with MLB used as
control variate; AAPRE are average errors. Model parameters used: see Table 3, other parameters: S0 = 100,
r= 0.0367, T = 1, q= 0.
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Table 5. Prices of arithmetic Asian options with discrete monitoring under ASV models.

Lower bound Control variate Monte Carlo (CVMC) prices
N K MLB exp(λ∗) Abs. rel SLB Abs. rel CV Std. err. CV Std. err.

err. (%) err. (%) MLB ×10−5 SLB ×10−5

Heston model
12 90 11.74399 89.67 0.0035 11.74342 0.0083 11.74439 1.402 11.74444 2.357
12 100 3.71351 99.90 0.0052 3.71330 0.0107 3.71370 0.648 3.71367 0.918
12 110 0.19750 109.83 0.0613 0.19697 0.3322 0.19763 0.429 0.19768 1.127
50 90 11.75795 89.69 0.0036 11.75745 0.0079 11.75838 1.464 11.75840 2.293
50 100 3.74216 99.90 0.0050 3.74196 0.0104 3.74235 0.615 3.74231 0.842
50 110 0.20565 109.84 0.0503 0.20521 0.2625 0.20575 0.366 0.20578 0.987

250 90 11.76189 89.69 0.0037 11.76141 0.0078 11.76232 1.454 11.76231 2.260
250 100 3.75021 99.90 0.0046 3.75001 0.0100 3.75038 0.567 3.75034 0.787
250 110 0.20805 109.84 0.0530 0.20764 0.2511 0.20816 0.393 0.20821 0.988

AAPRE 0.021 0.100

Bates model
12 90 11.74225 89.65 0.0040 11.74164 0.0092 11.74271 1.611 11.74268 2.484
12 100 3.69266 99.91 0.0054 3.69250 0.0097 3.69286 0.756 3.69287 0.969
12 110 0.17619 109.83 0.0554 0.17570 0.3350 0.17629 0.449 0.17636 1.113
50 90 11.75670 89.67 0.0040 11.75616 0.0086 11.75717 1.653 11.75717 2.542
50 100 3.72152 99.91 0.0055 3.72137 0.0097 3.72173 0.815 3.72173 1.010
50 110 0.18445 109.85 0.0544 0.18405 0.2722 0.18455 0.407 0.18460 0.947

250 90 11.76070 89.68 0.0038 11.76018 0.0083 11.76115 1.541 11.76111 2.387
250 100 3.72956 99.91 0.0055 3.72940 0.0096 3.72976 0.814 3.72977 0.993
250 110 0.18683 109.85 0.0542 0.18645 0.2579 0.18693 0.404 0.18697 0.910

AAPRE 0.021 0.102

DPS model
12 90 11.76552 89.64 0.0038 11.76485 0.0095 11.76596 1.491 11.76593 2.513
12 100 3.73504 99.91 0.0057 3.73488 0.0098 3.73525 0.707 3.73527 0.948
12 110 0.17587 109.83 0.0749 0.17531 0.3919 0.17600 0.591 0.17602 1.205
50 90 11.78004 89.66 0.0037 11.77945 0.0087 11.78047 1.513 11.78042 2.359
50 100 3.76404 99.91 0.0055 3.76389 0.0096 3.76425 0.710 3.76426 0.938
50 110 0.18462 109.84 0.0691 0.18416 0.3170 0.18474 0.510 0.18475 1.085

250 90 11.78408 89.67 0.0039 11.78350 0.0087 11.78453 1.560 11.78452 2.410
250 100 3.77214 99.91 0.0056 3.77199 0.0097 3.77235 0.737 3.77238 0.984
250 110 0.18713 109.84 0.0677 0.18670 0.2990 0.18726 0.549 0.18726 1.076

AAPRE 0.027 0.118

BNS-Γ model
12 90 11.60442 89.69 0.0018 11.60404 0.0051 11.60463 0.922 11.60464 1.657
12 100 3.22232 99.95 0.0041 3.22225 0.0064 3.22246 0.503 3.22248 0.644
12 110 0.06973 109.83 0.0933 0.06940 0.5557 0.06979 0.329 0.06975 0.796
50 90 11.61364 89.71 0.0016 11.61331 0.0044 11.61383 0.789 11.61383 1.494
50 100 3.24434 99.95 0.0043 3.24426 0.0066 3.24448 0.511 3.24449 0.635
50 110 0.07431 109.85 0.0837 0.07406 0.4256 0.07437 0.321 0.07434 0.685

250 90 11.61619 89.71 0.0018 11.61587 0.0045 11.61640 0.875 11.61639 1.504
250 100 3.25048 99.95 0.0041 3.25040 0.0065 3.25061 0.509 3.25062 0.639
250 110 0.07562 109.85 0.0917 0.07538 0.4074 0.07569 0.357 0.07566 0.703

AAPRE 0.032 0.158

BNS-IG model
12 90 11.61748 89.68 0.0020 11.61710 0.0043 11.61771 1.414 11.61735 1.533
12 100 3.22174 99.95 0.0021 3.22167 0.0053 3.22180 0.405 3.22173 0.418
12 110 0.07043 109.83 0.0496 0.07010 0.5219 0.07046 0.213 0.07019 0.537
50 90 11.62717 89.70 0.0019 11.62683 0.0043 11.62739 1.338 11.62707 1.441
50 100 3.24406 99.95 0.0020 3.24398 0.0048 3.24412 0.402 3.24405 0.417
50 110 0.07495 109.84 0.0607 0.07469 0.4126 0.07500 0.277 0.07477 0.507

250 90 11.62983 89.70 0.0019 11.62951 0.0043 11.63005 1.313 11.62974 1.405
250 100 3.25026 99.95 0.0020 3.25019 0.0046 3.25033 0.398 3.25025 0.409
250 110 0.07624 109.85 0.0683 0.07600 0.3939 0.07630 0.317 0.07608 0.498

AAPRE 0.021 0.151

Notes. See Table 4.
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Table 6. Comparison of accuracy for discrete monitoring under the CEV model.

N K MLB λ
∗ 1

2−γ Abs. rel. SLB Abs. rel. AE-CLS Abs. rel. QUAD- Abs. rel. CVMC Std. err.
err. (%) err. (%) err. (%) SMF err. (%) CV MLB ×10−5

CEV model: case of γ = 1.5
12 90 13.20307 89.79 0.0016 13.20262 0.0050 13.20050 0.0210 13.20327 0.0000 13.20327 2.309
12 100 6.75420 99.85 0.0031 6.75389 0.0077 6.75168 0.0404 6.75439 0.0003 6.75441 2.114
12 110 2.84932 109.77 0.0096 2.84879 0.0283 2.84678 0.0989 2.84959 0.0003 2.84960 2.538
50 90 13.25690 89.79 0.0013 13.25648 0.0044 13.25443 0.0199 13.25708 0.0001 13.25707 1.840
50 100 6.83031 99.85 0.0028 6.82999 0.0075 6.82790 0.0381 6.83049 0.0001 6.83050 2.072
50 110 2.91426 109.77 0.0087 2.91377 0.0255 2.91184 0.0918 2.91453 0.0006 2.91452 2.666

250 90 13.27147 89.79 0.0019 13.27107 0.0049 13.26903 0.0202 13.27227 0.0042 13.27171 2.544
250 100 6.85091 99.85 0.0024 6.85059 0.0071 6.84853 0.0372 6.85064 0.0064 6.85108 1.651
250 110 2.93202 109.77 0.0076 2.93154 0.0239 2.92962 0.0893 2.93121 0.0351 2.93224 2.178

AAPRE 0.004 0.013 0.051 0.005

CEV model: case of γ = 2.5
12 90 13.08727 89.41 0.0137 13.08360 0.0417 13.08660 0.0188 13.08919 0.0010 13.08906 10.326
12 100 6.74471 99.53 0.0247 6.74179 0.0680 6.74351 0.0425 6.74621 0.0024 6.74637 9.700
12 110 2.99163 109.29 0.0873 2.98630 0.2653 2.99188 0.0789 2.99454 0.0098 2.99424 14.809
50 90 13.14150 89.44 0.0123 13.13814 0.0378 13.14086 0.0171 13.14330 0.0015 13.14311 9.547
50 100 6.82080 99.53 0.0266 6.81786 0.0697 6.81969 0.0428 6.82224 0.0055 6.82261 10.591
50 110 3.05435 109.33 0.0797 3.04942 0.2409 3.05453 0.0739 3.05709 0.0097 3.05679 13.639

250 90 13.15613 89.44 0.0133 13.15286 0.0381 13.15550 0.0181 13.15892 0.0079 13.15788 10.652
250 100 6.84142 99.53 0.0243 6.83849 0.0672 6.84034 0.0401 6.84262 0.0068 6.84308 10.477
250 110 3.07163 109.33 0.0774 3.06681 0.2342 3.07180 0.0720 3.07286 0.0373 3.07401 13.656

AAPRE 0.040 0.118 0.045 0.009

Notes. See Table 4. In addition, results of the asymptotic expansion (AE) approach are from Cai et al. [15]; numerical quadrature
(QUAD) results are from the approach of Sesana et al. [64]. Model parameters used: see Table 3, other parameters: S0 = 100,
r= 0.05, T =1, q=0.
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Table 7. Deltas and gammas of arithmetic Asian options with discrete monitoring.

N K MLB- Abs. rel. AE-CLS Abs. rel. QUAD-SMF MLB- Abs. rel. QUAD-SMF
Delta err. (%) Delta err. (%) Delta Gamma err. (%) Gamma

CEV model: case of γ = 1.5
12 90 0.80975 0.0000 0.80930 0.0551 0.80975 0.01769 0.4660 0.01777
12 100 0.57142 0.0008 0.57138 0.0054 0.57141 0.02669 0.5048 0.02683
12 110 0.31663 0.0033 0.31669 0.0208 0.31662 0.02421 0.5476 0.02435
50 90 0.80687 0.0000 0.80644 0.0528 0.80687 0.01756 0.4815 0.01765
50 100 0.57145 0.0009 0.57141 0.0058 0.57144 0.02631 0.5133 0.02644
50 110 0.31970 0.0029 0.31976 0.0210 0.31969 0.02402 0.5602 0.02416

250 90 0.80610 0.0069 0.80568 0.0588 0.80615 0.01753 0.4016 0.01760
250 100 0.57145 0.0202 0.57141 0.0264 0.57156 0.02621 0.5170 0.02634
250 110 0.32052 0.0082 0.32057 0.0087 0.32054 0.02397 0.6112 0.02411

AAPRE 0.005 0.028 0.511

CEV model: case of γ = 2.5
12 90 0.82316 0.0012 0.82328 0.0136 0.82317 0.01706 0.3406 0.01701
12 100 0.58150 0.0040 0.58164 0.0279 0.58148 0.02671 0.4604 0.02659
12 110 0.33176 0.0316 0.33170 0.0140 0.33165 0.02454 0.4302 0.02443
50 90 0.82053 0.0019 0.82065 0.0130 0.82054 0.01693 0.4221 0.01686
50 100 0.58222 0.0042 0.58235 0.0267 0.58219 0.02633 0.4824 0.02620
50 110 0.33525 0.0276 0.33521 0.0151 0.33516 0.02440 0.4561 0.02429

250 90 0.81981 0.0120 0.81995 0.0046 0.81991 0.01690 0.5762 0.01680
250 100 0.58239 0.0246 0.58252 0.0018 0.58253 0.02623 0.4886 0.02610
250 110 0.33618 0.0100 0.33614 0.0000 0.33614 0.02436 0.3934 0.02427

AAPRE 0.013 0.013 0.450

MLB- Abs. rel. CVMC Std. err. MLB-Gamma
Delta err. (%) CV MLB-Delta ×10−5

Heston model
12 90 0.93056 0.0000 0.93056 4.010 0.00984
12 100 0.67760 0.0779 0.67707 5.236 0.04811
12 110 0.09691 0.5497 0.09744 4.639 0.03572
50 90 0.92924 0.0027 0.92927 4.062 0.00993
50 100 0.67756 0.0727 0.67707 5.183 0.04762
50 110 0.09972 0.2729 0.09999 4.652 0.03622

AAPRE 0.163

MLB- Abs. rel. CVMC Std. err. MLB-Gamma
Delta err. (%) CV MLB-Delta ×10−4

CGMY model
12 90 0.90073 0.1302 0.89956 0.048 0.00893
12 100 0.67506 0.0171 0.67495 0.032 0.03971
12 110 0.21942 0.0000 0.21942 0.014 0.03980
50 90 0.90018 0.0563 0.89967 6.966 0.00895
50 100 0.67549 0.0328 0.67571 6.540 0.03941
50 110 0.22236 0.2188 0.22285 6.084 0.03984

AAPRE 0.076

Notes. MLB-Deltas and MLB-Gammas are computed first and second derivatives w.r.t. S0 of the opti-
mized lower bound for the option price (see Remark 1); asymptotic expansion (AE) deltas are from Cai
et al. [15] and numerical quadrature (QUAD) deltas and gammas from Sesana et al. [64]; CVMC deltas
are likelihood-ratio Monte Carlo simulation estimates with MLB-Deltas used as control variates, std. err.
are the standard errors. Abs. rel. err. (%) are absolute percentage relative errors computed against QUAD
(case of CEV model) or CVMC (cases of Heston and CGMY models); AAPRE are average errors. Model
parameters used: see Tables 3–6.
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Table 8. Comparison of accuracy for continuous monitoring under jump diffusion models.

σ K MLB exp(λ∗) Abs. rel. DL-CK Abs. rel. PIDE-BX Abs. rel. CVMC Std. err.
err. (%) err. (%) err. (%) CV cts. MLB ×10−5

DEJD model: case of l= 3, p=0.6, η1 = η2 = 25, S0 =100, r= 0.09, T =1, q=0
0.05 90 13.42081 89.80 0.0003 13.41924 0.0120 13.43610 0.1137 13.42085 1.453
0.05 95 8.98763 94.90 0.0034 8.98812 0.0020 8.99711 0.1021 8.98794 1.259
0.05 100 4.95758 99.95 0.0058 4.95673 0.0229 4.96267 0.0969 4.95786 1.895
0.05 105 2.13522 104.92 0.0095 2.13611 0.0322 2.13661 0.0556 2.13542 2.074
0.05 110 0.83077 109.79 0.0294 0.83091 0.0122 0.83077 0.0291 0.83101 3.900
0.1 90 13.47563 89.80 0.0007 13.48451 0.0652 13.49220 0.1223 13.47572 1.635
0.1 95 9.20611 94.89 0.0013 9.20478 0.0157 9.21706 0.1177 9.20623 1.626
0.1 100 5.53646 99.91 0.0025 5.53662 0.0004 5.54257 0.1079 5.53660 1.573
0.1 105 2.88851 104.87 0.0103 2.88896 0.0053 2.89095 0.0742 2.88881 2.467
0.1 110 1.33764 109.77 0.0388 1.33809 0.0053 1.33810 0.0046 1.33816 3.918
0.2 90 14.03477 89.69 0.0035 14.03280 0.0175 14.05240 0.1221 14.03526 4.795
0.2 95 10.32434 94.75 0.0045 10.32293 0.0182 10.33600 0.1084 10.32481 3.895
0.2 100 7.21337 99.76 0.0069 7.21244 0.0197 7.21976 0.0817 7.21386 3.985
0.2 105 4.78558 104.71 0.0160 4.78516 0.0248 4.78788 0.0321 4.78634 5.676
0.2 110 3.02260 109.62 0.0358 3.02270 0.0325 3.02208 0.0530 3.02368 7.865
0.3 90 15.19499 89.46 0.0098 15.19639 0.0006 15.21340 0.1113 15.19648 9.825
0.3 95 11.92790 94.51 0.0110 11.92926 0.0004 11.94010 0.0913 11.92921 9.212
0.3 100 9.14625 99.51 0.0157 9.14769 0.0000 9.15304 0.0585 9.14769 10.252
0.3 105 6.85880 104.45 0.0226 6.86049 0.0021 6.86072 0.0055 6.86034 10.386
0.3 110 5.03821 109.35 0.0394 5.04029 0.0019 5.03663 0.0708 5.04020 11.867
0.4 90 16.68659 89.13 0.0199 16.68984 0.0004 16.70640 0.0988 16.68990 18.760
0.4 95 13.73072 94.17 0.0222 13.73384 0.0006 13.74490 0.0811 13.73376 17.742
0.4 100 11.16798 99.16 0.0319 11.17115 0.0035 11.17800 0.0578 11.17154 20.618
0.4 105 8.98770 104.09 0.0409 8.99114 0.0026 8.99450 0.0347 8.99138 21.617
0.4 110 7.16426 108.98 0.0577 7.16816 0.0033 7.16714 0.0176 7.16840 23.322
0.5 90 18.34752 88.72 0.0339 18.35379 0.0002 18.36960 0.0863 18.35375 31.256
0.5 95 15.62209 93.74 0.0389 15.62810 0.0005 15.63680 0.0552 15.62817 30.663
0.5 100 13.22262 98.71 0.0456 13.22860 0.0004 13.23150 0.0215 13.22865 29.777
0.5 105 11.13321 103.63 0.0518 11.13944 0.0042 11.13740 0.0142 11.13898 29.670
0.5 110 9.33127 108.51 0.0675 9.33799 0.0044 9.33092 0.0713 9.33758 32.709

AAPRE 0.023 0.010 0.070

DEJD model: case of l= 5, p=0.6, η1 = η2 = 25, S0 =100, r= 0.09, T =1, q=0
0.05 90 13.47297 89.79 0.0618 13.47952 0.1104 13.50430 0.2944 13.46466 1.891
0.05 95 9.16287 94.88 0.0561 9.16588 0.0890 9.18250 0.2705 9.15773 1.702
0.05 100 5.38649 99.94 0.0256 5.38761 0.0463 5.39632 0.2081 5.38512 1.868
0.05 105 2.72611 104.89 0.0093 2.72681 0.0166 2.72878 0.0888 2.72636 2.982
0.05 110 1.28307 109.76 0.1083 1.28264 0.1421 1.28220 0.1764 1.28447 4.536
0.1 90 13.56081 89.78 0.0406 13.55964 0.0320 13.59170 0.2685 13.55530 2.213
0.1 95 9.42292 94.87 0.0361 9.41962 0.0011 9.44366 0.2563 9.41952 2.372
0.1 100 5.91773 99.89 0.0266 5.91537 0.0132 5.92970 0.2290 5.91615 2.288
0.1 105 3.35275 104.85 0.0029 3.35071 0.0636 3.35803 0.1547 3.35284 3.526
0.1 110 1.75079 109.74 0.0943 1.74896 0.1989 1.75186 0.0334 1.75245 4.726
0.2 90 14.17290 89.66 0.0444 14.17380 0.0507 14.19070 0.1700 14.16661 5.469
0.2 95 10.53738 94.72 0.0380 10.53795 0.0435 10.54910 0.1493 10.53337 5.061
0.2 100 7.48774 99.73 0.0254 7.48805 0.0295 7.49282 0.0933 7.48584 5.312
0.2 105 5.08980 104.68 0.0003 5.09001 0.0043 5.08871 0.0212 5.08979 6.454
0.2 110 3.32040 109.58 0.0606 3.32061 0.0544 3.31423 0.2465 3.32242 8.924
0.3 90 15.33263 89.43 0.0421 15.33688 0.0699 15.36350 0.2436 15.32617 9.800
0.3 95 12.10384 94.48 0.0349 12.10723 0.0629 12.12330 0.1957 12.09962 8.758
0.3 100 9.35060 99.48 0.0193 9.35336 0.0488 9.35985 0.1183 9.34879 10.578
0.3 105 7.07816 104.42 0.0008 7.08059 0.0335 7.07893 0.0100 7.07822 10.749
0.3 110 5.25878 109.32 0.0418 5.26109 0.0021 5.25264 0.1585 5.26098 14.554
0.4 90 16.80822 89.11 0.0371 16.81490 0.0768 16.84130 0.2340 16.80199 18.688
0.4 95 13.87427 94.15 0.0226 13.87995 0.0635 13.89550 0.1756 13.87114 20.746
0.4 100 11.32758 99.13 0.0085 11.33257 0.0525 11.33860 0.1058 11.32662 24.205
0.4 105 9.15669 104.06 0.0096 9.16131 0.0409 9.15873 0.0127 9.15757 23.436
0.4 110 7.33609 108.95 0.0365 7.34063 0.0254 7.33031 0.1152 7.33877 24.117
0.5 90 18.45211 88.69 0.0262 18.46259 0.0831 18.45030 0.0165 18.44726 35.097
0.5 95 15.74077 93.71 0.0203 15.75006 0.0794 15.73200 0.0354 15.73757 30.114
0.5 100 13.35180 98.68 0.0035 13.36027 0.0669 13.33820 0.0984 13.35133 35.205
0.5 105 11.26912 103.60 0.0190 11.27716 0.0523 11.25170 0.1736 11.27127 36.524
0.5 110 9.47033 108.47 0.0429 9.47826 0.0408 9.44911 0.2669 9.47439 35.904

AAPRE 0.033 0.056 0.154
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Table 8. Continued.

σ K MLB exp(λ∗) Abs. rel. PIDE-BX Abs. rel. CVMC Std. err.
err. (%) err. (%) CV cts. MLB ×10−5

MJD model: case of l=1, µx =−0.1, σx = 0.3, S0 = 100, r=0.15, T = 1, q= 0
0.1 90 16.99518 88.92 0.0216 16.99660 0.0132 16.99884 22.998
0.1 100 10.06073 99.60 0.0299 10.06160 0.0212 10.06374 20.211
0.1 110 4.83616 109.68 0.0596 4.83594 0.0642 4.83904 26.621
0.2 90 17.34403 89.16 0.0285 17.34590 0.0178 17.34898 31.231
0.2 100 10.95847 99.51 0.0375 10.95900 0.0327 10.96258 27.557
0.2 110 6.30210 109.44 0.0655 6.30264 0.0569 6.30623 28.661

AAPRE 0.040 0.034

Notes. MLB are optimized lower bounds to the option prices, λ∗ are the corresponding
optimal bound parameters; “DL-CK” numbers are from Cai and Kou [14, Tables 5–6];
“PIDE-BX” numbers correspond to the PIDE implementation of Bayraktar and Xing [9];
CVMC prices are Monte Carlo simulation estimates based on 1,000,000 paths simulations
and daily monitoring with the continuous-time (cts.) MLB used as control variate, std.
err. are the standard errors of the CVMC price estimates. Abs. rel. err. (%) are absolute
percentage relative errors computed against the CVMC price estimates; AAPRE are average
errors.

Table 9. Comparison of accuracy for continuous monitoring under the Heston model.

S0 K r q T V0 α β γ ρ MLB PDE- Aus Taylor RMSE
EMT 2.0-EMT

100 100 0.04 0 1 0.0483 4.75 0.0483 0.55 −0.569 5.854 5.853 5.851 0.0059
100 100 0.1 0 1 0.1 3 0.1 0.2 0.7 9.323 9.323 9.321 0.0108
100 100 0.07 0 1 0.075 7 0.05 0.3 −0.4 7.123 7.123 7.123 0.0078

Notes. MLB are optimized lower bounds to the option prices; “PDE-EMT” and “Aus Taylor 2.0-
EMT” numbers correspond to the PDE implementation of Ewald et al. [36] and the Monte Carlo
simulation estimates (with RMSE reported) of Ewald et al. [36] using a second-order Taylor 2.0
scheme for 1,000,000 paths simulations with 1,000 time steps.

Table 10. Comparison of accuracy with existing methods for continuous monitor-
ing under the Gaussian model.

S0 K r q σ T MLB exp(λ∗) DL-CK, GY-S, PDE-Večeř,
EE-Linetsky PDE-Zhang

2 2 0.02 0 0.1 1 0.055985 2.00 0.0559860415 0.055986
2 2 0.18 0 0.3 1 0.218366 1.99 0.2183875466 0.218388
2 2 0.0125 0 0.25 2 0.172226 1.99 0.1722687410 0.172269

1.9 2 0.05 0 0.5 1 0.193060 1.97 0.1931737903 0.193174
2 2 0.05 0 0.5 1 0.246298 1.98 0.2464156905 0.246416

2.1 2 0.05 0 0.5 1 0.306094 1.97 0.3062203648 0.306220
2 2 0.05 0 0.5 2 0.349779 1.95 0.3500952190 0.350095

Notes. MLB are optimized lower bounds to the option prices, λ∗ are the cor-
responding optimal bound parameters; results of Cai and Kou’s inversion of the
double-Laplace (DL) transform are from Cai and Kou [14, Table 2]; results of Linet-
sky’s eigenfunction expansion (EE) method are from Linetsky [53, Table 3]; “GY-S”,
“PDE-Večeř”and “PDE-Zhang”numbers are from the table in Dewynne and Shaw
[31, p. 383] and correspond to the Geman–Yor (GY) Laplace transform formula run
with the code of Shaw [65], the PDEs of Večeř [69] and Zhang [74], respectively.
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Table 11. Comparison of accuracy for continuous monitoring under the Gaussian model for different test
cases & volatility levels when q < r, q > r or q= r.

Case of q < r & extremely small σ
S0 K r q σ T MLB exp(λ∗) DL-CK GY-S MAE3-DS PDE-Zhang

2 2 0.02 0 0.1 1 0.0559851 1.999 0.0559860 0.0559860 0.0559860 0.0559860
2 2 0.02 0 0.05 1 0.0339411 2.000 0.0339412 0.0339412 0.0339412 0.0339412
2 2 0.02 0 0.01 1 0.0199278 2.000 n.a. n.a. 0.0199278 0.0199278
2 2 0.02 0 0.005 1 0.0197357 1.992 n.a. n.a. 0.0197357 0.0197357
2 2 0.02 0 0.001 1 0.0197353 1.992 n.a. n.a. 0.0197353 0.0197353

Case of q > r & extremely small σ
S0 K r q σ T MLB exp(λ∗) DL-CK GY-S-full MAE3-DS PDE-Zhang

2 2 0.02 0.04 0.1 1 0.0357844 1.999 0.0357853 0.0357853 0.0357854 0.0357853
2 2 0.02 0.04 0.05 1 0.0140246 2.000 0.0140247 0.0140247 0.0140248 0.0140247
2 2 0.02 0.04 0.01 1 0.000190248 2.000 n.a. n.a. 0.000190254 0.000190254
2 2 0.02 0.04 0.005 1 3.7991E-07 1.998 n.a. n.a. 3.7991E-07 3.7993E-07
2 2 0.02 0.04 0.001 1 o(1E-67) 1.998 n.a. n.a. o(1E-70) o(1E-72)

Case of q= r & extremely small σ
S0 K r q σ T MLB exp(λ∗) DL-CK CIBess MAE3-DS PDE-Zhang

2 2 0.02 0.02 0.1 1 0.0451421 1.9990 0.0451431 0.0451431 0.0451431 0.0451431
2 2 0.02 0.02 0.05 1 0.0225754 1.9998 0.0225755 0.0225755 0.0225755 0.0225755
2 2 0.02 0.02 0.01 1 0.00451533 2.0000 n.a. n.a. 0.00451536 0.00451536
2 2 0.02 0.02 0.005 1 0.00225768 2.0000 n.a. n.a. 0.00225768 0.00225768
2 2 0.02 0.02 0.001 1 0.000451537 2.0000 n.a. n.a. 0.000451537 0.000451537

Notes. MLB are optimized lower bounds to the option prices, λ∗ are the corresponding optimal bound
parameters; “DL-CK” numbers are from Cai and Kou [14, Table 4]; “GY-S”, “GY-S-full”, “CIBess”, “MAE3-
DS” and “PDE-Zhang” numbers are from the tables in Dewynne and Shaw [31, §6.1–6.3]. Note that “GY-S-
full” and “CIBess” correspond to variants of the “GY-S” method, and “MAE3-DS” to the matched asymptotic
expansion method of Dewynne and Shaw [31].
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Table 12. Upper error bounds.

N K Gaussian model VG model NIG model CGMY model MJD model
Opt. Subopt. Opt. Subopt. Opt. Subopt. Opt. Subopt. Opt. Subopt.

Error UB Error UB Error UB Error UB Error UB Error UB Error UB Error UB Error UB Error UB

12 90 0.01166 0.01214 0.05888 0.05981 0.08728 0.08960 0.14385 0.14631 0.09034 0.09302
12 100 0.03297 0.03333 0.09689 0.09915 0.13250 0.13344 0.19559 0.19620 0.14660 0.14727
12 110 0.05772 0.05847 0.15517 0.16041 0.17260 0.17329 0.23630 0.23705 0.18907 0.18983
50 90 0.01205 0.01249 0.06017 0.06079 0.08885 0.09104 0.14480 0.14715 0.09190 0.09439
50 100 0.03288 0.03323 0.09732 0.09962 0.13331 0.13428 0.19714 0.19777 0.14752 0.14817
50 110 0.05699 0.05768 0.15634 0.16038 0.17313 0.17376 0.23899 0.23968 0.18938 0.19009

DEJD model Meixner model Heston model Bates model DPS model
Opt. Subopt. Opt. Subopt. Opt. Subopt. Opt. Subopt. Opt. Subopt.

Error UB Error UB Error UB Error UB Error UB Error UB Error UB Error UB Error UB Error UB

12 90 0.10985 0.11253 0.07346 0.07575 0.01316 0.01364 0.01314 0.01364 0.0130 0.0140
12 100 0.16539 0.16604 0.11667 0.11714 0.03033 0.03073 0.03224 0.03262 0.0330 0.0340
12 110 0.20774 0.20850 0.15266 0.15281 0.04852 0.04909 0.05307 0.05358 0.0540 0.0550
50 90 0.11137 0.11387 0.07496 0.07716 0.01334 0.01372 0.01340 0.01387 0.0140 0.0150
50 100 0.16613 0.16678 0.11762 0.11805 0.03069 0.03095 0.03310 0.03330 0.0330 0.0340
50 110 0.20806 0.20876 0.15265 0.15315 0.04876 0.04917 0.05403 0.05430 0.0530 0.0540

BNS-Γ model BNS-IG model CEV model: γ = 1.5 CEV model: γ =2.5
Opt. Subopt. Opt. Subopt. Opt. Subopt. Opt. Subopt.

Error UB Error UB Error UB Error UB Error UB Error UB Error UB Error UB

12 90 0.00646 0.00672 0.00758 0.00789 0.0190 0.0210 0.0490 0.0520
12 100 0.02609 0.02631 0.02758 0.02777 0.0350 0.0370 0.0970 0.1000
12 110 0.04012 0.04040 0.04045 0.04072 0.0520 0.0530 0.1480 0.1520
50 90 0.00654 0.00678 0.00772 0.00799 0.0200 0.0210 0.0500 0.0530
50 100 0.02069 0.02080 0.02281 0.02292 0.0350 0.0370 0.0970 0.1000
50 110 0.03992 0.04006 0.04110 0.04119 0.0510 0.0530 0.1460 0.1500

Notes. Opt. (Subopt.) upper error bounds are upper bounds to the differences between the true option prices and the
corresponding MLBs (SLBs, i.e., for λ= lnK for Lévy and ASV models; λ=K2−γ for the CEV model) computed using result
(51). Model parameters used: see Table 3, other parameters: S0 = 100, r= 0.0367, T =1, q=0.
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