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1. Epidemiology 

Non-alcoholic fatty liver disease (NAFLD) is characterized by an increase in the 

hepatic content of triglycerides also known as steatosis variably associated with the 

development of parenchymal damage and inflammation a condition known as non-alcoholic 

steatohepatitis (NASH) (Vuppalanchi and Chalasani 2009). At present NAFLD/NASH 

represents the hepatic manifestation of the so called Metabolic Syndrome (MS) (Yki-Jarvinen 

2014). The term metabolic syndrome defines a complex of clinical manifestations associated 

to obesity and over-weight that includes diabetes, hypertension, hypertriglyceridemia, and low 

high-density lipoprotein (HDL) cholesterol. It is estimated that about 47 million U.S. 

individuals suffer of metabolic syndrome and more than 80% of such subjects develop NAFLD 

(Younossi and others 2012). On the other hand, more than 90% of NAFLD patients have 

obesity associated with some features of metabolic syndrome. The prevalence of NAFLD 

increases as the severity and number of metabolic syndrome parameters increase (Yu and 

others 2013; Zelber-Sagi and others 2011). 

The epidemiological significance of NAFLD streams from the data published by the 

United States Center for Disease Control and Prevention that estimates that about 66% of US 

adults in are overweight, and half of those are obese (Yu and others 2013; Zelber-Sagi and 

others 2011). The prevalence of obesity is projected to increase in the United States up to 45% 

by 2025. Similarly, by 2030 the projected percent increase in type 2 diabetes mellitus is 32% 

in Europe, 72% in the United States, and 150% or greater in sub-Saharan Africa, India, and the 

Middle East (Bambha and others 2012; Wong 2013; Yoshiike and Lwin 2005; Younossi and 

others 2012). As obesity and diabetes are important risk factors for NAFLD, it is likely that the 

prevalence of NAFLD will rise in the near future to epidemic proportions. 

At present, the prevalence of NAFLD in the general population is estimated to range 

from 2.8% to 46% and this large variability depends on the methodology used, the population 

investigated, and the type of screening test applied for the detection of liver fat (Bellentani and 

others 2010). Although hospital-based studies are flawed because of ascertainment bias, 

population-based studies using non-invasive imaging studies (e.g., sonography) suffer the poor 

specificity of sonography for the diagnosis of NAFLD. Recently, magnetic resonance imaging 

has been used to quantify the extension of hepatic steatosis (Bhala and others 2013; Hashimoto 

and others 2013; Rinella and others 2014) and using this technique, it is estimated that 31% of 

the U.S. population has NAFLD. In contrast, depending on the definition used, between 2.8% 
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and 24% of U.S. adults have NAFLD according to a comprehensive National Health and 

Nutrition Examination Survey III (NHANES III) data set–based analysis. The prevalence of 

NAFLD in the Dionysos study was noted to be 94% in obese patients (body mass index BMI≥ 

30), 67% in overweight patients (BMI between 25 and 30), and 25% in patients with normal 

weight (Bellentani and others 2010). Assessment of NAFLD is further confounded by the fact 

that approximately 70% to 80% of subjects with NAFLD have normal ALT levels. Among 

type 2 diabetics, 40% to 70% have associated NAFLD. This observation has been confirmed 

by a recent case-control study based on evaluation of hepatic steatosis that has shown that 

patients with type 2 diabetes had up to 200% more fat in their liver than did matched controls 

(Ali and Cusi 2009; Ducluzeau and others 2013; Williamson and others 2011). In an autopsy 

series in which liver histology was used to define the presence of a fatty liver, hepatic steatosis 

was found in approximately 2.7% of lean individuals and 18.5% of obese individuals. Similar 

data have been reported from autopsies of air crash victims. A relationship between BMI and 

the presence of a fatty liver has also been established in otherwise apparently healthy 

individuals being considered as donors for living donor liver transplantation. Clearly, no single 

marker or test has sufficient positive or negative predictive power for diagnosing NAFLD.  

Regardless of the methodology used, several aspects of the epidemiology of NAFLD 

are consistently observed. Fatty liver, as well as NASH, occurs in all age groups, including 

children. Although studies published before 1990 emphasized that NASH occurs mostly in 

women (53% to 85% of all patients), more recent studies have shown that NASH is equally 

frequent in both genders (Sheth and others 1997). The prevalence of NAFLD is directly related 

to BMI, with more than 80% of subjects with a BMI higher than 35 kg/m2 having steatosis. 

Waist circumference may be an even better predictor of underlying IR and NAFLD than the 

BMI (Rocha and others 2005). 

Epidemiological studies have also evidenced that the prevalence of NAFLD show large 

inter-ethnical variations with Hispanic subjects showing prevalence around 45%, whereas 

African Americans have a lower prevalence (24%) (Kallwitz and others 2009; Lomonaco and 

others 2011).  Furthermore, the phenotype of NAFLD is highly likely to reflect complex 

interactions between environmental and lifestyle-related factors and genetic predisposition. 

Obesity and diabetes often cluster within families. The causes of such familial clustering 

include both genetic and environmental factors (Carulli and others 2009; Merriman and others 

2006).  
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2. Histopathology 

The characteristic histopathologic features of adult NAFLD include mainly zone 3 

macrovesicular steatosis variably associated with lobular inflammation, cellular injury 

represented by cytologic ballooning, Mallory-Denk bodies (MDBs), or both  and pericellular 

fibrosis. Based on these characteristics, NAFLD has two broad histologic patterns: hepatic 

steatosis, or NAFL, and Steatohepatitis (NASH) (Brunt and others 2011; Brunt and others 

2003). At difference to its literal meaning, Steatohepatitis does not simply represent the 

presence of steatosis and inflammation. Steatohepatitis is defined by the presence of hepatic 

steatosis with varying degrees of inflammation along with evidence of cell injury, usually in 

the form of cytologic ballooning (Figure 1) (Charlton and others 2011; Cotrim and others 

2004). Fibrosis is not required for the diagnosis of steatohepatitis (Bahrami and others 2003; 

Brunt and others 2011; Burt and others 1998). The inflammation associated with steatohepatitis 

is generally modest and has mainly lobular distribution. However, variable degree of portal 

inflammation can be detected in specific individuals. Portal fibrosis may be associated with 

NAFLD, particularly in pediatric subjects and in those who are morbidly obese (Gramlich and 

others 2004). 

2.1 Grading and Staging 

 To improve the prognostic assessement of NAFLD/NASH several systems for grading 

and staging NAFLD have been proposed, but only two systems have been validated to any 

Figure 1: Histologic 

features of nonalcoholic 

steatohepatitis.  
(A) Macrovesicular 

steatosis. (Low power, 

hematoxylin and eosin [H 

& E] stain). (B) Cytologic 

ballooning with 

eosinophilic Mallory-Denk 

bodies (arrow). (C) 

“Ropy” Mallory-Denk 

bodies stained with 

antibodies to ubiquitin. (D) 

Pericellular 

fibrosis in centrilobular 

location. (Masson 

trichrome stain.) 
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degree. A landmark study by Brunt and colleagues examined 10 separate histologic parameters. 

Based on these parameters, a three-grade, four-stage system of classifying NAFLD was 

developed. Significant histologic lesions included steatosis, ballooning, and inflammation. The 

necro-inflammatory grade correlated with alanine aminotransferase (ALT) activity. The 

staging score reflected both location and the extent of fibrosis. More recently, using the Brunt 

classification as a starting point, the NIH-sponsored NASH CRN proposed and validated a 

scoring system. Although 14 separate parameters were evaluated, 4 were scored semi-

quantitatively, including steatosis (0 to 3), cytologic ballooning (0 to 2), lobular inflammation 

(0 to 2), and fibrosis (0 to 4). A NAFLD activity score (NAS) was then developed that included 

the un-weighted scores for steatosis, inflammation, and cytologic ballooning (Table 1). The 

NAS correlated well with the presence of steatohepatitis during a blinded validation process 

and was typically associated with a score of 5 or higher. Those with a score of 3 or less were 

not usually found to have steatohepatitis, whereas a score of 4 was associated with some 

divergence of opinion (Figure 2). It is, however, important to note that the NAS cannot be used 

to diagnose the presence of steatohepatitis, which is identified by the presence of steatosis, 

inflammation, and cytologic ballooning in a typical pattern. The NASH CRN staging system 

divides stage 1 into several subsets (Table 2), thereby improving its sensitivity to change in 

earlier stages of the disease. This system is highly valuable as a research tool for the design 

and analysis of clinical trials related to NASH. However, its role in routine clinical practice 

remains to be established. 

A major limitation of any histologic scoring system is sampling variability. In one 

study, two biopsy specimens were obtained from the same site at the same time. About 20% of 

subjects had at least a one-stage variability between specimens, whereas 12% had a two-stage 

variation. Similar data have been obtained from studies in which biopsy specimens from the 

left and right lobes were compared.  
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Table 1: NASH Clinical Research Network Scoring System: NAFLD Activity Score 

Steatosis Grade  Lobular Inflammation  Hepatocellular Balloning 

Degree Description  Degree Description  Degree Description 

0 <5%  0 None   0 None 

1 5%-33%  1 <2 foci/20x optical field  1 Mild; Few 

2 34%-66%  2 2-4 foci/20x optical field  2 Moderate to 

marked; many 3 >66%  3 >4 foci/20x optical field   

 

 

Table 2: NASH Clinical Research Network Scoring System: Fibrosis Score 

Degree Description 

0 None 

1a Mild (delicate) zone 3 perisinusoidal fibrosis 

1b Moderate (dense) zone 3 perisinusoidal fibrosis 

1c Portal/periportal fibrosis only 

2 Zone 3 perisinusoidal fibrosis with portal/ 

periportal fibrosis 

3 Bridging fibrosis 

4 Cirrhosis 
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Figure 2: Relationship between the nonalcoholic fatty liver disease activity score 

(NAS) and the probability of having steatohepatitis. 

A group of experienced pathologists diagnosed steatohepatitis to be present, absent, or 

probable and also independently scored the same biopsy specimens while unaware of their 

own interpretation to determine the NAS. A score higher than 4 was associated with a high 

probability of being considered to have steatohepatitis. (Adapted from Kleiner DE, et al. 

Design and validation of a histological scoring system for nonalcoholic fatty liver disease. 

Hepatology 2005;41:1313–1321.) 
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3. Clinical Features 

Most subjects with NAFLD are asymptomatic and in these individuals the diagnosis is 

often made incidentally because of either abnormal liver enzyme levels or features of a fatty 

liver on an imaging study when such tests are performed for unrelated reasons. In others, 

NAFLD may be diagnosed either as a result of an unusual appearance of the liver during 

abdominal surgery or because of persistent hepatomegaly. It is important to recognize that in 

only a minority of subjects has NAFLD been diagnosed and that it currently remains 

undiagnosed in the great majority of afflicted individuals. 

3.1 Symptoms and Signs 

 Most patients have vague complaints of fatigue or malaise and a sensation of fullness 

or discomfort on the right side of the upper part of the abdomen without signs of chronic liver 

disease at the time of diagnosis. Such symptoms often antedate the diagnosis of NAFLD in a 

third of patients.  Abdominal obesity and hepatomegaly are the most common physical 

findings. Obesity is present in 50% to 90% of subjects. About two thirds of subjects with 

NAFLD also have other features of metabolic syndrome. We recently confirmed abdominal 

obesity as a marker of both steatosis and grade of the disease. In addition, about 28% of subjects 

had increased dorso-cervical fat, which correlated strongly with histologic severity. Acanthosis 

nigricans may be found in individuals with NAFLD and is suggestive of an underlying insulin-

resistant state. 

Hepatomegaly is the most common liver-related physical finding in subjects with 

NAFLD. A minority of people have stigmata of chronic liver disease such as spider angiomas 

or palmar erythema. Jaundice and features of portal hypertension, such as ascites and variceal 

hemorrhage, are the initial findings in a small minority of subjects with advanced liver disease. 

3.2 Laboratory Abnormalities 

 Suspicion for NAFLD is triggered by abnormal results on liver chemistry tests that are 

usually performed for non–liver related reasons. Approximately 7.9% of the U.S. population 

has persistently abnormal liver enzymes with negative tests for viral hepatitis and other 

common causes of liver diseases. The majority of these subjects could have NAFLD if they 

have risk factors associated with NAFLD, such as the presence of features of metabolic 

syndrome. It is also important to note that a large number of subjects with NAFLD have 

persistently normal liver enzyme levels, and the entire histologic spectrum of NAFLD can be 
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seen in such individuals.  Mild to moderate elevation in serum aminotransferases (ALT) and 

aspartate aminotransferase (AST) is the most common and often the only laboratory 

abnormality found in patients with NAFLD. When these values exceed 300 IU/L, alternative 

causes of liver disease should be sought carefully. The AST/ALT ratio is usually less than 1 

but can be reversed in those with advanced fibrosis or cirrhosis. A mild to modest increase in 

serum alkaline phosphatase and γ-glutamyltransferase (GGT) can be seen in patients with 

NAFLD, but the degree of elevation is less than that seen in those with alcoholic hepatitis, as 

is the case with an increased AST/ALT ratio. 

Findings of chronic liver disease together with the presence of hypoalbuminemia, 

coagulopathy, hyperbilirubinemia, and thrombocytopenia suggest advanced liver disease with 

probable cirrhosis. Serum albumin and the prothrombin time become abnormal before bilirubin 

becomes elevated. In diabetic subjects, isolated hypoalbuminemia can result from diabetic 

nephropathy. Hematologic parameters are usually normal unless cirrhosis and portal 

hypertension lead to hypersplenism. In fact, a large proportion of patients with cryptogenic 

cirrhosis share many of the clinical and demographic features of patients with NAFLD, thus 

suggesting that cryptogenic cirrhosis is unrecognized NAFLD in an advanced stage. 

About 30% to 50% of subjects with NAFLD have elevated blood glucose and about 

60% also have associated hypertriglyceridemia, low HDL cholesterol, or both. An elevated 

ferritin level is also often seen in subjects with NAFLD. It is, however, not associated with iron 

overload in most cases and usually reflects an acute phase response. From a practical point of 

view, the laboratory evaluation of a subject with suspected NAFLD involves excluding 

alternative causes of liver enzyme abnormalities, documenting hepatic steatosis, making the 

distinction between hepatic steatosis and steatohepatitis, assessing the stage of the disease, and 

evaluating for the presence and severity of IR and other complications of metabolic syndrome. 

Each of these factors must be considered carefully when making a decision about the 

aggressiveness with which the answer to each of these is sought. It is important to remember 

that liver enzymes are notably poor predictors of steatosis and significant fibrosis. Therefore 

liver biopsy remains the gold standard for diagnosing steatohepatitis and for staging the liver 

disease, unless clinically evident cirrhosis is present. 

4. Pathogenesis 

Non-alcoholic fatty liver disease is a complex chronic condition caused by the 

occurrence of step-wise out of control metabolic, inflammatory and cellular activity. Different 
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factors contributing towards the development of NAFLD/NASH basically involves the influx 

of free fatty acids (FFA), formation of triglycerides, accumulation of fatty lipids or steatosis, 

onset of inflammation, mitochondrial dysfunction, oxidative stress and death of mature 

hepatocytes (Day 2006; Day and James 1998).  

4.1 Mechanism of Steatosis 

 The accumulation of triglycerides originating from the esterification of free fatty acids 

(FFAs) and glycerol within the hepatocyte is an important aspect of NAFLD/NASH. The 

contributing factors for the accumulation of FFAs within the liver include enhanced lipolysis 

in the adipose tissue, dietary sources, and de novo lipogenesis (DNL) (Postic and Girard 2008). 

Liver has a central role in FFAs metabolisms as hepatocyte  utilize FFAs as energy source 

degrading them in β-oxidation, but a large amount is re-esterificated to triglycerides and 

exported as very low density lipoprotein (VLDL). Liver VLDL particles are formed through 

the incorporation of triglyceride into apolipoprotein B (apoB) mediated by microsomal transfer 

protein (MTP) (Adams and others 2005). Alterations of MTP/apoB synthesis and secretion 

have been proposed as potential mechanisms underpinning the pathogenesis of NAFLD 

leading to a decreased capacity for lipid export (Lonardo and Loria 2002). Hence hepatic fat 

accumulation can occur as a result of increased fat synthesis, increased fat delivery, decreased 

fat export, and/or decreased fat oxidation (Postic and Girard 2008). 

 Lipid metabolism in the liver and adipose tissue is controlled by insulin-mediated 

signals. In healthy individuals, the binding of insulin to its receptor leads to phosphorylation 

of several substrates including insulin receptor substrates (IRS)-1, -2, -3 and -4, which 

propagate the insulin signal. Insulin stimulation of IRS-1 and -2 leads to activation of 

intracellular PI3K (phosphoinositide 3-kinase) and AKT/PKB (protein kinase B) pathways, 

which are intimately involved in mediating the metabolic effects of insulin (Bugianesi and 

others 2010). Ultimately, AKT/PKB activation results in translocation of glucose transporter, 

GLUT4 to the plasma membrane, thus facilitating glucose uptake. In addition, the expression 

of key lipogenic genes is increased, with a concomitant decrease in gluconeogenic gene 

expression via its regulation of forkhead (FOXO) transcription factor activity.  Insulin has also 

a potent action in suppressing adipose tissue lipolysis. 

Obesity and metabolic syndrome are characterized by an impaired transduction of 

insulin signals in peripheral tissues leading to a situation known as insulin resistance (IR).  In 

situations of IR insulin-mediated suppression of lipolysis is impaired resulting in an increased 
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efflux of FFA from the adipose tissue. Hyper-insulinaemia associated with IR leads also to an 

up-regulation of the transcription factor sterol regulatory element binding protein-1c (SREBP-

1c), which is a key transcriptional regulator of genes involved in DNL as well as to the 

inhibition of β-oxidation of FFA thus further promoting hepatic lipid accumulation (Chitturi 

and others 2002; Choudhury and Sanyal 2004).   Furthermore, in NAFLD additional factors 

can interfere with insulin signalling cascade, and thus contribute to hepatic IR. These factors 

include tumour necrosis factor-alpha (TNF-a) signals and jun N-terminal kinase 1 (JNK1) and 

SOCS (suppressors of cytokine signalling) activation. Increased lipid metabolites such as 

diacylglycerol (DAG) have also been implicated in interfering with insulin signalling through 

the modulation of IRS-2 phosphorylation mediated by a protein kinase Ce (PKCe) (Capeau 

2008; Choudhury and Sanyal 2005; Cusi 2009).  

During the progression of NAFLD the worsening of steatosis is tightly associated with 

chronic hepatic inflammation, an effect in part mediated by activation of the Ikk-b/NF-kB 

signalling pathway. In murine models of high-fat diet (HFD)-induced steatosis, increased NF-

kB activity is associated with elevated hepatic expression of inflammatory cytokines such as 

TNF-a, interleukin-6 (IL-6) and interleukin 1-beta (IL-1b), as well as with the activation of 

Kupffer cells. Accordingly, both serum and hepatic levels of TNF-α are elevated in patients 

with NASH, and levels correlate with histological severity. In addition to its proinflammatory 

effects, TNF-α promotes IR. Conversely, inhibition of TNF-α signalling improves IR and 

histological parameters of NASH. Similarly, serum IL-6 levels are also elevated in both animal 

and human models of IR and NAFLD, and levels correlate with increasing liver inflammation 

and fibrosis. Liver-specific NF-kB inhibition prevents HFD-induced inflammatory gene 

expression, whereas HFD-induced hyperglycaemia and IR can be reproduced by selective 

over-expression of constitutively active Ikk-b in hepatocytes. The Ikk-b/NF-kB pathway in 

hepatocytes can also be activated directly by FFA, providing a further mechanism by which 

central obesity with consequent increased hepatic FFA supply can contribute to inflammation. 

(Armutcu and others 2013; Baeck and others 2012; Hui and others 2004).    

A further aspect in the mechanisms leading to hepatic steatosis directly involves the 

changes occurring in the adipose tissue. Adipose tissue is not just an inert site of energy storage, 

but an actively secreting endocrine organ. The functional role of adipocyte-derived cytokines 

(adipokines), is now increasingly recognized, with leptin and adiponectin amongst the best 

described. Leptin is a 16 kDa hormone produced mainly by mature adipocytes whose actions 
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include the regulation of energy intake and expenditure, regulation of the immune system, and 

promotion of inflammation and fibrogenesis. Conversely, adiponectin has anti-inflammatory 

activity and increases insulin sensitivity. In obesity adipocytes that accumulate triglycerides 

modify their pattern of adipokine secretion leading to higher leptin secretion at the expensed 

of adiponectin production (Marra and others 2005; Musso and others 2005).  In fact, the 

circulating levels of adiponectin are inversely proportional to body fat content and are reduced 

in patients with NAFLD. Adiponectin antagonises the effects of TNF-α, which itself suppresses 

adiponectin production (Takei and Sato 2006). The importance of adiponectin in NAFLD is 

supported by studies showing that serum adiponectin levels can help to distinguish NASH from 

simple steatosis. Other adipose tissue derived factors found in excess in NAFLD include TNF-

α, IL-6, angiotensinogen and resistin, all of which antagonise the lipogenic effects of insulin, 

but their precise role in the pathogenesis of NAFLD remains to be determined (Mirza 2011; 

Orlik and others 2010; Polyzos and others 2013). 

4.2 Mechanism of Hepatocyte Injury 

As previously mentioned, nonalcoholic steatohepatitis (NASH) is characterized by 

parenchymal injury involving hepatocyte ballooning, presence of Mallory-Denk bodies and 

extensive liver cell apoptosis (Duwaerts and Maher 2014). Accordingly, serum levels of of 

caspase-cleaved cytokeratins (CK) 8 and 18 have been recently proposed as specific markers 

of hepatocyte death in NASH (Eguchi and others 2014). Several mechanisms have been 

invoked to explain the proapoptotic state in NASH. Triglyceride accumulation itself increases 

apoptosis by the interaction of unoxidized palmitoyl CoA with serine to form dihydro-

sphingosine, a precursor of ceramide. Ceramide is a potent inducer of apoptosis via an 

inducible nitric oxide synthetase (iNOS)-mediated pathway that requires the transcriptional 

factor NF-κB (Harbrecht and others 2012) (Alexander 1998; Harbrecht and others 2012; Ou 

and others 1997; Pinto and others 2000). It has also been shown that hepatocyte incapability to 

esterify the excess of FFAs secondary to increased peripheral lipolysis in the insulin-resistant 

state triggers apoptosis through a process known as produce lipotoxicity. Several mechanisms 

account for lipotoxicity. FFAs can directly induce translocation of Bax to lysosomes, where it 

causes the release of cathepsin. Cathepsin, acting via NF-κB, induces TNF-α and activation of 

TNF receptor–associated death pathways. Recently, the potential role of ER stress in the 

development of hepatocyte lipotoxicity in NASH has gained interest. The ER is the principal 

site for synthetic activity within cells. Such activity requires not only appropriate synthesis but 
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also local mechanisms to ensure that the proteins are correctly folded because this is essential 

for their recognition by appropriate receptors and trafficking to their final destination. Under 

conditions in which there is increased protein or lipid synthetic activity in the ER, depletion of 

ATP, depletion of calcium, or altered glucose homeostasis, the regulatory function of the ER 

in maintaining normal synthetic function is disrupted. This leads to the activation of an 

intracellular program called the unfolded protein response (UPR) (Henkel and Green 2013; 

Kapoor and Sanyal 2009; Malhi and Kaufman 2011; Zhang and others 2012a; Zheng and others 

2011). Activation of the UPR initially leads to an adaptive response in which protein synthesis 

decreases and allows restoration of normal ER function. However, if the initiating factors are 

not corrected, alarm pathways are activated, including activation of a number of stress kinases, 

which eventually results in activation of homologous protein (CHOP), a potent apoptosis-

inducing factor. Recent studies have reported that patients with NAFLD have a variable degree 

of UPR activation. Inositol requiring enzyme-1 (IRE-1) activation appears to play an important 

role in the genesis of cell injury in NASH via activation of JNK phosphorylation. Interestingly, 

there seems to be a close association of IRE-1 activation with the histologic activity of the 

disease. Failure to generate ER degradation-enhancing α-mannosidase like protein (EDEM) in 

response to spliced X box–binding protein (sXBP) in some subjects raises the possibility that 

patients with the lowest EDEM levels are at particular risk of progressing to cirrhosis because 

of insufficient degradation of unfolded proteins, thus perpetuating the ER stress. Despite 

increased phosphorylated eIF-2a, patients with NASH are apparently unable to up-regulate 

activating transcription factor 4 (ATF4), CHOP, and growth arrest and DNA damage- 34 

(GADD34), which contributes to the failure to recover from ER stress (Cao and others 2012; 

Fang and others 2013; Lee and others 2012; Pagliassotti 2012; Zhang and others 2012b). Thus 

NASH is specifically associated with failure to generate sXBP1 and activation of c-jun N-

terminal kinase (JNK) (Malhi and others 2006). Accordingly, JNK activation is evident in liver 

biopsies from NASH patients and pharmacological or genetic JNK inhibition prevents 

lipotoxicity “in vitro” and ameliorates steatohepatitis in rodent models of NASH (Cazanave 

and Gores 2010; Czaja 2010). Interestingly, the antiapoptotic B-cell lymphoma-2 (BCL2) 

protein appears to be strongly expressed in human steatohepatitis, probably representing an 

adaptive response. Thus, on the basis of the recognized significance of hepatocyte apoptosis in 

the pathogenesis of NAFLD, it has been proposed that the development of progressive NAFLD 

in some patients but not in others may be the result of increased susceptibility of steatotic 

hepatocytes to apoptosis arising from abnormal regulation of BCL2 proteins, alteration in JNK 
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activation, or preferential activation of ER stress (Li and others 2014; Malhi and others 2006; 

Panasiuk and others 2006).  

Additional mechanisms of hepatocyte injury in NAFLD/NASH involve the effect of 

inflammatory cytokines and particularly TNF-α and oxidative stress.  The key role of cytokine 

production in the progression of steatosis to NASH is supported by studies demonstrating that 

cytokines can replicate all of the histological features associated with NASH, including 

hepatocyte apoptosis/necrosis and Mallory body formation (Marra and others 2008).  

4.3 Oxidative Stress 

Oxidative stress is a result of an imbalance between prooxidant and antioxidant species. 

This could be due to either increased production of prooxidants reactive oxygen species (ROS) 

or reactive nitrogen species (RNS) or decreased antioxidant defenses Potential sources of ROS 

in the liver include the mitochondria, the peroxisomes, the microsomal oxidative system, and 

iron overload. (Alkhouri and McCullough 2012; Basaranoglu and others 2013; Baskol and 

others 2007). The mechanisms responsible for oxidative stress in NAFLD/NASH have been 

characterized to some extent showing that FFA and cholesterol accumulation within the 

mitochondria along with TNF-α cause mitochondrial dysfunction. These mitochondrial 

structural defects associated with impaired mitochondrial respiratory chain activity produce a 

state of uncoupled oxidation and phosphorylation that leads to increased ROS production. This 

concept is further supported by evidence of decreased ATP formation in the liver of subjects 

with NASH (Begriche and others 2006; Gambino and others 2011). Another possible source 

of ROS can be the cytochrome P-450 system. This system, particularly CYP2E1, is over-

expressed in subjects with NAFLD along with cytochrome P4502E1 activity (Lieber 2004). 

CYP2E1 can be induced as a result of insulin-resistance as well as to cope with the increase in 

FFAs (Lieber 2004). In line with these findings, CYP2E1 deletion in mice results in less 

susceptibility to high fat diet induced NAFLD/NASH as well as in lower hepatic oxidative 

stress (Abdelmegeed and others 2012).  

A growing body of evidence from the experimental models of NAFLD/NASH suggests 

that oxidative stress plays a key role in the mechanisms causing the death of fat-laden 

hepatocytes as well as contributes to the activation of hepatic stellate cells to matrix-producing 

myofibroblasts (Gambino and others 2011). Accordingly, antioxidant supplementation reduces 

liver injury in experimental rodent models of NASH (Laurent and other 2004).   The relevance 

of these observations to humans is supported by several studies showing an increase in 
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oxidative stress markers, in the liver and in the serum of both adult paediatric patients with 

NAFLD/NASH (Chalasani and others 2004; Ikura and others 2006; Seki and others 2002).   

Furthermore, as compared to normal livers, liver biopsies from NASH patients display a lower 

mRNAs expression of different antioxidant enzymes (Sreekumar and others 2003). On the 

same vein, recent evidences indicates that antioxidant treatments might be effective in 

improving hepatic damage in NASH (Pacana and Sanyal 2012).   

4.4 Mechanisms of Inflammation 

Inflammation, along with hepatocyte damage, is the main feature of the progression 

from simple steatosis to NASH. In fact, the molecular mechanisms able to promote 

inflammation cross-talk with those responsible for hepatocellular damage and fibrosis.  The 

precise mechanisms of inflammation in NASH have not yet been completely elucidated, but 

current evidence indicates both the innate and adaptive immunity have a role in the initiation 

and maintenance of lobular inflammation. The innate immune system is an important factor in 

the promotion and progression NASH.  Hepatic infiltration of innate immune cells such as 

macrophages, granulocytes and natural killer (NK) has been commonly observed in early 

stages of the disease and they are considered as driving force of NASH progression. 

The hepatic macrophage population is named after the scientist Karl Wilhelm von 

Kupffer. Kupffer cells are located predominantly in the periportal area. They originate from 

bone marrow and in healthy livers Kupffer cells are responsible for the phagocytosis of 

particulate matters, presentation of antigen accompanied by immune regulation, and the release 

of soluble mediators.  Alike other macrophages, Kupffer cells and hepatic monocyte-derived 

macrophages are a highly plastic populations that may adopt various phenotypes ranging 

between the extreme states known as M1 and M2. Inflammation driven by M1 Kupffer cells is 

counterbalanced by alternatively-polarized M2 macrophages that produce anti-inflammatory 

cytokines such as IL-10, and promote resolution of inflammation (Murray and Wynn 2011; 

Sica and Mantovani 2012). Macrophage polarization into an M2 phenotype is promoted by 

Th2-derived cytokines (IL-4, IL-13) (Murray and Wynn 2011; Sica and Mantovani 2012), that 

may also originate from hepatocytes (Kang and others 2008), while such factors promoting M2 

Kupffer cell polarization are poorly characterized.  

Increasing evidence suggests that Kupffer cells critically contribute to the progression 

of NAFLD. In fact at the onset of NASH lipid accumulation in Kupffer cells significantly 

contribute to the production of pro-inflammatory cyto/chemochines, which, in turn, stimulate 
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the liver infiltration by circulating monocytes (Tosello-Trampont and others 2012; Leroux and 

others 2012). Hepatic monocyte infiltration is primarily promoted by CCL2, a chemokine up-

regulated in the serum and in the liver of patients with NASH (Haukeland and others 2006), 

that drives the recruitment of inflammatory Ly6C-positive monocytes through the interaction 

with C–C chemokine receptor 2 (CCR2). According, pharmacological inhibition of genetic 

deficiency of CCL2/CCR2 dyad reduces macrophage infiltration and ameliorated 

steatohepatitis in experimental mice model of NASH (Baeck and others 2012; Miura and others 

2012). However, variable results have been obtained in mice with different genetic 

backgrounds (Galastri and others 2012). Other chemokines contributing to monocyte 

recruitment include CCL5 (RANTES) as interference with CCL5 functions ameliorates 

experimental NASH (Berres and others 2010).  

Upon liver infiltration monocytes rapidly differentiates to M1 polarized macrophages 

and the extent of macrophage M1 responses appears to modulate NASH severity among 

different mice strains (Maina and others 2012). Furthermore, macrophage release of IL-15 and 

CXCL16 is important for stimulating the recruitment and the survival of T-lymphocytes and 

NKT cells (Locatelli and others 2013; Wehr and other 2013).  Pro-inflammatory cytokines 

released from activated Kupffer cells also activate hepatic sinusoidal endothelial cells to 

upregulate adhesion molecules (ICAM1, VCAM-1) and in combination with the chemokines 

secreted from macrophages stimulate the recruitment of neutrophils to the liver (Tosello-

Trampont and others 2012). Neutrophils, in turn secrete reactive oxygen species (ROS), 

oxidants, defensins, as well as chemokines to attract more neutrophils and monocytes (Rensen 

and others 2012). Following their recruitment to the liver macrophages release not only pro-

inflammatory cytokines but also growth factors as G-CSF, and GM-CSF that can extend the 

lifespan of neutrophils thus sustaining their presence at the site of inflammation (Rensen and 

others 2012). The production of ROS, NO and cytokines by neutrophils and macrophages 

significantly contribute to promote hepatocyte cytotoxicity.    

Lymphocytes are commonly found throughout the parenchyma and in the portal tracts 

of healthy livers and include T and B cells subpopulations  as well as other subsets  belonging 

to  innate immunity as natural killer (NK) and natural killer T-cells (NKT) that shares features 

in common with both NK and T cells. NKT cells are particularly frequent in the liver because 

these cells express a specific chemokine receptor (CXCR6) that interacts with the chemokine 

CXCL16 abundantly produced by hepatic sinusoidal endothelia (Geissmann and others 2005; 

Swain 2010). Although the total number of hepatic CD3+ T lymphocytes is not appreciably 
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modified in NASH, an imbalance between CD8+/CD4+ CD3+ T-cell subtypes has been 

observed (Ferreyra Solari and coworkers 2012). CD4+ T helper cells are a sub-group of 

lymphocytes that are capable of switching B cell to antibody production, activating cytotoxic 

T cells and contributing to the phagocyte functions. Recent reports have shown that an increase 

in circulating IFN-γ-producing CD4+ T-cells characterizes NASH in both paediatric and adult 

patients in conjunction with an enhanced liver IFN-γ expression (Ferreyra Solari and coworkers 

2012; Inzaugarat and others 2011), suggesting the possible relevance of Th-1 responses to the 

human disease. Furthermore, a higher number of Th-17 cells has been observed in mice with 

steatosis induced by feeding a high fat diet and in liver biopsies of NASH patients. 

Accordingly, the Th-17 related genes (ROR-γT, IL-17, IL-21, IL-23) are up-regulated in 

NASH patients as compared to healthy controls and neutralization of IL-17 in high fat diet fed 

mice ameliorates liver injury and inflammation (Tank and other 2011).  In spite IL-17 has been 

involved in the pathogenesis of hepatic fibrosis (Meng and others 2012), the actual role of 

DC4+ Th-17 T cells in the pathogenesis of NASH is still poorly characterized. 

Conversely, recent studies have pointed out a possible involvement of natural killer T 

(NKT) cells in the progression of NASH. NKT cells account for 20-35% of mouse and 10-15% 

of rat and human liver lymphocytes. They recognize lipid antigens presented by the non-

classical MHC class I-like molecule CD1 and can be directly cytotoxic by Fas ligand (FasL), 

or perforin/granzyme-dependent mechanisms in addition to regulate innate and adaptive 

immunity through the production of IFN-γ and IL-4 (Seino and Taniguchi 2005; Exley and 

Koziel 2004). Beside classical cytokines, NKT cells also secrete osteopontin (OPN) (Syn and 

others 2012), a cytokine with both pro-inflammatory and pro-fibrogenic capacities and the fetal 

morphogen, sonic hedgehog (Shh), which activates hepatic stellate cells (HSC) into collagen 

secreting myofibroblasts and amplifies the repair-associated inflammatory response (Uede 

2011; Gao and Radaeva 2013; Syn and others 2012).  The role of NKT cells during the 

progression from NAFLD to NASH is complex as the development of steatosis in mice 

receiving a high fat diet is associated with a reduction of hepatic NKT cells. This reduction is 

due to a lowering of hepatic CD1d expression and an increase of NKT apoptosis due to an 

impaired production of IL-15 in a combination with an up-regulation in hepatic expression of 

IL-12 (Li and other 2005; Yang and other 2007). Indeed, Kupffer cell depletion lowers IL-12 

expression and blocks the impairment of NKT cells (Li and other 2005; Kremer and others 

2010). On the contrary, in mice with advanced NASH there is an increase in the number of 

NKT cells, which parallels the progression of the disease to fibrosis. NKT cell expansion 
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involves IL-15 production and is associated with an increase in liver IFN-γ and OPN 

production (Locatelli and others 2012). Accordingly, induction of NASH in NKT cell deficient 

mice is characterized by a blunted OPN expression and by an improvement in liver injury and 

collagen deposition (Syn and others 2010). In the setting of human NASH, advanced fibrosis 

is correlated with increased hepatic levels of OPN and Hh and elevated plasma OPN levels in 

comparison with early fibrosis (Syn and others 2012; Tajiri and other 2009). 

4.5 Mechanisms of Fibrosis. 

In many chronic liver diseases unresolved inflammation promotes pathologic repair 

leading to progressive fibrosis and cirrhosis (Friedman 2008).  As mentioned above hepatic 

cirrhosis represent the final outcomes of NASH. In fact, within 8 years, 15% of NASH patients 

develop clinically and histologically evident cirrhosis. Death rate ascribed to NASH-related 

cirrhosis accounts for 12-25%, while end-stage NASH is responsible for about 4-10% of liver 

transplants (Neuschwander-Tetri and Cadwell 2003).  This makes NASH an increasingly 

important cause of liver cirrhosis.  NASH-related fibrosis develops primarily in the pericentral 

areas, where thin bundles of fibrotic tissue surround groups of hepatocytes and thicken the 

space of Disse, in a “chicken wire” fashion (Brunt 2010). The main cell type responsible for 

extracellular matrix deposition are hepatic stellate cells (HSCs), These cells respond to the 

production of transforming growth factor 1 (TGF-1), platelet-derived growth factor (PDGF) 

and fibroblast-derived growth factors produced by macrophages trans-differentiating into 

myofibroblast-like cells (HSC/MSs) that are responsible for the secretion of collagen and 

extracellular matrix components (Friedman 2008). Furthermore, decreased hepatic matrix 

degradation due to a reduced production of matrix metalloproteases (MMPs) and/or an 

increased production of matrix metalloprotease inhibitors might also contribute to collagen 

accumulation (Friedman 2008). Macrophage activation in response to chronic inflammatory 

stimuli is mostly responsible for the secretion of pro-fibrogenic cytokines (Friedman 2008). In 

addition, HSC proliferation and transformation to collagen-producing myofibroblasts is 

influenced by lymphocyte-derived cytokines and oxidative stress (Novo and others 2008). 

Although the development of fibrosis in NASH does not appears to be appreciably different 

from those in other liver diseases,  alterations in adipokine secretion consequent to obesity 

might have a specific role for the induction of fibrogenesis in this condition. Activated HSCs 

selectively express leptin receptors and leptin stimulates HSC survival, the expression of pro-

inflammatory and angiogenic cytokines (Wang and others 2008).  The pro-fibrogenic action of 



20 

 

leptin might be enhanced by the combined lowering of adiponectin as adiponectin reduces 

proliferation and increases apoptosis of cultured HSC (Wang and others 2008).   

5. Aims of the work 
 In spite of the growing number of studies investigating the pathogenesis of 

NAFLD/NASH, a number of issues concerning the mechanisms involved in promoting lobular 

inflammation and the evolution of NASH to fibrosis/cirrhosis are still unresolved. In particular, 

it is still unclear why only some NAFLD patients develop steatohepatitis.  Furthermore, among 

the subjects with NASH there is a large inter-individual variability in the evolution to fibrosis. 

The factors responsible for such an inter-individual variability represent a particular challenge 

as multiple interaction occur between hepatocytes, inflammatory cells and hepatic stellate cells 

in the different phases of the disease progression. 

In my doctoral project, I have addressed some of these issues by investigating the 

possible involvement of adaptive immune mechanisms in the evolution of NASH and 

characterizing morphological and functional modifications occurring in monocyte-derived 

cells during the disease progression. 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

6. Paper 1 

Adaptive Immune Responses Triggered by Oxidative Stress Contribute to Hepatic 

Inflammation in NASH 

Published on Hepatology 2014;59:886-897. 

Background and Aims: The mechanisms responsible for the progression of simple steatosis to 

steatohepatitis (NASH) are still incompletely characterized. Oxidative stress is one of the 

features of NAFLD/NASH and hepatic oxidative stress markers, such as 4-hydroxynonenal (4-

HNE) and 8-hydroxydeoxyguanosine, correlate with the severity of necro-inflammation and 

fibrosis, suggesting that oxidative injury might be involved in triggering steatohepatitis. 

Studies in atherosclerosis have evidenced that lipid peroxidation products originating from 

oxidized LDL generate a variety of neo-antigens able to stimulate the innate immune system, 

which in turn promotes inflammation in atheroma.  As previous data indicate that both adult 

and children with NAFLD/NASH have increased titres of IgG against oxidative stress derived 

antigens, in in the present study we have used the methionine-choline deficient (MCD) diet 

model of steatohepatitis to get insides in the involvement of immune responses in promoting 

hepatic inflammation in NASH. 

Key results:  In MCD diet fed mice, the development of liver injury and lobular inflammation 

paralleled with the presence IgG against malonildialdehyde (MDA) and 4-HNE-derived 

antigens. Moreover, the hepatic recruitment of CD4+ and CD8+ T-lymphocytes responsive to 

the same antigens was also observed. Mice immunization with MDA-adducted bovine serum 

albumin (MDA-BSA) before feeding the MCD diet stimulated transaminase release, lobular 

inflammation, and the hepatic expression of proinflammatory cytokines. Hepatic inflammation 

was accompanied by a stimulation in the liver recruitment and Th-1 activation of CD4+ T cells 

that further stimulated macrophage M1 responses. In this setting, depleting CD4+ T-cells in 

MCD-fed immunized mice by using an anti-CD4 monoclonal IgG significantly lowered 

lobular inflammation and focal necrosis. 

Conclusions: These results indicate that adaptive immune responses triggered by oxidative 

stress-derived antigens contribute to hepatic inflammation in experimental NASH by 

promoting Th-1 responses by CD4+ T-lymphocytes.  
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Abstract 

Previous studies have shown that human non-alcoholic steatohepatitis (NASH) is often 

associated with the presence of circulating antibodies against proteins adducted by lipid 

peroxidation products. Here we used the methionine-choline deficient (MCD) model of NASH 

to characterize the possible involvement of adaptive immunity in NASH.  

In mice fed with the MCD diet up to 8 weeks liver injury and lobular inflammation worsen in 

a time-dependent manner in parallel with the development of IgG against malonyldialdehyde 

(MDA) and 4-hydroxynonenal (4-HNE)-derived antigens and the hepatic recruitment of CD4+ 

and CD8+ T-lymphocytes that were responsive to the same antigens.  Moreover, in these 

animals the individual IgG reactivity against MDA-adducts positively correlated with 

transaminase release and TNF-α expression. To substantiate the role of immune responses 

triggered by oxidative stress in the progression of NASH, mice were immunized with MDA-

adducted bovine serum albumin (MDA-BSA) before feeding the MCD diet. MDA-BSA 

immunization did not affect the livers of control mice, but further stimulated transaminase 

release, lobular inflammation and the hepatic expression of pro-inflammatory cytokine in 

MCD-fed mice. The increased severity of NASH in immunized MCD-fed mice was associated 

with the liver recruitment and the Th-1 activation of CD4+ T-cells that accounted for an 

increased M1 activation of hepatic macrophages. Moreover, hepatic fibrosis was also evident 

in these animals in concomitance with an IL-15-mediated increase of hepatic natural killer T-

cells (NKT) and the up-regulation in liver osteopontin production by NKT cells and hepatic 

macrophage.    

Conclusions: These results indicate that oxidative stress can contribute to the progression of 

NASH by stimulating both humoral and cellular responses, pointing to the possible 

contribution of adaptive immunity to the pathogenesis of the disease.   

 

Abbeviations:  

4-HNE  4-hydroxynonenal;  MCD methionine-choline deficient; MDA malonildialdehyde; 

NAFLD NonAlcoholic Fatty Liver Disease; NASH NonAlcoholic SteatoHepatitis; NK 

natural killer; NKT natural killer T cells:OPN osteopontin  
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Introduction 

A key issue in understanding the pathogenesis non-alcoholic fatty liver disease 

(NAFLD) concerns the identification of the mechanisms responsible for switching from simple 

steatosis to steatohepatitis (NASH). This aspect is clinically relevant because steatosis does 

not appear to adversely affect the long-term outcome of NAFLD [1], whereas parenchimal 

injury and inflammation are the driving forces for the disease evolution to fibrosis/cirrhosis 

[2,3]. Oxidative stress is one of the features of NAFLD/NASH [4] and oxidative stress markers, 

such as the hepatic content of 4-hydroxynonenal (4-HNE) and 8-hydroxydeoxyguanosine, 

correlate with the severity of necro-inflammation and fibrosis [5,6], suggesting that oxidative 

injury might be involved in triggering steatohepatitis.  In this scenario, recent evidence 

indicates that lipid peroxidation products originating from phospholipid oxidation can act as 

damage-associated molecular patterns (DAMPs) and promote inflammation through the 

interaction with both soluble and cell-associated pattern recognition receptors [7,8].  A further 

mechanism by which oxidative stress can stimulate inflammation involves adaptive immunity. 

Indeed, in atherosclerosis as well as in several auto-immune diseases the interaction of lipid 

peroxidation products with cellular proteins leads to the formation of immunogenic adducts 

that induce both humoral and cellular immune responses [9,10].    

Previous studies from our laboratory have shown that high titres of IgG against some of the 

antigens originating from oxidative stress, namely malondialdehyde- (MDA) derived adducts, 

are detectable in about 40% of adult NAFLD/NASH patients and in 60% of children with 

NASH [11,12]. In these latter, high antibody titres associated with more severe lobular 

inflammation and 13 fold increased risk of a NAFLD Activity Score ≥5 [12], while in adults 

anti-MDA IgG are an independent predictor of fibrosis [11].   From this background, we sought 

to investigate the possible contribution of immune reactions triggered by oxidative stress in 

modulating hepatic inflammation in NASH. For the experiments we relayed on a rodent model 

of NASH based on mice feeding with a methionine-choline deficient (MCD) diet that, despite 

it does not reproduce key features of human NAFLD/NASH such as obesity and insulin 

resistance, causes well evident oxidative stress and a rapidly progressing steato-hepatitis [13]. 

 

Material and Methods 

Animal and Experimental protocol.   Eight weeks old male C57BL/6 mice were purchased 

from Harlan-Nossan (Corezzana, Italy) and fed for 4 or 8 weeks with either methionine-choline 

deficient (MCD) or control diets (Laboratorio Dottori Piccioni, Gessate, Italy).  For 
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immunization experiments mice were injected subcutaneously with 100μg of MDA-adducted 

bovine serum albumin (MDA-BSA) in incomplete Freud’s adjuvant and re-boosted after one 

week with the same antigen.  The control groups received either saline or incomplete Freud’s 

adjuvant injections. MCD diet feeding was started 2 weeks after the second injection. In some 

experiments immunized mice were treated with 400μg of the anti-CD4 monoclonal antibody 

GK1.5 (BioXCell, West Lebanon, NH, USA) while receiving the MCD diet (See 

supplementary materials for further details) to deplete hepatic CD4+ T cells. The efficiency of 

cell depletion was preliminary evaluated by flow cytometry and was >97% in both the liver 

and the spleen. All the experiments were approved by the Italian Ministry of Health and by the 

University Commission for Animal Care following the criteria of the Italian National Research 

Council.    

Antigen preparation and antibody measurement. Protein adducts with lipid peroxidation 

products were prepared as in [12,14] and used to coat polystyrene microwell ELISA plates 

(Nunc, S/A, Roskilde, Denmark). Mouse sera (0.20 ml, 1:50 dilution) were added in duplicate 

and the antibody binding was revealed using peroxidase-linked goat anti-mouse IgG or IgM 

sera as previously described [12,14]. The results were expressed as optical density following 

the subtraction of background reactivity.   

 

mRNA extraction and Real time PCR.  Liver RNA was retro-transcripted with High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems Italia, Monza, Italy). RT-PCR was 

performed in a Techne TC-312 termalcycler (TecneInc, Burlington NJ, USA) using TaqMan 

Gene Expression Master Mix and TaqMan Gene Expression probes for mouse TNF-α, IL-

12p40, IL-17a, IFN-γ CCL2, iNOS, CD40, CD40L, osteopontin, α1-procollagen, T-bet, 

RORγT and beta-actin (Applied Biosystems Italia, Monza, Italy).  All samples were run in 

duplicate and the relative gene expression calculated as 2-ΔCt was expressed as fold increase 

over control samples. 

Histology and immunohistochemistry. Steatosis and lobular inflammation were scored blind 

according to Kleiner et al. [15] in hematoxilin/eosin stained sections. Hepatocyte apoptosis 

was detected by terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick-end 

labeling (TUNEL) using Apoptags Kit (Intergen Company, New York, USA).  Liver 

infiltrating T- and B-cells were evidenced in frozen sections using, respectively, anti-mouse 

CD3, anti-mouse B220 rat monoclonal antibodies (R&D System Europe Ltd, Abingdon, UK) 

and a horse-radish peroxidase polymer kit (Biocare Medical, Concord, CA, USA). Polyclonal 
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antibodies against α- -SMA) (Labvision, Bio-Optica, Milan, Italy) were 

used to detect activated hepatic stellate cells in formalin-fixed sections.  

Intrahepatic lymphocyte isolation and flow cytometry analysis.  Hepatic mononucleated cells 

were isolated and purified on a density gradient as in [16]. The cells were stained with 

fluorochrome-conjugated antibodies for CD45, CD3, CD4, CD8, NK1.1, F4/80, CD69, 

CD107a, IL-2 and IFN-γ (eBiosciences, San Diego CA, USA) and analyzed with a 

FACScalibur (Becton Dikinson) flow cytometer. De-complemented mouse serum was used to 

block unspecific immunoglobulin binding.  A polyclonal anti-osteopontin rabbit antiserum 

(Millipore, Temecula, CA, USA) and phycoerythrin-conjugated anti-rabbit IgG (Sigma-

Aldrich, Milan, Italy) were used for detecting ostepontin producing cells.   Intrahepatic 

lymphocyte response to MDA adducts was investigated by flow cytometry analysis of IL-2 

production following overnight incubation with 10µg/mL MDA adducted or native murine 

albumin in the presence of brefeldin A (3µg/ml), anti-CD3e and CD28 antibodies (1µg/ml) 

according to [17].  

Additional methods are described in the supplementary materials. 

Data analysis and statistical calculations. Statistical analyses were performed by SPSS 

statistical software (SPSS Inc. Chicago IL, USA) using one-way ANOVA test with Tukey’s 

correction for multiple comparisons or Kruskal-Wallis test for non-parametric values. 

Significance was taken at the 5% level. Normality distribution was preliminary assessed by the 

Kolmogorov-Smirnov.  

 

Results 

Immune responses against oxidative stress related-antigens associates with NASH 

progression. 

NASH induced by feeding mice with a methionine/choline deficient (MCD) diet is 

characterized by a time-dependent progression of liver injury (13). Accordingly, in C57BL/6 

mice receiving the MCD diet for up to eight weeks we observed a progressive increase in 

hepatic triglyceride content, transaminase release and circulating TNF-α levels that paralleled 

with the histological severity of hepatic inflammation (Supplementary figure 1).  Liver 

oxidative stress, as measured by thiobarbituric acid reactive compounds (TBARs) was also 

well evident at an early time point in the animals with NASH (Fig.1). As observed in humans, 

oxidative stress in the mice with NASH associated with the development of IgG against 

adducts originating from lipid peroxidation products such as malonyldialdehyde (MDA) and 



27 

 

4-hydroxynonenal (4-HNE) and the IgG titres increased in parallel with the disease progression 

(Fig. 1).  Moreover, in these animals the individual IgG reactivity against MDA-adducts, but 

not liver TBARs, positively correlated with ALT and TNF-α mRNA values (r=0.61, p=0.04; 

r=0.66, p=0.03, respectively).  Immunohistochemistry revealed that the hepatic inflammatory 

infiltrates were also enriched by T- and B-lymphocytes (Supplementary figure 1), the number 

of which positively correlated with the individual IgG reactivity against MDA-adducts (r=0.68, 

p=0.02; r=0.75, p=0.006, respectively).  Flow cytometry analysis of hepatic mononucleated 

cells from control and NASH livers confirmed a progressive recruitment of T-lymphocytes 

that involved both effector CD8+ T-cells and CD4+ helper T-cells (Fig. 1).   Furthermore, the 

proportion of CD3+ T-cells expressing the CD69 activation marker was increased in the livers 

MCD-fed mice as compared to controls (Fig. 1). Intra-hepatic CD4+ T-cells from mice with 

NASH also showed an enhanced interferon-γ (IFN-γ) expression (Fig.1), suggesting that lipid 

peroxidation-derived antigens might contribute to the development of cell-mediated immune 

responses.  Supporting this view, we observed that CD8+ and CD4+ T-cells obtained from 

NASH, but not from healthy livers, produce IL-2 when incubated “in vitro” with MDA-

modified murine albumin (Fig. 1).  

 

The induction of immunity against MDA-adducts enhances NASH severity in mice. 

To substantiate the possible role of adaptive immunity triggered by lipid peroxidation-derived 

antigens in promoting hepatic inflammation in NASH, we induced immune reactions against 

MDA adducts by immunizing C57BL/6 mice with MDA-modified bovine serum albumin 

(MDA-BSA) in incomplete Freund’s adjuvant before the administration of the MCD diet.  In 

preliminary experiments, this immunization protocol led to appreciable humoral and cellular 

reactivity against MDA adducts (not shown). In the animals receiving the control diet MDA-

BSA immunization did not affect liver histology and ALT release neither significantly 

modified the hepatic expression of pro-inflammatory markers (Supplementary Fig. 2).  

However, following four weeks on the MCD diet ALT release and the hepatic mRNA 

expression of the inflammatory mediators, TNF-α and CCL2, were higher in MDA-BSA-

immunized than in naïve mice (Fig. 2). No appreciable changes in liver injury and 

inflammation were observed in mice injected with incomplete Freund’s adjuvant before 

receiving the MCD diet (Fig 2). The enhanced severity of NASH was further supported by 

histology that showed higher scores for lobular inflammation and increased frequency of 

necro-inflammatory foci and apoptotic cells in MCD-fed immunized mice (Fig. 3).  
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Furthermore, circulating TNF-α levels were three fold higher in these latters as compared to 

similarly treated naïve mice (Fig. 2). In a recent report, Bieghs and co-workers demonstrated 

that the induction of IgM antibodies cross-reacting with oxidized phosphatidylcholine 

ameliorated NASH caused by feeding a high-fat/cholesterol diet to LDL receptor-deficient 

C57BL/6 mice [19].  In our hands, the immunization with MDA-BSA adducts did not influence 

the IgM reactivity towards MDA-derived antigens and moderately stimulated that against 

oxidized phosphatidylcholine (Supplementary Fig. 3), indicating that different mechanisms 

were involved. Thus, we sought to investigate further the role of oxidative stress-driven 

immunity in promoting liver inflammation in NASH.   

 

Characterization of immune response associated with the development of NASH in 

immunized mice. 

Flow cytometry of intrahepatic lymphocytes showed that MDA-BSA immunization did not 

modify liver T-cells profile in mice fed the control diet (Supplementary Fig. 3). However, 

immunization further promoted CD3+ T-cell recruitment in MCD-fed mice increasing both the 

CD8+ and CD4+ pools (Fig. 4). However, the proportion of CD8+ T-cells expressing the 

CD107a activation marker was unchanged (Fig. 4).  Th-1 and Th-17 activation of CD4+ T-

lymphocytes are important pro-inflammatory stimuli. We observed that the expression of the 

Th-1 transcription factor T-cell T-box transcription factor (T-bet) as well as liver IFN-γ content 

were selectively increased in MCD-fed immunized animals (Fig. 4), in parallel with a 

stimulation of macrophages M1 activation markers IL-12p40 and inducible NO synthase 

(iNOS) (Fig. 2). Among immunized MCD-fed mice there was also a positive correlation 

between the individual IFN-γ expression and that of TNF-α, IL-12p40 and iNOS (r=0.82, 0.75 

and 0.88 respectively; p<0.02). No changes were instead evident in the hepatic mRNAs for the 

Th-17 transcription factor retinoic acid-related orphan receptor-γt (ROR-γt) and of IL-17a (not 

shown). Furthermore, MCD-fed immunized mice also showed an up-regulation in the mRNAs 

of CD40 ligand (CD40L; CD154) and of its receptor CD40, a pair of co-stimulatory receptor-

ligand molecules involved in macrophage activation by CD4+ T-cells [19].   Consistently, 

depleting CD4+ T-cells in MCD-fed immunized mice by using an anti-CD4 monoclonal IgG 

significantly lowered the hepatic mRNA expression of IFN-γ and CD40L as well as that of 

macrophage M1 markers iNOS and IL-12p40 (Fig. 5). In these animals, histology also showed 

that CD4+ T-cell depletion ameliorated lobular inflammation and focal necrosis (Fig. 5). 
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The progression of NASH in immunized mice also involves NKT cells. 

Unexpectedly, changes in liver natural killer T (NKT) cells associated with the worsening of 

NASH occurring in immunized mice. According to previous observations [20,21], the 

development of NASH in naïve mice was characterized by the lowering of liver natural killer 

(NK) (CD3-, NK1.1+) and NKT (CD3+, NK1.1+) pools.  On the contrary, MCD-fed immunized 

animals did not show NK cell depletion, while the NKT fraction was significantly higher than 

in controls (Fig. 6). Recent findings in animal models of NAFLD/NASH have implicated 

macrophages production of IL-15 in controlling liver NKT cell differentiation and survival 

[22]. In turn, NKT cells have been proposed to contribute to the progression of NASH to 

fibrosis through the production of osteopontin (OPN) [16,23]. In hour hands, the expansion of 

NKT cells observed in MCD-fed immunized mice paralleled with an increase of hepatic IL-15 

content (Fig. 6). Such an effect was likely mediated by CD4+ T-cell activation, as depleting 

immunized mice of CD4+ T-cells significantly lowered the intrahepatic IL-15 mRNA (Fig. 5). 

We also observed that, while the development of NASH in naïve mice did not affect liver OPN, 

OPN levels were significantly up-regulated in MCD-feed immunized animals and such an 

increase involved an expansion of OPN-expressing NKT cells and F4/80-positive hepatic 

macrophages (Fig. 6). Furthermore, in line with OPN capacity to stimulate hepatic stellate cell 

(HSC) activation, Sirius Red staining for collagen and α- -SMA) 

positive HSCs were more evident in the livers of immunized as compare to naïve MCD-fed 

mice (Fig. 2).   

 

Discussion 

Recent studies have implicated the contribution of adaptive immunity to fat inflammation in 

obesity, as CD4+/CD8+ T-cells are recruited to the adipose tissue and provide stimulation for 

the macrophage production of pro-inflammatory mediators [24,25].  Lymphocytes are often 

detected in the lobular infiltrates of NASH [26], but the actual role of adaptive immunity in the 

disease pathogenesis is still poorly understood.  We previously reported that sub-sets of adults 

and paediatric NAFLD/NASH patients show antibody responses against oxidative stress-

related antigens, such as MDA-derived adducts, that associate with an increased severity of 

lobular inflammation or fibrosis [10,11]. Similar antibodies are also detected along with hepatic 

injury and inflammation in rats with NASH induced by the enteral nutrition with a high fat diet, 

while preventing oxidative stress with N-acetylcysteine attenuates both IgG formation and the 

severity of steatohepatitis [27].  In the present study, IgG against lipid peroxidation-derived 
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adducts are evident during the progression of NASH caused a methionine/choline deficient 

(MCD) diet in parallel with the liver recruitment of both CD4+ and CD8+ T-lymphocytes 

recognizing the same antigens and positively correlate with the severity liver injury. The 

possible contribution of such immune responses to the progression of experimental NASH is 

further substantiated by the observation that stimulating immune responses against MDA-

protein adducts, one of the antigens recognized by the antibodies associated with both human 

and rodent NASH, promotes parenchymal injury and inflammation in mice fed with the MCD 

diet.  Our data are not in contrast with a recent report Bieghs and co-workers showing that IgM 

targeting oxidized low density lipoproteins (LDLs) reduces NASH in LDL receptor-deficient 

mice receiving a high-fat/cholesterol diet [18].  These discrepancies, in fact, can be explained 

considering that in the two experimental settings the immune responses involved and the 

mechanisms leading to NASH are quite different. In Bieghs’s work mice were immunized with 

heat-inactivated pneumococci that lead to the production of natural IgM against bacterial 

antigens and cross-react with oxidized phosphatidylcholine in LDLs [18].  Feeding a high-

fat/cholesterol diet to LDL receptor-deficient mice causes Kupffer cell engulfment by oxidized 

LDLs that, in turn, promotes Kupffer cell activation and hepatic inflammation [28]. In this 

scenario, IgM interaction with oxidized LDLs reduces their uptake by Kupffer cells, lowering 

the pro-inflammatory stimuli [19]. These conditions are quite different from those occurring in 

MCD-induced NASH, where parenchymal injury, oxidative stress and inflammation result 

from the impairment of hepatocyte lipid secretion [13]. Furthermore, our data indicate that the 

immunization with MDA-adducts mainly stimulates IgG production and T-cell responses and 

that these latter are responsible for stimulating inflammation.      

Concerning the mechanisms by which adaptive immunity promotes the evolution of NASH, 

we have observed that a stimulation in liver IFN-γ production and CD40L (CD154) expression 

parallels with the increase of hepatic CD4+ T-cells in MCD-fed immunized mice. CD40L is a 

co-stimulatory molecule predominantly expressed by CD4+ T-cells and activated platelets that, 

by the interacting with its receptor CD40 on macrophages and lymphocytes, has a key role in 

orchestrating inflammation and immunity in several diseases, including atherosclerosis and 

obesity [29,30].  Conversely, CD4+ T-cell depletion prevents the up-regulation of IFN-γ and 

ameliorates lobular inflammation, indicating that a Th-1 activation of  CD4+ T-lymphocytes 

plays a major role in promoting NASH.  A Th-1 activation is also a feature of CD4+ T-cell 

responses to LDL oxidation antigens in atherosclerotic plaques [29]. Interestingly, an increase 

in circulating IFN-γ-producing CD4+ T-cells has been observed in both paediatric and adult 
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NASH patients in conjunction with an enhanced liver IFN-γ expression [31,32], suggesting the 

possible relevance of these mechanisms to the human disease.  A recent report indicates that 

an increase in hepatic CD8+ T-cells characterizes paediatric NASH [31].  In our hands, CD8+ 

T-cell recruitment is also evident in NASH livers and is further promoted by pre-immunization. 

However, pre-immunization does no affect the expression CD8+ T-cell activation markers, 

suggesting that in this experimental setting effector T-cells do not significantly contribute to 

hepatic inflammation. Nonetheless, the involvement of CD8+ T-cells in NASH requires further 

investigations.   In a similar manner, more studies are needed to clarify the role of B-cell 

responses. The presence of circulating IgG might just be a hallmark of immune activation 

against oxidative stress derived epitopes, as 35% of the patients with alcoholic liver disease 

showing anti-MDA antibodies also have circulating CD4+ T-lymphocytes responsive to the 

same antigens [33].  However, it can be excluded that B-cell responses can influence the 

disease evolution, since growing evidence indicates that they can either stimulate or prevent 

the progression of liver injury to fibrosis [34,35].  

Accumulating evidence indicates that NKT cells can orchestrate inflammation in autoimmune 

liver diseases and modulate hepatic fibrogenesis [36,37]. In line with these observations, recent 

data point to an involvement of NKT cells in NASH.   Indeed, steatosis and the early phases 

of steatohepatitis are characterized by the lowering of liver NKT pool as consequence of IL-

12 production and Tim-3/galectin-9 signaling [20-22]. Conversely, NKT expansion is a feature 

of advanced NASH in both humans and rodents [23,38,39].  In these latter, NKT depletion 

prevents hepatic inflammation and fibrosis [23,38].  We observed that an increase in NKT cells 

characterizes the enhanced severity of NASH in immunized MCD-fed mice, as opposed to 

NKT cell depletion present in similarly treated naïve animals, further supporting the 

contribution of NKT cells to NASH progression.   Changes in the hepatic levels of IL-15 have 

been proposed to modulate NKT pool in NASH [20,22]. IL-15 is a pleiotropic cytokine 

responsible for macrophage, T, NK and NKT cell survival and maturation [40]. In healthy 

livers, IL-15 is constitutively produced by hepatocytes to create a T-cell favorable environment 

[41], while an increased IL-15 expression by both hepatocytes and macrophages in response 

to injury is critical for driving both innate and adaptive immunity [22,42].  We observed that 

IL-15 is selectively up-regulated in immunized, but not in naïve MCD-fed mice concomitantly 

with NKT cell recruitment, suggesting that parenchymal damage and inflammation resulting 

from Th-1 responses, might promote an IL-15-mediated expansion of NKT cells, which, in 

turn, can participate to the evolution of NASH.  
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According to Syn and co-workers, osteopontin (OPN) generated by NKT cells can contribute 

to fibrosis in NASH [23]. OPN is a Th-1 cytokine produced by both immune and parenchymal 

cells that modulates both inflammation and tissue healing [43]. Indeed, OPN production by 

NKT cells drives concanavalin A-induced hepatitis [44], but OPN can also stimulate collagen 

synthesis by hepatic stellate cells (HSCs) through a TGF-β1-indipendent pathway [45]. An up-

regulation in liver OPN is evident in either humans and rodents with advanced NASH 

[16,23,46], while OPN-deficient A/J mice are protected against steatohepatitis and fibrosis 

induced by MCD diet feeding  [46,47]. In our hands, hepatic OPN content is specifically up-

regulated in MCD-fed immunized mice in concomitance with NKT cell recruitment and OPN-

expressing NKT cells are increased in the livers of these animals. Moreover, we observed that 

hepatic macrophages also contribute to OPN production. This is consistent with the capacity 

of Th-1 cytokines to stimulate OPN synthesis in macrophages [48].  However, we can not 

exclude that in this setting other liver cells, such as cholangiocytes, might also generate OPN 

[46]. Differently from that reported by Sahai and co-workers [47] using A/J mice, we did not 

observe changes in hepatic OPN expression in naïve C57BL/6 mice receiving the MCD diet 

for 4 weeks.  This discrepancy might reflect strain differences in mice susceptibility to 

steatohepatitis [49] and further support importance of OPN in NASH evolutions.  Considering 

OPN action in stimulating HSC [45], the elevated OPN levels observed in MCD-fed 

immunized mice might account for the stimulation in collagen deposition that is evident in 

these animals in spite a high IFN-γ production that should antagonize fibrogenesis.      

In conclusion, the results presented indicate that immune responses triggered by oxidative 

stress-derived antigens contribute to hepatic inflammation in experimental NASH by 

promoting the Th-1 activation of CD4+ T-lymphocytes.  NASH in immunized animals is also 

associated with an increase in liver NKT cells that likely participate to the disease evolution 

by generating osteopontin. Altogether, these data support the observations in humans about the 

possible contribution of adaptive immunity in the mechanisms leading to NAFLD evolution. 
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Figures 

Figure 1:  Adaptive immune responses against oxidative stress-derived antigens during the 
progression of NASH induced by a methionine-choline deficient (MCD) diet.  
Panels A-C: Liver oxidative stress, as evaluated by thiobarbituric acid reactive compounds (TBARs), and 
circulating IgG against malondialdehyde- (MDA) or 4-hydroxynonenal (4-HNE) modified bovine serum albumin 
were measured in control mice (empty bars) or mice fed with the MCD diet for 4 (light grey bars) and 8 (dark 
grey bars) weeks. The IgG values are expresses as optical density at 490 nm. The results refer to 8-10 animals in 
each group and the boxes include the values within 25th and 75th percentile, while the horizontal bars represent 
the medians.  The extremities of the vertical bars (10th-90th percentile) comprise the eighty percent of the values.  
Panels D,E: Flow cytometry analysis of liver monucleated cells isolated from controls (Cont) or MCD-fed mice: 
representative dot blots of T-lymphocyte staining for CD45 and CD3 and percent distribution of total CD3+, CD8+ 
or CD4+ T-cells. The values refer to 4-5 animals in each group and the bars represent medians ± S.D.  Panels F,G: 
T-lymphocyte activation in NASH was assessed in intrahepatic CD3+ T-cells isolated from mice receiving the MCD 
diet for 8 weeks by evaluating the expression of CD69 as well as in CD4+ T-cells by interferon-γ (IFN-γ) 
production. Panel H: The contribution of oxidative stress-derived antigens in promoting T-cell responses in NASH 
was evaluated in intrahepatic CD4+ and CD8+ T-cells obtained from control and MCD-fed (8 weeks) mice by 
measuring intracellular IL-2 production following in vitro incubation with 10µg/mL of MDA-modified murine 
albumin. 
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Figure 2:  The induction of immune responses against oxidative stress-derived antigens 
worsens liver injury and inflammation in C57BL/6 mice with NASH induced by feeding a 
methionine-choline deficient (MCD) diet. 
C57BL/6 mice were immunized with MDA-modified bovine serum albumin (MDA-BSA) in incomplete Freund’s 
adjuvant before 4 weeks feeding with the MCD diet. Panels A-D: The differences in NASH severity were assessed 
by alanine aminotransferase (ALT) release, hepatic triglyceride content and liver mRNA levels for TNF-α, CCL2. 
The experimental groups were: naïve controls (Cont), naïve MCD-fed mice (MCD), mice pretreated with the 
incomplete Freund’s adjuvant and receiving the MCD diet (Ad+MCD), mice receiving the complete immunization 
protocol plus the MCD diet (Imm-MCD).  Panel E: Circulating TNF-α levels were determined in the same animals.  
Panels F,G: Effect of the stimulation of immune responses on liver mRNA levels for macrophage M1 activation 
markers IL-12p40 and iNOS in MCD-fed mice. Hepatic mRNAs were measured by RT-PCR and expressed as fold 
increase over control values after normalization to the β-actin gene expression.  The values refer to 8-12 animals 
in each group and the boxes include the values within 25th and 75th percentile, while the horizontal bars 
represent the medians. The extremities of the vertical bars (10th-90th percentile) comprise the eighty percent of 
the values.  
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Figure 3:  The induction of immune responses against oxidative stress-derived antigens 
promotes steato-hepatitis and fibrosis in mice fed a methionine-choline deficient (MCD) 
diet. 
C57BL/6 mice were immunized with MDA-modified bovine serum albumin (MDA-BSA) in incomplete Freund’s 
adjuvant before 4 weeks feeding with the MCD diet.  Panels A-E: Liver histology was evaluated in 
hematoxilin/eosin stained sections from naïve (MCD) or pre-immunized (Imm-MCD) MCD-fed animals 
(magnification 400x). Lobular inflammation was scored according to Kleiner et al. [15] while the number of 
necro-inflammatory foci and apoptotic hepatocytes were counted in ten different high magnification 
microscopic fields.  Panels F-I: Collagen deposition (Panels F,G) and activated hepatic stellated cells expressing 
α-smooth muscle actin (α-SMA) (Panels H,I) were evidenced by, respectively, Sirius Red staining or 
immunohistochemistry.  
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Figure 4:  The immune responses against oxidative stress-derived antigens promote the 
liver recruitment of T-lymphocytes and Th-1 responses.  
Liver monucleated cells were isolated from the livers of either naive controls (Cont), naïve mice fed 4 weeks a 
methionine-choline deficient (MCD) diet or mice pre-immunized with MDA-modified bovine serum albumin 
before the administration of the MCD diet (Imm-MCD). Panels A-D show representative dot blots of T-
lymphocytes staining for CD45 and CD3 and the percent distribution of total CD3+ and CD8+ or CD4+ T-cells sub-
sets. The values refer to 5-6 animals in each group and the bars represent medians ± S.D. Panel E: Representative 
dot blots of CD8+ T-cells displaying the CD107b activation marker.  Panels F-J: Th-1 activation of CD4+ T-cells was 
evidenced by the intrahepatic production of interferon-γ (IFN-γ) and the mRNA expression of the Th-1 
trascription factor T-bet, CD40 and CD40 ligand (CD154). The RT-PCR values were normalized to those of the β-
actin gene and presented as fold increase over control values.  The data refer to 8-12 animals in each group and 
the boxes include the values within 25th and 75th percentile, while the horizontal bars represent the medians.  
The extremities of the vertical bars (10th-90th percentile) comprise the eighty percent of the values.  
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Figure 5:  CD4+ T-lymphocyte depletion improves hepatic inflammation in MDA-BSA 
immunized mice receiving the MCD diet.  
After immunization with MDA-modified bovine serum albumin (MDA-BSA) C57BL/6 mice were depleted of CD4+ 
T-cells by repeated injection of an anti-CD4 monoclonal antibody during 4 weeks feeding with the MCD diet. 
Panels A-D: Liver histology was evaluated in hematoxilin/eosin stained sections from mice receiving anti-CD4 
IgG or vehicle (magnification 400x). Lobular inflammation was scored according to Kleiner et al. [15] while the 
number of necro-inflammatory foci were counted in ten different high magnification microscopic fields.  Panels 
E-I: Effect of CD4+ T-cell depletion on the hepatic expression of  interferon-γ (IFN-γ), CD40 ligand (CD154), IL-15 
and macrophage M1 activation markers (IL-12p40, iNOS). The mRNA levels were measured by RT-PCR and 
expressed as fold increase over control values after normalization to the β-actin gene expression.  The values 
refer to 6 animals in each group and the boxes include the values within 25th and 75th percentile, while the 
horizontal bars represent the medians. The extremities of the vertical bars (10th-90th percentile) comprise the 
eighty percent of the values.  
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Figure 6:  Increased severity of NASH in immunized mice associates with the recruitment 
and activation of hepatic NKT cells.  
Liver monucleated cells were isolated from the livers of either naive controls (Cont), naïve mice fed 4 weeks a 
methionine-choline deficient (MCD) diet or mice pre-immunized with MDA-modified bovine serum albumin 
before the administration of the MCD diet (Imm-MCD). Panels A-C show representative dot blots of CD3 and 
NK1.1 staining and the percent distribution of total CD3- NK1.1+ NK and CD3+ or NK1.1+ NKT-cells sub-sets. The 
values refer to 5-6 animals in each group and the bars represent medians ± S.D.  Panels D,E: The intrahepatic 
content of IL-15 and osteopontin were determined by ELISA assays. The data refer to 6-8 animals in each group 
and the boxes include the values within 25th and 75th percentile, while the horizontal bars represent the 
medians. The extremities of the vertical bars (10th-90th percentile) comprise the eighty percent of the values.  
Panels G and F show a representative dot blots of the osteopontin (OPN) expression by F4/80+ hepatic 
macrophages or NK1.1+ NK/NKT cells. 
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Supplementary Materials 
 
Addendum to Materials and Methods 
 
Composition of the methionine-choline deficient (MCD) diet used in the experiments  
The MCD diet composition (mg/kg) was as follows: sucrose 455, corn starch 200, corn oil 100, 
cellulose 30, mineral mix 35, calcium phosphate 3, vitamin mix 5, Vit A 40, Vit D3 5, Vit E 121, 
aminoacid mix 171.    
 
Induction of hepatic CD4+ T cell depletion: For CD4 T-cell depletion mice were injected IP daily 
3 times with 400μg of rat anti-CD4+ monoclonal antibody GK1.5 at the start of MDC feeding 
and further treated twice a week during the following 3 weeks. According to Arora et al. 
(Infect Immun 2006:74:4339-4348), by depleting CD4+ T cells, the monoclonal GK1.5 antibody 
would make the mice tolerant against the immunization versus rat IgG. Thus, the use as a 
control of isotype-matched rat IgG is inappropriate, because it would lead to a mouse anti-
rat IgG response resulting in immunocomplexe formation and stimulation of inflammation.  
Therefore, control mice received saline injection.     
Biochemical analysis. Plasma ALT and liver triglyceride were determined by spectrometric kits 
supplied by Radim S.p.A. (Pomezia, Italy) and Sigma Diagnostics (Milano, Italy), respectively. 
Oxidative stress was evaluated in liver homogenates by thiobarbituric acid-reactive 
substances according to Ohkawa et al. (Anal Biochem 1979;95:351-358) and protein carbonyl 
determination (Oxyblot kit, Merck-Millipore, Milano, Italy). Circulating TNF-α and liver IFN-γ, 
IL-15 and osteopontin levels were evaluated by commercial ELISA kits supplied by Peprotech 
(Milano, Italy) and R&D Systems (Abingdon, UK). 
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Supplementary figures 
 

 
 
Supplementary Figure 1:  Time-dependent increase in the severity of steatohepatitis in 
C57BL/6 mice fed a methionine-choline deficient (MCD) diet. 
Panels A-E: Liver histology was evaluated in hematoxilin/eosin stained sections from naïve (MCD) or pre-
immunized (Imm-MCD) MCD-fed animals (magnification 400x). Hepatic steatosis and lobular inflammation were 
scored according to Kleiner et al. [15], while the number of necro-inflammatory foci were counted in ten 
different high magnification microscopic fields.  
Panels F-H: Alanine aminotransferase (ALT) release, liver triglyceride content and circulating TNF-α levels were 
evaluated in control (Cont) or MCD-fed (MCD) mice receiving the diet for 4 and 8 weeks.  The data refer to 8-10 
animals in each group and the boxes include the values within 25th and 75th percentile, while the horizontal bars 
represent the medians.  Eighty percent of the values are comprised between the extremes of the vertical bars 
(10th-90th percentile).   
Panels I,J show liver T- and B-lymphocytes (arrows) as evidenced by immunohistochemistry using antibodies 
against mouse CD3 and B220, respectively.  
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Supplementary Figure 2: Induction of immune responses against oxidative stress-derived 
antigens does not cause liver injury in mice receiving a control diet. 
C57BL/6 mice were immunized with MDA-modified bovine serum albumin (MDA-BSA) in incomplete Freund’s 
adjuvant before the administration of a control diet for 4 weeks.  Panels A,B shows liver histology 
(hematoxilin/eosin stained sections magnification 200x). Alanine aminotransferase (ALT) release (Panel C), liver 
triglyceride content (Panel D) and the hepatic mRNA expression of TNF-α and CCL2 (Panels E,F) were evaluated 
in naïve (Cont) or pre-immunized (Imm) animals. The RT-PCR values were normalized to those of the β-actin 
gene and presented as fold increase over control values.  The data refer to 6-8 animals in each group and the 
boxes include the values within 25th and 75th percentile, while the horizontal bars represent the medians.  Eighty 
percent of the values are comprised between the extremes of the vertical bars (10th-90th percentile).   
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Supplementary Figure 3:   Effects of mice immunization against MDA-derived antigens on 
liver lymphocytes and humoral immune responses.  
C57BL/6 mice were immunized with MDA-modified bovine serum albumin (MDA-BSA) in incomplete Freund’s 
adjuvant. Liver monucleated cells were isolated from either naive (Cont) or pre-immunized (Imm) mice fed a 
control diet and the percentage distribution of total CD3+, CD8+ or CD4+ T-cells was evaluated by flow cytometry 
(Panels A-C). The values refer to 4 animals in each group and the bars represent medians ± S.D. Circulating IgG 
and IgM against malondialdehyde-modified bovine serum albumin (MDA-BSA) or oxidized phosphatidylcholine 
(ox-PC) were measured by ELISA in the serum of control (empty bars) or immunized animals (hatched bars) and 
the values are expresses as optical density at 490 nm. (Panels D-G). The values refer to 5-6 animals the boxes 
include the values within 25th and 75th percentile, while the horizontal bars represent the medians.  Eighty 
percent of the values are comprised between the extremes of the vertical bars (10th-90th percentile).   
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7. Paper 2 

CX3CR1-expressing inflammatory dendritic cells contribute to the progression of non-

alcoholic steatohepatitis (NASH) in mice 

Submitted to Clinical Sciences (January 2015) 

Background & Aims: Liver dendritic cells (DCs) are a heterogeneous population of specialized 

bone marrow-derived cells involved in antigen presentation to lymphocytes. In healthy livers 

DCs have a predominant tolerogenic phenotype, but recent evidence suggests their possible 

contribution in the evolution of chronic liver diseases.  In this study, we have investigated the 

role of monocyte-derived inflammatory dendritic cells (moDCs) in experimental NASH 

induced by feeding mice with a methionine-choline deficient (MCD) diet. 

Results: The progression of steatohepatitis was characterized by an increase in hepatic 

mononuclear cells displaying the monocyte/macrophage markers F4-80, Ly6C and CD11b in 

combination with the fractalkine receptor (CX3CR1). These cells were characterized by the 

expression of dendritic cell (CD11c, MHCII) markers as well as by a sustained TNF-α 

production, suggesting monocyte differentiation to inflammatory moDCs.  Treating 4 weeks 

MCD-fed mice with the H2S donor NaHS that interferes with CX3CL1/CX3CR1 up-regulation 

in monocyte-derived cells, blocked the increase in liver CX3CL1 and CX3CR1 and selectively 

prevented the accumulation of TNF-α-producing CX3CR1+-moDCs without interfering with 

macrophage functions. Furthermore, NaHS reduced hepatic and circulating TNF-α levels and 

ameliorated transaminase release and parenchymal injury. 

Conclusions: Altogether, these results show that inflammatory CX3CR1+-moDCs contributed 

in sustaining inflammation and liver injury by TNF-α production during NASH progression. 

Inhibition of CX3CR1 through H2S interference prevents differentiation of moDCs and related 

inflammation, suggesting CX3CR1+ interference as possible approach to NASH therapy. 
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Abstract 

Objectives: Liver monocyte recruitment plays a major role in the development of non-alcoholic 

steatohepatitis (NASH). However, little is known about the phenotypic changes occurring in 

monocyte-derived cells during disease evolution.  In this study, we have investigated the 

possible role of monocyte-derived inflammatory dendritic cells (moDCs) in experimental 

steatohepatitis.  

Design: MoDCs were analysed by flow cytometry in the livers of C57BL/6 mice with 

steatohepatitis induced by feeding a methionine-choline deficient (MCD) diet for up to 8 

weeks. 

Results: The progression of steatohepatitis was characterized by an increase in hepatic 

mononuclear cells displaying the monocyte/macrophage marker F4-80+.  In the early phases (4 

weeks on the MCD diet) Ly6Chigh/CD11b+/F4-80+ cells were prevalent. However, their 

frequency did not further grow with the disease progression, when a tenfold expansion of F4-

80+/CD11b+ cells expressing the fractalkine receptor (CX3CR1) was evident. These cells were 

characterized by the combined expression of monocyte (F4-80, Ly6C) and of dendritic cell 

(CD11c, MHCII) markers as well as by a sustained TNF-α production, suggesting monocyte 

differentiation to inflammatory moDCs. Hydrogen sulfide (H2S) is known to interfere with 

CX3CL1/CX3CR1 up-regulation in monocyte-derived cells.  Treating 4 weeks MCD-fed mice 

with the H2S donor NaHS while continuing on the same diet, blocked the increase in liver 

CX3CL1 and CX3CR1 and selectively prevented the accumulation of TNF-α-producing 

CX3CR1+-moDCs without interfering with macrophage functions. Furthermore, NaHS reduced 

hepatic and circulating TNF-α levels and ameliorated transaminase release and parenchymal 

injury. 

Conclusions: Altogether, these results show that inflammatory CX3CR1+-moDCs contributed 

in sustaining inflammation and liver injury during steatohepatitis progression.   

 

Abbreviations: 

α-SMA; α-Smooth Muscle Actin, DCs; Dendritic Cells, moDCs; monocyte-derived Dentritic 

Cells, MCD; Methionine-Choline Deficient diet, NAFLD; NonAlcoholic Fatty Liver Disease, 

NASH; NonAlcoholic SteatoHepatitis 
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Introduction 

 

The development of lobular inflammation and parenchymal injury represents the key 

feature in the transition from non-alcoholic fatty liver disease (NAFLD) to steatohepatitis 

(NASH) and is clinically relevant because inflammatory mechanisms are the driving forces for 

the disease evolution to fibrosis/cirrhosis [1].  Circulating free fatty acids, oxidative damages, 

endoplasmic reticulum stress and adipokine unbalances have been proposed to trigger hepatic 

inflammation by stimulating Kupffer cell activation [2,3].  Indeed, at the onset of NASH 

Kupffer cells significantly contribute to the production of pro-inflammatory cyto/chemochines, 

which, in turn, stimulate the liver infiltration by circulating monocytes [4,5]. These latter 

rapidly differentiates to M1 polarized macrophages further contributing to the release of pro-

inflammatory mediators [6]. Accordingly, Kupffer cell depletion or interference with monocyte 

recruitment through CCL2/CCR2 signaling prevent hepatic injury and inflammation in 

experimental models of NASH [4,6,7].   Furthermore, the extent of macrophage M1 responses 

appears to modulate NASH severity among different mice strains [6].  Recent studies have 

revealed the existence of at least two distinct monocyte subsets. Inflammatory monocytes are 

characterized as Ly6Chigh/CCR2+/CX3CR1- in mice and CD14+/CD16- in humans and migrate 

to tissues in early phase of the response to injury producing pro-inflammatory mediators [9,10].  

A second population defined as Ly6C-/CCR2-/CX3CR1+ in mice and CD14-/CD16+ in humans 

has less characterized functions and appears involved in tissue healing [9,10].  Studies using 

different mice models of chronic liver injury have shown that infiltrating macrophages in 

injured livers derive from Ly6C/CD11b-expressing circulating monocytes [12,13]. However, 

the phenotype of the monocyte-derived cells responsible for the evolution of chronic liver 

diseases, including NASH, are still incompletely characterized [14]. In this study, we have 

investigated the features of liver infiltrating monocyte-derived cells during the progression of 

experimental steatohepatitis. To this aim, we used steatohepatitis induced in mice by feeding a 

methionine-choline deficient (MCD) diet that, in spite differing in its pathogenesis from the 

human NASH, it allows to follow hepatic chronic inflammation up to the development of overt 

fibrosis [15].  
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Material and Methods 

Animal and Experimental protocol.   Eight weeks old male C57BL/6 mice were purchased 

from Harlan-Nossan (Corezzana, Italy) and fed for 4 or 8 weeks with either methionine-choline 

deficient (MCD) or control diets (Laboratorio Dottori Piccioni, Gessate, Italy). In some 

experiments, 4 weeks MCD-fed mice received NaHS (1mg/kg body wt) daily for further 4 

weeks while continuing on their deficient diet. The experimental protocols were approved by 

the Italian Ministry of Health and by the University Commission for Animal Care following 

the criteria of the Italian National Research Council.    

Biochemical analysis. Plasma ALT and liver triglycerides were determined by spectrometric 

kits supplied by Radim S.p.A. (Pomezia, Italy) and Sigma Diagnostics (Milano, Italy), 

respectively. Circulating TNF-α were evaluated by commercial ELISA kits supplied by 

Peprotech (Milano, Italy). 

Histology and immunohistochemistry. Steatosis and lobular inflammation were scored blind 

according to Kleiner et al. [16] in hematoxilin/eosin stained liver sections. Hepatocyte 

apoptosis was detected by terminal deoxyribonucleotide transferase-mediated dUTP nick-end 

labeling (TUNEL) as reported in [17].  Collagen deposition was evidenced by Picro-Sirius Red 

staining. Liver macrophages and activated hepatic stellate cells were evidenced in formalin-

fixed sections using, respectively, anti-mouse F4-80 (eBioscience, San Diego CA, USA) and 

α-smooth muscle actin (α-SMA) polyclonal antibodies (Labvision, Bio-Optica, Milan, Italy) in 

combination with horse-radish peroxidase polymer kit (Biocare Medical, Concord, CA, USA).   

mRNA extraction and Real time PCR.  Liver RNA was retro-transcripted with High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems Italia, Monza, Italy). RT-PCR was 

performed in a Techne TC-312 termalcycler (TecneInc, Burlington NJ, USA) using TaqMan 

Gene Expression Master Mix and TaqMan Gene Expression probes for mouse TNF-α, IL-

12p40, CD11b, iNOS, CX3CL1, CX3CR1 α1-procollagen, TGF-β1, α-SMA and beta-actin 

(Applied Biosystems Italia, Monza, Italy).  All samples were run in duplicate and the relative 

gene expression calculated as 2-ΔCt was expressed as fold increase over control samples. 

Intrahepatic mononucleated cell isolation and flow cytometry analysis.   Liver mononucleated 

cells were isolated from the livers of naive and MCD-fed mice and purified on a density 

gradient (Lympholyte®-M, Cedarlane Laboratoires Ltd. Burlington, Canada) as described in 

[18]. Cells were washed with Hank’s medium and incubated 30 min with de-complemented 

mouse serum to block unspecific immunoglobulin binding. The cells were then stained with 

fluorochrome-conjugated antibodies for CD45, CD11b, Ly6C, CD11c, MHCII (eBiosciences, 
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San Diego CA, USA), F4-80 (Invitrogen, Abingdon, UK) or CX3CR1 (R&D System, 

Minneapolis, MN, USA) and analyzed with a FACScalibur (Becton Dikinson, Franklin Lakes, 

NJ, USA) flow cytometer following prior gating for CD45 and the absence of cell aggregates. 

Intracellular staining for TNF-α was performed using a specific fluorochrome-conjugated 

antibody (eBiosciences, San Diego CA, USA).  

Data analysis and statistical calculations. Statistical analyses were performed by SPSS 

statistical software (SPSS Inc. Chicago IL, USA) using one-way ANOVA test with Tukey’s 

correction for multiple comparisons or Kruskal-Wallis test for non-parametric values. 

Significance was taken at the 5% level. Normality distribution was preliminary assessed by the 

Kolmogorov-Smirnov. 

 

Results. 

Feeding mice with a methionine-choline deficient (MCD) diet for up to 8 weeks 

resulted a progressive worsening of steatohepatitis as evaluated by a time dependent increase 

in liver triglyceride accumulation, transaminase release and hepatic inflammation 

(Supplementary Fig. 1).  Although the hepatic mRNAs for α-1 procollagen was significantly 

up-regulated already after 4 weeks on the MCD diet, appreciable fibrosis, as evidenced by 

collagen staining with Picro-Sirius Red and α-SMA-positive activated hepatic stellate cells 

(HSCs), was evident in more advanced disease after 8 weeks of treatment (Supplementary Fig. 

1).   In parallel with the progression of NASH, flow cytometry showed a time-dependent 

expansion of intra-hepatic mononuclear cells expressing the mice monocyte/macrophage 

marker F4-80 (Fig. 1).  Consistently, F4-80-positive cells in liver sections increased from 

71.8±23 cell/mm2 in controls up to 146.8±10.2 cells/mm2 (p<0.01) in 8 weeks MCD-fed mice. 

Previous studies have reported that in injured livers inflammatory macrophages derive from 

Ly6C+/CD11b+ blood monocytes [12-14]. Accordingly, we observed that in the early phases 

of steatohepatitis (4 weeks on the MCD diet) Ly6Chigh/CD11b+/F4-80+ cells were prevalent. 

However, their frequency did not further increased in advanced disease (Fig. 1) and this 

paralleled with a decline in the mRNAs of inflammatory M1 activation markers inducible NO 

synthase (iNOs) and IL-12p40 (Supplementary Fig. 1).  At this stage, an elevation in the liver 

expression of both fractalkine (CX3CL1) and the fractalkine receptor CX3CR1 become evident 

(Supplementary Fig. 2). CX3CR1 up-regulation largely involved monocyte-derived F4-80+ 

cells (Supplementary Fig. 2) and led to a tenfold expansion of a pool of F4-

80+/CD11b+/CX3CR1high myeloid cells (Fig. 1). Further characterization of these cells showed 
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that they co-expressed CD11b and Ly6C (Fig. 2), suggesting their origin from liver infiltrating 

Ly6Chigh inflammatory monocytes rather than from the Ly6C-/CCR2-/CX3CR1+ monocyte 

sub-set.   Moreover, these cells showed an increased expression of the dendritic cell (DC) 

markers CD11c and major histocompatibility class II (MHCII) complex (Fig. 2).   

Henning and co-workers [19] recently reported that the development of steatohepatitis 

in MCD-fed mice is associated with an expansion in hepatic mature myeloid DCs and a 

concomitant reduction in B220+ phasmocytoid and Cd8a+ lymphocytoid DCs.  We confirmed 

that the progression of steatohepatitis was characterized by an appreciable increase in the 

fraction of hepatic CD11chigh/MHCII+ DCs (Fig. 2). Such an expansion involved a pool of cells 

that were F4-80high and Ly6Chigh (Fig. 3), while the pools of CD11chigh/MHCII+/B220+ 

phasmocytoid DCs and CD11chigh/MHCII+/CD8a+ lymphocytoid DCs were significantly 

decreased (Supplementary Fig. 3).  Interestingly, the expanding DC sub-set also expressed 

CX3CR1 and CX3CR1high cells were particularly evident within the pool CD11chigh/F4-80+ cells 

(Fig. 3). Altogether, these data suggested that DC expansion occurring in during the 

progression of steatohepatitis involved a sub-set of CX3CR1high monocyte-derived dendritic 

cells (moDCs) [20].   M1 activation of hepatic macrophages has been shown to be an important 

factor in driving hepatic inflammation in NASH through the production of TNF-α and other 

pro-inflammatory mediators [4,6]. However, according to a previous report [20] in our hands 

advanced steatohepatitis was characterized by a down-modulation of M1 activation markers 

(Supplementary Fig. 1). Yet a steadily elevation in both the hepatic mRNA and serum levels 

of TNF-α were evident during the disease progression (Fig. 4) and individual level of 

circulating TNF-α positively correlated with transaminase release (r=0.82; p=0.035).  An 

elevated production of inflammatory mediators, including TNF-α, is a feature of moDCs 

[21,22].  In line with this, we observed that CD11chigh/F4-80+ moDCs had an enhanced 

expression of TNF-α which specifically involved cells that were CX3CR1+ (Fig. 4). 

Furthermore, CX3CR1+/TNF-α+ cells accumulated in the livers of 8 weeks MCD-fed mice, 

suggesting that CX3CR1+ moDCs might sustain hepatic TNF-α production during the 

progression of steatohepatitis. 

Recent studies have shown that genetic and pharmacological interference with CX3CR1 

ameliorates the evolution of atherosclerotic plaques [23-25].  In this context, hydrogen sulfide 

(H2S) has been reported to improve atherosclerosis by preventing the up-regulation of 

CX3CL1/CX3CR1 in monocyte/macrophages exposed to pro-inflammatory stimuli [25].  As 

CX3CR1-expressing DCs are already present in healthy livers (Fig. 3), in subsequent 
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experiments we sought to investigate whether mice treatment with the H2S donor NaHS might 

selectively influence the development of CX3CR1high moDCs in MCD-induced steatohepatitis.  

Preliminary analysis showed that chronic administration of NaHS (1mg/kg body wt) did not 

influence transaminase release and hepatic inflammation markers in control mice (not shown). 

In subsequent experiments, mice fed for 4 weeks with the MCD diet received daily NaHS while 

continuing on the diet up to the eighth week.  In these animals we observed that NaHS 

ameliorated CX3CL1 and CX3CR1 mRNA up-regulation (Fig. 5), without interfering with 

those of CCL2, CCR2 or CD11b (Supplementary Fig. 4).   NaHS supplementation did not 

modify the hepatic pools of inflammatory macrophages and of DCs (Supplementary Fig. 4), 

but halved CX3CR1 expression in F4-80+ or CD11chigh cells (Fig. 5). In particular, NaHS-

treatment selectively reduced the fraction of CX3CR1high/F4-80+/CD11chigh moDCs (Fig. 5). 

Furthermore, NaHS decreased intracellular TNF-α levels as well as the fraction of TNF-α-

producing cells (Fig. 6). In line with that, hepatic TNF-α mRNA and circulating TNF-α levels 

were lowered in NaHS-supplemented mice (Fig. 6).  Despite NaHS treatment did not 

significantly influence the histopathological scores of steatosis (2.3±0.8 vs 1.8±0.4; p=0.1) and 

lobular inflammation (1.7±0.6 vs 1.6±0.5; p=0.8), it appreciably reduced the number of 

necrotic foci and apoptotic cells (Fig. 6). NaHS also prevented further elevation of 

transaminase release in the animals maintained on the MCD diet (Fig. 6), indicating that the 

sustained production of TNF-α by CX3CR1+ moDCs contributed to hepatocellular injury in 

advanced NASH.  Although TNF-α-producing DCs have also been implicated in promoting 

hepatic fibrosis [23], in our hands, mice treatment with NaHS did not appreciably affected pro-

collagen-1α, α-SMA and TGF-β1 mRNAs as well as collagen staining with Picro-Sirius Red 

(Supplementary Fig. 5).  

 

Discussion 

Growing evidence indicates that Ly6C+ monocyte-derived macrophages are central 

players in NASH as they are important sources of inflammatory mediators [6-8] and, by 

interacting with activated CD4 helper T-lymphocytes and NKT cells, drive lobular 

inflammation and fibrogenesis [17,26].  Here we show for the first time that a sub-set Ly6C+ 

cells expressing CX3CR1 and showing features of inflammatory dendritic cells also contribute 

to the evolution of steatohepatitis.   

Liver dendritic cells (DCs) are a heterogeneous population of specialized bone marrow-derived 

cells mainly involved in antigen presentation to lymphocytes [27]. In healthy livers, DCs 
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represent a small fraction of non-parenchymal cells and have a predominant tolerogenic 

phenotype [28], but a dramatic DC expansion occurs in chronic liver disease in combination 

with a stimulation in their antigen presenting activity and the release of pro-inflammatory 

cytokines [29]. In particular, experiments in a mice model of NASH have evidenced that 

hepatic DCs expand and mature in the early phases of the disease and acquire the capacity to 

specifically stimulate CD4+ T-cells [19]. Such an activation likely relates to the stimulation of 

both humoral and cellular immune responses that also characterizes the evolution of NASH 

[17]. However, the specific features of NASH-associated DCs have not been investigated in 

detail.   

Although most of dendritic cells derive from common bone marrow precursors, 

growing evidence indicates that under inflammatory conditions infiltrating monocytes can 

differentiate into a special sub-set of dendritic cells, called monocyte-derived inflammatory 

dendritic cells (moDCs) [21].  These cells co-express both dendritic and monocyte/macrophage 

surface markers and show a high production of inflammatory mediators combined to an 

efficient antigen presenting activity [21]. Our present data add on the involvement of DCs in 

NASH by showing that, with the progression of steatohepatitis, DC expansion involves a sub-

set of cells featuring monocyte markers (F4-80high/Ly6Chigh) along with CX3CR1 expression 

and TNF-α production.  On these bases, we propose that during the evolution of NASH a sub-

set of Ly6Chigh monocytes/macrophages might acquire CX3CR1 and differentiate to TNF-α-

producing moDCs.  Supporting this view, Barlic and co-workers have observed that during the 

development of atherosclerosis oxidized lipids stimulate human monocytes to switch from 

CCR2 to CX3CR1 expression [30]. Furthermore, recent studies have shown that Ly6Chigh 

monocytes differentiate to Ly6C+/CD11b+/CX3CR1+ moDCs in the intestinal lamina propria. 

This process in greatly enhanced during gut inflammation and CX3CR1+ moDCs exacerbate 

colitis by secreting TNF-α [31,32].  

Hydrogen sulphide (H2S) is increasingly recognized to act as an endogenous mediator exerting 

anti-inflammatory and cytoprotective activity in several tissue including the gastrointestinal 

tract [33,34].  Zhang and co-workers [25] have recently shown that in either RAW 246.7 cells 

or mice peritoneal macrophages H2S selectively antagonizes CX3CR1 expression induced by 

LPS or interferon-γ acting through signals mediated by the transcription factor NFkB and 

peroxisome proliferator activated receptor-γ (PPAR-γ). They also demonstrate that by 

interfering with the CX3CL1/CX3CR1 dyad mice NaHS supplementation reduces the 

development of atherosclerotic plaques [25].  Mice feed with a high fat diet show a reduced 
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hepatic H2S production [35], while H2S supplementation ameliorates oxidative stress and 

hepatic inflammation in mice with MCD-induced NASH [36].  In our hands, the H2S donor 

NaHS has not a generalized anti-inflammatory action, but interferes with the up-regulation of 

CX3CL1/CX3CR1 dyad associated with the progression of steatohepatitis and selectively 

blocks the development of TNF-α-producing CX3CR1high moDCs, indicating that 

CX3CL1/CX3CR1 signaling might have an important role in the differentiation of Ly6chigh 

inflammatory monocytes to moDCs.   NaHS treatment also prevents further elevation of 

transaminase release in the animals maintained on the MCD diet,  indicating that CX3CR1+ 

moDCs can contribute to the evolution of steatohepatitis not only through the stimulation of 

immune responses [17], but also by directly sustaining hepatic TNF-α production. This is in 

line with the observation that TNF-α-producing DCs sustain hepatic inflammation in mice with 

tioacetamide-induced fibrosis [22].  

Two recent papers have reported that CX3CR1 genetic deficiency exacerbates hepatic 

injury and fibrosis induced by chronic CCl4 treatment and bile duct ligation [37,38].  In 

particular, Karlmark and co-workers [38] have shown that CX3CR1 is required for the survival 

and the differentiation of liver infiltrating macrophages and can limit their M1 polarization.  

On the same vein, unspecific hepatic DC destruction exacerbates acetaminophen 

hepatotoxicity [39] and unexpectedly worsens the evolution of experimental NASH [19]. At 

present, there is no explanation for the discrepancies between these findings and our present 

results. We have observed that in the livers of control animals about 30% of DCs constitutively 

express CX3CR1. Liver DCs are known to have a predominant immune-suppressive activity 

[28] and these properties are shared also by CX3CR1+ DCs [40].  Thus, it is possible that genetic 

CX3CR1 deficiency or hepatic DC ablation might enhance damage-associated inflammation 

by affecting a population of tolerogenic DCs and might overcame the protection given by 

preventing the development of moDCs.  

We are well aware that steatohepatitis induced by the MCD diet does not reproduce 

important features of the human NASH such as obesity and insulin resistance [15]. However, 

the difficulties to differentiate the role of moDCS in both clinical and experimental settings 

justify its use as, differently from other experimental protocols, it causes extensive 

steatohepatitis.  Nonetheless, further studies are required to better define the relative 

contribution of constitutive versus monocyte-derived CX3CR1-expressing DCs during the 

evolution of chronic liver diseases.   
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In conclusion, the data presented indicate that the evolution of steatohepatitis involves the 

emergence of CX3CR1-expressing moDCs that can sustain hepatic inflammation in advanced 

disease through TNF-α production. Our results also show that interference with CX3CR1 up-

regulation prevents the differentiation of moDCs, pointing CX3CR1 as a possible target for the 

therapy of NASH. 
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Figure 1. Changes in the hepatic recruitment of Ly6Chigh and CX3CR1+ monocyte-

derived cells during the progression of steatohepatitis.   

Mice were fed a control or a methionine-choline deficient (MCD) diet over an 8-week time 

period.  

(Panel A) The time changes of intrahepatic CD45+ cells expressing the monocyte F4-80 marker 

and (Panel B) the relative prevalence of Ly6Chigh/CD11b+/F4-80+ and CX3CR1+/CD11b+/F4-

80+ cell subsets were evaluated by flow cytometry of liver mononucleated cells isolated at 

different time points. The percent values refers to the number of cells gated as CD11b+. The 

data were from 4-6 animals per group.  
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Figure 2. CX3CR1-positive monocyte-derived cells associated with steatohepatitis show 

feature of monocyte-derived dendritic cells. 

Mice were fed a control or a methionine-choline deficient (MCD) diet for 8-weeks and liver 

CD45+ mononucleated cells were analyzed by flow cytometry.  

(Panel A) F4-80+/CX3CR1+ cells were characterized for the relative distribution of 

inflammatory monocyte markers CD11b and Ly6C as well as for the expression of dendritic 

cell markers CD11c and MHCII. Grey lines refers to isotypic controls. One experiment 

representative of three. 

(Panel B) Liver CD45+ mononucleated cells were evaluated for the relative prevalence of 

CD11chigh/MHCII+ dendritic cells. The percent values refers to the number of cells gated as 

CD11bhigh. Quantitative data represent 4 animals per group.  
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Figure 3. Dentritic cells expansion during the evolution of steatohepatitis involved a pool 

of CX3CR1-positive cells with features of monocyte-derived dendritic cells. 

 

Mice were fed a control or a methionine-choline deficient (MCD) diet for 8-weeks and liver 

CD45+ mononucleated cells were analyzed by flow cytometry.  

(Panel A) CD11chigh/MHCII+ hepatic dendritic cells were characterized for the expression of 

inflammatory monocyte markers F4-80 and Ly6C and for that of CX3CR1. The percent values 

refers to the number of cells gated as CD11chigh/MHCII+. Quantitative evaluation were from 4 

animals per group. 

(Panel B) Distribution of CX3CR1high expressing cells among CD11chigh/F4-80+ and 

CD11clow/F4-80+ cells obtained from the livers of 8 week MCD-fed mice. The percent values 

refers to the number of cells gated. One experiment representative of three. 

 

 



64 

 

Figure 4. The progression of steatohepatitis is characterized by the increase in CX3CR1-

positive monocyte-derived dendritic cells producing TNF-α. 

 

Mice were fed a control or a methionine-choline deficient (MCD) diet for up to 8-weeks.  

(Panels A & B) Hepatic mRNA expression and circulating levels of TNF-α were evaluated in 

control and MCD-fed mice. Boxes include the values within 25th and 75th percentile, while the 

horizontal bars represent the medians. The extremities of the vertical bars (10th-90th percentile) 

comprise the eighty percent of the values. Data were from 6-8 animals per group.  

 (Panel C) TNF-α expression by CD11chigh/F4-80+ and CD11clow/F4-80+ cells was evaluated 

by flow cytometry along with (Panels D & E) the differential TNF-α expression by F4-80+ 

positive or genitive for CX3CR1 and the proportion of TNF-α-producing CX3CR1+ cells in 

control and NASH livers. The percent values refers to the number of cells gated in the areas 

indicated by the arrows. Grey lines refers to isotypic controls. Quantitative data were from 3-4 

animals per group.  
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Figure 5. Mice treatment with the H2S donor NaHS reduces hepatic CX3CL1 expression 

and CX3CR1-positive monocyte-derived dendritic cells associated with the progression of 

steatohepatitis. 

 

Mice were fed a methionine-choline deficient (MCD) diet for 8 weeks. NaHS (1mg/kg body 

wt) was administered to MCD-fed mice starting from the fourth week of treatment.    

(Panel A) The hepatic expression of CX3CL1 and CX3CR1 was evaluated by RT-PCR in 

mRNA extracted from control or MCD-fed mice with or without NaHS supplementation.  The 

values are expressed as fold increase over control values after normalization to the β-actin gene. 

Data are from 6-9 animals per group; boxes include the values within 25th and 75th percentile, 

while the horizontal bars represent the medians. The extremities of the vertical bars (10th-90th 

percentile) comprise the eighty percent of the values.  

(Panel B)  The effect of NaHS supplementation on CX3CR1 expression by F4-80+ cells and 

CD11chigh cells was evaluated by flow cytometry. Isotypic controls are shown as dotted lines.   

(Panel C) Changes in the distribution of CX3CR1high moDCs following NaHS supplementation 

of MCD-fed mice.   The percent values refers to the number of cells gated as F4-80+/CD11chigh. 

Data are from 3-4 animals per group.  
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Figure 6. Mice treatment with the H2S donor NaHS reduces hepatic TNF-α production 

and improves hepatic injury during the progression of steatohepatitis. 

 

Mice were fed a methionine-choline deficient (MCD) diet for 8 weeks. NaHS (1mg/kg body 

wt) was administered to MCD-fed mice starting from the fourth week of treatment.  

(Panel A) TNF-α expression and the relative prevalence of liver F4-80+/TNF-α+ cells was 

evaluated by flow cytometry. Data are from 3-4 animals per group. Isotypic controls are shown 

as dotted lines. 

(Panel B) Hepatic TNF-α mRNA and circulating TNF-α levels were evaluated in MCD-fed 

mice with or without NaHS supplementation. Liver TNF-α mRNA levels were measured by 

RT-PCR and expressed as fold increase over control values after normalization to the β-actin 

gene.  Circulating TNF-α levels were determined by ELISA in the same animals. Data are from 

6-9 animals per group; boxes include the values within 25th and 75th percentile, while the 

horizontal bars represent the medians. The extremities of the vertical bars (10th-90th percentile) 

comprise the eighty percent of the values.    

(Panels C & D) Liver histology was evaluated in hematoxilin/eosin stained sections from 

control or MCD-fed animals (magnification 200x). Necro-inflammatory foci and apoptotic 

cells were counted as reported in [17].  

(Panel E) Liver damage was assessed by circulating alanine aminotransferase (ALT) release. 
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CX3CR1-EXPRESSING INFLAMMATORY DENDRITIC CELLS 

CONTRIBUTE TO THE PROGRESSION STEATOHEPATITIS  

Supplementary Material 

 
Supplementary Figure 1 

Time dependent variations of hepatic injury, inflammation and fibrogenesis during 

mice feeding with a methionine/choline deficient (MCD) diet.   

 

Wild type C57BL/6 mice received the MCD diet for up to 8 weeks. (A,B) Liver histology 

was evaluated by hematoxilin/eosin (EE) and collagen Picro-Sirius Red (SR) staining of 

liver sections from control or MCD-fed animals (magnification 200x). (C,D) Alanine 

aminotransferase (ALT) release, and hepatic triglyceride content were determined by 

enzymatic methods. (E-H) CD11b, IL12p40, iNOS, procollagen-1 α, mRNAs were 

measured by RT-PCR and expressed as fold increase over control values after normalization 

to the β-actin gene. (I) Activated hepatic stellated cells expressing α-smooth muscle actin 

(α-SMA) were evidenced by immunohistochemistry.   The values refer to 5-6 animals per 

group and the boxes include the values within 25th and 75th percentile, while the horizontal 
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bars represent the medians. The extremities of the vertical bars (10th-90th percentile) 

comprise the eighty percent of the values. 

 

 

 

 
 

 

Supplementary Figure 2 

The evolution of MCD-induced steatohepatitis is associated with a up-regulation in the 

hepatic expression of fractalkine signaling.  

 

Mice were fed a methionine-choline deficient (MCD) diet over an 8-week time period.  

The expression of fractalkine CX3CL1 (A)  and of his receptor CX3CR1 (B) were evaluated 

by RT-PCR in mRNA extracted from whole liver and isolated macrophages of either control 

or MCD-fed mice.  The values are expressed as fold increase over control values after 

normalization to the β-actin gene. Data are from 6-8 animals per group; boxes include the 

values within 25th and 75th percentile, while the horizontal bars represent the medians. The 

extremities of the vertical bars (10th-90th percentile) comprise the eighty percent of the values.  

(C) Liver mononucleated cells were analyzed by flow cytometry for the expression of CX3CR1 

in monocyte-derived F4-80+ cells.  
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Supplementary Figure 3. 

The progression of steatohepatitis is associated with a decrease in the pools of 

plasmocytoid and lymphocytodid dendritic cells. 

Mice were fed a control or a methionine-choline deficient (MCD) diet for 8-weeks and liver 

mononucleated cells were analyzed by flow cytometry.  

CD11chigh/MHCII+ hepatic dendritic cells were characterized for the expression of  

plasmocytoid marker B220 and for the lymphocytoid marker CD8a. Quantitative evaluation 

were from 4 animals per group. 
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Supplementary Figure 4 

The treatment with the H2S donor NaHS does not affect hepatic macrophage and 

dendritic cells in mice associated with steatohepatitis. 

Mice were fed a methionine-choline deficient (MCD) diet for 8 weeks. NaHS (1mg/kg body 

wt) was administered to MCD-fed mice starting from the fourth week of treatment. 

(A) The hepatic expression of CCL2, CCR2 and CD11b was evaluated by RT-PCR in mRNA 

extracted from control or MCD-fed mice with or without NaHS supplementation.  The values 

are expressed as fold increase over control values after normalization to the β-actin gene. Data 

are from 6-9 animals per group; boxes include the values within 25th and 75th percentile, while 

the horizontal bars represent the medians. The extremities of the vertical bars (10th-90th 

percentile) comprise the eighty percent of the values. 

(B & C) The relative prevalence of F4-80+/CD11b+ macrophages and CD11chigh dendritic cells 

was evaluated by flow cytometry. Data are from 3-4 animals per group. 
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Supplementary Figure 5 

The treatment with the H2S donor NaHS does not affect hepatic fibrosis in mice with 

advanced steatohepatitis. 

Mice were fed a methionine-choline deficient (MCD) diet for 8 weeks. NaHS (1mg/kg body 

wt) was administered to MCD-fed mice starting from the fourth week of treatment. 

(A) The hepatic expression of Procollagen-1 α, TGF-1β and α-smooth muscle actin (α-SMA) 

was evaluated by RT-PCR in mRNA extracted from control or MCD-fed mice with or without 

NaHS supplementation.  The values are expressed as fold increase over control values after 

normalization to the β-actin gene. Data are from 6-9 animals per group; boxes include the 

values within 25th and 75th percentile, while the horizontal bars represent the medians. The 

extremities of the vertical bars (10th-90th percentile) comprise the eighty percent of the values. 

(B) Collagen deposition was evidenced by Picro-Sirius Red (SR) staining of liver sections from 

MCD-fed animals with or without NaHS supplementation (magnification 200x). 

 



72 

 

8. Paper 3 

Morphological and Functional Changes of Liver Macrophages during the Progression 

of Nonalcoholic Steatohepatitis (NASH) 

Submitted to Liver International (February 2015) 

Background and Aims: Hepatic macrophages have an important role in NASH evolution as 

they represent an important source of pro-inflammatory mediators during the disease evolution 

and regulate the development of fibrosis. The macrophage expansion in NASH mainly results 

from liver infiltrating monocytes which differentiates into M1 polarized cells. However, little 

is known about the functional changes occurring in liver macrophages during the disease 

progression. In this study we used the methionine-choline deficient (MCD) diet model of 

NASH to monitor the behaviour of hepatic macrophages. 

Results: The hepatic F4/80-positive macrophages increased in parallel with the disease 

progression. At histology macrophages accumulating in NASH formed small clusters of 

enlarged cells that contained lipid vesicles positive for the apoptotic cell markers Annexin V 

likely originating from the phagocytosis apoptotic bodies derived from dying fat-laden 

hepatocytes. Flow cytometry showed that these enlarged macrophages were Ly6Chigh/CD11b+, 

suggesting that they might derive from inflammatory monocytes.  However, as compared to 

regular size macrophages the enlarged sub-set was characterized by an enhanced expression of 

the anti-inflammatory mediators IL-10 and annexin A1. Similar vacuolized macrophages 

producing annexin A1 were also evident in liver biopsies of NASH patients. In mice with 

NASH, the accumulation of enlarged F4/80+ cells paralleled with a decline of the macrophage 

M1 activation markers iNOS and IL-12, while the levels of M2 polarization markers arginase-

1 and MGL-1 were unchanged.  

Conclusions: Altogether, these data indicate that during the progression of NASH liver 

macrophages that phagocyte apoptotic hepatocytes acquire anti-inflammatory properties and 

promote the down-modulation of the inflammatory phenotype in the remaining macrophage 

population.   
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Abstract 

Background & Aims: Nonalcoholic steatohepatitis (NASH) is characterized by extensive 

hepatic monocyte infiltration and monocyte-derived macrophages have an important role in 

regulating the disease evolution.  However, little is known about the functional changes 

occurring in liver macrophages during NASH progression. In this study we have investigated 

phenotypic and functional modifications of hepatic macrophages in experimental NASH. 

Methods: NASH was induced by feeding C57BL/6 mice with a methionine-choline deficient 

(MCD) diet up to 8 weeks.  

Results: In mice with steatohepatitis liver F4/80-positive macrophages increased in parallel 

with the disease progression and formed small clusters of enlarged and vacuolized cells. At 

immunofluorencesce these cells contained lipid vesicles positive for the apoptotic cell marker 

Annexin V suggesting the phagocytosis of apoptotic bodies derived from dead fat-laden 

hepatocytes. Flow cytometry revealed that these enlarged macrophages expressed 

inflammatory monocyte (CD11b, Ly6C, TNF-α) markers. However, as compared to regular 

size macrophages the enlarged sub-set was characterized by an enhanced production of the 

anti-inflammatory mediators IL-10 and annexin A1. Similar vacuolized macrophages 

producing annexin A1 were also evident in liver biopsies of NASH patients. In mice with 

NASH, the accumulation of enlarged F4/80+ cells paralleled with a decline in the expression 

of the macrophage M1 activation markers iNOS IL-12 and CXCL10, while the levels of M2 

polarization markers arginase-1 and MGL-1 were unchanged.  

Conclusions: Altogether, these data indicate that during the progression of NASH fat 

accumulation within liver macrophages promotes functional changes that can influence hepatic 

inflammatory responses.  

 

Keywords: Nonalcoholic fatty liver disease, macrophages, annexin A1, liver inflammation.  
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Introduction 

Growing evidence indicates that macrophages are important players in the evolution of hepatic 

inflammation in NASH. At the onset of the disease Kupffer cell activation in response of lipid 

accumulation significantly contributes to the production of pro-inflammatory mediators and 

by releasing chemokines such as CCL1, CCL2, CCL5 which stimulate the liver infiltration by 

circulating Ly6Chigh monocytes [1,2]. These latter rapidly differentiates to M1 polarized 

macrophages further contributing in expanding inflammatory responses [3]. Moreover, 

macrophage interaction with CD4+ helper T-lymphocytes and NKT cells has an important role 

in sustaining lobular inflammation during the disease progression [4,5]. Accordingly, Kupffer 

cell depletion at the onset of NASH or the interference with monocyte recruitment through 

CCL2/CCR2 signaling prevents hepatic injury and inflammation in experimental models of 

NASH [6,7].  What is less clear is how liver macrophages behave during the disease 

progression particularly in relation with the development of fibrosis [8]. Recent studies have 

pointed out that hepatic macrophages in human NASH, but not in patients with simple steatosis 

often cluster around lipid droplets forming crown-like aggregates similar to those present in 

the inflamed visceral adipose tissue of obese patients [9-11]. Furthermore, these macrophages 

appeared enlarged and contained lipid vesicles resembling foam cells in atherosclerotic plaques 

[11]. Interestingly, clusters of foamy macrophages are also evident in several mice models of 

experimental NASH where they are associated with the severity of hepatic fibrosis  [12].  These 

observations prompted us to better characterize the possible origin of foamy macrophages 

associated with NASH and their significance in relation to the disease evolution. 

 

Material and Methods 

Animals and Experimental protocol.   Eight weeks old male C57BL/6 mice were purchased 

from Harlan-Nossan (Corezzana, Italy) and fed for 4 or 8 weeks with either methionine-choline 

deficient (MCD) or control diets (Laboratorio Dottori Piccioni, Gessate, Italy). The 

experimental protocols were approved by the University Commission for Animal Care and by 

the Italian Ministry of Health according to the current law for the use of laboratory animals.    

Biochemical analysis. Plasma ALT and liver triglycerides were determined by spectrometric 

kits supplied by Radim S.p.A. (Pomezia, Italy) and Sigma Diagnostics (Milano, Italy), 

respectively. Circulating IL-12 was evaluated by a commercial ELISA kit R&D Systems 

(Abingdon, UK). 

Histology and immunohistochemistry.  
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Liver biopsies from NASH patients were available from the Pathology Unit of the Ospedale 

Maggiore della Carità of Novara. Liver macrophages were identified in formalin-fixed sections 

using either anti-mouse F4/80 or anti-human CD68 antibodies (eBioscience, San Diego CA, 

USA) in combination with peroxidase-linked goat anti-rat IgG or horse-radish peroxidase 

polymer kit (Biocare Medical, Concord, CA, USA).  AnxA1 producing cells were detected 

using specific antibodies from Zymed Laboratories-Invitrogen (Carlsbad, CA, USA). Hepatic 

collagen deposition was evidenced by Picro-Sirius Red staining. Activated hepatic stellate cells 

were identified in formalin-fixed sections using anti-mouse α-smooth muscle actin (α-SMA) 

polyclonal antibodies (Labvision, Bio-Optica, Milan, Italy) in combination with peroxidase-

linked goat anti-rat IgG and horse-radish peroxidase polymer kit (Biocare Medical, Concord, 

CA, USA).  Immunofluorescence analysis were performed in frozen mice liver sections using 

fluorescin-labelled annexin 5 (Roche Diagnostics, Penzberg, Germany) and Texas Red-

labelled goat anti-rat IgG antibodies (Sigma, Milan, Italy). 

mRNA extraction and Real time PCR.  Liver RNA was retro-transcripted with High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems Italia, Monza, Italy). RT-PCR was 

performed in a Techne TC-312 termalcycler (TecneInc, Burlington NJ, USA) using TaqMan 

Gene Expression Master Mix and TaqMan Gene Expression probes for mouse TNF-α, IL-1β, 

IL-12p40, iNOS, arginase-1, MGL-1, and beta-actin (Applied Biosystems Italia, Monza, Italy).   

All samples were run in duplicate and the relative gene expression was calculated as 2-ΔCt and 

expressed as fold increase over control samples. 

Isolation and purification of liver macrophages.  Liver macrophages were isolated from the 

livers of either controls or MCD-fed mice by collagenase perfusion according to Froh et al. 

[13] and purified using biotinylated anti-F4/80 antibodies (eBiosciences, San Diego CA, USA) 

and streptavidin-coated magnetic beads (Miltenyi Biotec, Germany). Cell purity, as estimated 

by flow cytometry following immunostaining for CD45 and F4-80, was above 85%.  The cells 

were processed for mRNA extraction using ChargeSwitch® Total RNA Cell Kit (Invitrogen, 

Frederick, MD, USA). 

Isolation of intrahepatic mononucleated cell and flow cytometry analysis.   Liver 

mononucleated cells were isolated from the livers of naive and MCD-fed mice and purified on 

a density gradient (Lympholyte®-M, Cedarlane Laboratoires Ltd. Burlington, Canada) as 

described in [14]. Cells were then washed with Hank’s medium and incubated 30 min with de-

complemented mouse serum to block unspecific immunoglobulin binding. The cells were then 

stained with fluorochrome-conjugated antibodies for CD45, CD11b, Ly6C, MHCII 
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(eBiosciences, San Diego CA, USA), F4/80 (Invitrogen, Abingdon, UK) and analyzed with a 

FACScalibur (Becton Dikinson, Franklin Lakes, NJ, USA) flow cytometer. Intracellular 

staining for TNF-α, IL-12, and IL-10 was perfomed using specific fluorochrome-conjugated 

antibodies supplied by (eBiosciences, San Diego CA, USA). AnxA1-producing cells were 

detected using a polyclonal anti-AnxA1 rabbit antiserum (Millipore, Temecula, CA, USA) and 

phycoerythrin-conjugated anti-rabbit IgG (Sigma-Aldrich, Milan,Italy). 

Data analysis and statistical calculations. Statistical analyses were performed by SPSS 

statistical software (SPSS Inc. Chicago IL, USA) using one-way ANOVA test with Tukey’s 

correction for multiple comparisons or Kruskal-Wallis test for non-parametric values. 

Significance was taken at the 5% level. Normality distribution was preliminary assessed by the 

Kolmogorov-Smirnov test.  

 

Results. 

Steatohepatitis in mice receiving the methionine-choline deficient (MCD) diet was 

characterized by a time dependent worsening of liver histology, triglyceride accumulation and 

transaminase release that led to appreciable fibrosis after 8 weeks of treatment (Supplementary 

Fig. 1).  In these animals, immunohistochemistry for the monocyte/macrophage marker F4/80 

evidenced that the livers of MCD-fed mice showed the diffuse presence of small clusters of 

enlarged and vacuolized macrophages that were particularly evident after 8 weeks of treatment 

(Fig. 1). Double staining of frozen sections with anti-F4/80 antibodies and the lipid dye Oil 

Red O confirmed that the cytoplasmic vacuoles contained lipid droplets (Fig. 1). Furthermore, 

a fraction of the cytoplasmic vacuoles in F4/80+ cells were also stained with the apoptotic cell 

marker annexin 5 (Fig. 1), suggesting the phagocytosis of apoptotic bodies originating from 

dying fat-laden hepatocytes. In line with these findings, flow cytometry analysis of hepatic 

mononuclear cells from controls or MCD-fed mice evidenced a steadily increase in F4/80-

positive cells during the progression of NASH (Fig. 2). In parallel, we observed that among 

F4/80+ cells the fraction of enlarged cells, as evidenced by high forward scatter (FSC-H) 

parameter, also significantly increased in the livers of animals with more advanced disease 

(Fig. 2).  Further characterization of high volume macrophages associated with NASH revealed 

that these cells had an enhanced expression of leucocyte activation markers CD11b (CD18b) 

and CD11c (CD18) as well as of Class II Major Histocompatibility Complex (MHCII) (Fig. 

2).  Furthermore, enlarged F4/80+ cells associated with NASH were prevalently Ly6Chigh 

indicating their origin from circulating inflammatory monocytes (Fig. 2).  



78 

 

 

Previous studies have shown that lipid-laden macrophages in NASH had pro- inflammatory 

features and stained positive for myeloperoxidase and TNF-α [9]. Accordingly, we observed 

that enlarged F4/80+ cells had an increased TNF-α expression (Supplementary Fig. 2). 

However, their accumulation during the progression of experimental NASH was associated 

with complex changes in hepatic inflammatory pattern. In fact, while the liver mRNAs for 

TNF-α and IL-1β increased steadily with the disease progression, the expression of 

macrophage M1 activation markers such as inducible NO synthase (iNOS), IL-12p40 sub-unit 

and CXCL10 peaked in mice receiving the MCD diet for 4 weeks and declined thereafter 

(Supplementary Fig. 3). In line with these findings, macrophages isolated from the livers of 

MCD-fed mice at different stages of the disease showed that iNOS and IL-12p40 expression 

was significantly lower in the cells obtained from mice with advanced NASH as compared to 

those in the early phase of the disease (Fig. 3). The same pattern was also confirmed by 

evaluating IL-12-producting F4/80+ cells with flow cytometry as well as by measuring 

circulating IL-12 levels (Fig. 3). On the other hand, macrophage expression of the M2 

polarization markers arginase-1 and galactose-type C-type lectin-1 (MGL-1/CD301) was not 

affected during NASH progression (Fig. 3). 

 

To get more inside in this phenomenon we measured macrophage production of anti-

inflammatory protein such as interleukin-10 (IL-10) and annexin A1 (AnxA1) that modulates 

hepatic inflammation in NASH [15-17]. Flow cytometry showed that the prevalence of hepatic 

macrophages producing IL-10 and AnxA1 was increased among F4/80+ cells isolated from 8 

weeks MCD-fed mice (Fig. 4).  Interestingly, the expression of both these anti-inflammatory 

mediators was 3-7 folds higher in the enlarged F4/80+ cell sub-set (Fig. 4), while IL-12-

producing macrophages did not show appreciable volume-related differences (not shown). 

This indicated that autocrine/paracrine loops involving AnxA1 and IL-10 released by enlarged 

lipid-laden macrophages can down-regulate M1-polarized responses.  According to previous 

studies [9-12], enlarged vacuolated macrophage with morphology comparable to those 

detected in the livers of MCD-fed mice were also detected by CD68 immunostaining of liver 

biopsies from NASH patients (Fig. 5).  These same cells were also selectively stained with 

anti-AnxA1 antibodies (Fig. 5), confirming that also in human NASH lipid-laden macrophages 

contribute to AnxA1 production.  
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Discussion 

Small macrophages clusters around lipid vesicles or surrounding fat-containing  hepatocytes, 

commonly referred as lipogranulomas, are often detectable in human NASH [18] as well as in 

many experimental models of the disease [12]. The macrophages in these clusters are enlarged 

and have a foamy appearance due to the accumulation of cytoplasmic lipid droplets and 

cholesterol crystals [11].  These histological features are reminiscent of crown-like structures 

detectable in adipose tissue of obese subjects who are characterized by macrophage aggregates 

surrounding dead adipocytes and scavenging cells debris and residual lipids [19].  Although 

fat-laden macrophages in the crown-like structures have been associated with the evolution of 

adipose tissue inflammation [20], the actual significance of similar cells in NASH is less well 

defined.  

 

The recruitment of circulating monocyte through CCL2/CCR2 signaling is considered the main 

responsible for the expansion of liver macrophage pool in NASH [8,21]. Circulating 

monocytes are currently differentiated in two sub-sets. The first include inflammatory 

monocytes characterized as Ly6Chigh/CCR2+/CX3CR1- in mice or CD14+/CD16- in humans 

that migrate to tissues in early phase of the response to injury producing pro-inflammatory 

mediators [22]. The second population, defined as Ly6C-/CCR2-/CX3CR1+ in mice or CD14-

/CD16+ in humans has less characterized functions and it is though to contribute to tissue 

healing [21,22].   Immunohistochemical studies in human liver biopsies have shown that fat-

laden macrophage in NASH express leucocyte activation marker CD11b and CD11c along 

with TNF-α and myeloperoxidase suggesting pro-inflammatory capability [9,12]. Our present 

data add on these findings by showing that beside an increased expression of the CD11b, 

CD11c, enlarged macrophages associated with NASH are prevalently Ly6Chigh, indicating 

their origin from circulating Ly6Chigh/CCR2+ monocytes. However, in spite showing an up-

regulation of TNF-α, these same cells display an increased production of the anti-inflammatory 

mediators annexin A1 (AnxA1) and IL-10. Interestingly, AnxA1 is also selectively expressed 

by enlarged vacuolized CD68+ macrophages in liver biopsies from NASH patients. AnxA1 is 

a 37 kDa calcium-phospholipid-binding protein that is produced by myeloid cells in response 

to glucocorticoids [22].  By interacting with its receptor formyl peptide receptor 2/Lipoxin A4 

receptor (FPR2/ALX) AnxA1 down-regulates the production of pro-inflammatory mediators 

such eicosanoids, NO and IL-6 and promotes IL-10 production [23,24].  
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Macrophage phagocytosis of apoptotic bodies is known to be an important mechanism in the 

termination of acute inflammation as it promotes the release of a variety of mediators involved 

in reducing phagocyte recruitment/activation and promoting tissue healing [25,26]. We have 

observed that annexin 5 binds to intracellular lipid vesicles in F4/80+ cells, suggesting the 

phagocytosis of apoptotic fat-laden hepatocytes. Indeed, hepatocyte apoptosis is a common 

feature in NASH as a result of lipotoxicity and endoplasmic reticulum stress [27,29].  

Furthermore, intracellular lipid accumulation in foam cells of atherosclerotic plaques has also 

been shown to promote macrophage functional changes by stimulating liver X receptors 

(LXPs) and peroxisome proliferator activated receptors (PPARs) [29].  Thus, is possible that 

the clearance of apoptotic bodies along with lipid accumulation might lead to partial 

reprogramming of liver fat-laden macrophages with the co-expression of both pro- and anti-

inflammatory mediators.  This is line with recent observations showing that following acute 

liver injury infiltrating Ly6Chigh macrophages express AnxA1 along with cyclooxygenase-2 

[30].   

 

As a result of AnxA1 and IL-10 up-regulation in enlarged lipid-laden macrophages we have 

observed a down-modulation of liver M1-polarized responses, suggesting that AnxA1 and IL-

10 act in an autocrine/paracrine loop affecting pro-inflammatory responses by hepatic 

macrophages. Accordingly, we have recently reported that the induction of NASH in AnxA1-

deficient mice is characterized by enhanced lobular inflammation due to increased macrophage 

recruitment and the exacerbation of the M1 phenotype [17].  Furthermore, Wan and co-workers 

[16] have shown that in mice with NAFLD IL-10 secretion promotes the apoptosis of M1-

activated macrophage and that this contributes to hamper the severity of lobular inflammation. 

 

In conclusion, our data indicate that during the progression of NASH the accumulation of fat-

laden macrophage within liver promotes functional changes that influence hepatic 

inflammatory responses.  
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Figure 1. Morphological changes in liver macrophages during the evolution of 

steatohepatitis. 

 

Mice were fed methionine-choline supplemented (Cont) or deficient (MCD) diets over an 8-

week time period. (Panel A) Hepatic macrophages were evidenced by immunohistochemical 

staining with anti-F4/80 antibodies (magnification 40x).  (Panel B) Double staining of frozen 

liver sections with the lipid dye Oil Red O (red) and anti-F4/80 antibody (green 

immunofluorescence; magnification 40x). (Panel C) Co-localization of macrophages F4/80 

immunostaining (red) and annexin 5 (green) in frozen liver section from NASH livers. Cell 

nuclei were courter-stained with DAPI. Images are representative of 3-4 distinct samples. 
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Figure 2: Flow cytometry analysis of hepatic macrophages during the evolution of 

steatohepatisis. 

 

CD45+ mononucleated cells were isolated from the livers of mice fed methionine-choline 

supplemented (Cont) or deficient (MCD) diets over an 8-week time period. (Panel A) F4/80+ 

macrophages were analyzed for cell volume (forward scatter; FSC-H) and the monocyte 

marker Ly6C distribution. The percent values refers to the number of cells gated as F4/80+. 

The data were from 3-4 animals per group. (Panel B) expression of leucocyte activation 

markers CD11b (CD18b), CD11c (CD18) and Class II Major Histocompatibility Complex 

(MHCII) among regular or enlarged F4/80+ cells. Dotted lines refer to isotypic controls. One 

experiment representative of three. 
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Figure 3. The evolution of steatohepatits is associated with a down-modulation in the M1 

activation of liver macrophages.  

 

Mice were fed methionine-choline supplemented (Cont) or deficient (MCD) diets over an 8-

week time period. (Panels A-D) Isolated intrahepatic F4/80+ macrophages were evaluated for 

the expression of M1 activation markers inducible NO-synthase (iNOS) and IL-12p40 and of 

the M2 polarization markers galactose-type C-type lectin-1 (MGL-1) and arginase-1 were 

evaluated by RT-PCR. The RT-PCR values are expressed as fold increase over control values 

after normalization to the β-actin gene. The data are from 4 animals per group. (Panel E) 

Intracellular IL-12 expression was evaluated by flow cytometry in liver CD45+/F4/48+ 

mononucleated cells isolated at different time points. One experiment representative of three. 

(Panel F) Circulating IL-12 levels were determined control and MCD fed mice by 

immunoenzymatic assay. The data are from 5-6 animals per group; boxes include the values 

within 25th and 75th percentile, while the horizontal bars represent the medians. The extremities 

of the vertical bars (10th-90th percentile) comprise the eighty percent of the values.  
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Figure 4:  Enlarged macrophages associated with the advanced phases of steatohepatitis 

shows increased production of anti-inflammatory mediators interleukin-10 (IL-10) and 

annexin A1 (AnxA1). 

 

CD45+ mononucleated cells were isolated from the livers of mice fed methionine-choline 

supplemented (Cont) or deficient (MCD) diets over an 8-week time period. (Panel A) Dotted 

lines refer to isotypic controls. F4/80+ macrophages were analyzed for the production of IL-10 

and AnxA1. (Panel B) Expression of IL-10 and AnxA1 among regular or enlarged F4/80+ cells. 

The percent values refers to the number of cells gated as F4/80+. The data were from 3-4 

animals per group. 
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Figure 5: Immunohistochemical detection of enlarged-foamy macrophages in human 

NASH. 

 

Formalin-fixed sections of liver biopsies from NASH patients were immunostained with anti-

human CD68 (Panel A) or anti-AnxA1 (Panel B) antibodies in combination with horse-radish 

peroxidase polymer kit (magnification 20x). 
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 SUPPLEMENTARY MATERIAL 

 

 
 

Supplementary Figure 1 

Time dependent variations of hepatic injury and fibrogenesis during mice feeding with a 

methionine/choline deficient (MCD) diet.   

 

Mice were fed methionine-choline supplemented (Cont) or deficient (MCD) diets over an 8-

week time period. (Panels A-B) Liver histology was evaluated by hematoxilin/eosin (EE) and 

collagen Picro-Sirius Red (SR) staining of liver sections (magnification 200x) at the end of the 

treatment. (Panels C,D) Alanine aminotransferase (ALT) release, and hepatic triglyceride 

content were determined by enzymatic methods. The values refer to 5-6 animals per group. 
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Supplementary Figure 2 

Enlarged macrophages associated with the advanced phases of steatohepatitis shows an 

increased production of TNF-α. 

 

CD45+ mononucleated cells were isolated from the livers of mice fed methionine-choline 

supplemented (Cont) or deficient (MCD) diets over an 8-week time period. F4/80+ 

macrophages were analyzed for the production of TNF-α among regular or enlarged cells. The 

percent values refers to the number of cells gated as F4/80+. The data were from 3-4 animals 

per group. 
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Supplementary Figure 3. The evolution of NASH is associated with a differential 

modulation of liver inflammatory markers.  

 

Mice were fed methionine-choline supplemented (Cont) or deficient (MCD) diets over an 8-

week time period. The hepatic expression of TNF-α, IL-1β, inducible NO-synthase (iNOS) 

and IL-12p40 and CXCL10 was evaluated by RT-PCR. The RT-PCR values are expressed as 

fold increase over control values after normalization to the β-actin gene. The data are from 5-

6 animals per group; boxes include the values within 25th and 75th percentile, while the 

horizontal bars represent the medians. The extremities of the vertical bars (10th-90th 

percentile) comprise the eighty percent of the values. 
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9. Discussion 
 

One limitation of the studies dealing with NAFLD/NASH pathogenesis relies in the fact 

that at present there is no universally accepted mouse model for the disease. In my studies I 

have used an experimental model based on the administration of a methionine choline deficient 

(MCD) diet model that induces in a rapid (three-four weeks) and reproducible manner 

steatohepatitis similar to human NASH and evolving to fibrosis within eight-ten weeks of 

treatment (Larter and Yeh 2008). However, this model lacks obesity and insulin resistance that 

are hallmarks of the human disease.  A wide number of studies have shown that feeding rodents 

with a high fat diet leads, as in humans, to steatosis combined with subcutaneous and visceral 

obesity, insulin resistance and adipokine unbalances (Larter and Yeh 2008). However, in this 

experimental model, liver injury and inflammation are usually modest and fibrosis is very 

limited (Larter and Yeh 2008).  As the aim of my work has been focalized to characterize the 

functional process connected with hepatic inflammation in NASH the MCD model was better 

suitable to such purposes in spite of its intrinsic limitations. 

Lymphocytes represent along with macrophages the most frequent inflammatory cells in 

lobular and periportal infiltrates of NASH (Brunt 2010).  Although growing evidence points 

on the importance of adaptive immunity in promoting adipose tissue inflammation in obesity 

(Sell and other 2012), so far little attention has been paid to the possible involvement of similar 

mechanisms in NASH.  Oxidative stress is one of the features of NAFLD/NASH (Seki  and 

others 2002; Chalasani  and others 2004) and in previous studies we have observed that 

antibodies against lipid peroxidation-derived antigens are detectable in a dietary rat model of 

NAFLD as well as in patients with NAFLD/NASH (Albano and others 2005; Baumgartener et 

al 2008, Nobili and others 2010). In rodents, reducing lipid peroxidation by supplementation 

with the antioxidant N-acetylcysteine (NAC) prevents antibody response and ameliorates 

hepatic injury (Baumgartener et al 2008).  The results presented in paper 1 extend these studies 

and demonstrate for the first time that, the onset of experimental NASH is characterized by the 

hepatic recruitment of both CD4+ and CD8+ T-lymphocytes. Both the lymphocyte subsets 

express CD69 activation marker and CD4+ T-cells show an increased enhanced interferon-γ 

(IFN-γ) expression indicating that, as in the adipose tissue, adaptive immunity can contribute 

to hepatic inflammation during the progression of steatohepatitis.  Beside lymphocyte 

recruitment, mice with NASH also show an increase of circulating IgG targeting lipid 
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peroxidation derived antigens. Interesting the same antigens are also recognized by hepatic T-

cells confirming that oxidative stress can promote the activation of both cellular and humoral 

immunity in NASH.  In both experimental and human NASH immune responses against 

malonyldialdehyde (MDA) derived adducts are predominant and the characterization of the 

epitopes recognized has revealed the involvement of cyclic methyl-1,4-dihydroxypyridine-3,5-

dicarbaldehyde epitopes, also known as malonyldialdehyde-acetaldehyde (MAA) adducts 

(Albano and others 2005). These adducts  originate by the combined interaction of lysine ε–

aminogroups with both acetaldehyde and malonyldialdehyde (Thiele and others 2008) and 

represent important antigens in immune reactions toward lipid peroxidation-derived epitopes 

associated with alcoholic liver disease (ALD) in both humans and experimental animals (Xu 

and other 1998; Rolla and others 2000).  Moreover, anti-MAA antibodies predict coronary 

artery disease in atherosclerotic patients (Anderson and others 2014). This latter analogy might 

have clinical relevance as growing evidence suggest that NAFLD/NASH and atherosclerosis 

might share common pathogenetic mechanisms and because NASH is associated with an 

increased rick of atherosclerosis ischemic complications (Biegs and other 2012).         

The mechanisms by which hepatic oxidative stress can promote the activation of adaptive 

immune responses in  NASH are still poorly understood.  The liver is recognized to have 

unique immunological properties that modulate systemic tolerance to antigens from the portal 

circulation (Racanelli and Rehermann 2006; Crispe 2014). Under physiological conditions, 

Kupffer cells respond to low concentrations of endotoxins by producing interleukin-10 (IL-10) 

and low levels of pro-inflammatory mediators (TNF-, ROS and prostanoids) that down-

modulate the antigen presentation by dendritic and endothelial cells, thus suppressing T-cell 

activation (Crispe 2014). Such an effect is lost following liver injury because of macrophage 

and dendritic cell (DC) activation in response to damage associated molecular patterns 

(PAMPs) among which oxidized lipids and lipid peroxidation products (Racanelli and 

Rehermann 2006).  On this latter respect, a recent study by Henning and co-workers (2013) 

has shown that the development of NASH in MCD-fed mice is associated with an early 

expansion in hepatic mature myeloid dendritic cells, which acquire the capacity to stimulate 

CD4+ T-cells.  Along with these observations, the data presented in paper 2 demonstrate that 

dendritic cell expansion in NASH involves a sub-set of cells featuring monocyte markers (F4-

80high/Ly6Chigh) that are also characterized by CX3CR1 expression, while the pools of 

CD11chigh/MHCII+/B220+ plasmocytoid and CD11chigh/MHCII+/CD8a+ lymphocytoid 

dendritic cells were significantly decreased.  It is known that under inflammatory conditions 
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infiltrating monocytes can differentiate into a special sub-set of dendritic cells, called 

monocyte-derived inflammatory dendritic cells (moDCs) (Domininguez and Ardavin 2010). 

These cells co-express both dendritic and monocyte/macrophage surface markers and show a 

high production of inflammatory mediators combined to an efficient antigen presenting activity 

(Domininguez and Ardavin 2010).  Thus, we propose that during the evolution of NASH a 

sub-set of Ly6Chigh monocytes/macrophages might acquire CX3CR1 and differentiate to 

moDCs, which present oxidative stress-derived antigens to B- and CD4+ T-lymphocytes and 

stimulate B-cell maturation to plasma cells. Moreover, dendritic cells can also cross-prime 

naïve CD8+ T-lymphocytes promoting cell-mediated responses.   Beside dendritic cells, 

antigen presentation might also involve hepatic stellate cells (Winau and others 2008) and 

possibly hepatocytes them self, as pro-inflammatory cytokines have been shown to induce the 

hepatocyte expression of class II major histocompatibility complex (MHC) and co-stimulatory 

CD80 (B7.1) molecules (Herkel, and others 2003).  On the other hand, the metabolic changes 

leading to NAFLD can also influence the immune system as the development of obesity in 

mice fed a high fat/carbohydrate lowers regulatory T-cells (Tregs) in the liver (Ma and other 

2007).  This latter event is particularly important, as Tregs depletions contributes to the 

development of immune response to oxidative stress-derived antigens in atherosclerosis 

(George 2008). Furthermore, adipokine unbalances that characterize obesity may also 

influence immune responses, because adiponectin depresses both B-cell and T-cell activation, 

while leptin stimulates lymphocyte survival and proliferation (Tilg and Moschen 2006).   

Concerning the mechanisms by which adaptive immunity may contribute to sustain hepatic 

inflammation in NASH our experiments using mice immunized with MDA adducts to 

stimulate B- and T cells responses (see paper 1) show that, at least in the early phase of the 

disease, CD4+ T cells play a major role.  In particular, the combined use of immunization and 

CD4+ T-cell depletion with specific antibodies demonstrates that the production of IFN-γ and 

CD40 ligand (CD154) by Th-1 activated CD4+ T-cells is responsible for stimulating M1 

activation of hepatic macrophages.  On their turn, by releasing IL-12, ROS and NO 

macrophages further contributes in promoting lymphocyte functions and oxidative stress. 

Interestingly, Th-1 activation is also a feature of CD4+ T-cell responses to LDL oxidation 

antigens in atherosclerotic plaques (Hansson and Libby 2006) and interference with 

CD40/CD154 dyad reduces adipose tissue inflammation in obese mice (Poggi and others 

2011). On the same vein, IFN-γ deficiency attenuates steatohepatitis and hepatic fibrosis in 

mice feed with a MCD diet (Lou and others 2013).   The relevance of these findings in relation 
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to the human disease is supported by the observation that both paediatric and adult NASH are 

characterized by an increase in circulating IFN-γ-producing CD4+ T-cells in conjunction with 

an enhanced liver IFN-γ expression (Inzaugarat and other 2011; Ferreyra Solari and others 

2012).    Although data in obese mice indicates that B-cell depletion reduces fat inflammation 

(DeFuria and other 2013), so far little is known about the role in humoral immunity in NASH.  

In this later respect, our preliminary data indicate that in MCD-fed mice the presence of anti-

MDA IgG is associated with IgG deposition within the inflammatory infiltrates suggesting the 

possibility that these antibodies may contribute to hepatic damage by inducing antibody-

dependent cytotoxicity or complement activation that in turn promote macrophage responses.  

Indeed, Rensen and co-workers (2009) have recently reported that extensive deposition of 

complement fractions in liver biopsies form NASH patients is associated with increased 

hepatocyte apoptosis, granulocyte infiltration and higher liver expression of IL-1, IL-6 and 

IL-8 mRNAs. Thus, it is possible that humoral responses triggered by lipid peroxidation-

derived antigens might have a role in NASH pathogenesis.  

As discussed above Th-1 responses appears an important factor in driving hepatic 

inflammation in NASH by stimulating macrophage M1 responses.  However, in paper 3 we 

report that this inflammatory pattern predominates only during the early phases of NASH, 

while upon the disease progression the development of fibrosis is associated to with a down-

modulation of macrophage M1 activation.   In parallel, we have observed that advanced NASH 

is characterized by an increased prevalence of enlarged fat-laden macrophages often forming 

small aggregates or crown-like structures around fat droplets.   Macrophages with a similar 

morphology are also evident in liver biopsies from NASH patients (Rensen and others 2009: 

Ioannou and other 2013; Itoh and others 2013).  Immunohystochemical studies in human liver 

biopsies have shown that these fat-laden macrophage contain cholesterol crystals and express 

leucocyte activation marker CD11b and CD11c along with TNF-α and myeloperoxidase 

suggesting pro-inflammatory capability (Rensen and others 2009: Ioannou and other 2013; 

Itoh and others 2013).  Our results confirm the origin of fat-laden macrophages from 

circulating Ly6Chigh/CCR2+ inflammatory monocytes. However, in spite showing an up-

regulation of TNF-α, these cells also display an increased production of the anti-inflammatory 

cytokines annexin A1 (AnxA1) and IL-10.  This later effect can be particularly relevant in 

relation to the changes in hepatic inflammatory pattern, as we have previously shown that liver 

AnxA1 levels are progressively increased during the progression of NASH (Locatelli and 

others 2014).   AnxA1 is a 37 kDa calcium-phospholipid-binding protein that is expressed in 
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myeloid cells in response to glucocorticoids (Perretti and D'Acquisto 2009).  By interacting 

with its receptor formyl peptide receptor 2/Lipoxin A4 receptor (FPR2/ALX) AnxA1 promotes 

IL-10 production and down-regulates macrophage secretion of pro-inflammatory mediators 

such eicosanoids, NO and IL-6 (Cooray and others 2013).  Thus, we propose that the increased 

release of AnxA1 and IL-10 by enlarged lipid-laden macrophages can act in an 

autocrine/paracrine loop down-modulating M1-polarized responses in advanced NASH. 

Accordingly, we have recently reported that the induction of NASH in AnxA1-deficient mice 

is characterized by enhanced lobular inflammation due to increased macrophage recruitment 

and the exacerbation of the M1 phenotype (Locatelli and others 2014).   

It is noteworthy that, in spite the decline of macrophage M1 responses, hepatic TNF-α 

production remains sustained even in advanced NASH where it parallels parenchymal injury.  

The results of paper 2 give a possible explanation for this apparent paradox.  As mentioned 

above, the progression of NASH is in fact associated with hepatic infiltration of CX3CR1-

expressing monocyte-derived inflammatory dendritic cells (moDCs) that are characterized by 

an increase secretion of TNF-α.  In this context, mice treatment with the H2S donor NaHS 

selectively interferes with the up-regulation of CX3CL1/CX3CR1 dyad associated with the 

progression of steatohepatitis and blocks the development of TNF-α-producing CX3CR1high 

moDCs.  This indicates that CX3CL1/CX3CR1 signaling might have an important role in the 

differentiation of inflammatory monocytes to moDCs.  Furthermore, the use of NaHS allows 

defining the contribution of moDCs in sustaining hepatic inflammation during NASH 

progression. In fact, NaHS treatment prevents further elevation of transaminase release in the 

animals maintained on the MCD diet, demonstrating that CX3CR1+ moDCs can contribute to 

the evolution of steatohepatitis not only through the stimulation of immune responses (Henning 

and others 2013), but also by directly sustaining hepatic TNF-α production. This is in line with 

the observation that TNF-α-producing dendritic cells sustain hepatic inflammation in other 

experimental models of liver injury (Connolly and others 2009) as well as during gut 

inflammation (Rivollier and others 2012).   

A further aspect of cell interactions that characterize the progression of NASH involve 

NKT cells. Indeed, NKT expansion is one of the features of advanced NASH in both humans 

and rodents, while mice deficient in NKT cells show lower hepatic inflammation and fibrosis 

than while type littermates (Syn and others 2010; Tajiri and others 2009).  We have observed 

that an increase in hepatic NKT cells is associated with the worsening of steatohepatitis in 
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immunized MCD-fed mice, as opposed to NKT cell depletion present in similarly treated naïve 

animals, further supporting the contribution of NKT cells to NASH progression.  Changes in 

the macrophage production of CXCL16, a chemokine specifically involved in NKT cell 

recruitment along with increased hepatic levels of IL-15 have been proposed to modulate NKT 

pool in NASH (Kremer and others 2010; Wehr and others 2013).  We have observed that IL-

15 is selectively up-regulated in immunized MCD-fed mice concomitantly with stimulation in 

NKT cell recruitment, while CD4+ T cell ablation significantly lowered the intrahepatic IL-15 

mRNA. This suggests that Th-1 responses might promote the expansion of hepatic NKT cell 

pool through IL-15 up-regulation, which, in turn, can participate to the evolution of NASH.   

At present, the mechanisms by which NKT cells contribute to liver injury in NASH are still 

poorly understood. Syn and co-workers (2012) have proposed that osteopontin (OPN) 

generated by NKT cells can contribute to fibrosis in NASH. An up-regulation in liver OPN is 

evident in either humans and rodents with advanced NASH (Syn and others 2011; Syn and 

others 2012; Locatelli and other 2013), while OPN-deficient mice are protected against 

steatohepatitis and fibrosis induced by feeding the MCD diet (Sahai and others 2007; Syn and 

others 2011).  In our hands, hepatic OPN content is specifically increased in MCD-fed 

immunized mice in concomitance with NKT cell recruitment and OPN-expressing NKT cells 

are evident in the livers of these animals. Thus, OPN might account for the stimulation in 

collagen deposition that is evident in these animals as OPN has been has been shown to directly 

stimulate collagen synthesis by hepatic stellate cells (HSCs) (Urtasum and others 2012) and to 

promote ductular reaction (Wang and other 2014). 



98 

 

10. Conclusions 

 

The data presented indicate that immune responses triggered by oxidative stress-

derived antigens can contribute to the progression of experimental NASH by promoting the 

Th-1 activation of CD4+ T-lymphocytes that, in turn stimulates macrophage M1 responses and 

liver NKT cell recruitment. These data along with the observations in humans support the 

possible contribution of adaptive immunity in the mechanisms leading to NAFLD evolution. 

Nonetheless, NAFLD progression to fibrosis is a complex process that involves 

multiple interactions between inflammatory cells. In particular, we have observed that 

macrophages progressively increase their number during NASH progression and change their 

phenotype and morphology. This associates with the down-modulation of M1 activation and 

the emergence of inflammatory dendritic cells that sustain inflammation during the advanced 

stage of the disease and likely promotes further expansion of adaptive immune responses. 

Altogether, these results represent a good starting point to investigate in more detail how the 

interactions between innate and adaptive immunity accounts for the inter-individual variability 

in the evolution of NAFLD/NASH. Furthermore, the results obtained with sulphide donor open 

the possibility to test these compounds as possible novel treatments to control NASH 

evolution. 
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