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I.1 Growth disorders 

Longitudinal growth is a complex process in which genetic, nutritional, hormonal and 

environmental factors among others are involved. Growth abnormalities resulting in short 

stature is one of the most common conditions affecting the childhood growth. The cause of 

short stature can be either a variant of normal growth or a pathological condition. Variants of 

normal growth includes familial short stature, constitutional delay of growth and puberty and 

small gestational age with catch-up growth. Pathological causes of growth defects can be 

systemic diseases and their treatment, pituitary hormone deficiencies (isolated or combined) or 

a series of genetic syndromes. Short stature can also be found in individuals where no cause 

can be identified (idiopathic short stature).  

It is assumed that the human height follows a normal distribution (Gaussian distribution) where 

the height is distributed along a bell shaped curve. The mean height of the population is located 

at the centre of the curve with shorter and the taller stature distributed towards both the sides. 

The standard height deviation (SDS) is obtained by subtracting the mean value of the reference 

population from the observed value and dividing by the standard deviation (SD) value of the 

reference population.   For example, Height SDS = (Child’s height – normal population mean 

for children of comparable age and sex) / SD of the height of children of comparable age and 

sex. Height SDS of >-2 SD is used to identify children with short stature. However, it is more 

likely that stature does not fit a perfect Gaussian distribution and a variety of conditions such 

as Growth hormone deficiency (GHD), Hypopituitarism, chronic diseases and malnutrition 

contribute to the extreme cases within the Gaussian distribution. 

Successful treatment with rhGH (recombinant human growth hormone) has been developed to 

achieve the target height in selected children with small gestational age without catch up 

growth, growth hormone deficiency, idiopathic short stature due to SHOX mutations and other 
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genetic syndromes like Turner syndrome. The accurate and early diagnosis of the abnormal 

growth patterns are highly important as it allows appropriate treatment and improved clinical 

outcomes. 

I.2 Growth Hormone Deficiency (GHD) 

Growth hormone Deficiency (GHD) refers to conditions associated with childhood growth 

failure due to the lack of growth hormone action. It can be isolated (IGHD) or in combination 

with other pituitary hormone deficiencies. The incidence of GHD is estimated to be 1/4000 – 

1/10000 births (1). While majority of cases are sporadic, 3-30% has an affected relative, 

suggesting a genetic etiology. In most of the sporadic cases, no cause of GHD can be identified, 

even though mutations have been identified up to 4% of patients with sporadic growth hormone 

deficiency. It is assumed that significantly higher proportion of sporadic cases may have 

genetic causes. Several mutations, including de novo, mainly in the GH encoding gene (GH1) 

or in some cases, the receptor of growth hormone releasing hormone (GHRHR) have been 

detected in both sporadic and familial cases of IGHD. The deletion of the entire gene, missense 

and frameshift mutations produce severe growth hormone deficiency whereas the splicing 

mutations produce milder forms (2-4). In addition to GH1 mutations, other mutations that cause 

growth hormone deficiency has been reported in the growth hormone receptor (GHR) gene and 

in a series of transcription factor genes involved in the pituitary development such as Pit-1, 

Prop-1, Hesx-1,Sox-2, Sox-3, Lhx-3, Lhx-4 (5).  

 

I.2.1 GH1 gene 

Human growth hormone gene (GH1) is located on chromosome 17q23 within a cluster of five 

highly homologous (92-98%) genes consists of GH1, CSHP (chorionic somatomammotropin 

pseudogene), CSH1 (chorionic somatomammotropin gene), GH2 and CSH2 (Figure 1) (6,7) . 

Despite the high degree of sequence homology, they express in a tissue-specific manner. While 
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GH1 gene express exclusively in the somatotrophic cells of the anterior pituitary gland, GH2, 

CSH1 and CSH2 all are expressed in placental level (8,9). All the five genes in this cluster are 

located in the same transcriptional orientation and consists of 5 exons separated by 4 introns. 

GH1 encode a 217 aminoacid prehormone which is cleaved to yield a mature hormone with 

191aminoacods and a molecular weight of 22KDa. 

 

Figure 1: Schematic representation of the GH gene cluster and the GH1 gene. 

 

I.2.2 GH1 mutations and Classification of IGHD 

On the basis of clinical characteristics, severity and mode of inheritance familial IGHD has 

been classified into four types; Type IA and IB, Type II and Type III (Table 1). IGHD Type 

1A is the most severe form of IGHD with patients showing early and profound growth failure 

due to the lack or extremely low levels of serum GH. It has an autosomal recessive mode of 

inheritance and is caused by deletions removing the entire GH1 or a nonsense mutation leading 

to a premature stop codon (10-12). IGHD Type IB is a milder form with low but detectable 

serum GH and positive response and immunological tolerance to treatment with exogenous 

GH. This condition is inherited as autosomal recessive trait due to the splice site mutations of 

the GH gene or mutations within gene encoding the GHRH receptor (5). IGHD Type II, a very 

common form of IGHD which are inherited in an autosomal dominant pattern. They are mainly 

caused by the GH1 mutations affecting the mRNA splicing and subsequent loss of exon 3. A 

17.5 kDa isoform is produced as result of the skipping of Exon 3, which exerts a dominant 
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negative effect on the wild type isoform. The most common cases include mutations within the 

first 6 bp of intervening sequences 3(IVS3)(13). Several mutations causing skipping of exon3 

in patients with IGHDII have also been reported within the Intron Splice Enhancer (ISE) and 

Exon Splice Enhancer (ESE) sequences (Table 2) (14-16). Missense mutations that affect 

growth hormone secretion or action or both were also identified to be causing IGHD. Type III 

is X-linked, recessively inherited disorder. Previous studies have shown that some individuals 

have an associated X-linked agammaglobulinemia. It is also suggested that the disorder may 

be caused by mutations and/or deletions of a portion of the X-chromosome containing two loci, 

one necessary for normal immunoglobulin production and the other for GH expression (17,18). 

Table 1: Genetic forms of IGHD and the mutations associated with them. 

IGHD 

Type  

Inheritance Phenotype  GH 

Level 

Associated 

gene  

Mutations 

IA Autosomal 

recessive 

Severe Short stature; Anti-

GH antibodies develop 

during treatment 

Absent GH1 Large deletions 

Frame shift  

Nonsense 

IB Autosomal 

recessive 

Less severe short stature 

than type IA 

Low GH1, 

GHRHR 

Frameshift, Nonsense, 

missense and  splice 

site  

II Autosomal 

dominant 

Variable Height(Severe 

short stature to normal 

height 

Low GH1 Splice site mutations, 

splicing enhancer 

mutations or missense  

III X-linked 

Recessive 

GH deficiency with 

agammaglobulinemia   

Low SOX3/other 

genes 

Deletions, 

Expansions/other 

mutations 

 

I.2.3 Alternative splicing in GH1  

Alternative splicing is the event responsible for the production of multiple mature mRNAs with 

different sequence compositions from a single gene. In most of the cases, Alternative splicing 

is a very common and crucial mechanism, responsible for the complexity and diversity of the 

proteome. It is also well understood that alternative splicing isoforms are differently expressed 

among tissues (19). Majority of the human genes are subject to alternative splicing and genes 

that code for ten to hundreds of transcripts are common in the genome. Alternative splicing 
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studies on chromosome 22 indicated that about 60% of genes are represented by two or more 

transcripts (20-22). 

Alternative splicing is recognized by several modes of splicing patterns. Some common 

mechanisms involve; use of alternative 5’ or 3’ splice sites (cryptic splice sites), exon skipping 

or inclusion, selection between mutually exclusive exons and intron retention. Other important 

modes for alternative splicing also includes the use of alternative promoters and alternative 

poly (A) signals. The mechanism of accurate recognition of the exons are significant to 

maintain the splicing fidelity. For example, a “weaker” splice site is harder to recognize by the 

splicing machinery and leads to alternative splicing. Alternative splicing has both positive and 

negative impact on the gene expression. While alternative splicing maintain the greater 

diversity in proteome, its misregulation underlies several genetic diseases.  

When correctly spliced GH1 produces the biologically active 22 KDa protein comprises of all 

the exons (Figure 2). It accounts for the majority of the circulating GH (10). Despite the correct 

processing, even under normal conditions, small percentages of at least other four kinds of 

alternatively spliced isoforms are produced. The presence of an in frame cryptic splice site 

within exon 3 (Figure 2) gives rise to a transcript lacking the first 45 base pairs of exon 3 and 

encodes a shorter active isoform of 20KDa representing 5-10% of GH transcripts(23). A 17.5 

KDa isoform is produced by the complete skipping of exon 3, which acts as dominant negative 

isoform (Figure 2). This isoform lacks the entire loop connecting helix 1 and helix 2 in the 

tertiary structure of GH. This biologically inactive isoform accounts for 0.1 – 5% of GH 

transcripts and prevents the secretion of the wild type GH (24-26). Trace amounts of transcripts 

skipping exon 3-4 (11.3 KDa) and exons 2-4 (7.4 KDa) have also been identified (Figure 2). 

These severely truncated isoforms are biologically inactive (27).  
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Figure2: Alternative splicing in GH1 

The classical splicing elements (5’ and 3’ splice sites) are not sufficient enough for the correct 

identification of the splice sites and maintain splicing fidelity. Additional cis acting regulatory 

elements are necessary to guide the spliceosome to the splice sites. These elements are capable 

of stimulating (enhancers) or repressing (silencers) splicing and have an important role in the 

regulation of alterative splicing. Based on their location and function they are mainly 

characterised into exonic splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic 

splicing enhancers (ISEs) and intronic splicing silencers (ISSs). Among these splicing 

regulatory elements, ESEs are the most prevalent, widely present and intensively studied. ESEs 

are short 6-10 nucleotide elements reside within exons, recognised by SR proteins to promote 

spliceosome assembly (20,28). SR proteins are a large family of structurally related and highly 

conserved splicing factors which can stimulate the exon definition either by directly 

recognising the splicing machinery or by antagonising the action of nearby silencer elements 

(20,28,29). Most of the identified enhancers are purine rich motifs (GC rich), although it is 
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proved that high purine rich composition by itself is not sufficient to promote splicing. Several 

ESEs are identified with no purine rich elements, mostly AC rich elements (30-32). Although 

most of the ESEs are studied in the context of alternative splicing(28,32), it is likely that they 

are also important for constitutive splicing (33).  

The canonical splice sites surrounding GH1 exon 3 are relatively weak and require the multiple 

cis acting splicing elements to maintain the exon 3 definition. Two ESEs residing within exon 

3 and an ISE within intron 3 have been well characterised.  ESE1 comprises the first 7 base 

pairs of exon 3 and is essential to maintain the proper recognition of upstream 3’ splice site and 

silencing the cryptic splice site (14,34). ESE2 is found 12 nucleotides upstream of the cryptic 

splice site and comprises of 15 nucleotides(14). ISE is a nine nucleotide sequence within intron 

3(IVS3+26-34). 

 

 

 

 

 



9 
 

Table 2: Mutations affecting GH1 splicing. 

 

 

 

GH1 mutation Type Comment Location Reference IGHD 

type 

Mutations within Exon Splice Enhancers 

Glu32X; 

E3+1G>T 

Heterozygous ESE1; loss of exon  3 

(amino  acids 32–71) 

Exon 3, 

c.172G>T* 

Takahashi et al.(35) II 

Glu32Lys;  
E3+1G>A 

Heterozygous ESE1 Exon 3, 
c.172G>A* 

Shariat et al. (24) II 

Glu32Ala;  

E3+2A>C 

Heterozygous ESE1; 17.5 kDa (68%), 

20 kDa (22%) 

Exon 3, 

c.173A>C* 

Petkovic  et al. (16) II 

Glu33Gly; 
E3+5A>G 

Heterozygous ESE1; 17.5 kDa (62%), 
20 kDa (27%) 

Exon 3, 
c.176A>G* 

Moseley et al. (34) II 

Lys41Arg Heterozygous ESE2; 20% exon  

skipping 

Exon 3, 

c.200A>G* 

Millar et al.(36) II 

Splice site Mutations 

IVS2 –1G>A Heterozygous 3’ acceptor splice site Intron 2  Millar et al. (36) II 

IVS2 –2A>T Heterozygous 3’ acceptor splice site Intron 2  Fofanova  et al. (37) II 

IVS3+1G>A Heterozygous Skipping  of exon  3, 
del32–71 GH 

Intron 3  Cogan  et al. (38) II 

IVS3+1G>C Heterozygous Skipping  of exon  3, 

del32–71 GH 

Intron 3     Binder&Ranke (39)         II 

IVS3+2T>C Heterozygous Skipping  of exon  3, 

del32–71 GH 

Intron 3     Fofanova  et al. (40) II 

IVS3+5G>A Heterozygous Skipping  of exon  3, 

del32–71 GH 

Intron 3      Hayashi et al. (41) II 

IVS3+5G>C Heterozygous Skipping  of exon  3, 

del32–71 GH 

Intron 3      Hayashi et al. (42) II 

IVS3+6T>C Heterozygous Skipping  of exon  3, 

del32–71 GH 

Intron 3    Cogan  et al. (43) II 

IVS3+6T>G Heterozygous Skipping  of exon  3, 

del32–71 GH 

Intron 3 Katsumata et al. (44) II 

IVS4+1G>C  

Homozygous 

Loss of amino acids 103-

126 in exon 4; frame 
shift in exon 5 

Intron 4 Cogan  et al. (12)  

IVS4+1G>T  

Homozygous 

Loss of amino acids 103-

126 in exon 4; frame 
shift in exon 5 

Intron 4 Phillips & Cogan (2) IB 

IVS4+5G>C  

Homozygous 

Loss of amino acids 103-

126 in exon 4; frame 
shift in exon 5 

Intron 4 Leiberman et al. (45) IB 

IVS4 –1G>A Heterozygous No amino  acid  change; 

assumed to     affect  splicing 

Intron 

4;c.456G>A 

Fofanova  et al. (46) II 

Mutations affecting ISE elements or BPS 

IVS3+28–
45del 

Heterozygous 18 bp deletion; skipping 
of exon  3 

Intron 3, 
ISEm2 

Cogan  et al. (47); 
McCarthy & Phillips (15) 

II 

IVS3+56–

77del 
Heterozygous removes BPS in intron  

3; skipping of exon  3 

Intron 3 Vivenza et al. (48) II 

IVS3+28G>A Heterozygous Abnormal  splicing Intron 3, 

ISEm1 

Cogan  et al. (47); 

McCarthy & Phillips (15) 

II 



10 
 

I.2.4 Mutations in GH1 Splicing elements cause IGHD II 

Several mutations in GH1 have been reported in IGHDII patients producing increased levels 

of exon 3 skipped transcripts represents the 17.5 kDa isoform (Table 2). Majority of these 

mutations are present within the splice sites (3’ and 5’) bordering exon 3 or in cis regulating 

splicing elements (splicing enhancers). The splice sites flanking exon 3 are particularly weaker 

than the cryptic splice site present within exon 3. Any disruption in the natural splice sites 

thereby increases the aberrant splicing and skipping of exon 3(2,36-38,42,49,50). Besides, the 

mutations identified in ESE1 (E3+1G→T, E3+2A→C, E3+5A→G; Figure 3) and ESE2 

(E3+29A→G; Figure 3) affects the splicing enhancer functions and exon 3 definition 

(14,34,35,47,51). These enhancers activate the 3’ splice sites of intron 2 and inactivate the 

cryptic splice site and promote the exon 3 inclusion. Two families with mutations in Intron 

splicing Enhancer (IVS3+28G→A, IVS3+del28-45; Figure 3) were also identified to produce 

abnormal levels of transcripts encoding the 17.5kDa isoform (15,38). In addition to these, 

missense mutations at amino acid positions 89(P89V), 110(V110F), 183(R183H) and a 22- bp 

deletion including the branch point site within intron 3 (IVS3 del+56-77; Figure 3) have also 

been reported leading to Exon 3 skipping (5,39,48,52).  However, splice site mutations which 

produce 17.5KDa isoforms are understood to cause severe impact on the patients than ESE 

mutations. 

 

Figure3: Location of Exonic and Intronic splicing enhancer mutations identified in GH1. 
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Cell culture and transgenic mice experiments have proved that the 17.55 KDa isoform exhibit 

a dominant negative effect on the secretion of the wild type 22 KDa isoform (25,26,41). This 

dominant negative isoform is retained in the endoplasmic reticulum and impairs the secretory 

pathway and trafficking of GH and other hormones (53). Under normal conditions, the 

17.5KDa isoforms are targeted by ER and undergoes controlled degradation by proteasomal 

pathway. When the amount of 17.5KDa exceeds the limit of the proteasome degradation 

mechanism, it accumulates in the cytoplasm leading to reduced cell proliferation in vitro (16). 

Moreover, transgenic mice overexpressing the 17.5 KDa isoform exhibited a loss of majority 

of somatotropes and subsequent defects in the maturation of GH secretory vesicles and anterior 

pituitary hypoplasia (14,25). 
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I.3 Combined pituitary hormone deficiency (CPHD) 

 

Pituitary development is dependent upon a complex genetic cascade of transcription factors 

and signaling molecules acting as activators or repressors which dictate organ commitment, 

cell differentiation and cell proliferation that produces five distinct pituitary cell types (54,55). 

These cells in the  in the pituitary gland are specialized to produce and secrete specific 

hormones, including growth hormone (GH), prolactin (PRL), thyroid stimulating hormone 

(TSH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and 

adrenocorticotropic hormone (ACTH). Combined Pituitary Hormone Deficiency (CPHD) is 

diagnosed when the production of GH and one or more of the pituitary hormone is insufficient 

or absent. The incidence of CPHD is estimated to be approximately 1:8000 births and is usually 

sporadic but, familial forms have also been described (56). Clinically, CPHD is mainly 

characterised by short stature, hypothyroidism, impaired sexual development and 

hypocorticolism. More distinctive facial features with prominent forehead, marked midfacial 

hypoplasia with depressed nasal bridge, deep-set eyes, short nose with anteverted nostrils and 

hypoplastic pituitary gland by MRI examination were also have been reported along with 

growth deficiency (57). Some cases were also presented with mental retardation along with 

other typical phenotypical features (58).  

The aetiology of CPHD is considered to be multifactorial which includes environmental and 

genetic factors. However, in the majority of cases the aetiology of CPHD cases remains 

unexplained. So far, the genetic aetiology is explained by the perturbation of expression or 

function of several developmental genes which are involved in different stages of pituitary 

development.  
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I.3.1 Pituitary Transcriptional factors associated with CPHD 

 

The identification and characterization of the pituitary developmental factors in vitro and from 

animal models has enabled us to clarify a genetic basis for combined pituitary hormone 

deficiency (CPHD) in humans (59,60). To date detected genes include PROP1, PIT1 (also 

named POU1F1), HESX1, LHX3, LHX4, OTX2, GLI2, SOX2, and SOX3 (Table 3). Numerous 

studies demonstrated that mutations of these transcription factor genes cause a wide range of 

pituitary phenotypes, from severe life-threatening CPHD to isolated GH deficiency (59-61). 

Numerous studies demonstrated that mutations of these transcription factor genes cause a wide 

range of pituitary phenotypes, from severe life-threatening CPHD to isolated GH deficiency 

(59-61). Transcriptional factors that are involved in the formation of pituitary primordial 

structures are not pituitary-specific but also play a role in the development of other organs and 

structures. Mutations within these “early factors” may present extra-pituitary manifestations: 

syndromic hypopituitarism with craniofacial defects such as septo-optic dysplasia (SOD) or 

holoprosencephaly (HPE) in the case of HESX1 or GLI2 mutations respectively. In some 

instance HESX1 and GLI2 mutations have been found associated to milder phenotypes with 

pituitary hormone deficiency without a syndromic phenotype (62,63). Other extra-pituitary 

manifestations such as Chiari malformation, corpus callosum hypoplasia, hearing impairment 

and skeletal abnormalities are associated with LHX3 and LHX4 mutations (59).  

Conversely, PROP1 and PIT1 are homeodomain transcription factors specifically involved in 

pituitary development. Accordingly, mutations of these later-acting factors, are responsible of 

a pituitary specific phenotype (59) characterized by multiple hormone deficiencies without 

relevant extrapituitary findings. The hormonal phenotype in patients with PROP1 mutations is 

characterized by deficiency of GH, TSH, PRL and gonadotropins with an extremely variable 

phenotype both within and between families with respect to the severity of hormone deficiency, 
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age of onset, adrenal function and height at diagnosis. In magnetic resonance imaging (MRI) 

posterior pituitary and infundibulus are normal, while anterior pituitary is often hypoplastic; a 

hyperplastic expansion of the intermediate lobe that usually involves during the second decade 

of life has been described (64-66). 

PIT1 mutations present a phenotype characterized by profound deficiency of GH and PRL, 

variable degree of TSH deficit, severe proportional short stature, a typical facies, feeding 

difficulties in infancy and variable degree of mental delay. Neuroimaging usually shows a 

normal or hypoplastic anterior gland and a normal pituitary stalk and posterior pituitary.  

In many CPHD patients genetic screening failed to detect mutations within any of these genes 

whereas in some CPHD cohorts the majority of the tested patients carried mutations, mostly 

affecting PROP1. 
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Table 3: Mutation frequencies within PROP1, PIT1, HESX1, LHX3, LHX4, and GLI2 in 

different CPHD cohorts 

Gene Geographical origin 

Sporadic cases Familial  cases 
Total mutation rate 

(sporadic and familial) 
Reference 

Analysed patients, n 
Patients with 

mutation, n (%) 

Analysed 

families, n   

Families with 

mutation, n (%) 

PROP1 

 

Italy  
118 2 (1.7) 8 1 (12.5) 2.4% 

Unpublished 

Lithuania 
43 25 (58.1) 11 10 (90.9) 64,8% 

Navardauskaite et al. 

(67)  

Turkey 
51 0 1 1 (100) 1.9% 

Kandemir et al.  (68) 

*Japan 
77 0 0 - 0 

Takagi et al. (69) 

*Japan 
71 0 0 - 0 

Dateki et al. (70)  

Germany (mostly)  
75 0 1 0 0 

de Graaff et al. (71) 

Various (UK mostly) 
119 1 (0.8) 0 - 0.8% 

Mehta et al. (72) 

*USA 
19 0 0 - 0 

Diaczok et al. (73) 

Brazil 
24 0 5 5 (100) 17.2% 

Vieira et al. (56) 

Spain 
36 0 0 - 0 

Coya et al. (74) 

Various  
92 12 (13.2) 17 8 (47) 18.3% 

Reynaud et al. (75) 

Portugal 
29 2 (6.9) 7 7 (100) 25% 

Lemos et al.(76)  

Hungary 
35 15 (42.8) 0 - 42.8% 

Halasz et al.(77) 

UK   
20 0 6 0 0 

Rainbow et al.(78) 

*Czechia 
66 12 (18.2) 4 3 (75) 21.4% 

Lebl et al. (79) 

φ Various (UK minority)  
189 2 (1) 25 6 (24) 3.7% 

Turton et al.(65)  

Australia 
31 0 1 0 0 

McLennan et al.(80) 

Korea 
12 0 0 - 0 

Kim et al.(81) 

Russia 
7 3 (42.9) 4 2 (50) 45.5% 

Fofanova et al. (82)  

Various  
21 2 (9.5) 10 5 (50) 22.6% 

Cogan et al.(83)  

**Various 
0 - 36 18 (50) 50% 

Deladoey et al.(84) 

Total 
1135 76 (6.7) 136  66 (48.5) 11.2% 

 

        PIT1 

 

Italy  
24 1 (4.2) 0 - 4.2% 

Unpublished 

*Japan 
77 1 (1.3) 0 - 1.3% 

Takagi et al. (69) 

*Japan 
71 0 0 - 0 

Dateki et al. (70)  

Germany (mostly) 
75 0 1 1  1.3% 

de Graaff et al. (71) 

Various (UK mostly) 
55 1 (1.8) 0 - 1.8% 

Mehta et al. (72) 

*USA 
19 0 0 - 0 

Diaczok et al. (73) 

Brazil 
5 0 0 - 0 

Vieira et al. (56) 

Spain 
36 0 0 - 0 

Coya et al. (74) 

Various  
13 0 4 1 (25) 5.9% 

Reynaud et al. (75) 

*Czech 
66 1 (1.5) 4 0 1.4% 

Lebl et al. (79) 

φ Various (UK mostly)  
105 4 (3.8) 17 3 (17.7) 5.7% 

Turton et al.(65)  

UK   
20 0 6 2 (33.3) 7.7% 

Rainbow et al.(78) 

Australia 
31 2 (6.5) 1 0 6.3% 

McLennan et al.(80) 

Korea 
12 0 0 - 0 

Kim et al.(81) 

Russia 
8 0 4 1 (25) 8.3% 

Fofanova et al. (82) 

Total 
617 10 (1.6) 37  8 (21.6) 2.8% 
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HESX1 

Italy 
126 1 (0.8) 7 0 0.8% 

Unpublished 

*Japan 
77 0 0 - 0 

Takagi et al. (69) 

*Japan 
71 0 0 - 0 

Dateki et al. (70)  

Germany (mostly)  
75 0 1 0 0 

de Graaff et al. (71) 

Various (UK mostly) 
119 0 0 - 0 

Mehta et al. (72) 

*USA 
19 0 0 - 0 

Diaczok et al. (73) 

Brazil 
24 0 5 0 0 

Vieira et al. (56) 

Spain 
36 2 (5.6) 0 - 5.6% 

Coya et al. (74) 

Various 
16 0 0 - 0 

Reynaud et al. (75) 

*Czechia 
66 0 4 0 0 

Lebl et al. (79) 

UK   
20 0 6 0 0 

Rainbow et al.(78) 

Korea 
12 0 0 - 0 

Kim et al.(81) 

Total 
661 3 (0.5) 23  0 0.4% 

 

LHX3 

Italy  
95 0 7 0 0 

Unpublished 

*Japan 
77 0 0 - 0 

Takagi et al. (69) 

*Japan 
71 0 0 - 0 

Dateki et al. (70)  

Germany (mostly)  
75 0 1 0 0 

de Graaff et al. (71) 

UK 
119 0 0 - 0 

Mehta et al. (72) 

*USA 
19 0 0 - 0 

Diaczok et al. (73) 

Brazil 
13 0 5 0 0 

Vieira et al. (56) 

* Various  
300 2 (0.7) 2 2 (?) 1.3% 

Pfaeffle et al.  (85)  

Various  
17 0 3 0 0 

Reynaud et al. (75) 

Korea 
12 0 0 - 0 

Kim et al.(81) 

Total 
798 2 (0.3) 18  2 (11.1) 0.5% 

 

LHX4 

Italy  
94 0 7 0 0 

Unpublished 

*Japan 
77 2 (2.6) 0 - 2.6% 

Takagi et al. (69) 

*Japan 
71 1 (1.4) 0 - 1.4% 

Dateki et al. (70)  

Germany (mostly)  
75 0 1 0 0 

de Graaff et al. (71) 

UK 
119 0 0 - 0 

Mehta et al. (72) 

Various 
126 0 7 2 (28.6) 1.5% 

Castinetti et al.(86)  

* Various  
244 2 (0.8) 1 1 (?) 1.2% 

Pfaeffle et al.  (85) 

*USA 
19 0 0 - 0 

Diaczok et al. (73) 

Brazil 
11 0 0 - 0 

Vieira et al. (56) 

Total 
916 5 (0.5) 16  3 (18.8) 0.9% 

 

GLI2 

*Brazil 
136 4 (2.9) 0 - 2.9% Franca et al. (87)  

*Various 
165 1 (0.6) 0 - 0.6% Flemming et al. (63)  

*Japan 
77 0 0 - 0 Takagi et al. (69) 

Total 
430 7 (1.6) 0 - 1.6%  

* Subjects considered as sporadic if otherwise not specified 

** All subjects considered as familial 

φ IGHD patients were also considered because it was not possible to obtain the number of CPHD sporadic and familial 
patient
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I.3.2 Human GLI2 

GLI2 is a member of GLI family of transcription factors along with GLI1 and GLI3 known as 

Glis super family. These transcription factors are recognized by a conserved DNA binding 

domain X3-Cys-X4-Cys-X12-His-X4-His-X3, where X is any amino acid. GLI2 is specifically 

recognized and bind to GAACCACCCA motif in the target genes. GLI2 is a 1586 –aminoacid 

protein (197 kDa) which is encoded by 13 exons on chromosome 2q14. The functional domains 

of GLI2 are not yet fully understood. In addition to the central zinc finger DNA binding domain 

consisting of 5 fingers, GLI2 proteins also contains an amino terminal (N-terminal) repressor 

domain and carboxyl terminal (C-terminal) transactivation domain. GLI2 protein has been 

identified to be present in at least four different splice variants, known as α (133kDa), β 

(131kDa), γ (88 kDa) and δ (86kDa). A human variant lacking the N-terminal repressor domain 

(GLI2∆N) showed a 30-fold higher activity compared with the full length protein in vitro 

(Figure 4).  

 

 

 

Figure 4: Schematic representation of different domains identified in the human GLI2. 

GLI2∆N represents the isoform lacking the N-terminal repressor domain (below) compared 

with the Full length isoform (above). 
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I.3.3 Role of GLI2 in the development of pituitary 

GLI2 is an important component in the developmental programs. As an effector molecule of 

the sonic hedgehog (Shh) signalling pathway, GLI2 has a fundamental role in the pituitary 

development. Sonic hedgehog is a morphogen expressed in the early steps of pituitary 

otogenesis by exerting effects on both proliferation and cell-type determination. Sonic 

hedgehog is expressed in the ventral diencephalon and throughout the oral ectoderm except 

Rathke’s pouch (88,89). However, the patched receptor (PTCH1) as well as the GLI family of 

transcription factors (GLI1, GLI2 and GLI3) are expressed in the Rathke’s pouch, indicating 

the developing gland is competent to receive and respond to SHH signalling (90).  

There are three different Hedgehog proteins in humans, each with different cellular responses 

and distribution in the body: Sonic hedgehog (SHH), Indian Hedgehog (IHH) and desert 

hedgehog (DHH). The Hh pathway is considered as the canonical pathway through which GLI2 

activity is regulated (Figure 5).  The Hedgehog ligands binds to and activate the transmembrane 

receptor called patched (PTCH). When the Hh ligand is absent, PTCH exerts a consistent 

inhibitory effect on transmembrane G-protein coupled receptor smoothened (SMO). When the 

Hh ligand is present and binds to PTCH, inhibition over SMO is released (91,92). The GLI 

transcription factors are bound with SuFu which keeps GLI2 tethered in the cytoplasm (93). 

Activated SMO triggers the dissociation of SuFu/GLI complex and allowing the nuclear 

translocation and activation of GLI. This translocation promotes the subsequent DNA binding 

and transcription of a series of Hh pathway target genes (Figure 5). 
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Figure 5: Schematic representation of hedgehog signalling pathway 

Multiple studies using knockout mice has been performed to study the importance of GLI2 in 

development. Mice with homozygous loss of functioning GLI2 resulted in lethal phenotype 

later in development while the heterozygous mice developed normally. The phenotypic 

evaluation of abnormalities in the knock out mice showed severe skeletal abnormalities 

including absence of vertebral body and intervertebral disc, truncated mandibles with absent 

incisors, shortened limbs and sternum, missing tympanic ring bones of the inner ear and severe 

cleft palate malformations (90). GLI2 deficient mice also showed defects in the pituitary 

development including partial loss of anterior and complete loss of posterior pituitary (94,95). 

These defects were attributed by the loss of expression of GLI2 target genes BMP4 and FGF8 

(95).  

 I.3.4 GLI2 Mutations 

A spectrum of disorders and diseases has been described involving the loss of expression and 

deregulation of GLI2. The loss of function GLI2 mutations are generally responsible for 

congenital malformations while gain of function in adult cells to tumerogenesis. The status of 

GLI2 as an oncogene is well established.  
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Apart from Carcinogenesis, Heterozygous GLI2 loss of function mutations were initially 

reported in patients with holoprocensephaly (HPE), a condition of incomplete or failed 

forebrain separation, or HPE-like phenotypes with pituitary anomalies and postaxial 

polydactyly (96,97). Several GLI2 variations were since reported in patients with HPE 

characterized by a wide spectrum of phenotypes including craniofacial abnormalities, brancial 

arch anomalies, polydactyly and variable degree of pituitary malformations (98-101). Recently, 

Franca et al (87,102) reported novel heterozygous frame shift or nonsense GLI2 mutations and 

high frequency of non-synonymous GLI2 variants in patients with congenital hypopituitarism 

without HPE and most of these patients presented with CPHD and an ectopic posterior pituitary 

lobe. These patients were also presented with a wide spectrum of phenotype including 

polydactyly, hypoglycemia, seizures, midline facial defects and hypoplastic anterior pituitary. 

More recently, Bear et al (103) reported that individuals with truncating GLI2 mutations were 

more likely to have typical pituitary anomalies, polydactyly and subtle facial features rather 

than HPE. These individuals are more likely to have higher penetrance than individuals with 

missense mutation. 

I.4 Idiopathic Short stature 

Short stature is a condition where the height of an individual is less than 2 standard deviation 

(SD) from the mean height, where the normal height is considered within more or less 2 SD, 

for a given age, sex and population. In most of the cases the aetiology of short stature is 

unknown and this is referred as Idiopathic Short Stature (ISS) (104,105). Thus, ISS can be 

defined as a condition in which the height of an individual is more than 2 SD below the 

corresponding average height for a given age, sex and population with no recognizable 

endocrine or systemic diseases and no known genetic causes. It has been estimated that around 

80% of the short children presented to a paediatric clinic are classified as ISS (105). ISS can 

be subdivided into Familial Short Stature or FSS (when the height of an individual is below the 
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mean height compared to the reference population but remain within the target height of the 

family and Non Familial Short Stature) and Non Familial Short Stature or NFSS (when the 

height of a child is short compared to both reference population and the target height of the 

family). In FSS children, with the absence of pathological causes of parental shortness, full set 

of diagnostic screening may not be necessary and they attain their genetic potential. However, 

if one of the parent is short (<-2 SDS) attention should be given to the possibility of a dominant 

genetic effect. Similarly, in NFSS children with a positive family history of constitutional delay 

of growth and puberty (CGDP), and the experienced clinician may follow an expectant course 

(105).  

Thus, ISS is a diagnosis based on careful exclusion of recognizable conditions such as 

chromosomal abnormalities, dysmorphic syndromes, low birth size (small for gestational age, 

SGA), systemic, endocrine or nutritional disorders and skeletal dysplasias (104,105). But, how 

far these criteria should be considered before a condition could be labelled as ISS is still remain 

to be completely agreed. It is widely considered that analysis to exclude turner syndrome 

should be done in all females presented with short stature. SHOX is another gene now widely 

agreed to be screened in the ISS patients. SHOX haploinsufficiency, which is caused by 

heterozygous mutations or deletion of SHOX or abnormalities of the enhancer region, is 

reported in 2-15% of children previously diagnosed as ISS (106-110).  SHOX screening is also 

relevant, since GH therapy is reported as an effective treatment of short stature associated with 

SHOX defects(111). SHOX defect is now an approved indication for GH treatment in US and 

Europe. 
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I.4.1 SHOX gene 

SHOX  (short stature homeobox containing gene) was first discovered by deletion mapping of 

the short arm of chromosome as a gene responsible for growth failures in idiopathic short 

stature  and Turner Syndrome (TS) patients (108). The gene is located in the pseudoautosomal 

region 1 (PAR1), a region of 2.6Mb,   on the very tip of the short arms of both X and Y 

chromosomes, Xp22 and Yp11.3 (Figure 6). All characterized genes residing in PAR1 region 

escapes X inactivation. Because of this, SHOX is expressed on both X and Y chromosomes as 

two functional copies.  PAR1 is a hotspot for recombination events between the X and Y 

chromosomes during the meiosis pairing of spermatogenesis (112).   

The SHOX gene contains two characteristic domains: a homeodomain encoded by the 

homeobox and an OAR domain (otp, aristaless and rax) at the carboxyl terminal. The 

homeobox enables specific DNA binding and act as transcriptional activators. This domain is 

also relevant for nuclear translocation and dimerization of SHOX. The OAR domain is also 

relevant in keeping transactivation capacity of SHOX. 

The SHOX mRNA is encoded by 7 exons (one non-coding and six coding) encompassing about 

40 kb of genomic DNA. The homeobox is coded by exons 3 and 4. Two alternative forms of 

exon 6 (6A and 6B), leads to different spliced transcripts named SHOXa and SHOXb (Figure 

6). Both the transcripts are identical at the 5’ end but differ at the 3’ end in exon 6 and are  

translated into two different proteins of 292 (SHOXa) and 225 (SHOXb) aminoacids.  
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Figure 6: Chromosomal Localisation and genomic structure of SHOX gene 

 

I.4.2 SHOX Protein and Expression 

SHOX is a nuclear protein and acts as a transcriptional activator.  SHOX is expressed during 

fetal life in the development of bone tissue in the distal humerus, radius, ulna, wrist, limbs and 

pharyngeal arches. The SHOX expression is restricted to limbs, first and second pharyngeal 

arches and it can be detected in osteoblasts of human embryos from the second month post 

consumption. This expression pattern resembles the locations of the anatomic structures which 

are affected when the SHOX is deficient such as the forearm, lower legs, maxilla, mandible 

and the external ear tract (113). The role of SHOX in bone development is also indicated by 

the finding that SHOX protein is detected in the hypertrophic chondrocytes of the growth plate. 

The overexpression SHOX causes blockage of the cell cycle with proliferation arrest and 

apoptosis which indicate the role of SHOX in the processes regulating chondrocytes 

differentiation (114,115). Even though the highest expression of SHOX is identified in skeletal 

muscle and bone marrow fibroblasts, SHOXa and SHOXb are independently expressed in a 

different array of tissues. SHOXa is also expressed in placenta, pancreas and heart while low 
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level of SHOXb expression is also identified in fetal kidney. Natriuretic peptide (NPPB) gene 

which encode brain natriuretic peptide (BNP) is identified as the first transcriptional target of 

SHOX. The significance of this finding is still not fully understood (116).  

I.4.3 SHOX mutations 

The correct SHOX gene function is dosage dependant. The loss-of-function mutation of one 

SHOX allele results in haploinsufficiency and the disorder of SHOX deficiency causing growth 

failure. The haploinsufficiency of SHOX causes a wide range of short stature phenotypes. The 

mutations in SHOX were frequently reported as responsible for short stature in patients with 

Leri-Weill syndrome. The prevalence of SHOX mutations in individuals with Leri-Weill 

syndrome is estimated around 50- 90% (117-120). The deletion at the end of the short arm of 

the X chromosome including SHOX gene (loss of one allele) is almost always associated with 

Turner syndrome (121). The loss of both the SHOX alleles causes the complete lack of SHOX 

and results in extreme phenotype of osteodysplasia called Langer syndrome (122). A relatively 

smaller percentage of SHOX mutations were also identified as the cause of growth retardation 

in 2-15% individuals with ISS (Table 4).  

The high frequency of repeats within the PAR1 region make this genomic region highly prone 

to the recombination and this explains the high frequency of deletions identified in affected 

individuals. The deletions which encompass SHOX gene itself or the regulatory enhancer 

regions account for 80% of all the SHOX mutations. The other gene defects found were point 

mutations which were reported all over the gene, but predominantly in exon 3 and 4 encoding 

homeodomain. The missense mutations in the homeodomain fundamentally impairs the SHOX 

key functions such as DNA binding, dimerization and nuclear translocation (123).  Partial and 

complete SHOX duplications of varying sizes were also reported in the short stature patients 

(124,125).  
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Table 4: Summery of SHOX defects in ISS patients 

Study Patients Mutation (%) 

Rao et al. (108) 91 1.1 

Binder et al. (109)    68 1.5 

Musebeck et al.(126) 35 - 

Rappold et al.(106)   900 2.4 

Ezquieta et al.(127) 73 - 

Stuppia et al.(128) 56 12.4 

Binder et al.(129) 140 2 

Schneider et al.(130) >1500 2 

Huber et al.(110) 84 4.2 

Rappold et al.(107) 1534 2.2 

Jorge et al.(119) 63 3.2 

Chen et al.(117)  735 4.2 

Benito-Sanz et al.(124) 613 1 

Benito-Sanz et al. (131) 576 1.9 

Hirschfeldova et al.(132)  51 13.7 

Sandoval et al.(133) 62 8.1 

 

A phenotypic scoring system assisting the identification of the most suitable subjects for the 

SHOX genetic testing has been developed by Rappold et al. (107) by integrating clinical and 

anthropometric data of the patients. This score combines three anthropometric variables; arm 

span/height ratio, sitting height/height ratio and BMI with five clinical variables; cubitus 

valgus, short forearm, bowing of forearm, muscular hypertrophy and dislocation of the ulna at 

the elbow. Each of these variable represents at least two points in the scoring system. This 

system recommends SHOX testing in the presence of a score greater than 4 or 7 (increased 

threshold) out of a total possible score of 24.  
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I.4.4 SHOX Enhancers 

 Enhancer elements are cis acing regulatory elements located upstream or downstream of an 

associated gene. When bound by specific transcription factors these elements enhance the 

transcription of the gene. Enhancers can reside at considerable distance away from the coding 

parts of the gene and can be the site of mutations in genetic diseases.  

Along with comparative genomics and functional analysis, mutational screening in affected 

individuals demonstrated the presence of multiple evolutionary conserved sequences (ECS) 

both upstream and downstream of SHOX that have variable effects on transcription (Figure 7). 

Three conserved non coding elements (CNE4, CNE5 and CNE9) within the downstream 

enhancer region have been shown transcriptional activity in vitro and or in vivo (117,123,134). 

The presence of another 3’ enhancer (CNE7) has been recently identified by Benito-Sanz et 

al.(131) and the in vitro functional analysis using luciferase reporter assay showed its enhancer 

activity.  All these enhancers reside within 250 kb downstream from the start codon. Three 

Enhancers (CNE-5, CNE-3 and CNE-2; Figure 7) upstream of SHOX within 300kb has also 

been identified as functionally active (134). 

 

Figure 7: Schematic representation of the genomic location of the SHOX enhancers. 



27 
 

Almost all the SHOX deletions/duplications identified were either included whole/partial 

SHOX gene or 3’ (downstream) enhancers. The deletions identified in the downstream region 

had highly variable in extension and location. Only one case has been reported involving the 

5’ (upstream) enhancer region in which two of the three upstream enhancer regions were 

deleted in a female patient and her father with ISS (135). A deletion within enhancer region 

could affect transcription simply by the removal of an important regulatory region or indirectly 

by altering the DNA folding thereby the known regulatory enhancers becomes inaccessible. 

Partial tandem duplications may affect the gene expression by changing the distance between 

the coding sequence of the gene and the regulatory elements (131).    

Recently, the presence of an additional putative long range regulatory region further 

downstream of currently known enhancers has been suggested by the deletions identified in 

individuals with mild phenotypic effect (125,136). This may be more likely due to the presence 

of one or more additional downstream transcription regulators. A highly conserved 

transcription factor was also identified within this region and is the most likely candidate for 

the critical part of these deletions (125).  

I.4.5 Phenotypic Variability associated with SHOX mutations 

All classes of SHOX mutation are associated with broad phenotypic variability even within 

families. In the case of the enhancer deletions, they generates a phenotype indistinguishable 

from that of patients with mutations in the SHOX coding region and  the size of the deletion is 

not considered to be related to the severity of the clinical phenotype (137). Kant et al. 

(138)reported a case in which an enhancer deletion was associated with normal stature although 

below target height. In many previous studies on SHOX deficiency, not all index parents had 

short stature and is not always the leading clinical sign to request a SHOX analysis by 

clinicians, who consider other clinical characteristics of the patients and the family. 
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1. Functional analysis of GH1 mutations identified in Italian IGHD patients.  

The exon 3 GH1 contains two known exon splicing enhancers (ESEs) which are 

necessary for the correct splicing. The aim of this study was to perform functional 

analysis on the novel point mutations identified in exon3 outside of known ESEs to 

determine their involvement in splicing. 

2. Screening of GLI2 gene in CPHD patients 

The involvement of GLI2 gene in the aetiology of CPHD has been recently identified. 

The aim of this study was to determine the frequency of GLI2 mutations in a cohort of 

Italian CPHD patients that resulted negative for mutations in other causative genes 

encoding pituitary transcription factors (PIT1, PROP1, HEXS1, LHX3 and LHX4). 

3. Screening of SHOX gene in Idiopathic Short Stature patients 

SHOX mutations are the most frequent monogenic defects identified in idiopathic short 

stature patients. The aim of this study was to screen for the SHOX deletions, 

duplications and point mutations in large cohort of ISS patients and to establish a 

phenotype-genotype correlation in patients carrying mutations, in order to identify new 

criteria for patient selection.    
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III. SUBJECTS 
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III.1 IGHD Cohort 

A total of 103 sporadic patients with IGHD and 205 normal stature individuals, all belonging 

to the Italian population, were included in the genetic analysis. The subjects were referred to 

the clinical centers because they had a height less than or equal to -2 SDS (Standard Deviation 

Score) or a height less than or equal to -1.8 SDS in combination with a height velocity over 1 

year less than -1.5 SDS using the criteria of Tanner-Whitehouse(139). Patients with a known 

postnatal cause of acquired hypopituitarism were excluded. Skeletal maturation was estimated 

as bone age (radius, ulna and short bone) with the TW2 (Tanner –Whitehouse 2nd edition) 

method by a pediatric endocrinologist (140). They were all evaluated for GH serum levels after 

two provocative tests (with arginine or clonidine or insulin or glucagon or with 

GHRH+arginine (141). Traditionally, a diagnosis of GH deficiency (GHD) is supported by GH 

peaks less than 10 ng/ml both after the two different stimuli (142), or less than 20 ng/ml after 

the double provocative test with GHRH + arginine. The GHD patients futfill these criteria and 

had a mean (±SD) secretion peak of 4.4 ± 2.5 ng/ml after the classical stimuli (N=78) or 9.4 ± 

5.8 ng/ml after the test with GHRH+arginine (N=25). None of the GHD patients was deficient 

for other pituitary hormones and none had a documented family history of the disease or 

consanguineous parents. All the patients have been also screened for mutations in GHRHR 

(data not shown).  Patients carrying mutations in this gene were not included in the IGHD 

cohort described here. Normal stature controls included University and Hospital staff, as well 

as medical students who were not tested for GH secretion levels. A written informed consent 

was obtained from the patient’s parents, as they were all aged less than 18 and from the normal 

stature controls. 
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III.2 CPHD Cohort 

The CPHD patients were recruited based on the following criteria:1) they presented with a 

clinical and hormonal evidence of childhood-onset GH deficiency combined with at least one 

other pituitary defect in the absence of an identified cause of hypopituitarism (e.g. cerebral 

tumors, cranial trauma, documented asphyxia, or other injuries at delivery), 2) they had a 

negative family history for pituitary dysfunction or apparent or declared consanguinity and 

were thus considered as sporadic cases, and 3) mutations in the coding sequences of genes 

associated with multiple pituitary hormone dysfunctions (PIT1, PROP1, HEXS1, LHX3, 

and LHX4) were excluded (data not shown). Mean height SDS for chronological age was 

calculated using the criteria of Tanner-Whitehouse(140). The mean height of the patients at 

diagnosis was −2.26 SDS ± 2.3 sd. Morphological evaluation of the hypothalamus-pituitary area 

and/or of the central nervous system was performed in 136 patients by magnetic resonance 

imaging, using precontrast coronal spin echo T1-weighted images followed by postgadolinium 

T1-weighted imaging. Among the 136 CPHD index cases, 8 (5.8%) were the probands of 

pedigrees with more than one affected individual (familial cases). Four patients were born from 

consanguineous parents but they were considered as sporadic cases since they were the only 

affected subject in their families. The mean height of these patients at diagnosis was -2.81 ± 

1.83 SDS and the mean delay in bone age relative to chronological age was 2.57± 2.36 years. 

GHD was present in all the patients, TSH deficiency in 78.6% (107/136) and ACTH deficiency 

in 61% (83/136). Thirty-nine subjects were prepubertal at the time of diagnosis. Among the 

remaining 97 subjects that could be evaluated in terms of pubertal age, 81 (83.5%) presented 

with FSH/LH deficiencies. Eight male patients presented neonatal micropenis and/or 

cryptorchidism. Five patients (3.5%) had diabetes insipidus. We obtained MRI data from 101 

patients (74% of the total). Among these, abnormalities (ectopy of the neurohypophysis, 

pituitary hypoplasia and empty sella) were found in 81 (80%) subjects; in particular anterior 
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pituitary hypoplasia or aplasia was the most frequent abnormality and was present in 61 

patients (60.4%), while pituitary stalk interruption and/or neuropituitary ectopia were observed 

in 35 patients (34.6%), 16 of them presenting both abnormalities. Eleven patients (10.8%) 

presented also extra-pituitary abnormalities such as SOD, other midline defects or cerebellar 

abnormalities.  

Patients or parents of the patients under 18 years of age gave their written informed consent to 

participate to this study, which was approved by the local ethical committee of each 

contributing auxological center. 

III.3 ISS Cohort 

Two hundred and ninety ISS patients with growth failure of varying severity were screened for 

SHOX abnormalities. The mean height SDS of the cohort was -1.8±0.9. The patients were 

generally selected with a height <-2SDS or with growth velocity of <-2SDS. Some patients 

with >-2SDS were also considered based on other clinical characteristics. The detailed 

description of the ISS patients selected for this study are shown in table 5. Patients with 

recognizable conditions such as chromosomal abnormalities, dysmorphic syndromes, low birth 

size (small for gestational age), systemic, endocrine or nutritional disorders and skeletal 

dysplasias were excluded from this analysis. 

Table 5: Clinical characteristics of the ISS patients screened for SHOX defects. 

 Mean ± SD 

Females (n=149) Male (n=140) 

Age at Diagnosis 8.1±3.73 9.2±4.08 

Height SDS -1.9±0.79 -1.8±0.97 

Growth Velocity -1.2±1.75 -0.9±2.1 

Target SDS -0.8±1.07 -1±0.95 

BMI 16.5±1.75 16.8±3.35 
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IV.1 Hormonal investigations 

Hormonal assays were performed using several commercial kits and results of biochemical 

investigations at diagnosis were recorded including basal free T4, TSH, cortisol, and ACTH 

levels and basal and peak levels of GH, TSH, LH, FSH, and cortisol in response to pituitary 

stimulation tests. GH deficiency was diagnosed in the presence of low-normal IGF-I levels 

according to sex and age cutoffs and impaired response to two consecutive classical 

provocative tests (with arginine or clonidine or insulin; GH peaks <10 ng/ml) or one double 

stimulus with GHRH + arginine (GH peaks <20 ng/ml)(141). A diagnosis of TSH deficiency 

was made if serum free T4concentration was under the normal cutoff level(<10 pmol/liter) with 

normal or low TSH levels. ACTH deficiency, in presence of low or normal ACTH levels, was 

suspected when fasting morning serum cortisol was less than 193 nmol/liter and was confirmed 

by an impaired response to the 1-μg tetracosactide or insulin tolerance test (<497 nmol/liter). 

Gonadotroph axis was investigated only in patients of postpubertal age. FSH-LH deficiency 

was diagnosed on the basis of delayed or absent pubertal development and no increase in serum 

FSH and LH in response to the GHRH test. 

IV.2 Genomic DNA extraction 

Genomic DNA was extracted from whole blood samples using either the salting out method 

based on Miller et al. (143) or QIAGEN blood mini kit according to the manufactures 

instructions.  

IV.3 Polymerase Chain Reaction (PCR) 

Standard PCR reactions were performed using Taq Polymerase (Promega) for the amplification 

of the genomic DNA for the sequencing analysis of GH1, GLI2 and SHOX. For the screening 

of GH1, Genomic DNA was initially amplified by PCR using a proof reading Taq polymerase 

(Finnzymes). The primers (Appendix 1) were designed specifically for the GH1 gene and do 
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not amplify other genes in the cluster The resulting 2.7 Kb product, including the whole GH1, 

was used as template for a series of nested PCRs using internal primers for the proximal 

promoter, five exons, four introns and the untranslated regions of the GH1.  

A standard reaction was carried out using relevant primers (sequence showed in appendix 1), 

dNTPs, Taq Polymerase and 5x Buffer (Promega). The final volume of PCR reactions were 

25µl unless otherwise specified. The reactions were set up as follows: 

Table 6: PCR conditions for Taq Polymerase 

 

Cycling Parameters used were: denaturation at 94°C for 2 min, 30cycles consisting of 30s 

denaturation at 94°C, 30s annealing at 55-58°c (optimized passed on the primers ) and 30s 

extension at 72°c, followed by a final extension at 72°C for 10 min. 

 

 

 

 

Reagents 

Concentration 

Reaction Mix Initial 

Concentration 

Final 

Concentration 

Go Taq® Flexi Buffer 5X 1X 5 µl 

MgCl2 25 mM 1,5 mM 1,5 µl 

dNTPs 2,5 mM 0,2 mM 2 µl 

Primers F+R 10 pmol/µl 0,4 pmol/µl 1 µl 

Go Taq® (Promega) 5 U/µl 0,02 U/µl 0.1 µl 

DNA 25 ng/µl 50 ng 2 µl 

H2O - - 13,4 µl 

Volume Totale 25 µl 25 µl 25 µl 
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The Reactions using proof reading Taq polymerase were set up as follows: 

Table 7: PCR conditions for DyNAzyme EXT DNA Polymerase 

 

Cycling conditions used were:  denaturation at 94°C for 2 min, 30cycles consisting of 30s 

denaturation at94°C, 30s annealing at 58°c and 3min extension at 72°c, followed by a final 

extension at 72°C for 10 min. 

After the reaction all the PCR products were visualized on a 2% agarose gel and purified 

using ExoSAP-IT enzymatic PCR clean up system (Affymetrix). 

IV.4 Sequencing  

The purified products were directly sequenced in the forward or reverse direction with Big 

Dye Terminator kit (Applied Biosystems) and analyzed on an ABI PRISM 3100 Genetic 

Analyzer (Applied Biosystems).  

 

 

Reagents 

Concentration 

Reaction Mix Initial 

Concentration 

Final 

Concentration 

Mg Free 10X Buffer 10X 1X 2,5 µl 

MgCl2 50 mM 1,5 mM 0,75 µl 

dNTPs 2,5 mM 0,25 mM 2,5 µl 

Primers F+R 10 pmol/µl 0,4 pmol/µl 1 µl 

DyNAzyme EXT DNA 

Polymerase 
1 U/µl 0,03 U/µl 0.75 µl 

DNA 25 ng/µl 100 ng 4 µl 

H2O - - 13,5 µl 

Volume Totale 25 µl 25 µl 25 µl 
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The sequencing Reactions were set up as follows: 

 2 µL of purified PCR product 

 1 µL primer (3.2 µM) 

 1 µL Big Dye terminator mix 

 6 µL H2O 

 

Cycling conditions used were: 25cycles consisting of 15s denaturation at96°C, 05s annealing 

at 50°c and 4 minutes extension at 60°c. 

IV.5 T/A cloning 

T/A cloning (Thermo Scientific InsTAclone PCR cloning kit) has been performed to 

understand whether the double mutations were in the compound heterozygous state. The PCR 

products containing the variations in the heterozygous state were cloned into the plasmid vector 

pTZ57R/T (Appendix 3) using the InsTAclone PCR cloning kit (Fermentas) and the two alleles 

were separately sequenced.  

IV.6 Site-directed mutagenesis 

 

The 2.7-kb fragment containing GH1 was inserted into the pcDNA 3.1(+) expression vector 

(Appendix 3). The constructs bearing the single variants, namely 246C, 255A, 261T, and 272T, 

and the variants combined as in the patients, namely 261T/272T (patient 1) and 255A/261T 

(patient 2), were generated from the GH(wt)-pcDNA 3.1 plasmid by the QuikChange Site-

Directed Mutagenesis kit from Stratagene using mismatch complementary primers (Appendix 

1) containing the desired mutations. Reaction mixtures were denatured at 940C for 5 minutes, 

cycled 25 times at 940C for 15 sec, 580C for 1 min, 680C for 8 minutes. 

The reaction was set up as follows: 

Buffer (10X) 5µl 

Primer 1 (100ng/µl) 1.25 µl (100ng/µl) 

Primer 2 (100ng/µl) 1.25 µl (100ng/µl) 
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dNTPs 1 µl 

dsDNA template 1-5 µl (50 ng) 

Dd  H2O To a final volume of 50 µl 

Pfu Turbo® 2.5 U/ µl 

 

After the reaction, the products were digested with DpnI. DH5a competent cells were 

transformed with the different constructs and grown on Luria Broth/ampicillin media. After 

selecting the correct clones by colony PCR, the plasmid DNA was isolated using Maxiprep kit 

(QIAGEN). The desired mutation was confirmed by sequencing. 

IV.7 Cell culture, transfection, and isolation of RNA 

The GH4C1 rat pituitary cell line was used for the transfection experiments. The stock culture 

was grown in Ham’s F10 medium (Gibco-Life Technologies) supplemented with 15% horse 

serum, 2.5% FBS, 100-U/mL penicillin, and 100-µg/mL streptomycin in a 5% CO2. A day 

before transfection, 4 X105 cells were seeded into each well of a 6-well tissue culture plate in 

2.5-mL medium. The wells were previously treated with 1:10 diluted poly-L-lysine solution 

(Sigma-Aldrich) to allow the cells to completely attach to the plate. At 50%–70% confluency, 

cells were transfected with 2.5-µg DNA of the wt-GH or the mutated constructs using the Trans 

IT-LT1 transfection reagent (Mirus Bio LLC). A GFP control was used to test transfection 

efficiency. Forty-eight hours after transfection, totalRNAwas isolated and purified from the 

cells using the QIAGEN RNA mini kit (QIAGEN).  

IV.8 cDNA synthesis 

cDNA was synthesized from 1.5 µg of RNA by the High CapacitycDNAReverse Transcription 

kit (Applied Biosystems), according to the manufacturer’s instructions. The different 

transcripts produced by alternative splicing were analyzed using primers specific for GH1 

cDNA (Figure 2A). The RT-PCR was performed with primers GH2 (5’-
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CGTCTGCACCAGCTGGCCTTT-3’) and GH7 (5’-AAGCCACAGCTGCCCTCCACAGA-

3’), which amplify part of exon 2, exon 3, exon 4, and part of exon 5, allowing detection of 

both exon 3- and exon 4-skipped products. 

IV.9 Western immunoblot analysis 

CHO cells were transiently transfected with wt-GH and mutated constructs, as described above. 

After 48 hours, whole-cell lysates were collected using the standard RIPA lysis buffer 

containing 0.1% SDS. A total of 20 µg of whole-cell lysates were separated on 15% SDS-

PAGE gel and blotted on Immun-Blot PVDF membrane (Bio-Rad). Membranes were probed 

with a polyclonal rabbit antihuman GH antibody (Abnova) and detected with a secondary HRP-

conjugated goat antirabbit IgG (Millipore). A polyclonal antiactin antibody (Sigma-Aldrich) 

was used to normalize the protein loading. Protein bands were visualized using enhanced 

chemiluminescence reagent (Thermo Scientific) with image capture performed using a CCD 

camera linked to ChemiDoc apparatus (Bio-Rad). CHO cells were used instead ofGH4C1cells 

for protein analysis, because the GH4C1 showed many unspecific bands after Western blotting, 

likely due to cross-reactions with endogenous proteins. 

IV.10 MLPA Analysis 

The MLPA analysis was performed using the MRC-Holland MLPA kit (SALSA P-018 G1, 

MRC-Holland, Netherlands) according to the manufacture’s instruction. The probe mix 

contains 48 MLPA probes among them 26 are located in the SHOX+Xp22 area, including 

SHOX and its regulatory regions (Figure 8). 13 probes are located elsewhere on the X-

chromosome and other 9 probes detecting autosomal chromosomes are also used. Seven of the 

probes are specific for each exon of the SHOX promoter region. Furthermore, several probes 

are located on the previously identified SHOX regulatory regions, upstream and downstream 

of SHOX. The amplified fragments were submitted to a capillary electrophoresis in ABI 

PRISM 3100 Genetic Analyzer and were analyzed by GeneMapper software (Applied 
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Biosystems, Foster City, CA). The data analysis was performed by MRC Holland Coffalyser 

v9.4 software. This software calculates the odds ratios for each probe. An odd ratio of less the 

0.7 was considered as deletion and an odd ratio of more than 1.3 was considered duplication. 

All patients were compared with the DNA from three controls. 

 

Figure 8: Schematic representation of PAR1 with the location of the MLPA probes 

 

 

The MLPA reaction was set up as follows: 

5 µl of DNA (100ng) was used to perform the analysis. The hybridisation master mix was 

prepared (Table 8), using 1.5 µL of SALSA ProbeMix MLPA® Buffer and 1.5 µL MLPA® 

Buffer. The DNA was initially denatured for 5 minutes at 980C and cooled down to 250C.      3 

µl of the hybridisation master mix was added to each sample and continued the thermocycler 

at 950C for 1 minute and then at 600C for 16-20 hours. 

Table 8: MLPA Hybridization reaction  

Hybridization master mix Quantity 

SALSA ProbeMix MLPA® Buffer 1.5 µL 

MLPA® Buffer 1.5 µL 

Vol. finale 3 µL 
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A ligase-65 master mix was prepared as showed in table x. 32 µL of the ligase-65 master mix 

to each reaction tube while the thermocycler at 540C. Thermocycler program was continued 

at 540C for 15 minutes followed by 5 minutes at 980C for the inactivation of the Ligase-65 

enzyme and then colled to 200C.  

Table 9: MLPA Ligation reaction 

Ligase-65 mix QUANTITÀ 

Ligase-65 Buffer A  3 µL 

Ligase-65 Buffer B 3 µL 

Ligase-65 1 µL 

H2O 25 µL 

Vol. Finale 32 µL 

 

The SALSA PCR mix was prepared as showed in table x. 10 µL of SALSA PCR Primer mix 

was added to each tube containing the ligation reaction product at room temperature. The 

thermocycler program was continued: cycled 35 times at 950C for 30 seconds, 600C for 30 

seconds, 720C for 1 minute.finally the samples were incubated at 720C for 20 minutes and then 

cooled down to 150C. 

Table 10: MLPA PCR reaction 

SALSA PCR mix QUANTITÀ 

SALSA PCR Primer mix  2 µL 

SALSA polymerase  0.5 µL 

H2O 7.5 µL 

Volume Finale 10 µL 

 

IV.11 ESE finder analysis 

Analysis of the splicing regulatory motifs within exon 3 was performed using the software ESE 

finder 3.0 ( http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi ). The default thresholds were 

http://it.wikipedia.org/wiki/Idrogeno
http://it.wikipedia.org/wiki/Ossigeno
http://it.wikipedia.org/wiki/Idrogeno
http://it.wikipedia.org/wiki/Ossigeno
http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi
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considered to identify sites responsible for the 4 SRproteins ASF/SF2, SC35, SRp40, and 

SRp55. 

IV.12 Gel image analysis 

The RT-PCR and Western blotting gel images were analyzed using the freeware ImageJ1.46r 

(http://rsb.info.nih.gov/ij/ ; National Institutes of Health), and the bands were quantified by 

measuring pixel intensity and normalized to the corresponding β-actin band intensity. 
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V. RESULTS AND DISCUSSIONS 
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V.1  NOVEL MUTATIONS IN THE GH GENE (GH1) UNCOVER PUTATIVE 

SPLICING   REGULATORY ELEMENTS 

 

V.1.1 Background 

The GH1 gene is located on chromosome 17q23 within a cluster of five highly homologous 

genes, all consisting of five exons and four introns, including the placentally expressed growth 

hormone gene GH2, two chorionic somatomammotropin genes CSH1 and CSH2 and a 

pseudogene CSHP1(7). When correctly spliced, GH1 produces the 22kDa isoform which 

includes all the five exons with the complete biological activity of GH (5,10) . Despite the 

correct processing, even under normal conditions a small percentage of alternatively spliced 

isoforms are produced. The presence of an in-frame cryptic splice site within exon 3 gives rise 

to a transcript lacking the first 45bp of exon 3 and encodes a shorter active isoform of 20kDa 

(representing 5-10% of GH transcripts) (23). A 17.5kDa isoform (representing 0.1-5% of GH 

transcripts) is produced by the complete skipping of Exon 3, thus lacking the entire loop 

connecting helix1 and helix 2 in the tertiary structure of GH and generating a GH isoform with 

no biological activity (144). Trace amounts of the severely truncated isoforms of 11.3kDa and 

7.4kDa, which are biologically inactive, have also been identified being generated by the 

skipping of exons 3 and 4 or 2 to 4, respectively (27). Multiple mechanisms have evolved to 

maintain the small amounts of these aberrantly spliced isoforms, especially that encoding the 

17.5kDa protein. Since GH1 has weak canonical splice sites, multiple cis acting splicing 

regulatory elements (splicing enhancers) are essential to maintain the correct exon 3 definition 

through the activation of the canonical intron 2 and 3 splice sites and the silencing of the cryptic 

sites. Two Exon Splicing Enhancers, ESE1, encompassing the first seven bases of exon 3 (from 

c.172 to c.178), and ESE2 (from c.190 to c.204), located 12 nt upstream of the cryptic splice 

site in exon3 (Fig. 1a), and an Intron Splicing Enhancer (ISE) within intron 3, have been well 

characterized (14,16,34,35,51). 
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Several mutations, both non-synonymous and synonymous, leading to aberrant splicing have 

been reported in IGHD patients within these enhancer motifs (14,16,34,35).  The increased 

amount of the 17.5 kDa isoform exhibits a dominant negative effect both in tissue culture and 

transgenic mice experiments by disrupting the secretory pathway and trafficking of normal GH 

and other hormones, including adrenocorticotropic hormone (ACTH) (25,26).   

We here report the identification of variations within   GH1 exon 3 in two sporadic IGHD 

patients and absent in a group of 205 normal stature controls and in the public databases. In 

silico analysis suggested that two of these variations affect exon 3 splicing as they are located 

within a putative exon splicing enhancer. In vitro mRNA and Western Blot analysis confirmed 

the deleterious effect of the single variations on splicing, suggesting the presence of further 

splicing regulatory elements within GH1 exon 3. 

 

V.1.2 Genetic analysis of the IGHD patients 

A total of 103 sporadic IGHD patients with height ranging from -1.8 to -4.5 SDS were 

investigated for the presence of functionally relevant mutations in GH1, including coding 

regions and introns. Two patients harbored a combination of 2 variations within exon 3 (Table 

11) that were not previously reported in public databases, including dbSNP 

(http://www.ncbi.nlm.nih.gov/SNP/), the Exome Variant Server 

(http://evs.gs.washington.edu/EVS/), and 1000 genomes (http://www.1000genomes.org/). 

Patient 1 carried c.261C>T (p.Pro87Pro) and c.272A>T (p.Glu91Val), and patient 2 carried 

c.255G>A (p.Pro85Pro) and c.261C>T (p.Pro87Pro). A third patient (patient 3) (Table 11) 

carried the nonsynonymous c.246G>C determining the substitution p.Glu82Asp in exon 3. This 

variation was reported in the dbSNP (rs61762497) only in 1 individual and in the Exome 

http://www.ncbi.nlm.nih.gov/SNP/
http://evs.gs.washington.edu/EVS/
http://www.1000genomes.org/
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Variant Server in 2 out of 13000 individuals. All the above exon 3 variations were absent in a 

panel of 410 chromosomes sequenced from 205 normal stature Italian control individuals. 

The analysis of the parents of patients 2 and 3 demonstrated that their variants were inherited 

from the unaffected fathers. Unfortunately, the parents of patient 1 did not give their consent 

to DNA analysis. By subcloning the patient’s PCR products in a TA cloning vector system, we 

confirmed that in patient 1, as well as in patient 2, both variants were on the same allele. The 

alignment of GH1 with the paralogous genes of the GH cluster suggested that all the 4 variants 

in exon 3 were generated by nonallelic gene conversion from the GH2 gene, because the other 

3 genes (CS-5, CS-2, and CS-1) have the same GH1 sequence at these sites. 

V.1.3 Detailed description of patients carrying the GH1 variations 

The variants identified in the three patients are reported in Table 11. 

Case 1: This patient is a boy born at term with no perinatal complications. He came to our 

attention when he was 7.3 years old with a height of -2.7 SDS. He had normal stature parents:  

the father is -1.7 SDS and the mother -0.6 SDS. He was prepubertal.  GHD was diagnosed 

based on low response to insulin tolerance test and clonidine provocative tests (8.9 ng/ml and 

8.3 ng/ml, respectively).  The IGF-I level was 130 ng/mL. The bone age was delayed by 3.8 

years. GH therapy was initiated with a good clinical response reaching a height of -1.7 SDS 

after 6 years. 

Case 2: This case is a male born from non-consanguineous parents by vaginal delivery after 

41 weeks of gestation. At birth it was adequate for gestational age (birth weight 3330 g length 

52 cm). Both parents presented normal height: father 174 cm (-0.2SDS) and mother, 155 cm (-

1.3 SDS). He came to our attention at age of 13 presenting short stature with a height of -3.4 

SDS. His growth rate in the year preceding the diagnosis was 5.0 cm/year (-1.5 SDS). At the 

diagnosis the pubertal stage were: PH 2, G2 and bilateral testicular volume 5.  The bone age 
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was delayed: (11.6 years, TW2 method).   GH secrection peaks after stimulus with arginine 

and clonidine were 3.9 ng/ml and 8.3 ng/ml respectively with IGF1 level of 65 ng/ml.   He 

promptly started the recombinant human GH replacement therapy (0.22 mg/kg/week) and 

reached the height of -1.8 SDS after 4 years.  

Case 3: This boy came for the first time to our attention for growth failure at the age of 16.5 

years old. At diagnosis his stature was −2.7 SDS. He was born to non-consanguineous parents 

with normal pregnancy at 40 week gestation, adequate for gestational age (birth weight 2950 

g). His father and mother presented normal stature (-0.5 SDS and -0.3 SDS, respectively). The 

pubertal stage were: Pubic Hair development 3, Genital development 2 and bilateral testicular 

volume 8 ml. The growth velocity was 4.5 cm/year (1.6 SDS, but low when corrected for 

pubertal stage), and x-ray revealed a bone age (TW2) of 14.2 years. Laboratory analysis 

revealed normal IGF1 level (180 ng/ml) and low level of circulating GH after two provocative 

tests (7.7 ng/ml with arginine and 3.7 with clonidine). The recombinant human GH replacement 

therapy (0.24 mg/Kg/week) was begun with a good response, as he reached the height of -0.7 

SDS after 3 years. 

Table 11: Exon 3 variation identified in IGHD patients 

 

 

 

 

 

 

                        

 

 

 

 

 

Patient 
Variation Within a 

predicted 

ESE Nucleotide Amino acid 

1 
c.261C>T p.Pro87Pro No 

c.272A>T p.Glu91Val Yes 

2 
c.255G>A p.Pro85Pro Yes 

c.261C>T p.Pro87Pro No 

3 c.246G>C p.Glu82Asp No 
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V.1.4 The exon 3 variations fall within predicted ESEs 

 

Because several exon 3 mutations lead to missplicing of mRNA and production of increased 

amounts of the 17.5 kDa protein, we evaluated the possible involvement in the splicing 

regulation of the variants identified in our patients within this exon. None of them was included 

in the previously described ESEs (ESE1 and ESE2). An in silico analysis using ESE finder 3.0 

(Figure 9, A and B) revealed the presence of 2 high scoring ESE motifs from c.254 to c.260 

(CGACACC) and c.269 to c.275 (GGGAGGA). These 2 sequences include the variations 

c.255G>A and c.272A>T, respectively (Figure 9A). The position c.255 is located within an 

ESE motif recognized by the SR protein SRp40 and c.272 within a sequence recognized by 

SRp40 and SF2/ASF. Both putative ESE sequences showed an increased score compared with 

the threshold value (Figure 9B). By substituting the wild-type nucleotides with those found in 

the patients, namely c.255A and c.272T, the software predicted the complete loss of these 2 

putative ESEs (Figure 9B).  

 

 

A. 
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B. 

 

Figure 9: A, ESEs in exon 3. The 2 known ESEs (ESE1 and ESE2) are indicated. The cryptic 

splice site is at c.216 and is indicated with a dotted line. The newly identified putative ESEs 

are indicated as pESE1 and pESE2. The mutations identified in patient 1 and patient 2 in the 

pESEs are boxed. B, ESE finder analysis performed on the wild-type exon 3 and on the 

different exon 3 alleles identified in patients. The analysis using wild-type sequence revealed 

all the putative exon splicing enhancer sites within exon 3. ESE motifs with scores above the 

threshold for each SR protein are indicated in differently colored bars. The bar heights reflect 

the score of the motifs. Threshold values and color code for each of the different motifs are 

indicated on the right. The introduction of c.255G_A and c.272A_T variations caused the 

abolition of the 2 putative ESE elements at positions c.254–260 and c.269–275, respectively. 

 

V.1.5 Variants c.255A and c.272T affect GH1 splicing in vitro 

 

To evaluate whether exon 3 variants actually had some effect on mRNA splicing in vitro, we 

transfected GH4C1 rat pituitary cells with an expression vector containing 1) the wild-type 

allele (wt-GH1), 2) the alleles carrying the single mutations, and 3) the alleles containing the 

mutations combined as they were in patients 1 and 2. The mRNA from transfected cells was 

reverse transcribed, and the resulting cDNA was amplified with primers (Figure 10A) specific 

for the human GH1 that did not amplify the rat mRNA. The RT-PCR on the wt-GH1 mRNA 

(Figure 10B, lane 2) yielded an intense band corresponding to the GH1 full-length transcript 

(518 bp) producing the 22-kDa protein and faint bands corresponding to the 20-kDa isoform 
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(473 bp), the 17.5-kDa isoform (398 bp), and the 11.3-kDa isoform (233 bp). The average yield 

of the mRNA corresponding to the 17.5-kDa isoform over 4 independent experiments was 

4.4±1% of the total mRNA yield with a ratio 17.5 kDa/22 kDa of about 1:20. The 246C 

construct (Figure 10B, lane 3) was also tested, although the c.246C variation was not predicted 

to influence splicing. This construct generated a band pattern similar to that observed in the 

wild-type accordingly to the in silico prediction. In contrast, 255A and 272T constructs (Figure 

10B, lanes 4 and 6, respectively) produced a higher level of the exon 3-skipped mRNA with a 

ratio 17.5 kDa/22 kDa of about 1:2 and 1:2.4, respectively. In these 2 constructs, there was also 

an evident increased production of the exon 3–4-skipped transcript (233-bp band). 

Interestingly, the exon 3-skipped mRNA was not evident in the transcripts from the 261T 

construct, suggesting that this variant might strengthen the correct splicing. When the variants 

were combined on the same construct to reproduce the status of patients 1 and 2, the exon 3-

skipped mRNA produced by the construct 255A/261T (patient 2) (Figure 10B, lane 7) was less 

abundant than that observed for 255A but still evident, with a 17.5 kDa/22 kDa ratio of 1:3.3. 

Conversely, the 261T/272T construct (patient 1) (Figure 10B, lane 8) showed a splicing pattern 

very similar to the wild type.  
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Figure 10: Scheme of GH1pre-mRNA splicing showing the full-length mRNA and the 

corresponding RT-PCR product. (b) RT-PCR performed on mRNA extracted from GH4C1 

pituitary cells transfected with the wild type GH1 (lane 2) or constructs carrying different 

variations (lane 3-8). The size of the bands are indicated on the right with the corresponding 

protein molecular weight of the different isoforms. Untransfected rat cDNA did not show any 

bands (data not shown). Each PCR product was eluted from the gel and characterized by 

sequencing. The relative band intensity (expressed as the percentage on the total yield) 

calculated as the mean ± SD over four different independent transfection experiments is 

reported for each construct below the corresponding lane. 

 

We then investigated the consequences of the variants on protein synthesis (Figure 11). 

Western blot analysis confirmed that the transfected wt-GH1 produced mostly the 22-kDa 

protein with only traces of the 20 and 17.5 kDa. A higher level of the 17.5-kDa product was 

produced by 255A, 272T, and by the 255A/261T constructs. Although the 261T/272T plasmid 

carrying the 2 variations detected in patient 1 showed a mRNA pattern similar to the wild type 

(Figure 10B, lane 8), it exhibited a band in correspondence of the 17.5-kDa protein more 

intense than the wild type (about 10% of the total GH proteins) (Figure 11, lane7). This band 

in the 261T construct was weak (as in the wt-GH1), but the 20-kDa isoform was more intense 
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than in all the other constructs. The corresponding 11.3-kDa protein isoform was not detectable 

by the antibody used for Western blot analysis. 

 

Figure 11: Western immunoblot analysis of the different GH isoforms encoded by the different 

splicing products. The CHO cells were transiently transfected with either wt-GH1 (Lane 2) or 

constructs carrying different variations (Lane 3-7). Untransfected CHO cells. 

 

V.1.6 Discussion 

In the present study, GH1 was sequenced in 103 IGHD patients with clinically variable 

phenotypes and no family history to search for mutations that might be 1) inherited from 

healthy parents (incomplete penetrance), 2) arisen de novo, or 3) biallelic (recessive 

inheritance). We identified 3 patients that carried variations in exon 3, and 2 of them carried 2 

variants on the same allele. All the variants were likely generated by gene conversion, an event 

that is frequently associated to GH1 sequence variability (36,145,146). An in silico analysis 

was performed using ESE finder 3.0, which has been designed to identify SR protein binding 

sites by generating a motif score that reflects the binding site strength. The sequences from 

c.254 to c.260 and from c.269 to c.275, including the positions c.255 and c.272 mutated in 

patient 2 and in patient 1, respectively, were predicted to represent ESE motifs recognized by 

theSRp40 and SF2/ASF proteins with a score above the threshold (Figure 9B). The same 

factors were predicted to recognize ESE2 with the same strength (51). It has been demonstrated 

that SF2/ASF activates exon 3 inclusion and that disruption of this motif causes increased exon 
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3 skipping (147). The substitution of the wild-type nucleotides c.255G and c.272A with the 

mutants c.255A and c.272T, respectively, was predicted to abolish the binding of these proteins 

in both putative ESEs (Figure 9). The RT-PCR analysis (Figure 10) confirmed the influence of 

c.255A and c.272T on splicing by increasing the exon 3-skipped isoform to18%–20% of the 

total GH mRNA (Figure 10B, lanes 4 and 6, respectively). 

Mutations within ESE1 in GH1 have been previously reported to cause either complete or 

partial exon 3 skipping and generation of increased amounts of the 20- and the 17.5-kDa 

isoforms at various concentrations (20%–37% and 35%–68%, respectively) (16,51). The 

clinical variability observed in patients carrying these mutations has been explained by variable 

amounts of the 17.5-kDa isoform consequent to a weakened exon 3 recognition. Hamid et al 

(148) reported a large pedigree with the c.172G>A splicing mutation, and they suggested that 

the ratio of 17.5 kDa/22 kDa transcripts in the lymphocytes correlated with the height SDS 

before GH replacement therapy. In this family, there were individuals with a height SDS more 

than -2 that inherited the mutation (incomplete penetrance). Another heterozygous missense 

mutation, c.200A>G, within ESE2 induces exon skipping in about 20% of the transcripts, 

giving rise to different phenotypes ranging from short stature to normal stature in the same 

large pedigrees (36). 

It is thus conceivable that mutations associated with variable expressivity and incomplete 

penetrance might be responsible for at least some milder forms of IGHD. The effect determined 

by the here detected variants, c.255G>A and c.272 A>T, is comparable with the effect caused 

by most of the previously described mutations falling within ESE1 and ESE2 (16,36,148). 

However, when these 2 variants were combined with c.261T, as in patients 1 and 2, the effect 

on splicing was maintained, although weaker, only for the 255A/261T construct (patient 2) 

(Figure 10B, lane7). In contrast, the 261T/272T construct (patient 1) (Figure 10B, lanes 8) was 

very similar to the wild-type, although the Western blotting for the same construct showed a 
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slightly increased amount of the 17.5-kDa band (Figure 11). This discrepancy might be 

attributable to the different sensitivity of the 2 methods.  

Thus, the c.261 variant, which is not included in the putative ESE sites, partially hides the 

negative effect of the c.272. It can be speculated that c.261 influences splicing by strengthening 

the affinity for other proteins involved in the correct splicing regulation. 

It is worth considering that the 233-bp band corresponding to the bio inactive 11.3 kDa (exon 

3–4-skipped isoform) is strongly increased in all mutant constructs, 261T and 261T/272T 

(Figure 10B). The relative total amount of the 2 alternatively spliced mRNA (exon 3 and exon 

3–4 skipped) in the 255A, 272T, and 255A/ 261T constructs can be roughly estimated to 

represent nearly 50% of the total GH1 mRNA in contrast to the wild-type, where these 

transcripts represent about 12% of the GH1 transcripts. 

The low serum GH level detected in vivo in the patients might be in part determined by the 

effect on splicing of these variants and in part by other yet unidentified genetic factors. Notably, 

patient 1 carried on the other allele the GH1 promoter haplotype 1 (data not shown) that has 

been associated to IGHD and to a reduced luciferase activity in vitro (149). 

The functional significance of the Glu82Asp variant carried by patient 3 is uncertain. From our 

experiments, it does not seem to influence splicing (Figure 10B, lane 3), and it is not predicted 

to have an effect on SR protein binding (data not shown). This variant is very rare, because it 

was reported in the dbSNP database (rs61762497) only in 1 individual of African ancestry, it 

is present in 2 individuals out of 13000 of the Exome Variant Server, and it was absent in our 

panel of 205 normal stature individuals. However, it is not predicted to exert a damaging effect 

on the protein function by the software Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/). It 

might, thus, represent either a rare benign polymorphism, or alternatively it might contribute 

to a multigenic form of IGHD in this patient. 

http://genetics.bwh.harvard.edu/pph2/
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In conclusion, the analysis of GH1 in individuals with sporadic IGHD led to the identification 

of 2 novel GH1 exon 3 variations, c.255 G>A and c.272 A>T, included within 2 novel putative 

splicing regulatory elements that increase the aberrant splicing in vitro. When combined in cis, 

with c.261 C>T, as in the patients, their effect was reduced but still evident on the protein 

synthesis. It can be hypothesized that also a minimally increased amount of the 17.5-kDa 

protein might exert a dominant negative effect on the GH synthesis in vivo. The phenotype of 

patients 1 and 2 might be associated to these GH1 splicing variations that by themselves only 

partially influence the amount of GH secretion but that might act in concert with other genetic 

variants.  
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V.2  NOVEL GLI2 MUTATIONS IN PATIENTS WITH COMBINED 

PITUITARY HORMONE DEFICIENCY (CPHD) 

 

V.2.1 Background 

Combined Pituitary Hormone Deficiency (CPHD) is defined as the impaired production of at 

least two anterior pituitary hormones. It is usually characterized by growth hormone deficiency 

(GHD) and is associated with a wide range of phenotypes ranging from Short stature, 

Hypothyroidism, impaired sexual development and hypocortisolism. Congenital CPHD has an 

incidence of approximately 1:8000 births, mostly sporadic and 5-30% with familial cases 

(2,150,151).  

Pituitary development is dependent upon a complex genetic cascade of transcription factors 

and signaling molecules acting as activators or repressors which dictate organ commitment, 

cell differentiation and cell proliferation (54,55). Mutations in several of these transcription 

factors, such as PIT1, PROP1, HESX1, LHX3, LHX4, OTX2 and SOX2, implicated in 

hypopituitarism with or without extra pituitary manifestations in mice and humans (73,152-

155). However, screening of mutations in these transcription factors has identified aetiology of 

hypopituitarism in only a small percentage of patients. 

During early steps of pituitary ontogenesis Sonic hedgehog (SHH) signaling pathway plays a 

crucial role in combination with several other signaling molecules in the development of 

pituitary gland. Shh is expressed in the ventral diencephalon and the oral ectoderm except 

primordial Rathke’s Pouch (89). Three related zinc finger transcription factors GLI1, GLI2 and 

GLI3 acts as major effector protein downstream of the shh pathway, are expressed in the ventral 

dicencephalon and developing Rathke’s pouch and mediate the activation of target genes (156). 

GLI2 deficient mice showed defects in the pituitary development that have been included in 

the partial loss of anterior pituitary and complete loss of posterior pituitary (94,95). 
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Human GLI2 is a 1586 amino acid protein encoded by 13 exons on chromosome 2q14. The 

GLI superfamily proteins are characterized by a central DNA binding domain consisting of 5 

consecutive zinc finger motifs in the pattern X3-Cys-X4-Cys-X12-His-X4-His-X3, where x 

represents any amino acid(157). In addition to the DNA binding domain, the GLI2 protein also 

contain an N-terminal repressor domain and C-terminal transcriptional activator domain 

(158,159). It has been shown that N-terminal repressor domain plays a central role in the 

pathogenic dominant negative activity resulting from mutations and constructs representing 

pathogenic human GLI2 mutants with C-terminal deletions had undetectable transcriptional 

activity (96).  

Heterozygous GLI2 loss of function mutations were initially reported in patients with 

Holoprocensephaly (HPE), a condition of incomplete or failed forebrain separation, or HPE-

like phenotypes with pituitary anomalies and postaxial polydactyly (96,97). Since then, several 

GLI2 sequence variants were reported in patients with HPE characterized by a wide spectrum 

of phenotypes including craniofacial abnormalities, brancial arch anomalies, polydactyly and 

may or may not comprise pituitary defects (98-101). Franca et al (87,102) reported novel 

heterozygous frame shift or nonsense GLI2 mutations and high frequency of non-synonymous 

GLI2 variants in patients with congenital hypopituitarism without HPE and most of these 

patients presented with CPHD and an ectopic posterior pituitary lobe. More recently, several 

individuals with truncation mutations in GLI2 were reported with the presence of typical 

pituitary anomalies, polydactyly and subtle facial features rather than HPE(103).  

In all the patients so far identified with GLI2 mutations, the pattern of inheritance was dominant 

with incomplete penetrance and variable phenotype. These previous studies conclude that 

patients with CPHD and an ectopic posterior with or without polydactyly, midline facial defects 

or HPE can be considered as candidates for GLI2 study (87,102,103). 



59 
 

In the present study, we sequenced GLI2 in a cohort of 136 patients with CPHD for the search 

of mutations and described the clinical findings of patients with possibly pathogenic mutations. 

V.2.2 GLI2 variants 

Four CPHD patients were identified with heterozygous non-synonymous variations: two 

missense (p.Tyr575His and p.Ala593Val), one frameshift (p.Val1111Glyfs*19) and one 

nonsense (p.Arg1226*) (Figure 12). Among the 4 missense variants, 2 were located in the Zinc-

finger domain and the one in the N-terminal repressor domain and the other in the C-terminal 

activator domain. Both the truncating variants were located in the C-terminal activation 

domain. Both the missense variants identified were not reported in any of the public databases 

used in this study (DbSNP, Exome variant Server and 1000 Genomes project consortium 

database). The patients with mutations in GLI2 

 

Figure 12: Schematic representation of GLI2 with the variations identified among CPHD 

patients in this study 
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Table 12: Clinical characteristics of CPHD patients identified with GLI2 mutations. 

Patient ID #1116 #1014 #1107 #836 

Mutation p.Tyr575His p.Ala593Val p.Val1111Glyfs*19 p.Arg1226* 

Sex M F F M 

Sporadic/ 

familial 

Familial Sporadic Sporadic Sporadic 

Consanguinity 

Yes/No 

No No No No 

Birth data At term, AGA At term, AGA At term, AGA At term, AGA 

Age at diagnosis, 

yr 

9.4 28 10.9 3 

Height SDS at 

diagnosis 

-2.2 -2.1 -1.6 -1.8 

Bone age delay at 

diagnosis, yr 

1.8 NA NA NA 

GH 

TSH 

ACTH 

LH, FSH 

PRL 

D 

D 

D 

PP 

NA 

D 

D 

D 

D 

NA 

D 

D 

D 

D 

NA 

D 

D 

D 

PP 

NA 

Pituitary and 

cerebral imaging 

APH, EP NA APH, EP APH, EP 

Other Clinical 

Characteristics 

Polydactyly, 

Craniofacial 

abnormalities, 

hypercholesterole

mia 

NA Congenital Poly-

malformative 

syndrome, 

mentalretardation, 

myopia 

NA 

AGA = appropriate for gestational age, NA= not available, D= deficiency of the evaluated pituitary 

axis, PP= prepubertal status at diagnosis, APH= anterior pituitary hypoplasia  

 

 



61 
 

V.2.3 Insilico analysis 

The damaging effects of the missense variants were predicted by three publicly available 

algorithms; PolyPhen-2, SIFT and PROVEAN. PolyPhen-2 is a tool that predict the impact of 

an amino acid substitution on the structure and function of human protein(160), SIFT predicts 

whether an amino acid substitution affects protein function based on the degree of conservation 

of amino acid residues in sequence alignments derived from closely related sequences(161) 

and PROVEAN predicts whether an amino acid substitution has an impact on the biological 

function of a protein grounded on the alignment-based score(162). Both the missense variants 

were predicted to be deleterious by PolyPhen and PROVEAN with very high scores while only 

p.Ala593Val was predicted deleterious by SIFT (Table 13).  

Table 13: Insilico analysis of the novel variants identified in this study. X, predicted to be 

deleterious by respective site. 

 

 

 

 

 

 

 

 

 

 

Patient Variants Exon PolyPhen PROVEAN SIFT 

1 p.Tyr575His c.1723 T>C 11 X X X 

2 p.Ala593Val c.1778 C>T 11 X X - 

3 p.Val1111Glyfs*19 c.3332delT 13    

4 p.Arg1226* c.3676 C>T 13    



62 
 

V.2.4 Discussion 

Heterozygous Loss of mutations in Human GLI2 were initially associated with HPE or HPE-

like features charecterised by abnormal anterior pituitary formation and Hypopituitarism with 

inappropriately divided forebrain(97). More recently Franca et al (87,102) reported high 

frequency of GLI2 variations in patients with congenital hypopituitarism without 

Holoprocencephaly. Most of these patients were presented with CPHD and an ectopic pituitary 

lobe.  

The GLI2 gene mutations were searched only in a limited number of previous studies with a 

considerable mutation detection rate. However GLI2 is a large and highly polymorphic gene 

with several rare variations reported in the exome server database. This makes the evaluation 

of the pathogenicity of the reported variations difficult in the absence of functional studies. We 

thus decided to consider only variants with high evidence for pathogenicity, i.e. absent in the 

public databases and predicted to be “probably damaging” by at least two prediction software 

in addition to truncating and frameshift mutations. In the present study, we report 2 

heterozygous missense mutations, one frameshift mutation and a nonsense mutation identified 

in CPHD patients. Two among these variants (p.Tyr575His and p.Ala593Val) fell within the 

zinc finger region of GLI2.   Both the truncating variants, (p.Val1111Glyfs*19 and p.Arg1226*) 

were located in the C-terminal activator domain.  

The DNA binding properties of the transcription factors are localised in the zinc finger domain 

which interact with the DNA at consensus binding sites. GLI2 is a C2H2 zinc finger protein that 

contain two canonical cysteine and histidine residues. The zinc finger motifs folds properly 

only when Zn2+ binds to the canonical residues and the folded motifs bind with the DNA where 

the unfolded zinc fingers do not bind with the target DNA. It is notable that both the missense 

variants reported in this study falls within the DNA binding region. Previous reports (96) 

indicate that all GLI2 mutations leading to truncation are expected to lose the activation activity 
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regardless the location because of the distal location of the activation domain. The variants 

p.Val1111Glyfs*19 and p.Arg1226* identified in patients 5 and 6 respectively, are predicted to 

generate proteins lacking considerable portion of the C-terminal activation domain. Rather than 

simply acting as loss of function alleles, these mutations may exhibit dominant negative   

properties. It has been demonstrated by Roessler et al. (96) that the Gli2 carboxyl terminal 

domain had transcriptional activity and the constructs carrying C-terminal deletions exhibited 

undetectable transcriptional activity in vitro. More interestingly, these constructs when co-

transfected with Wild-type GLI2 constructs revealed a strong dominant negative effect(96). 

Variability in the phenotypic spectrum in our patients carrying GLI2 variations is consistent 

with  those previously reported in patients presented with CPHD and mutations in GLI2 

including pituitary hypoplasia, ectopic pituitary lobe, midline facial defects and polydactyly. 

Any of the patients in our study were presented with HPE or HPE-like features. However, the 

wide phenotypic spectrum, variability in expressivity may be the effect of other genetic or 

environmental factors. 

The GLI2 gene mutations were searched in large cohorts of CPHD patients only in a limited 

number of studies with a considerable mutation detection rate. However, considering the high 

polymorphism rate and the presence of rare variants of GLI2 in the control population makes 

the evaluation of the pathogenicity difficult without functional studies.  
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V.3  SCREENING FOR SHOX MUTATIONS IN ISS PATIENTS 

 

V.3.1 Background 

 
The Short Stature Homeobox containing gene (SHOX), is located on the very tip of the short 

arm of both sex chromosomes X and Y within the telomeric part of pseudoautosomal region 1 

(PAR1, Xp22.33 and Yp11.3) which comprises about 2.6 Mb.  

Loss of function mutations of one SHOX allele (SHOX haploinsufficency) causes a wide 

spectrum of short stature phenotypes associated with Turner syndrome (TS), Leri-Weill 

dyschondrosteosis (LWD) and idiopathic short stature (ISS). Heterozygous SHOX defects have 

been identified in 50-90% of patients in LWD (117-120).  Homozygous mutations or 

compound heterozygous mutations resulting in the complete loss of SHOX causes an extreme 

phenotype called Langer mesomelic dysplasia (LMD) in almost all the cases (122). 

Heterozygous mutations in SHOX has been identified in 2-15% of idiopathic short stature (ISS) 

patients (106,109,110). The deletions which encompass SHOX gene itself or the regulatory 

enhancer regions accounts for 80% of all the SHOX mutations. The other gene defects are point 

mutations reported all over the gene, but predominantly in exon 3 and 4 encoding the 

homeodomain. Partial and complete SHOX duplications of varying sizes were also reported in 

the short stature patients (124,125).  

In this study, a large cohort of ISS patients with mild and severe short stature has been screened 

for the SHOX defects. 

V.3.2 Molecular analysis of SHOX defects in ISS patients 

Commercial SHOX MLPA probes were used for the screening for deletions/duplication of the 

exons, the entire gene and the enhancers. In the absence of deletions, direct sequencing of 

SHOX was performed to identify point mutations (Figure 13).  
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Figure 13: Flow chart detailing the strategy for the molecular investigation in ISS patients 

 

Two hundred and fifty two idiopathic short stature individuals aged between 0.1 and 18 years 

were screened for SHOX gene mutations. A total of 20 patients (7.9%) were identified with 

SHOX defects. Among them 14 patients had deletions or duplications of SHOX gene or the 

regulatory regions, identified by MLPA. Six patients were identified with mutations in the 

SHOX coding region by direct sequencing. The mean height SDS of the total mutated patients 

was -2.07±0.7.  The relatives of 13 patients (a total of 44 individuals) were also analyzed for 

the presence of the SHOX mutations identified in the probands while the relatives of the other 

six patients were not available for molecular analysis at the time of the compilation of this 

thesis. 

V.3.3 Deletions/duplications 

Fourteen patients were identified carrying deletions/duplications in different regions within the 

SHOX area (Figure 14). Ten patients showed deletions as revealed by the MLPA probe signals 

(Table 14). Among them, 6 index cases (43% of the total deletions) have been identified with 

deletions of probes 05645-L05099 and 05646-L24249 encompassing a SHOX enhancer CNE7 
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(Figure 15 C, D, E and Figure B, C, D). The size of this deletion was estimated as 47.5 kb by 

previous studies (163,164). One female patient was identified to be homozygous for this 

deletion (Figure 15 E).  

Two patients had heterozygous deletions removing the entire SHOX gene and the flanking 

regulatory regions (Figure 15F and Figure 16A). One patient was identified with a large 

deletion (~816.5-1117 kb) removing all the downstream enhancers of SHOX (CNE4, CNE5, 

CNE9 and CNE7). A relatively small deletion (<130 kb) further downstream of all the known 

enhancers of SHOX was also identified in one patient (Figure 15 B). This deletion has never 

been reported previously.  

Four patients were found to have duplications related to SHOX (Figure 17). Two patients had 

duplication of exon 2 of the SHOX gene. The complete duplication of the exon could alter the 

reading frame and introduce a premature stop codon leading to the production of a truncated 

protein. However, it is difficult to predict how it will affect the reading frame as it is difficult 

to understand the exact extension of the deletion by MLPA. It is also suggested that the partial 

tandem duplications within the gene may affect the gene expression by altering the distance 

between the coding part and the regulatory regions (125).   

One patient carried a duplication involving the entire gene and its regulatory regions. This 

duplication has been previously reported in ISS patients. The remaining patient had a 

duplication encompassing two probes downstream of the known enhancer region. Interestingly, 

all the duplications identified were de novo which were absent in their healthy relatives, 

whereas all the deletions were inherited from parents.   
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Figure 14: The schematic representation of the genomic locations and the approximate extension of the deletions or duplications of the SHOX 

area identified in ISS patients.
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Table 14: Clinical characteristics of patients identified with deletions/duplications 

Patient 

ID 

Sex Age Height 

SDS 

SHOX Defect (MLPA Probes) Extension Location Inheritance Rappold  

Score 

5910 F 5.3 -1.9 Heterozygous deletion 

05645-L05099 and 05646-L24249 

47.5 kb SHOX downstream Enhancer Paternal 

Transmission 

2 

6041 F 6.6 -1.9 Heterozygous deletion 

05645-L05099 and 05646-L24249 

47.5 kb SHOX downstream Enhancer Maternal 

Transmission 

6 

7636 F 4.7 -1.6 Heterozygous deletion 

05645-L05099 and 05646-L24249 

47.5 kb SHOX downstream Enhancer Nd 2 

6005 F 16.4 -1.2 Heterozygous deletion 

05645-L05099 and 05646-L24249 

47.5 kb SHOX downstream Enhancer Nd - 

7632 M 8.9 -2.1 Heterozygous deletion 

05645-L05099 and 05646-L24249 

47.5 kb SHOX downstream Enhancer Nd 3 

6992 F 27 -2.7 Homozygous deletion 

05645-L05099 and 05646-L24249 

47.5 kb SHOX downstream Enhancer Paternal 

Transmission 

- 

7598 M 14 -2.8 Heterozygous deletion 

09333-L10292 to 14697-L24245 

~778.1-1116.1kb Whole gene  Maternal 

Transmission 

- 

1751 F 13.7 -3.7 Heterozygous deletion 

09333-L10292 to 14697-L24245 

~778.1-1116.1kb Whole gene Nd - 

6659 M 6.9 -2.3 Heterozygous deletion 

13821-L14642 to 13597-L15055 

~816,5-1117 kb SHOX downstream Enhancer Paternal 

Transmission 

3 

6669 F 10.7 -0.9 Homozygous deletion 

09335-L24250 

~0,4 - 130,4 kb SHOX downstream area Paternal and 

Maternal 

Transmission 

16 

6006 F 3.9 -2.2 Duplication 

01146-L06220 

~0,2 - 10,3 kb SHOX Exon 2 De Novo 9 

5960 M 10.9 -1 Duplication 

01146-L06220 

~0,2 - 10,3 kb SHOX Exon 2 De Novo - 

5980 M 12.3 -2.1 Duplication  

09335-L24250 and 14697-L24245 

~66-468,4 kb SHOX downstream area De Novo - 

5927 M 11.3 -1.6 Duplication 

09333-L10292 to 01153-L00712 

~1540,5 – 2246,9 kb SHOX Area De Novo - 
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V.3.4 Point Mutations 

Six heterozygous variations (2%) were identified by direct sequencing (Table 15). Two patients 

had frame shift mutation (p.*226Argext*22) which change the stop codon into an arginine, 

resulting in the addition of 22 amino acid residues to the C-terminal of the protein. This 

mutation has been already reported in idiopathic short stature patients by previous studies 

(107,165). In one case the mother, was also short, was tested and identified with the same 

mutation (165). Two missense variations (p.Asp58Glu and Arg218His) and two 5’UTR 

variations (c.55C>T and c.-51G>A) were also identified. These variations were not present in 

the public databases of healthy individuals (DbSNP, Exome variant Server and 1000 Genomes 

project consortium database). The effect of these variations on SHOX is unknown. However, 

p.Asp58Glu has been reported in the SHOX mutation database in 35 index cases among a total 

of 5729 ISS patients screened, which makes it the most frequent SHOX point mutation reported 

till now. The mean height SDS among the patients with point mutations was   -1.9±0.8.   

Table 15: Point mutations identified in ISS patients 

Patient 

ID 

Sex Age 

at 

visit 

Height 

SDS 

Variation  Location  Inheritance Rappold 

Score 

6011 F 4.4 -2.0 p.*226Argext*22 Exon 6B Maternal 

Transmission 

2 

6158 F 8.5 -1.8 p.*226Argext*22 Exon 6B Maternal 

Transmission 

5 

5894 M 9.7 -2.8 p.Asp58Glu Exon 2 Paternal and 

Maternal 

Transmission 

- 

6148 F 9.5 -2.1 p.Arg218His Exon 6B Nd 0 

6568 F 14.6 -1.8 c.-55C>T 5’ UTR Nd - 

7256 M 12.2 -2.9 c.-51G>A 5’ UTR Nd 2 
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Figure 15:  Family pedigrees of the ISS probands carrying deletions. Relatives of these 

probands have been screend for SHOX defects. (-)  and (+) represents mutated and wild type 

alleles respectively.
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Figure 16: Family pedigrees of the ISS probands carrying deletions whose relatives were not 

available for the molecular analysis. (-)  and (+) represents mutated and wild type alleles 

respectively. 

 

 

 

 

Figure 17: Family pedigrees of the ISS probands carrying duplications. All the duplication 
identified in this study are de novo mutations. (-)  and (+) represents mutated and wild type 

alleles respectively. 
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Figure 18:  Family pedigrees of the ISS probands carrying point mutations. Relatives of 6148, 
6568 and 7256 were not available for the SHOX screening. (-)  and (+) represents mutated 

and wild type alleles respectively. 
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V.3.5 Discussion 

 

SHOX haploinsufficency is the principal known genetic cause of short stature and in 70% of 

the patients with SHOX defects, the cause is a deletions that affect the SHOX gene or its 

regulatory regions. The high incidents of deletions and rare duplications are due to the high 

crossing over rate and to the presence of repeated sequences that mediate unequal chromosomal 

exchanges. Thus, the SHOX region of PAR1represents a hot spot for non-allelic homologous 

recombination between X and Y chromosomes, resulting in a high percentage of recombinant 

fractions. 

In the present study, the SHOX region molecular defects were screened in 252 unrelated 

Idiopathic Short stature patients. Twenty mutations were identified in this study with a 

mutation frequency of 7.9%, which is consistent with the 2-15% reported in the literature.  

A deletion of 47.5kb, previously described by Benito-Sanz et al., was identified in 5 index 

cases making it the most frequent SHOX defect in this study (Figure 14). This deletion is 

mapped downstream of SHOX and include a conserved regulatory elements CNE7.  All the 

47.5 kb deletions were identified at the heterozygous state except one case of homozygous 

deletion in  a 27 years old female patient (#6992) with a height SDS of -2.7 (Figure 15 E). The 

MLPA analysis of 471 controls by Bunyan et al. (125) showed that 47.5kb downstream deletion 

is not present in the healthy individuals, though high frequency is described in different SHOX 

cohorts including the present study suggesting its involvement in the phenotypic effect. The 

effect of this deletion could also be due to the change in the structure of the SHOX downstream 

region and thereby changing the distance between the coding region and the other regulatory 

regions affecting their function.  

In patient #6669 (figure 15B), a homozygous deletion was identified outside the classical 

enhancer region of SHOX. This deletion did not include known conserved regions downstream 
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of SHOX. This deleted region might be a part of a putative regulatory region further 

downstream of the known enhancers. In fact, recent studies have identified large deletions 

outside the known enhancer regions of SHOX (136,166) in patients with ISS, that overlap with 

the segments identified in patient #6669.  

Two patients 6568 and 7256 were identified with variations in the 5’ UTR of the exon 2 (c.-

55C>T and c.-51G>A) (Figure 18 E, F) which were absent in the public databases. The variant 

c.-55C>T has been previously identified in ISS patients and reported in the SHOX mutation 

database. Whether the 5’UTR variations identified in this study affect the translational 

efficiency of SHOX are yet to be demonstrated by in vitro functional studies. A suitable model 

for the functional analysis could be luciferase reporter assay to understand how the variants 

affect the translational efficiency of the gene.  

The patients identified with SHOX mutations showed high phenotypic variability and the 

penetrance appeared to be incomplete. Rappold et al. reported that the phenotypes of idiopathic 

short stature patients carrying SHOX gene mutation is not different from phenotypes of the 

patients without SHOX mutations. This makes the analysis of phenotype-genotype correlation 

difficult in patients with SHOX defects. Previous reports suggested that the phenotypic 

variability among the patients with deletions in the enhancer region cause a relatively milder 

phenotypes compared to the exonic or whole gene deletions (117). Consistent with these 

reports, the patients identified with the whole SHOX deletions showed severe short stature (-

2.8 and       -3.7 SDS) among all the patients. In the case of enhancer deletions, the size of the 

deletions did not have any effect on the phenotypes of the patients. In this cohort, the mean 

height SDS of the patients with deletions/duplications and the mean height SDS of the patients 

with point mutations did not differ.   
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The clinical data required for the Rappold score (111) were not available from all the patients 

screened in this study. However, the available Rappold score was available for 11 patients with 

SHOX mutations. Only two of them had scores above 7, which is the cut off value 

recommended for the SHOX screening.  These findings highlights the limitations of Rappold 

scoring system for the selection of ISS patients for the molecular analysis of SHOX. Moreover, 

the use of body mass index in this system gives high score for obese patients. Thus, it is worth 

considering that the Rappold criteria are not distinctive for SHOX deficiency. 

The family pedigree of #6992 (Figure 15E) and #5894 (Figure 18 A), with a 47.5 kb deletion 

and p.Asp58Glu respectively, well demonstrate the high rate of homologous recombination in 

the PAR1 region. In both families, carrier male did not transmit the mutation to all the 

daughters. The high recombination rate between the X and Y chromosomes during male 

meiosis could be accountable for this phenomenon.  

The present study along with the recent studies by Bunyan et al.2012 and Tsuchiya et al.2013 

identified deletions involving parts of the PAR1 region further downstream of the classical 

enhancers of SHOX. The effect of deletions involving this regions on the SHOX deficiency 

patients are becoming increasingly evident. The current MLPA kit used in all the diagnostic 

labs contains probes in all the exons and in the known regulatory regions upstream and 

downstream of SHOX that are more frequently deleted in short stature patients. The probes in 

the PAR1 region downstream of the classical enhancers are spaced relatively far from each 

other, the wider including a 338kb separation between probes L24245 and L19678. Alternative 

methods like a customized aCGH, specific for PAR1 would enable to map the alterations within 

these regions with a higher probe density and possibly to identify the deletions not detected by 

the current methods. 
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Mutational screening of three genes (GH1, GLI2 and SHOX) has been carried out in short 

stature associated to growth disorders with and without pituitary hormone deficiencies. This 

study confirms the involvement of multiple genes, both well established as well as not widely 

studied, in the growth disorders. New strategies are required for wide screening in large cohorts 

with a large number of genes. This will reduce the costly and laborious gene by gene analysis 

currently used in this field.  The introduction of targeted next generation platforms that 

simultaneously allow the analysis of multiple genes in large number of patients will greatly 

improve the diagnosis of growth defects. 
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IX.1 APPENDIX 1: Primer sequences 

Primer sequences for the amplification of GH1 

Primer sequence 5’ → 3’ Amplified Fragment 

Gh32 (f) CCAGCAATGCTCAGGGAAAG Entire GH1 

Gh33 (r) TGTCCCACCGGTTGGGCATGGCCAGGTAGCC 

Gh40 (f) TTTGGGCACAATGTGTCCT   Exon 1 

Gh13 (r) CTGAGCTCCTTAGTCTCCTCCTC 

Gh14 (f) GACTTTCCCCCGCTGGAAATAAG Exon 2 

Gh27 (r) AGATGCGGAGCAGCTCTAGG 

Gh26 (f) CTCAGAGTCTATTCCGACACCC Exon 3 

Gh15 (r) GTGTTTCTCTAACACAGCTCTC 

IVS4 (f) CCCACTGACTTTGAGAGCTG Exon 4 

IVS4 (r) CATGTCCTTCCTGAAGCAGT 

Gh16.17 (f) TCACACAACGATGACGCACT Exon 5 

Gh31 (r) CCAGGGCCAGGAGAGGCACTGGGG 

 

Primer sequences for the amplification of SHOX 

Primer sequence 5’ → 3’ Amplified 

Fragment 

SHOX 2f GAGACGCGCGCATCCACCA Exon 2 

SHOX 2r GAGGCGCCGAACCCCAGGAG 

SHOX 3f CACGTTGCGCAAAACCTC Exon 3 

SHOX 3r CGTCCCTCACCCAACCTC 

SHOX 4-5f AGTGCTTGGTTCAGCCTCAT Exon 4 and Exon 5 

SHOX 4-5r TTTCTAAGGGCCAGCTGAGA 

SHOX 6af AAGAGGCACGTTGGAGGTTT Exon 6a 

SHOX 6ar CGGGGTTGAGTGCAGGAC 

SHOX 6bf CTCCTCTTCCCGGGTTCAC Exon 6b 

SHOX 6br GGTGGTGGGCACCTGTAA 
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Primer sequences for the amplification of GLI2 

Primer sequence 5’ → 3’ Amplified fragment 

Gli2_1F TGGGTTTGGGCTCAGTGT Exon 1 

Gli2_1R CCTCTTCGCCCTCCATAAAC 

Gli2_2F TGGCTGCTCTTGCTATGAAA Exon 2 

Gli2_2R GCAGGAGATGTGGCTGAGG 

Gli2_3F CATGTTGGTTTTGGGGTCTT Exon 3 

Gli2_3R GACCAAGGCTGAGGAGTTGA 

Gli2_4F CAGGTTCTGACGGCTTCTTT Exon 4 

Gli2_4R TTGTCCCCAAAAGAAACAGC 

Gli2_5F CCTTGCAGGCTCTTCCTATC Exon 5 

Gli2_5R TCTTTCTCCTCGGGTCAAAA 

Gli2_6F TGGGCAAGGTTCTCTCTGTC Exon 6 

Gli2_6R CTTAGCATGAGCTGGCAGTG 

Gli2_7F TGTGCGGAGAGATCCTAGAG Exon 7 

Gli2_7R TTCACCACCAAGGGTACAGC 

Gli2_8F TTCCCCACAGCACTTCGAT Exon 8 

Gli2_8R TCCAGCCCCTTCTGTCTAGT 

Gli2_9F GACAGCAGGGGGTGGTCT Exon 9 

Gli2_9R CCACCTCCAAACATGATCC 

Gli2_10F GGTTGGAGCAGAGCAGAGAA Exon 10 

Gli2_10R GGCACCTGGCTATCTACTGG 

Gli2_11F CGTGGGTAGCTTCAGGAGAA Exon 11 

Gli2_11R GATATCGCTGTGCCCCTAGA 

Gli2_12F GCCTGTGCAGGCCTAGAG Exon 12 

Gli2_12R GTGGGTGCCAGCCTAGTTG 

Gli2_13.1F GTGTTGCAAGCCCTCTTCTC Exon 13 

Gli2_13.1R AGTGGCTGCCGCGTACTT 

Gli2_13.2F AGCAGTACAGCCTGCGGGCCAAGT Exon 13 

Gli2_13.2R CTCCATCGCCACGTTCTCGCT 

Gli2_13.3F CTTCCACAGCACCCACAAC Exon 13 

Gli2_13.3R CCTTGCGGACTGTAGCCC 

Gli2_13.4F GCAGTGGAATGAGGTGAGCT Exon 13 

Gli2_13.4R GATGGCTCTGCTGTGGGTAG 

Gli2_13.5F CCCTCAGCAGACAGAAGTGG Exon 13 

Gli2_13.5R GTACATGTGGATCTGGCCGT 

Gli2_13.6F CAGTCAGGAAACAGCAGAGG Exon 13 

Gli2_13.6R GGAAAAAGACAAGACAGCTGGA 
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Primer sequences for site directed mutagenesis: 

 

PRIMER 

 

 

SEQUENCE 

 

MUTATION 

 

GH82Asp_for: 

GH82Asp_rev: 

 

CCCTCTGTTTCTCAGACTCTATTCCGACACC    

GGTGTCGGAATAGAGTCTGAGAAACAGAGGG 

 

 

p.Glu82Asp 

 

GH85Pro_for: 

GH85Pro_rev: 

 

 

CTCAGAGTCTATTCCAACACCCTCCAACAGGG  

CCCTGTTGGAGGGTGTTGGAATAGACTCTGAG  

 

p.Pro85Pro 

 

GH87Pro_for: 

GH87Pro_rev: 

 

GTCTATTCCGACACCTTCCAACAGGGAGGAAAC 

GTTTCCTCCCTGTTGGAAGGTGTCGGAATAGAC 

 

 

p.Pro87Pro 

 

GH91Val_for: 

GH91Val_rev: 

 

GACACCCTCCAACAGGGTGGAAACACAACAG 

TGTTGTGTTTCCACCCTGTTGGAGGGTGTC 

 

 

p.Glu91Val 

 

GH85+87for: 

GH85+87rev: 

 

CTCAGAGTCTATTCCAACACCTTCCAACAGGGAGG 

CCTCCCTGTTGGAAGGTGTTGGAATAGACTCTGAG 

 

 

p.Pro85Pro 

p.Pro87Pro 

 

GH87+91for: 

GH87+91rev: 

 

CTATTCCGACACCTTCCAACAGGGTGGAAACACAAC 

GTTGTGTTTCCACCCTGTTGGAAGGTGTCGGAATAG 

 

 

p.Pro87Pro 

p.Glu91Val 
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IX.2 APPENDIX 2: Probes used for the MLPA analysis of SHOX 

 

* New in version G1 (from lot G1-0513 onwards). 

x X-chromosome, outside PAR region. Gives half the signal in males as compared to females. 

§ These five probes are in the putative SHOX- regulatory region (CNE9)  

^ These 3 probes are within the recurrent ~47.5 kb which includes the ECR1 regulatory region. 
# A founder SHOX point mutation in the Spanish Gypsy population, c.508G>C (p.A170P) results in a strongly reducedprobe signal of the 

300 nt exon 4 probe  
~ This probe has been found to be duplicated in an apparently healthy individual in our quality tests. 

∞This probe has been found to be deleted in an apparently healthy individual in our quality tests. 

¥ The VAMP7 probe at 355 nt is located very close to the q-telomere of X and Y in the PAR2. 
£ The 254 nt ARSF probe has been reported to have a variable copy number. 

CNE = Conserved Non-coding DNA Element. ECR = Evolutionary Conserved Region. ECS = Evolutionary Conserved Sequence. 

 

Source: MRC Holland 
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IX.3 APPENDIX 3: Plasmids  
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Novel Mutations in the GH Gene (GH1) Uncover
Putative Splicing Regulatory Elements
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and Mara Giordano
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Mutations affecting exon 3 splicing are the main cause of autosomal dominant Isolated GH De-
ficiency II (IGHDII) by increasing the level of exon 3-skipped mRNA encoding the functionally
inactive dominant-negative 17.5-kDa isoform. The exons and introns of the gene encoding GH
(GH1) were screened for the presence of mutations in 103 sporadic isolated GH deficiency cases.
Four different variations within exon 3 were identified in 3 patients. One carried c.261C�T
(p.Pro87Pro) and c.272A�T (p.Glu91Val), the second c.255G�A (p.Pro85Pro) and c.261 C�T, and
the third c.246G�C (p.Glu82Asp). All the variants were likely generated by gene conversion from
an homologous gene in the GH1 cluster. In silico analysis predicted that positions c.255 and c.272
were included within 2 putative novel exon splicing enhancers (ESEs). Their effect on splicing was
confirmed in vitro. Constructs bearing these 2 variants induced consistently higher levels both of
transcript and protein corresponding to the 17.5-kDa isoform. When c.255 and c.272 were com-
bined in cis with the c.261 variant, as in our patients, their effect was weaker. In conclusion, we
identified 2 variations, c.255G�A and c.272A�T, located in 2 novel putative exon splicing enhanc-
ers and affecting GH1 splicing in vitro by increasing the production of alternatively spliced isoforms.
The amount of aberrant isoforms is further regulated by the presence in cis of the c.261 variant.
Thus, our results evidenced novel putative splicing regulatory elements within exon 3, confirming
the crucial role of this exon in mRNA processing. (Endocrinology 155: 1786–1792, 2014)

The GH1 gene is located on chromosome 17q23 within
a cluster of 5 highly homologous genes, all consisting

of 5 exons and 4 introns, including the placentally ex-
pressed GH2, 2 chorionic somatomammotropin genes
CSH1 and CSH2, and a pseudogene CSHP1 (1). When
correctly spliced, GH1 produces the 22-kDa isoform that
includes all the 5 exons with the complete biological ac-
tivity of GH (2, 3). Despite the correct processing, even
under normal conditions, a small percentage of alterna-
tively spliced isoforms are produced. The presence of an
in-frame cryptic splice site within exon 3 gives rise to a
transcript lacking the first 45 bp of exon 3 and encodes a
shorter active isoform of 20 kDa, representing 5%–10%

of GH transcripts (4). A 17.5-kDa isoform (representing
0.1%–5% of GH transcripts) is produced by the complete
skipping of exon 3, thus lacking the entire loop connecting
helix 1 and helix 2 in the tertiary structure of GH and
generating a GH isoform with no biological activity (5).
Trace amounts of the severely truncated isoforms of 11.3
and 7.4 kDa, which are biologically inactive, have also
been identified being generated by the skipping of exons 3
and 4 or 2 to 4, respectively (6). Multiple mechanisms have
evolved to maintain the small amounts of these aberrantly
spliced isoforms, especially that encoding the 17.5-kDa
protein. Because GH1 has weak canonical splice sites,
multiple cis-acting splicing regulatory elements (splicing
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enhancers) are essential to maintain the correct exon 3
definition through the activation of the canonical intron 2
and 3 splice sites and silencing of the cryptic sites. Two
exon splicing enhancers (ESEs), ESE1, encompassing the
first 7 bases of exon 3 (from c.172 to c.178), and ESE2
(from c.190 to c.204), located 12 nt upstream of the cryp-
tic splice site in exon 3 (Figure 1A), and an intron splicing
enhancer (ISE) within intron 3, have been well character-
ized (7–11).

Several mutations leading to aberrant splicing have
been reported in isolated GH deficiency (IGHD) patients
within these enhancer motifs (7, 8, 10, 11). The increased
amount of the 17.5-kDa isoform exhibits a dominant neg-
ative effect both in tissue culture and transgenic mice ex-
periments by disrupting the secretory pathway and traf-
ficking of normal GH and other hormones, including
ACTH (12, 13).

We here report the identification of variations within
GH1 exon 3 in sporadic IGHD patients and absent in a
group of 205 normal stature controls and in the public
databases. In silico analysis suggested that 2 of these vari-
ations affect exon 3 splicing, because they are located
within putative ESEs. In vitro mRNA and Western blot
analysis confirmed the deleterious effect of the single vari-

ations on splicing, suggesting the presence of further splic-
ing regulatory elements within GH1 exon 3.

Subjects and Methods

Subjects
A total of 103 sporadic patients with IGHD and 205 normal

stature individuals, all belonging to the Italian population, were
included in the genetic analysis. The subjects were referred to the
clinical centers because they had a height less than or equal to �2
SDS or a height less than or equal to �1.8 SDS in combination
with a height velocity over 1 year less than �1.5 SDS using the
criteria of Tanner-Whitehouse (14). Patients with a known post-
natal cause of acquired hypopituitarism were excluded. Skeletal
maturation was estimated as bone age (radius, ulna, and short
bone) with the TW2 (Tanner-Whitehouse 2nd Edition) method
by a pediatric endocrinologist (15). They were all evaluated for
GH serum levels after 2 provocative tests (with arginine or clo-
nidine or insulin or glucagon or with GHRH � arginine (16).
Traditionally, a diagnosis of GHD is supported by GH peaks less
than 10 ng/mL both after the 2 different stimuli (17), or less than
20 ng/mL after the double provocative test with GHRH � ar-
ginine. The GHD patients fulfill these criteria and had a mean
(�SD) secretion peak of 4.4 � 2.5 ng/mL after the classical stim-
uli (n � 78) or 9.4 � 5.8 ng/mL after the test with GHRH �
arginine (n � 25). None of the GHD patients was deficient for

Figure 1. A, ESEs in exon 3. The 2 known ESEs (ESE1 and ESE2) are indicated. The cryptic splice site is at c.216 and is indicated with a dotted line.
The newly identified putative ESEs are indicated as pESE1 and pESE2. The mutations identified in patient 1 and patient 2 in the pESEs are boxed. B,
ESE finder analysis performed on the wild-type exon 3 and on the different exon 3 alleles identified in patients. The analysis using wild-type
sequence revealed all the putative exon splicing enhancer sites within exon 3. ESE motifs with scores above the threshold for each SR protein are
indicated in differently colored bars. The bar heights reflect the score of the motifs. Threshold values and color code for each of the different
motifs are indicated in Table 1. The introduction of c.255G�A and c.272A�T variations caused the abolition of the 2 putative ESE elements at
positions c.254–260 and c.269–275, respectively.
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other pituitary hormones, and none had a documented family
history of the disease or consanguineous parents. All the patients
have been also screened for mutations in GHRHR (data not
shown). Patients carrying mutations in this gene were not in-
cluded in the IGHD cohort described here. Normal stature con-
trols included University and Hospital staff, as well as medical
students not tested for GH secretion levels. A written informed
consent was obtained from the patient’s parents, because they
were all aged less than 18, and from the normal stature controls.

Detailed description of patients carrying the GH1
variations

The variants identified in the three patients are reported in
Table 1.

Case 1
This patient is a boy born at term with no perinatal compli-

cations. He came to our attention when he was 7.3 years old with
a height of �2.7 SDS. He has normal stature parents: the father
is �1.7 SDS and the mother �0.6 SDS. He was prepubertal.
GHD was diagnosed based on low response to insulin tolerance
test and clonidine provocative tests (8.9 and 8.6 ng/mL, respec-
tively). The IGF-I level was 130 ng/mL. The bone age was delayed
by 3.8 years. GH therapy was initiated with a good clinical re-
sponse reaching a height of �1.7 SDS after 1.3 after 6 years.

Case 2
This case is a male born from nonconsanguineous parents by

vaginal delivery after 41 weeks of gestation. At birth, he was
adequate for gestational age (birth weight, 3330 g; length, 52
cm). Both parents presented normal height: father, 174 cm (�0.2
SDS) and mother, 155 cm (�1.3 SDS). He came to our attention
at age 13 presenting short stature with a height of �3.4 SDS. His
growth rate in the year preceding the diagnosis was 5.0 cm/y
(�1.5 SDS). At the diagnosis, the pubertal stage was: pubic hair
development 2, genital development 2, and bilateral testicular
volume 5. The bone age was delayed (11.6, TW2 method). GH
secretion peaks after stimulus with arginine and clonidine were
3.9 and 8.3 ng/mL, respectively, with an IGF-I level of 65 ng/mL.
He promptly started the recombinant human GH replacement
therapy (0.22 mg/kg�wk) and reached the height of �1.8 SDS
after 4 years.

Case 3
This boy came for the first time to our attention for growth

failure at the age of 16.5 years. At diagnosis, his stature was �2.7

SDS. He was born to nonconsanguineous parents after a normal
pregnancy at 40 weeks of gestation, adequate for gestational age
(birth weight, 2950 g). His father and mother presented normal
(�0.5 and �0.3 SDS, respectively). The pubertal stage was: pu-
bic hair development 3, genital development 3, and bilateral
testicular volume 8 mL. The growth velocity was 4.5 cm/y (1.6
SDS, 1.6 SDS, but low when corrected for pubertal stage), and
x-ray revealed a bone age (TW2) of 14.2 years. Laboratory anal-
ysis revealed a normal IGF-I level (180 ng/mL) and low level of
circulating GH after 2 provocative tests (7.7 ng/mL with arginine
and 3.7 with clonididne). The recombinant human GH replace-
ment therapy (0.24 mg/kg�wk) was begun with a good response,
because he reached the height of �0.7 SDS after 3 years.

Screening of GH1
Genomic DNA was amplified by PCR using previously de-

scribed primers (18) and a proofreading Taq polymerase
(Finnzymes). The resulting 2.7-kb product, including the whole
GH1, was used as template for a series of nested PCRs using
internal primers for the proximal promoter, 5 exons, 4 introns,
and the untranslated regions of the GH1. These primers are
designed specifically for the GH1 and do not amplify other genes
in the cluster. PCR conditions and primer sequences are available
upon request. The PCR products were visualized on a 2% aga-
rose gel and purified using ExoSAP-IT enzymatic PCR clean up
system (Affymetrix). The purified products were then sequenced
with the Big Dye Terminator kit (Applied Biosystems) and an-
alyzed on an ABI PRISM 3100 Genetic Analyzer (Applied Bio-
systems). The PCR products containing the variations in the
heterozygous state were then cloned into the plasmid vector
pTZ57R/T using the InsTAclone PCR cloning kit (Fermentas),
and the 2 alleles were separately sequenced.

Site-directed mutagenesis
The 2.7-kb fragment containing GH1 was inserted into the

pcDNA 3.1(�) expression vector (Invitrogen). The constructs
bearing the single variants, namely 246C, 255A, 261T, and
272T, and the variants combined as in the patients, namely
261T/272T (patient 1) and 255A/261T (patient 2), were gener-
ated from the GH(wt)-pcDNA 3.1 plasmid by the QuikChange
Site-Directed Mutagenesis kit from Stratagene using mismatch
complementary primers containing the desired mutations. PCR
conditions and primer sequences are available upon request.
DH5a competent cells were transformed with the different con-
structs and grown on Luria Broth/ampicillin media. After select-
ing the correct clones by colony PCR, the plasmid DNA was
isolated using Maxiprep kit (QIAGEN). The desired mutation
was confirmed by sequencing.

Cell culture, transfection, and isolation of RNA
The GH4C1 rat pituitary cell line was used for the transfec-

tion experiments. The stock culture was grown in Ham’s F10
medium (Gibco-Life Technologies) supplemented with 15%
horse serum, 2.5% fetal bovine serum, 100-U/mL penicillin, and
100-�g/mL streptomycin in a 5% CO2. A day before transfec-
tion, 4 � 105 cells were seeded into each well of a 6-well tissue
culture plate in 2.5-mL medium. The wells were previously
treated with 1:10 diluted poly-L-lysine solution (Sigma-Aldrich)
to allow the cells to completely attach to the plate. At 50%–70%
confluency, cells were transfected with 2.5-�g DNA of the

Table 1. Exon 3 Variations Detected in the IGHD
Patients

Patient
Variation Within a

predicted ESENucleotide Amino acid

1 c.261C�T (p.Pro87Pro) No
c.272A�T (p.Glu91Val) Yes

2 c.255G�A (p.Pro85Pro) Yes
c.261C�T (p.Pro87Pro) No

3 c.246G�C (p.Glu82Asp) No

Predicted ESE by the software ESE finder 3.0
(http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi).
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wt-GH or the mutated constructs using the Trans IT-LT1 trans-
fection reagent (Mirus Bio LLC). A green fluorescent protein
control was used to test transfection efficiency. Forty-eight hours
after transfection, total RNA was isolated and purified from the
cells using the QIAGEN RNA mini kit (QIAGEN).

cDNA synthesis
cDNA was synthesized from 1.5 �g of RNA by the High

Capacity cDNA Reverse Transcription kit (Applied Biosystems),
according to the manufacturer’s instructions. The different tran-
scripts produced by alternative splicing were analyzed using
primers specific for GH1 cDNA (Figure 2A). The RT-PCR was
performed with primers GH2 (5�-CGTCTGCACCAGCTGGC-
CTTT-3�) and GH7 (5�-AAGCCACAGCTGCCCTCCA-
CAGA-3�), which amplify part of exon 2, exon 3, exon 4, and
part of exon 5, allowing detection of both exon 3- and exon
4-skipped products.

Western immunoblot analysis
CHO cells were transiently transfected with wt-GH and mu-

tated constructs, as described above. After 48 hours, whole-cell
lysates (WCL) were collected using the standard radio-immuno
precipitation assay (RIPA) lysis buffer containing 0.1% sodium
dodecyl sulfate (SDS). A total of 20 �g of WCL were separated
on 15% SDS-PAGE gel and blotted on Immun-Blot PVDF mem-
brane (Bio-Rad). Membranes were probed with a polyclonal
rabbit antihuman GH antibody (Abnova) and detected with a
secondary horseradish peroxidase (HRP)-conjugated goat anti-
rabbit IgG (Millipore). A polyclonal antiactin antibody (Sigma-
Aldrich) was used to normalize the protein loading. Protein
bands were visualized using enhanced chemiluminescence re-

agent (Thermo Scientific) with image capture performed using a
charge-coupled device camera linked to ChemiDoc apparatus
(Bio-Rad).

CHO cells were used instead of GH4C1 cells for protein anal-
ysis, because the GH4C1 showed many unspecific bands after
Western blotting, likely due to cross-reactions with endogenous
proteins.

ESE finder analysis
Analysis of the splicing regulatory motifs within exon 3 was

performed using the software ESE finder 3.0 (http://rulai.cshl.
edu/cgi-bin/tools/ESE3/esefinder.cgi). The default thresholds
were considered to identify sites responsible for the 4 serine/
arginine-rich (SR) proteins alternative splicing factor 1/pre-
mRNA splicing factor SF2 (ASF/SF2), serine/arginine-rich splic-
ing factor 3 (SC35), serine/arginine-rich splicing factor 5
(SRp40), and serine/arginine-rich splicing factor 6 (SRp55).

Gel image analysis
The RT-PCR and Western blotting gel images were analyzed

using the freeware ImageJ1.46r (http://rsb.info.nih.gov/ij/; Na-
tional Institutes of Health), and the bands were quantified by
measuring pixel intensity and normalized to the corresponding
�-actin band intensity.

Results

Genetic analysis of the IGHD patients
A total of 103 sporadic IGHD patients with height

ranging from �1.8 to �4.5 SDS were investigated for the
presence of functionally relevant mutations in GH1, in-
cluding coding regions and introns. Two patients har-
bored a combination of 2 variations within exon 3 (Table
1) that were not previously reported in public databases,
including dbSNP (http://www.ncbi.nlm.nih.gov/SNP/),
the Exome Variant Server (http://evs.gs.washington.edu/
EVS/), and 1000 genomes (http://www.1000genomes.
org/). Patient 1 carried c.261C�T (p.Pro87Pro) and
c.272A�T (p.Glu91Val), and patient 2 carried c.255G�A
(p.Pro85Pro) and c.261C�T (p.Pro87Pro).

A third patient (patient 3) (Table 1) carried the non-
synonymous c.246G�C determining the substitution
p.Glu82Asp in exon 3. This variation was reported in the
dbSNP (rs61762497) only in 1 individual and in the Ex-
ome Variant Server in 2 out of 13 000 individuals.

All the above exon 3 variations were absent in a panel
of 410 chromosomes sequenced from 205 normal stature
Italian control individuals.

The analysis of the parents of patients 2 and 3 demon-
strated that their variants were inherited from the unaf-
fected fathers. Unfortunately, the parents of patient 1 did
not give their consent to DNA analysis. By subcloning the
patient’s PCR products in a TA cloning vector system, we
confirmed that in patient 1, as well as in patient 2, both

Figure 2. A, Scheme of GH1 pre-mRNA splicing showing the full-
length mRNA and the corresponding RT-PCR product. B, RT-PCR
performed on mRNA extracted from GH4C1 pituitary cells transfected
with the wild-type GH1 (lane 2) or constructs carrying different
variations (lanes 3–8). The size of the bands are indicated on the right
with the corresponding protein molecular weight of the different
isoforms. Untransfected rat cDNA did not show any bands (data not
shown). Each PCR product was eluted from the gel and characterized
by sequencing. The relative band intensity (expressed as the
percentage on the total yield) calculated as the mean � SD over 4
different independent transfection experiments is reported for each
construct below the corresponding lane.
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variants were on the same allele. The alignment of GH1
with the paralogous genes of the GH cluster suggested that
all the 4 variants in exon 3 were generated by nonallelic
gene conversion from the GH2 gene, because the other 3
genes (CS-5, CS-2, and CS-1) have the same GH1 sequence
at these sites.

The exon 3 variations fall within predicted ESEs
Because several exon 3 mutations lead to missplicing of

mRNA and production of increased amounts of the 17.5-
kDa protein, we evaluated the possible involvement in the
splicing regulation of the variants identified in our patients
within this exon. None of them was included in the pre-
viously described ESEs (ESE1 and ESE2). An in silico anal-
ysis using ESE finder 3.0 (Figure 1, A and B) revealed the
presence of 2 high scoring ESE motifs from c.254 to c.260
(CGACACC) and c.269 to c.275 (GGGAGGA). These 2
sequences include the variations c.255G�A and c.272
A�T, respectively (Figure 1A). The position c.255 is lo-
cated within an ESE motif recognized by the SR protein
SRp40 and c.272 within a sequence recognized by SRp40
and SF2/ASF. Both putative ESE sequences showed an
increased score compared with the threshold value (Figure
1B). By substituting the wild-type nucleotides with those
found in the patients, namely c.255A and c.272T, the soft-
ware predicted the complete loss of these 2 putative ESEs
(Figure 1B).

Variants c.255A and c.272T affect GH1 splicing in
vitro

To evaluate whether exon 3 variants actually had some
effect on mRNA splicing in vitro, we transfected GH4C1
rat pituitary cells with an expression vector containing 1)
the wild-type allele (wt-GH1), 2) the alleles carrying the
single mutations, and 3) the alleles containing the muta-
tions combined as they were in patients 1 and 2. The
mRNA from transfected cells was reverse transcribed, and
the resulting cDNA was amplified with primers (Figure
2A) specific for the human GH1 that did not amplify the
rat mRNA. The RT-PCR on the wt-GH1 mRNA (Figure
2B, lane 2) yielded an intense band corresponding to the
GH1 full-length transcript (518 bp) producing the 22-kDa
protein and faint bands corresponding to the 20-kDa iso-
form (473 bp), the 17.5-kDa isoform (398 bp), and the
11.3-kDa isoform (233 bp). The average yield of the
mRNA corresponding to the 17.5-kDa isoform over 4 in-
dependent experiments was 4.4 � 1% of the total mRNA
yield with a ratio 17.5 kDa/22 kDa of about 1:20. The
246C construct (Figure 2B, lane 3) was also tested, al-
though the c.246C variation was not predicted to influ-
ence splicing. This construct generated a band pattern sim-
ilar to that observed in the wild-type accordingly to the in

silico prediction. In contrast, 255A and 272T constructs
(Figure 2B, lanes 4 and 6, respectively) produced a higher
level of the exon 3-skipped mRNA with a ratio 17.5
kDa/22 kDa of about 1:2 and 1:2.4, respectively. In these
2 constructs, there was also an evident increased produc-
tion of the exon 3–4-skipped transcript (233-bp band).
Interestingly, the exon 3-skipped mRNA was not evident
in the transcripts from the 261T construct, suggesting that
this variant might strengthen the correct splicing. When
the variants were combined on the same construct to re-
produce the status of patients 1 and 2, the exon 3-skipped
mRNA produced by the construct 255A/261T (patient 2)
(Figure 2B, lane 7) was less abundant than that observed
for 255A but still evident, with a 17.5 kDa/22 kDa ratio
of 1:3.3. Conversely, the 261T/272T construct (patient 1)
(Figure 2B, lane 8) showed a splicing pattern very similar
to the wild type.

We then investigated the consequences of the variants
on protein synthesis (Figure 3). Western blot analysis con-
firmed that the transfected wt-GH1-produced mostly the
22-kDa protein with only traces of the 20 and 17.5 kDa.
A higher level of the 17.5-kDa product was produced by
255A, 272T, and by the 255A/261T constructs. Although
the 261T/272T plasmid carrying the 2 variations detected
in patient 1 showed a mRNA pattern similar to the wild
type (Figure 2B, lane 8), it exhibited a band in correspon-
dence of the 17.5-kDa protein more intense than the wild
type (about 10% of the total GH proteins) (Figure 3, lane
7). This band in the 261T construct was weak (as in the
wt-GH1), but the 20-kDa isoform was more intense than
in all the other constructs. The corresponding 11.3-kDa
protein isoform was not detectable by the antibody used
for Western blot analysis.

Discussion

In the present study, we sequenced GH1 in 103 IGHD
patients with clinically variable phenotypes and no family

Figure 3. Western immunoblot analysis of the different GH isoforms
encoded by the different splicing products. The CHO cells were
transiently transfected with either wt-GH1 (lane 2) or constructs
carrying different variations (lanes 3–7). Untransfected CHO cells were
used as a negative control (lane 8); *, nonspecific bands also present in
the untransfected CHO cell lysate.
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history to search for mutations that might be 1) inherited
from healthy parents (incomplete penetrance), 2) arisen de
novo, or 3) biallelic (recessive inheritance). We identified
3 patients that carried variations in exon 3, and 2 of them
carried 2 variants on the same allele. All the variants were
likely generated by gene conversion, an event that is fre-
quently associated to GH1 sequence variability (19–21).
An in silico analysis was performed using ESE finder 3.0,
which has been designed to identify SR protein binding
sites by generating a motif score that reflects the binding
site strength. The sequences from c.254 to c.260 and from
c.269 to c.275, including the positions c.255 and c.272
mutated in patient 2 and in patient 1, respectively, were
predicted to represent ESE motifs recognized by the SRp40
and SF2/ASF proteins with a score above the threshold
(Figure 1B). The same factors were predicted to recognize
ESE2 with the same strength (9). It has been demonstrated
that SF2/ASF activates exon 3 inclusion and that disrup-
tion of this motif causes increased exon 3 skipping (22).
The substitution of the wild-type nucleotides c.255G and
c.272A with the mutants c.255A and c.272T, respectively,
was predicted to abolish the binding of these proteins in
both putative ESEs (Figure 1). The RT-PCR analysis (Fig-
ure 2) confirmed the influence of c.255A and c.272T on
splicing by increasing the exon 3-skipped isoform to 18%–
20% of the total GH mRNA (Figure 2B, lanes 4 and 6,
respectively).

Mutations within ESE1 in GH1 have been previously
reported to cause either complete or partial exon 3 skip-
ping and generation of increased amounts of the 20- and
the 17.5-kDa isoforms at various concentrations (20%–
37% and 35%–68%, respectively) (8, 9). The clinical
variability observed in patients carrying these mutations
has been explained by variable amounts of the 17.5-kDa
isoform consequent to a weakened exon 3 recognition.
Hamid et al (23) reported a large pedigree with the
c.172G�A splicing mutation, and they suggested that the
ratio of 17.5 kDa/22 kDa transcripts in the lymphocytes
correlated with the height SDS before GH replacement
therapy. In this family, therewere individualswithaheight
SDS more than �2 that inherited the mutation (incom-
plete penetrance). Another heterozygous missense muta-
tion, c.200A�G, within ESE2 induces exon skipping in
about 20% of the transcripts, giving rise to different phe-
notypes ranging from short stature to normal stature in the
same large pedigrees (19).

It is thus conceivable that mutations associated with
variable expressivity and incomplete penetrance might be
responsible for at least some milder forms of IGHD.

The effect determined by the here detected variants,
c.255G�A and c.272 A�T, is comparable with the effect
caused by most of the previously described mutations fall-

ing within ESE1 and ESE2 (8, 19, 23). However, when
these 2 variants were combined with c.261T, as in patients
1 and 2, the effect on splicing was maintained, although
weaker, only for the 255A/261T construct (patient 2) (Fig-
ure 2B, lane 7). In contrast, the 261T/272T construct (pa-
tient 1) (Figure 2B, lane 8) was very similar to the wild-
type, although the Western blotting for the same construct
showed a slightly increased amount of the 17.5-kDa band
(Figure 3, lane 7). This discrepancy might be attributable
to the different sensitivity of the two methods.

Thus, the c.261 variant, which is not included in the
putative ESE sites, partially hides the negative effect of the
c.272. It canbe speculated that c.261 influences splicingby
strengthening the affinity for other proteins involved in the
correct splicing regulation.

It is worth considering that the 233-bp band corre-
sponding to the bioinactive 11.3 kDa (exon 3–4-skipped
isoform) is strongly increased in all mutant constructs, but
261T and 261T/272T (Figure 2B). The relative total
amount of the 2 alternatively spliced mRNA (exon 3 and
exon 3–4 skipped) in the 255A, 272T, and 255A/261T
constructs can be roughly estimated to represent nearly
50% of the total GH1 mRNA in contrast to the wild-type,
where these transcripts represent about 12% of the GH1
transcripts.

The low serum GH level detected in vivo in the patients
might be in part determined by the effect on splicing of
these variants and in part by other yet unidentified genetic
factors. Notably, patient 1 carried on the other allele the
GH1 promoter haplotype 1 (data not shown) that has
been associated to IGHD and to a reduced luciferase ac-
tivity in vitro (24).

The functional significance of the Glu82Asp variant
carried by patient 3 is uncertain. From our experiments, it
does not seem to influence splicing (Figure 2B, lane 3), and
it is not predicted to have an effect on SR protein binding
(data not shown). This variant is very rare, because it was
reported in the dbSNP database (rs61762497) only in 1
individual of African ancestry, it is present in 2 individuals
out of 13 000 of the Exome Variant Server, and it was
absent in our panel of 205 normal stature individuals.
However, it is not predicted to exert a damaging effect on
the protein function by the software Polyphen-2 (http://
genetics.bwh.harvard.edu/pph2/). It might, thus, repre-
sent either a rare benign polymorphism, or alternatively it
might contribute to a multigenic form of IGHD in this
patient.

In conclusion, the analysis of GH1 in individuals with
sporadic IGHD led to the identification of 2 novel GH1
exon 3 variations, c.255 G�A and c.272 A�T, included
within 2 novel putative splicing regulatory elements that
increase the aberrant splicing in vitro. When combined in
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cis, with c.261 C�T, as in the patients, their effect was
reduced but still evident on the protein synthesis. It can be
hypothesized that also a minimally increased amount of
the 17.5-kDa protein might exert a dominant negative
effect on the GH synthesis in vivo. The phenotype of pa-
tients 1 and 2 might be associated to these GH1 splicing
variations that by themselves only partially influence the
amount of GH secretion but that might act in concert with
other genetic variants.
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Abstract

Context, objective: Growth hormone deficiency (GHD) is associated with insulin resistance and diabetes, in particular after
treatment in children and adults with pre-existing metabolic risk factors. Our aims were. i) to evaluate the effect on glucose
metabolism of rhGH treatment and withdrawal in not confirmed GHD adolescents at the achievement of adult height; ii) to
investigate the impact of GH receptor gene genomic deletion of exon 3 (d3GHR).

Design, setting: We performed a longitudinal study (1 year) in a tertiary care center.

Methods: 23 GHD adolescent were followed in the last year of rhGH treatment (T0), 6 (T6) and 12 (T12) months after rhGH
withdrawal with fasting and post-OGTT evaluations. 40 healthy adolescents were used as controls. HOMA-IR, HOMA%b,
insulinogenic (INS) and disposition (DI) indexes were calculated. GHR genotypes were determined by multiplex PCR.

Results: In the group as a whole, fasting insulin (p,0.05), HOMA-IR (p,0.05), insulin and glucose levels during OGTT
(p,0.01) progressively decreased from T0 to T12 becoming similar to controls. During rhGH, a compensatory insulin
secretion with a stable DI was recorded, and, then, HOMAb and INS decreased at T6 and T12 (p,0.05). By evaluating the
GHR genotype, nDel GHD showed a decrease from T0 to T12 in HOMA-IR, HOMAb, INS (p,0.05) and DI. Del GHD showed a
gradual increase in DI (p,0.05) and INS with a stable HOMA-IR and higher HDL-cholesterol (p,0.01).

Conclusions: In not confirmed GHD adolescents the fasting deterioration in glucose homeostasis during rhGH is
efficaciously coupled with a compensatory insulin secretion and activity at OGTT. The presence of at least one d3GHR allele
is associated with lower glucose levels and higher HOMA-b and DI after rhGH withdrawal. Screening for the d3GHR in the
pediatric age may help physicians to follow and phenotype GHD patients also by a metabolic point of view.
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Introduction

Growth hormone (GH) has pleiotropic functions in humans.

GH/insulin-like growth factor-1 (IGF-I) axis is the main regulator

of post-natal growth, but it has other main metabolic actions such

as the regulation of body composition, muscle and bone

metabolism. Furthermore, in the post-absorptive state, GH mainly

acts on stimulating lipolysis and lipid oxidation in order to switch

metabolism from glucose and protein to lipid utilization. At

present, it is reported that GH administration is followed by

lipolysis but also by insulin resistance and relatively sustained

hyperglycemia [1–3]. GH-induced lipolysis appears as the most

important determinant of GH anti-insulin actions, by inhibiting

insulin-stimulated glucose uptake especially in muscles [4,5].

Whether the impairment in peripheral insulin sensitivity is mainly

located in muscle and mostly due to higher disposable free fatty

acids, GH is also able to reduce hepatic insulin sensitivity in

healthy humans and to counterbalance the anti-lipolytic actions of

hyperinsulinemia [1,6]. Some of these effects are direct actions,

whereas others are IGF-I mediated [1].

Other mechanisms may be implicated on the metabolic effects

of GH, as the interaction of GH with the insulin receptor [7,8] and

the presence of several polymorphisms including the GH receptor

(GHR) exon 3 deletion (d3GHR) which seems to play a role in

glucose homeostasis in GHD subjects [9] and in general

population [10,11].

Several studies in adults have determined the effects of GH

replacement therapy on insulin sensitivity. Short-term rhGH
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therapy deteriorates insulin sensitivity with an improvement on

long-term in the majority but not in all studies. These conflicting

data are probably due to differences in sample size, methods of

evaluation of insulin sensitivity and doses of rhGH [1,12–15].

There are suggestions that rhGH therapy increases the risk of type

2 and/or secondary diabetes in GHD adults with pre-existing

metabolic risk factors [16]. Similarly, in children data from

registries show a slower increase in the incidence of diabetes due to

GH treatment in those patients with pre-existing risk factors

[17,18]. Despite this, a few data describe insulin secretion at final

height in the ‘‘so called’’ transition phase. Evidence to date

suggests an increase in insulin sensitivity after cessation of GH

treatment [19–21], but more studies are needed to clarify. In

particular, no attention has been paid on those subjects which

were not reconfirmed as GHD after stopping therapy.

Euglycemic hyper-insulinemic clamp is considered as the ‘‘gold

standard’’ for quantifying insulin sensitivity in vivo, but this

method is not applicable on a great population in daily clinical

practice. Insulinogenic index (INS) and disposition index (DI) are

new indirect methods for measure beta-cell function, using oral

glucose tolerance test (OGTT) -derived measures, and are early

markers of inadequate beta-cell or peripheral compensation. They

allow the investigation of a larger number of patients [22]. Recent

data indicate INS and DI as the best predictors of future type 2

diabetes in adults [23–25].

In order to understand the metabolic effects of rhGH therapy in

adolescents with unconfirmed GHD at the achievement of adult

height, we evaluated glucose metabolism in the last year of rhGH

replacement and in first year after rhGH discontinuation

compared with a healthy counterpart. Because some polymor-

phisms of the GHR could have a role in glucose metabolism and

insulin resistance, we also evaluated whether the d3GHR deletion

has a role on glucose homoeostasis during and after rhGH

withdrawal.

Methods

This was a single-center longitudinal study conducted at

Division of Pediatrics, University of Piemonte Orientale (Novara,

Italy). We consecutively recruited 35 GH-deficient (GHD) adoles-

cents at the end of puberty and in the last year of rhGH therapy

and 45 healthy age and sex matched adolescents. The recruitment

was opened from September 2006 to December 2011 The study

was approved by the Ethics Committee of Maggiore della Carità

Hospital (Novara) and informed written consent was obtained

from all subjects and their parents before study. Patients were

eligible if they had an idiopathic isolated GHD at diagnosis, had

completed puberty (Tanner stage 4 and 5), the adult height was

almost achieved with a bone age similar to the chronologic age

and growth velocity near to 2 cm/year, and GHD was not

confirmed at retesting (GD, group 1). Patients with coexistent

other chronic or endocrine diseases, syndromes, diabetes, tumors

or drugs interfering with glucose metabolism were excluded.

Healthy control adolescents (CS, group 2) were eligible if they

were at the end of puberty, normal-weight, with no history of

organic or psychiatric diseases in particular no neurological,

endocrine, liver, and kidney abnormalities.

Study Design and Assays
GHD adolescents were evaluated at fasting for IGF-1, total- (T-

c), HDL- (HDL-c) cholesterol, triglycerides (TG), C-peptide and

with an OGTT (1.75 g of glucose solution per kg, maximum

75 gr) in the last year of rhGH therapy (T0), and at 6 (T6) and 12

months (T12) after therapy withdrawal. In the year after GH

discontinuation the retesting was performed with the GHRH plus

arginine test with the adoption of the transition cut-offs [26]. In

healthy adolescents the OGTT was performed at baseline.

Impaired fasting glucose (IFG) and impaired glucose tolerance

(IGT) were defined according to American Diabetes Association

classifications as fasting plasma glucose of $100 to 125 mg/dl

nmol/l, and as 2-h post-OGTT glucose of $140 to 199 mg/dl,

respectively. Also the definition of diabetes was performed

according to the criteria of the American Diabetes Association

[27].

Blood samples during OGTT were drawn for the determination

of glucose and insulin every 30 min from 09 to 1209 min. The area

under curve (AUC) for plasma glucose and insulin were calculated

by the trapezoidal rule.

Insulin resistance was estimated, in the basal state, by use of the

homeostasis model assessment (HOMA-IR) = fasting glucose 6
fasting insulin/22.5; beta-cell function at fasting was calculated

using the formula of HOMA-b= (20 6 fasting insulin)/(fasting

glucose 23.5). Insulin sensitivity was calculated from the Matsuda

[10,000/!(fasting glucose 6 fasting insulin) 6 (Gm6Im)] and

QUICKI (1/log10 fasting insulin+log10 fasting glucose) indexes

[28].

The area under the curve (AUC) for parameters after OGTT

was calculated according to the trapezoidal rule. Delta glucose

(DG30–0) and insulin (DI30–0) were evaluated as the change in

glucose and insulin concentrations from 0 to 30 min. The stimulus

for insulin secretion in the increment in plasma glucose as

insulinogenic index was calculated as the ratio of the changes in

insulin and glucose concentration from 0 to 30 min (INS). Beta-
cell compensatory capacity was evaluated by the disposition index

defined as the product of the Matsuda Index and INS (DI) [29]. In

addition, each subgroup and all subjects together were divided into

four groups according to the 2-h glucose levels,: 1) less than

100 mg/dL, 2) 100–119 mg/dL, 3) 120–139 mg/dL 4) above

140 mg/dL according to the risk to have a lower DI [30].

Plasma glucose levels (mg/dl; 1 mg/dl:0,05551 mMol/liter)

were measured by the gluco-oxidase colorimetric method

(GLUCOFIX, by Menarini Diagnostici, Florence, Italy). Insulin

(mUI/ml; 1 mUI/ml= 7.175 pmol/l) was measured by chemilu-

minescent enzyme-labelled immunometric assay (Diagnostic

Products Corporation, Los Angeles, CA). Sensitivity: 2 mUI/ml.

Intra- and inter-assay CV ranges: 2.5–8.3 and 4.4–8.6%.

HbA1c levels were measured by the high-performance liquid

chromatography (HPLC), using a Variant machine (Biorad,

Hercules, CA); intra- and inter-assay coefficients of variation are

respectively lower than 0.6 and 1.6%. Linearity is excellent from

3.2% (11 mmol/mol) to 18.3% (177mmol/mol).

T-c (mg/dl; 1 mg/dl: 0.0259 mMol/l), HDL-c (mg/dl; 1 mg/

dl: 0.0259 mMol/l), TG (mg/dl; 1 mg/dl: 0.0113 mMol/l), and

C-peptide (ng/ml) were evaluated using standardized methods in

the hospital’s chemistry laboratory. Plasma T-c concentration was

measured by esterase and oxidase conversion (Advia 1650, Bayer

Diagnostics, Newbury, UK); coefficient of variation (CV) 1.9%.

Plasma TG and HDL-c concentrations were measured by

enzymatic determination (Advia 1650, Bayer Diagnostics, New-

bury, UK); CV 1.7%. LDL-c was calculated by Friedwald

mathematical for individuals with TG,150 mg/dl.

Serum IGF-I was measured by Liason automated chemilumi-

nescence analyzer supplied by DiaSorin with a measurement

range of 3–1500 ng/ml. Age and gender-reference ranges were

used to calculate an IGF1 SDS for each patient.

Disposition Index in GHD Adolescents
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Anthropometric Measurements
Height was measured by the Harpenden stadiometer and

weight by using electronic scale. Body mass index (BMI) was

calculated as body weight divided by squared height (kg/m2).

Height, weight and BMI were stratified according to Italian

growth charts [31]. Height velocity (HV) was calculated from the

difference of mean heights obtained from 2 consecutive visits,

divided by time between visits, and adjusted to a 12-month

interval. Waist circumference was measured with a soft tape,

midway between the lowest rib margin and the iliac crest, in the

standing position. Hip circumference was measured over the

widest part of the gluteal region, and the waist-to-hip ratio was

calculated. Systolic (SBP) and diastolic (DBP) blood pressure were

measured three times at the left arms by using a standard mercury

sphygmomanometer and the mean value was recorded and

stratified according to paediatric percentiles of National High

Blood Pressure Education Program Working Group on High

Blood Pressure in Children and Adolescents [32].

DNA Extraction and Genetic Analysis
At the end of the clinical protocol, after T12, genomic DNA was

isolated from peripheral blood leukocytes by standard methods.

The d3GHR polymorphism was detected as described previously

[33] based on a multiplex PCR assay with a combination of 3

primers (G1, G2 and G3) that specifically amplify the wild type

(935 base pairs bp) and the deleted (532 bp) alleles. Amplification

products were visualized by electrophoresis on a 1.5% agarose gel

stained with ethidium bromide (Figure S1).

Subjects with at least one copy of the exon-3 deleted GHR (d3/

d3 and fl/d3; Del) were grouped together for comparison with full-

length homozygote subjects (fl/fl; nDel).

Statistical Analysis
Data are expressed as mean6SEM. For continuous variables,

the variation between groups was compared by means on

nonparametric Wilcoxon, Mann-Whitney U, or chi-square tests,

where appropriate. Trends were assessed by nonparametric

Friedman test. A correlation analysis was performed using the

Pearson’s correlation test with a logarithmic transformation when

necessary.

Statistical significance was assumed for p,0.05. All statistical

analyses were performed with SPSS for Windows version 17.0

(SPSS INC; Chicago, IL, USA).

Results

GHD before and after GH Discontinuation
Of the 35 GHD enrolled subjects, 23 performed two OGTTs

and completed the study. Of the 45 CS, 5 subjects had discomfort

during OGTT and were excluded.

Clinical characteristics of CS and GHD at T0 and T12 are

reported in Table 1 and 2. GHD subjects had received GH

replacement therapy for 7.362.0 years. The last dose of GH was

12.060.5 mg/week. The GH peak at the Arginine+GHRH test

was of 72.065.6 ng/ml.

One GHD subject showed IFG at T0 and T6 and two subjects

IGT at T0. No glucose alterations were found at T12. The

distribution of post-OGTT 2hrs glucose levels at each time point

was reported in Table 2. HbA1c levels were 5.360.1%

(34.061.0 mmol/mol) in the last year of therapy. No differences

in waist, waist/hip ratio, BMI, SBP, DBP, LDL-c and TG were

shown in GHD among visits. T-c and HDL-c levels were lower at

T6 than T0, and HDL-c levels also at T12 than T0 in GHD

although the trend among visits was not significant (Table 2).

Basal glucose levels were similar among the 3 times. Fasting

insulin (p,0.05), HOMA-IR (p,0.05) insulin and glucose levels at

each time point after OGTT (p,0.01), DG0–30 (p,0.05) and DI0–
30, insulin mean and insulin AUC (p,0.01) progressively

decreased from T0 to T12. Conversely, C-peptide (p,0.0001),

Matsuda and QUICKI indexes increased from T0 to T12

(p,0.05). Despite higher insulin resistance during the last year

of GH treatment, a compensatory insulin secretion was recorded:

HOMA-b and INS were higher at T0, and progressively

decreased at T6 and T12 (p,0.05), with a stable DI. Also IGF1

levels and IGF-I SDS decreased from T0 to T12 (p,0.0001)

(Table 2).

A trend to decrease in DI across 2 h glucose groups (,100;

100–119; 120–139; .140 mg/dl) was observed and maintained at

each time point in GHD subjects; T0 (8.761.4; 7.261.1; 5.261.4;

3.260.8, respectively; p,0.01; x2 12.156), T6 (7.561; 7.060.9;

5.660.1, respectively; p,0.05; x2 6.695) and T12 (8.761.4;

7.661.7; 3.661.3, respectively; p,0.05; x2 6.593).
HOMA-IR (p,0.03), HOMA-b (p,0.002), QUICKI

(p,0.03), Matsuda indexes (p,0.002), fasting (p,0.05) and at

120 min glucose (p,0.01) were worse in GHD subjects at T0 than

in CS. No differences in metabolic parameters were shown

between CS and GHD at T12 (Table 1).

GHD before and after GH Discontinuation According to
GHR Genotype
By analysing the GHD group as a whole, we observed a huge

dispersion in INS and DI as mean6SD. Indeed, we addressed to

understand whether d3GHR has a role, according to some

literature suggestions (9,10). All the GHD subjects were analysed

for the GHR genotype, meanwhile 5 out of 40 CS withdrawn the

consent to perform this analysis.

Table 1. Clinical parameters of growth hormone deficient
(GHD, group 1) children at the end (T0) of rhGH therapy (T0),
after 12 months rhGH withdrawal (T12) and of control
subjects (CS, group 2).

GHD (group 1)
T0

GHD (group 1)
T12 CS (group 2)

Nu 23 23 40

M/F 12/11 12/11 22/18

IFG/IGT 1/2 0/0 0/0

Age (yr) 15.960.2 17.960.2 15.460.2

Weight (kg) 55.461.8 58.662.1 61.361.4

Centile weight 2362.1 2562.1 2761.5

Height (cm) 163.561.7a 166.161.2c 173.761.2a,c

SDS height 20.960.1a 2160.2c 1.160,1a,c

BMI (kg/m2) 20.960.5 21.260.5 20.460.2

HV (cm/yr) 1.560.4 1.060.1 –

Waist (cm) 72.861.2a 77.461.4 7960.8a

SBP (mmHg) 119.762.1b 119.463 124.461.3b

DBP (mmHg) 77.261.4 78.062.6 79.861.2

Abbreviations. BMI, body mass index; HV, height velocity; IFG, impaired fasting
glucose; IGT, impaired glucose tolerance; SBP: systolic blood pressure; DBP:
diastolic blood pressure, SDS: standard deviation score.
Data are expressed as mean6SEM. a: p,0.0001 GHD T0 vs CS; b: p,0.05 GHD
T0 vs CS; c: p,0.0001 GHD T12 vs CS.
doi:10.1371/journal.pone.0087157.t001
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The frequencies of the tree genotypes, d3/d3, fl/d3 and fl/fl

were respectively 9% [2], 35% [8], 56% [13] in GHD. Allele

frequencies were not different from those observed in the 35 CS

(Figure S1). Because frequency, the participants were therefore

divided into two groups, those homozygote for the fl/fl alleles (Del)

and those hetero- and homozygote for the deleted isoform

combined (nDel).

Del and nDel GHD had similar anthropometric and metabolic

parameters at T0 with exception of HDL-c which was higher in

Del GHD (56.561.9 vs 49.163.0 mg/dl, p,0.01).

At T6, Del GHD showed lower glucose levels at baseline and

after OGTT than nDel GHD (fasting glucose: 78.761.8 vs

87.562.9 mg/dl, p,0.01; T120 glucose: 90.764.6 vs

101.063.5 mg/dl, p,0.01; AUC 9703.06476.6 vs

12316.76447.7 mg/dl*h, p,0.01 and mean glucose

97.163.6 vs 118.562.8 mg/dl, p,0.0001). DI was higher in

Del than nDel GHD (10.461.0 vs 5.460.4; p,0.01) without

differences in INS, HOMA-IR and HOMA-b.
At T12, Del GHD showed lower glucose AUC

(9449.06552.4 vs 11771.061068.6 mg/dl*h; p,0.05) and

DG30–0 (29.564.5 vs 53.069.0 mg/dl; p,0.05), and higher

fasting insulin (9.060.8 vs 6.460.8 mUI/ml; p,0.05),HOMA-

IR (1.860.1 vs 1.360.2; p,0.05) and C-peptide (0.3960.09 vs

0.2460.03 ng/ml; p,0.04) than nDel GHD. Moreover, Del

GHD had INS (1.860.5 vs 0.760.1; p,0.01) and DI

(10.761.8 vs 5.061.0; p,0.01) higher than nDel GHD. nDel

GHD showed a progressively decrease from T0 to T12 in

HOMA-IR, HOMA-b, INS (p,0.05) and DI (not significant) with

stable C-peptide levels. Conversely, Del GHD showed a gradual

increase in DI (p,0.05), INS (not significant), and C-peptide

(0.2060.08 vs 0.3960.09; p,0.01) with a HOMA-IR decreasing

from T0 to T6 with a slight increase to T12 (p,0.01 for trend)

(Figure 1).

Del GHD presented stable higher HDL-c levels than nDel

GHD at any time point, whereas T-c, LDL-c and TG remained

similar. T-c levels decreased from T0 to T12 in nDel GHD

(141.067.4 at T0; 137.267.5 mg/dl at T6, 133.568.4 mg/dl at

T12; p,0.0001).

At T12, Del GHD presented lower fasting glucose (83.562.2 vs

88.062.2 mg/dl p,0.03), and higher fasting insulin (9.060.8 vs

6.860.6 mUI/ml; p,0.03), HOMA-b (167.7620.1 vs 96.9610.1;

p,0.003), and DI (10.761.8 vs 9.161.0 p,0.05) than Del CS.

Conversely, at T12 nDel GHD presented lower HOMA-IR

(1.360.2 vs 1.860.1 p,0.03), INS (0.760.1 vs 1.260.1 p,0.04),

and DI (5.061.0 vs 8.161.2 p,0.04) than nDel CS. Del and

nDel CS had higher C-peptide levels with respect to their GHD

counterpart (p,0.001).

Correlations
In GHD subjects during GH therapy, both INS and DI were

correlated with GH weekly dose (r: 20.399; p,0.05 and r:

20.529; p,0.01, respectively). Correlation was maintained when

Table 2. Glucometabolic parameters of growth hormone deficient (GHD, group 1) children at the end of rhGH therapy (T0) and 6
(T6) and 12 (T12) months after rhGH withdrawal.

T0 T6 T12 pfor trend

Fasting glucose (mg/dl) 83.661.7 84.561.8 84.161.8 NS

30-min plasma glucose (mg/dl) 145.565.7 138.365.4 127.265.9 ,0.05

2-h plasma glucose (mg/dl) 110.164.2 98.663 92.565 ,0.01

AUC Glucose 0-120 min 11592.46521 11273.46381 10691.86613 NS

Mean Glucose (mg/dl) 114.764.2 111.163 105.464.9 NS

DG30-0 59.964.8 53.264.9 42.965.5 ,0.05

Fasting insulin (mUI/ml) 10.561.1 860.7 7.760.6 ,0.05

30-min plasma insulin (mUI/ml) 99.4612 80.6611.6 59.869 ,0.01

2-h plasma insulin (mUI/ml) 59.666.8 40.965.4 34.264.8 ,0.01

AUC Insulin 0–120 min 7875.66915 6554.46864 4882.16591 ,0.01

Mean Insulin (mUI/ml) 6667.2 53.366.4 40.664.3 ,0.01

DI30-0 88.8611.2 72.5611 52.268.6 ,0.01

HOMA-IR 2.260.2 1.760.1 1.660.1 ,0.05

HOMA%b 205.2623.8 148.5615.9 148.3616.2 ,0.05

INS 1.660.2 1.360.1 1.260.2 ,0.05

DI 6.860.7 7.260.6 7.961.0 NS

C-peptide (ng/ml) 0.2160.05 0.1960.04 0.3660.05 P,0.01

T-c (mg/dl) 141.664.6 136.264.5 136.866.9 NS

HDL-c (mg/dl) 52.262.0 46.261.7 48.262.6 NS

LDL-c (mg/dl) 76.163.6 77.563.2 76.665.7 NS

TG (mg/dl) 60.764.1 62.766.2 59.265.3 NS

IGF-1 (ng/ml) 629.6638 356.8617 332.6625 ,0.0001

IGF-1 SDS 1.2160.19 -0.0160.06 -0.1560.17 ,0.0001

Abbreviations. DI, disposition index; INS, insulinogenic index; AUC, area under the curve; DG0-30: delta glucose;; DI0-30: delta insulin; HDL-c, HDL-cholesterol; LDL-c,
LDL-cholesterol; T-c, total-cholesterol; TG, triglycerides. Data are expressed as mean6SEM. The significance among the three measures (T0, T6 and T12) was calculated
by Friedman test.
doi:10.1371/journal.pone.0087157.t002
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correcting for IGF-1 (INS r: 20.392, p,0.05; DI r: 20.526,

p,0.01p,0.01) or IGF-SDS (INS r: 20.398, p,0.05; DI r:

20.531, p,0.01) which also weights for age and gender. No

correlations were recorded after GH discontinuation.

IGF-1 levels and IGF-SDS were correlated with HOMA-IR at

T6 (r: 0.518 and r: 0.514, p,0.01) and T12 (r: 0.518 and r: 0.518,

p,0.01), and also with QUICKY and Matsuda indexes at T6

(QUICKI, r: 20.495 and r: 20.476, p,0.03; Matsuda index,

20.443 and r: 0.302; p,0.05) and T12 (QUICKI, r: 20.611 and

r: 0.–609, p,0.02; Matsuda index, 20.543 and 20.359; p,0.05).

Discussion

A large number of studies have addressed the metabolic

consequences of adult GHD, in contrast studies investigating

glucose and insulin metabolism at the end of GH therapy in not

confirmed GHD adolescents during the transition phase are

lacking. The lack of published data reflects the clinical practice of

stopping the follow up in adolescents at the achievement of adult

height and with not confirmed GHD at reevaluation. This practice

makes a gap in the understanding of GH biology and of long-term

safety of rhGH treatment. In the present study, we observed that

after 1 year of rhGH withdrawal metabolic parameters are similar

between not confirmed GHD and matched control subjects.

Moreover, during GH treatment, higher insulin-resistance at

fasting and lower insulin-sensitivity during OGTT are associated

with higher HOMA-b and insulinogenic index and a stable DI in

the group as a whole. The d3GHR deletion may have a role on

the metabolic risk with a more pronounced reduction of HOMA-

IR and compensatory insulin secretion in nDel GHD, and with

lower glucose levels and a higher increase in DI and fasting C-

peptide in Del GHD at the end of the treatment.

First of all, we showed that whether glucose impairment and/or

insulin resistance occurred during the treatment with rhGH, these

are transient and quickly restored also in not confirmed GHD

adolescents, as already demonstrated in literature in adolescents

with persistent GHD [19,34]. Although puberty is ongoing, insulin

resistance at fasting and insulin sensitivity during OGTT

progressively return to similar levels to age, puberty, and weight

matched healthy adolescents. On the other hand, it is interesting

that GHD treated adolescents have the well-known higher insulin

resistance at fasting [35,36] but it is coupled with a compensatory

insulin secretion both at fasting, measured as HOMA-b, and

during OGTT, measured as INS with also a stable DI. Indexes of

insulin sensitivity (Matsuda index) and early insulin responses to

oral glucose (INS) that were derived from baseline and follow-up

OGTTs did not appear to be significant predictors for the

development of type 2 diabetes. In contrast, the baseline DI, which

significantly assesses beta-cell function in the context of insulin

sensitivity, predicts the risk of deteriorating glucose tolerance in

youths [30]. Thus, insulin secretion can be truly evaluated only in

relation to the degree of insulin sensitivity. Indeed, our data on DI

suggest that whether the treatment with GH has a detrimental role

on insulin resistance because it stimulates lipolysis, in youths

pancreas maintains a beta-cell compensatory capacity and is able

to answer to a relative hyperglycemia with a higher insulin

secretion which counterbalances the GH inhibited insulin-

stimulated glucose uptake in the muscles without impact on future

type 2 diabetes risk in those healthy [4,5]. Similarly, although M

values at euglycemic hyperinsulinemic clamp were higher after a

short rhGH withdrawal, in GHD treated young adults M values

Figure 1. HOMA-IR, Insulinogenic (INS) and disposition (DI) index in GH deficient (GHD, group 1) and healthy (CS, group 2)
adolescents with (Del, 27 subjects) and without (nDel, 31 subjects) the GH receptor (GHR) exon 3 deletion (d3GHR). GHD adolescents
are evaluated in the last year of therapy (T0) and after six (T6) and twelve (T12) rhGH withdrawal. Data are expressed as mean6SEM. The significance
among the three measures (T0, T6 and T12) was calculated by Friedman test. The significance between GHD and CS was calculated by Mann-Whitney
U test. *p,0.05.
doi:10.1371/journal.pone.0087157.g001
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were similar than matched controls [36]. Also in small for

gestational age GH treated adolescents, insulin sensitivity

decreased but DI remained stable at puberty [37]. We could

hypothesize that the preserved beta-cell function at early age

protects from type 2 diabetes and that when DI progressively

decreases with age and obesity a sustained glucose impairment

arises more likely as in adults. A direct role of GH on insulin

antagonism is supported by the negative correlation between GH

weekly dose and INS and DI, suggesting that the pancreas

compensation we observed is secondary to the peripheral

detrimental action of GH.

Studies conducted in adults and children suggest that insulin

resistance and glucose alteration are more frequent in GH treated

subjects with risk factors like age, obesity, an adverse metabolic

profile before therapy, syndromes or history of tumors [16].

Genomic profiles, like GHR polymorphisms could be inserted in

this list. The d3GHR deletion is the most investigated polymor-

phism of GHR in both healthy subjects and patients with GHD or

other diseases such as acromegaly or type 2 diabetes [38]. The

d3GHR variant consisting of genomic exon 3 deletion has been

linked with increased receptor activity due to an enhanced signal

transduction. Its biological role on glucose metabolism is still

controversial. Data derived by the Stockholm Diabetes Prevention

Program suggest the homozygosity for the d3GHR allele as

preventive of type 2 diabetes in adults. However, when other

factors cause overt type 2 diabetes, the d3GHR allele confers a

phenotype indicative of risk for metabolic disorders [10]. In

Chinese obese children fasting insulin, HOMA-IR, and lipid

profile were significantly lower in the homozygous and heterozy-

gous d3GHR group than in the full-length GHR group [39].

Moreover, the presence of at least one d3GHR allele was

associated with higher insulin secretion for a given degree of

insulin sensitivity and with a higher disposition index in healthy

normal weight children and adolescents during puberty in the

COPENHAGEN puberty study [11].

All these data are in agreement with our observation that

glucose levels are lower and DI, fasting C-peptide and nearly to

significance INS, were higher in Del GHD adolescents after

stopping therapy, suggesting that GHR exon 3 deletion gene

polymorphism may play a role in modulating insulin secretion to a

glucose challenge and peripheral insulin activity at least during

periods of high endogenous GH secretion like puberty. Higher

fasting C-peptide in subjects with at least one copy of the exon-3

deleted GHR than those with the full length one were also

demonstrated in adults [10]. However, the changes are apparent

after rhGH withdrawal in our population. This result is in line

with that of Giavoli et al. who recorded a higher prevalence of

impaired glucose tolerance after both 1 and 5 years of rhGH

therapy in GHD adults positive for the d3GHR [9]. The enhanced

activity of the d3GHR isoform may mediate the metabolic effects

of rhGH on glucose homeostasis. We can speculate that a more

pronounced GH activity has a strong lipolytic effect and insulin

antagonism. As a consequence, a worse glucose homeostasis in

adults and, more likely, a partial deterioration in peripheral insulin

activity, reflected by DI, in adolescents become apparent. This

hypothesis is fully in agreement with the fact that in healthy people

when other factors cause overt type 2 diabetes, the d3GHR allele

is not protective but confers a more impaired metabolic phenotype

[10]. Because normal adolescents with d3GHR have higher DI

during puberty and GHD unconfirmed subjects present an

increase in DI after rhGH withdrawal, a threshold for the

metabolic GH activity is suggested, in agreement with studies

which failed to record alterations in glucose metabolism for

treatments with rhGH very low doses [40].

GH plays an important role in the regulation of lipoprotein

metabolism. In patients with d3GHR we also observed higher

HDL-cholesterol levels during rhGH treatment and after rhGH

withdrawal. These findings are in line with data in healthy and

hypertensive adults [41] and support the idea that sequence

variations in the GHR may have important effects on metabolic

phenotype as a whole. Accordingly, other polymorphisms in the

GHR have been shown to modify HDL cholesterol concentration

also in hyperlipidaemic patients [42].

It has to note that our subjects progressively decreased IGF-I

levels after rhGH withdrawal but remained in the middle part of

the normal range. Higher IGF-I levels in the last year of rhGH

treatment were due to the treatment and, in absence of a

confirmed GHD during the transition phase, their levels quickly

restored in the middle of normality. Interestingly, insulin resistance

and sensitivity negatively correlated with them only after the

withdrawal of the therapy. This is adequate with previous study

that attest the U shape relation of IGF-I with the risk of diabetes is

evident in a healthy population when confounders are removed

[43].

There are limitations in the present study. First is that we did

not perform an intravenous glucose tolerance test (IVGTT). The

IVGTT is validated and more reproducible than the OGTT,

because independent by confounding factors as the incretin effect

is. However, the IVGTT only describes an experimental model

and is far to be used in clinical practice. We decided to use the

OGTT instead of IVGTT because OGTT describes the post-meal

dynamics which is of interest for the GH physiology being GH a

hormone that principally acts in the post-absorptive phase [1].

Moreover, we chose the OGTT-derived indices of insulin

sensitivity and secretion because they correlate well with clamp

measures in children [44,45], are easily calculated in epidemio-

logical or intervention studies, and DI calculated by the OGTT

has been demonstrated to predict diabetes development in adults

[24]. Furthermore, the OGTT is the test that is classically

performed in the clinical practice during rhGH treatment being

simpler and cheaper than IVGTT. Moreover, we did not evaluate

C-peptide during the test but only at fasting. The second limitation

is that we were unable to demonstrate a gene dosage effect with

respect to the d3GHR allele because the group of homozygous

subjects was too small to analyse them separately. A study in a

wider cohort could address this question. However, many

published studies on the d3GHR also in wider populations [9–

11] grouped together subjects bearing at least one copy of the

exon-3 deleted GHR according to the hypothesis of the dominant

model [46].

On the whole, in not confirmed GHD adolescents the fasting

deterioration in glucose homeostasis is efficaciously coupled with a

compensatory insulin secretion and activity for the degree of

insulin-sensitivity at glucose challenge also in puberty. In

adolescents during puberty, the presence of at least one d3GHR

allele, despite a slightly higher fasting insulin resistance, is

associated with lower glucose levels and higher HOMA-b, fasting
C-peptide, HDL-cholesterol and DI at OGTT after rhGH

withdrawal. Because a more pronounced activity of the d3GHR

isoform, a major risk to develop an impairment in glucose

homeostasis during the treatment could be hypothesized and

future studies should address this question. OGTT should be

routinely performed in clinical practice to better stratified GHD

subjects during the treatment. Screening for the d3GHR in GHD

treated subjects, also in childhood may help physicians to follow

and phenotype patients during the treatment.
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Supporting Information

Figure S1 Analysis of the GHR exon 3 polymorphism. a)
Schematic representation of the multiplex PCR assay used to

detect the GHR exon 3 polymorphism. One forward (G1) and two

reverse primers (G2 and G3) were used. Primers G1 and G3 (this

located within exon 3) are designed to detect the GHR-fl allele by

the amplification of a 935 bp fragment (the 3248 bp fragment is

non amplified under the conditions used); primers G1 and G2

allow the amplification of the GHR-d3 by producing a 532 bp

fragment. b) Genotyping of the GHR exon 3 polymorphism. The

presence of a 935 bp band indicates the genotypes homozygous

for GHR-fl (#1,2,3,6,8,10,11,12) the presence of a band of 532 bp

indicates the genotype homozygous for GHR-d3 (#4) and the

presence of both the bands indicates the herozygotes (#5,7,9,13).

A 100 bp ladder is used as a molecular weight marker. c)

Distribution of the genotype in GHD and control (CS) subjects.

Five out of 40 CS did not give the consent to perform the genetic

analysis.

(TIF)
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primers (G2 and G3) were used. Primers G1 and G3 (this located within exon 3) are designed 

to detect the GHR-fl allele by the amplification of a 935 bp fragment (the 3248 bp fragment 

is non amplified under the conditions used); primers G1 and G2 allow the amplification of 

the GHR-d3 by producing a 532 bp fragment. b) Genotyping of the GHR exon 3 

polymorphism. The presence of a 935 bp band indicates the genotypes homozygous for 

GHR-fl (#1,2,3,6,8,10,11,12) the presence of a band of 532 bp indicates the genotype 

homozygous for GHR-d3 (#4) and the presence of both the bands indicates the herozygotes 

(#5,7,9,13). A 100 bp ladder is used as a molecular weight marker. c) Distribution of the 

genotype in GHD and control (CS) subjects. Five out of 40 CS did not give the consent to 

perform the genetic analysis. 
 


