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1. Introduction

A well known 1988 survey of probabilistic philosophical theories of causa-

tion begun with the remark that «[p]robabilistic theories of causation have 

received relatively little attention» (Davis 1988, 133). Conversely, a more 

recent important survey, Williamson (2009, 185), begins in the following 

way: «Causal relationships are typically accompanied by probabilistic 

dependencies [italics added]». As the two different incipit show clearly, in 

about twenty years the perception of the relationship between causes and 

probabilities has strengthened, and a vast majority of the most promising 

current philosophical theories of causation deal with probabilities. However, 

a necessary caveat must be introduced: in saying that (almost) all current 

approaches to causation “deal with probabilities” we are not saying that 

every philosophical theory of causation must analyze causation in terms of 

probabilities, or “explain causation away” by means of probabilities: in the 

last few years, the philosophical program consisting in the reduction of 

causes to probabilities has not been the prevailing one, and, in its original 

form has ultimately proven unsuccessful (we will return to this point later). 

Rather, what is currently acknowledged in stressing the relationship linking 

causes to probabilities is the legitimacy of causal statements also when – 

due to lack of information or to genuine randomness – causes do not deter-

mine their effects. The combination of causality with probability should be 

of no surprise, if we consider that contemporary science is highly probabil-

istic; but of course, allowing indeterminacy within causation raises the 

question of where the indeterminacy lies (should we place it at the ontic or 
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at the epistemic level?) and what notion of probability should be adopted. A 

further, but not less important question, is whether there are some theories 

of probabilistic causation (in this weak sense) that seem to be commonly 

accepted, i.e. that are accepted independently of the specific analysis of cau-

sation – and of probability – endorsed, in the same way in which we say that 

probability calculus can be accepted regardless of the specific interpretation 

of probability adopted. 

In this paper we will proceed in the following way: firstly we will give 

a brief reminder of the main tenets of the philosophical program connected 

to strong probabilistic causation; then we will recall some of the principal 

problems that the mathematization of probability-based causal theories have 

tried to solve in the last two decades (with a certain degree of success, 

which explains the two different incipit quoted above). Eventually we will 

discuss the connection between kinds of probabilities and kinds of 

probabilistic causations, an issue that has a strong impact on the problem of 

determinism. 

2. Causes as Probability Modifiers 

According to one of the leading philosophical approaches to causation, the 

essence of causation is linked to constant regularities. From a historical 

point of view, the source of the so called regularity view of causation lies in 

Hume’s famous definition: «We may define a cause to be an object, 

followed by another, and where all the objects similar to the first, are 

followed by objects similar to the second» (Hume 1748, VII, II). This defi-

nition states two key elements of the regularity view, namely temporal suc-

cession and constant conjunction. As supporters of regularity view, Hume 

included, know well, perfectly constant conjunctions are not so frequent. 

Sometimes conjunctions between types of events which prove to be constant 

– and are unanimously considered causal – in some contexts, cease to be 

valid in other contexts, just because some contributing factors are missing, 

or because some conflicting factors are present. In other cases the “erosion” 

of constancy does not depend strictly on the context, but on the very fact 

that the conjunctions in question do not exhibit an inescapable character, but 

only a certain frequency.  

The need of revising the Humean definition in order to account for 

conjunctions that manifest themselves with not strict, but rather ‘gappy’ 

regularities can be seen as a valid motivation for a probabilistic approach to 

causation: in fact the first step toward a probabilistic account of causation 
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consists in recognizing the existence of associations which are not invaria-

ble, but nevertheless exhibit regular frequencies. A possible paraphrase of 

the Humean definition could run as follows: «We may define a cause to be 

an object, followed by another, and where most objects similar to the first, 

are followed by objects similar to the second».  

As it is well known, Hume’s first definition was accompanied by a 

second definition whose counterfactual approach seems, at least to contem-

porary readers, rather at odds with the regularity view: «Or in other words 

where, if the first object had not been, the second never had existed. [It is 

often remarked that the phrase ‘in other words’ here is totally misleading]» 

(ibid.). Again, if we wanted to transpose this last definition into a ‘gappy’ 

context, the new definition could run as follows: «Or […], if the first object 

had not been, the probability of the second would have been lower». If we 

temporarily put aside the philosophical difficulties which can easily be 

associated to a counterfactual lowering of probabilities, it should be natural 

to think of causes not only as those factors which determine their effects, 

but also as those factors which raise the probability of their effects. In fact, 

the first and more basic trait of probabilistic causation consists in seeing 

positive causes as probability raisers; if we define negative causes as those 

preventative or impeding factors which lower the probability of their effect, 

then we can, more generally, see (positive or negative) causes as probability 

modifiers. 

The basic idea of probability raising can be stated by saying that, if C 

and E are both events
1
, C raises the probability of E when the probability of 

E conditional to C is greater than the probability of E alone;  

P(E | C) > P(E)  (2.1) 

or, alternatively, by saying that the probability of E, conditional on C, is 

greater than the probability of E conditional on not-C : 

P(E | C) > P(E | ~C). (2.2) 

The two formulations (2.1) and (2.2) are almost equivalent
2
; as (2.1) 

holds just when (2.2) holds, here we will use the second. Now the basic idea 

of probabilistic causation can be expressed by the following formula:  

                                                 
1
 In absence of further specifications, we will use the term “events” both for particular 

events, which are the subjects of particular causal claims, as «Elizabeth’s smoking caused 

her bronchitis», and event types, or generic events, which are referred to by general causal 

claims as «Smoking causes bronchitis». 
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C is a probabilistic cause of E only if P(E | C) > P(E | ~C).      (2.3) 

If in (2.3) we substituted the ‘only if’ with ‘if and only if’, we would 

obtain a possible definition of probabilistic causation 

C is a probabilistic cause of E if and only if P(E | C) > P(E | ~C). (2.3*) 

Given that on the right hand side of the biconditional in (2.3*) we find 

only probabilities, (2.3*) is a definition which reduces causes to probabili-

ties. However, probability raising, as expressed by (2.3*), is neither a suffi-

cient nor a necessary condition to obtain a satisfying reductive definition of 

causality, as there are probability raisers which are not causes, and causes 

that do not raise the probability of their effects. In what follows we will pre-

sent a short summary of the most relevant problems deriving from insuffi-

ciency, namely Simmetry and Spurious causation.  

3. Probability Raising is an Insufficient Condition for Defining Causation 

3.1. Symmetry  

A definition of causation in terms of probabilities like (2.3*) does not satisfy 

the generally accepted requisite that a relation should satisfy in order to be 

causal, that of being an asymmetric relation; in probability theory, if the 

occurrence of C raises the probability of E, then also the presence of E 

raises the probability of C; in symbols:  

If P(E | C) > P(E | ~C), then P(C | E) > P(C | ~E). (3.1) 

Should we define causation by mere probability raising, like in (2.3*), 

we would be forced to accept that each effect causes its causes, contrary to 

our intuition that effects are non-causal probability raisers of their causes.
3
 

 

                                                                                                                            
2
 See Hitchcock (2010, 2.1). 

3
 It is perfectly possible to think of bidirectional or cyclical causation, but these cases are 

generally seen as different events of the same kind of the effects causing new events of the 

same kind of the original causes; for example, the intended meaning of the statement that 

«poverty causes ignorance and ignorance causes poverty» is that ignorance causes further 

impoverishment.  
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3.2. Spurious correlation 

A definition of causation which is based exclusively on probability raising 

does not allow us to distinguish between genuine causation and spurious 

correlation. A typical problem of spurious correlation occurs whenever two 

events A and B are statistically associated, but the link is due to a third fac-

tor C, which is the cause of both A and B. Given two events A and B of 

which we know only that are statistically correlated we cannot say if  

i)  it is B causing A, or the other way around, or 

ii)  there is a third causal factor, or complex of factors, causing both A 

and B
4
, or 

iii)  it is just a mere coincidence, as in the famous case of the 

parallel increasing of sea levels in Venice and bread prices in London 

(Sober 2001). 

Incidentally, it can be observed that difficulties in distinguishing causal 

from non-causal associations plague all the regularity theories of causation, 

probabilistic and not probabilistic ones, since their origins, as attested by 

Thomas Reid’s well known claim that Hume’s theory could not rule out the 

unwanted conclusion that the night causes the day and the day causes the 

night because they regularly follow each other.
5
 

As we will see in a while, the search for suitable solutions for the prob-

lems deriving by the so-called “naive probabilistic analysis” of causation 

(Glynn 2011) inspired a great deal of philosophical work. 

4. The No-Screening-Off Condition 

A large part of what has been built within this research area finds its origins 

in the contribution given by Hans Reichenbach in The Direction of Time, a 

                                                 
4
 A good example of i) and ii) is given by the controversial causal explanation of the 

correlation between smoking and depression: «Depression may cause people to smoke 

(perhaps to self-medicate their symptoms), or smoking may cause increased risk of 

depression (via alterations in neurotransmitter pathways following chronic exposure). The 

relationship may even be bidirectional (acute or infrequent tobacco use may reduce 

negative effect, but chronic use may exacerbate it), or be caused by shared risk factors 

(possibly genetic) so that the relationship is not causal at all». (Munafò & Araia 2010, 452) 
5
 «It follows from [Hume’s] definition of a cause, that night is the cause of day, and day the 

cause of night. For no two things have more constantly followed each other since the 

beginning of the world». (Reid 1788, 4.9) 
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volume published three years after his death (Reichenbach 1956). It is worth 

noting that in a work written in 1923 – but published ten years later - he had 

presented a Kantian position, in which causal judgements were given a 

synthetic a priori status (Reichenbach 1933). Reichenbach (1956) assumes a 

different position, claiming that probabilities are more fundamental, and that 

causality can be derived from probabilistic relations; moreover, he purports 

to show how the direction of time is derived from the direction of causation. 

The Direction of Time also introduces a concept which will prove very im-

portant for the subsequent theories of probabilistic causality, namely the 

concept of screening off. The no-screening-off condition formalizes the 

intuition that spurious causes become uninformative once the real cause is 

known. Before seeing how this intuition can be put at work, let us introduce 

two classic examples of screening off.  

4.1. Common cause  

Let us consider a typical case of spurious correlation, the situation in which 

whenever the atmospheric pressure in a certain region drops below a certain 

level, the height of the column of mercury in a particular barometer also 

drops and after a short time a storm occurs. The drop of the mercury column 

(A) is therefore associated to the occurrence of a storm (B): therefore it 

raises the probability of the storm and its probability is raised by the occur-

rence of the storm itself; in symbols: 

 P(A | B) > P(A | ~B),  (4.1) 

 P(B | A) > P(B | ~A). 

But even if A is a probability raiser of B and B a probability-raiser of A, 

neither is cause of the other: the right causal picture is restored if we con-

sider a third factor, the atmospheric pressure (C). If we analyze the relations 

of probabilistic dependency among the factors A, B, and C, we notice two 

important things: 

– C is a probability raiser of each of the other two factors  

as P(A | C) > P(A | ~C) and P(B | C) > P(B | ~C);  

– C has the further property of cancelling, whenever we condition on C, 

the positive statistical association between A and B. C is said to screen 

A off from B if A and B are statistically correlated, but the correlation 

vanishes once we consider C. The vanishing of the statistical 
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association is more precisely stated in terms of probabilistic conditional 

independence: 

If P(A & B) > 0, then A and B are probabilistically independent  

given C if and only if P(A & B| C) = P(A | C) P(B | C). (4.2) 

The diagram in figure 4.1 represents the causal structure of the ba-

rometer/storm/pressure example: 

 

Fig. 4.1 

In this case the role of the screening factor, C, is that of a common 

cause; screeners are often referred to as confounders, or confounding fac-

tors.  

4.2. Causal intermediates  

There is another important type of screening off, due to the presence of 

causal intermediates (Figure 4.2). 

 

Fig. 4.2 

In this case we have a causal chain, where the direct cause C screens off 

the effect E from A; in this case we still want to say that A is a cause of E, 

even if it is an indirect cause. 
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5. The Principle of Common Cause 

The notion of common cause plays a fundamental role in Reichenbach’s 

conception of causation. «It will be advisable – he says in introducing his 

argument (Reichenbach 1956, 158) to treat the principle of a common cause 

like a statistical problem». The Principle of Common Cause states that «if 

coincidences of two events A and B occur more frequently than would cor-

respond to their independent occurrence», that is, in statistical terms, if the 

following formula is satisfied
6
 

 P(A & B) > P(A) P(B),  (5.1) 

then the explanation of their association should be ascribed to a third factor 

C [with 0 < P(C) < 1], which causes A and B. A conjunctive fork is a causal 

structure (such as that in figure 4.1) where A and B occur simultaneously, 

and A, B, C, satisfy the following conditions: 

  P(A & B | C) = P(A | C) P(B | C)   (5.2) 

 P(A & B | ~C) = P(A | ~C) P(B | ~C)  (5.3) 

 P(A | C) > P(A | ~C)    (5.4) 

 P(B | C) > P(B | ~C),    (5.5) 

Here (5.2) and (5.3) describe the fact that C screens off A from B and 

(5.4) and (5.5) convey the dependence, respectively, of A from C and of B 

from C; Reichenbach (1956, 159-161) shows that (5.1) is derivable from 

(5.2) - (5.5). If C satisfies (5.2) - (5.5), and there is no other factor that satis-

fies these conditions, then ACB form a conjunctive fork ‘open to the future’: 

C is the common cause of A and B and it precedes in time both A and B. Ac-

cording to Reichenbach, the majority of conjunctive forks are open to the 

future, and this hypothesis allows us to derive temporal order from causal 

asymmetry, which in turn is based on a particular set of statistical relations. 

He concedes that there are conjunctive forks open to the past, but they are 

defined by a different set of statistical relations. As Hitchcock (2010) notes, 

«Reichenbach considered this asymmetry to be a macrostatistical analogue 

of the second law of thermodynamics»
7
. 

                                                 
6
 The notation has been changed for coherence.  

7
 «Reichenbach (1956) saw his fork asymmetry as a macro-statistical analog of the second 

law of thermodynamics. The idea is roughly along the following lines. Suppose we have a 

system such as a beach that is essentially isolated from the rest of its environment. Suppose 
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5.1. Suppes’ Definition 

An alternative way of defining probabilistic causation consists in defining 

probabilistic causation by “building in” the definition of the temporal order 

(i.e. the fact that causes precede their effects): 

Probabilistic Causation – If Ct is an event occurring at time t, Et′ is an 

event occurring at time t’, and t precedes t’, then Ct causes Et′ if and only if: 

i) P(Et′ | Ct) > P(Et′ | ~Ct); 

ii) There is no further event Bt″, occurring at a time t″ earlier 

 than or simultaneously with t, that screens Et′ off from Ct. 

A definition of this kind is presented by Suppes (1970). First, Suppes 

gives a preliminary definition of prima facie causes - in short, prima facie 

causes are probability raiser with a probability greater than 0 that precede 

their putative effect in time. He then defines spurious causes as those prima 

facie causes which are screened off from their effects by members of a par-

tition of events which precede the effect. Finally, he defines genuine causes 

as those prime facie causes that are not spurious. While Reichenbach fo-

cused on structures as the one in figure 4.1, Suppes’ definition is inspired by 

cases like the causal chain depicted in figure 4. 2. 

Our brief sketch of the first period of probabilistic approaches to causa-

tion should include a presentation of the contribution given by Good (1959, 

1961a, 1962). We will not provide it, referring instead, for a first presenta-

tion, to Williamson (2009). In the next section we will sketch some of the 

main problems linked to the definition of causation à la Suppes-

Reichenbach, before introducing the new formal approach to the philosophy 

of probability and causation.  

                                                                                                                            
moreover that we find this system in a state of low entropy; e.g. there are footprints on the 

beach. The second law of thermodynamics tells us that the system did not spontaneously 

evolve into this state; rather, the low entropy state must be the result of an earlier 

interaction with some other system (a human walking on the beach). This interaction 

‘prepares’ the system in a low entropy state, but once the system is isolated, its entropy will 

increase. Now suppose that we have two events A and B. If we hold fixed the probability of 

each event individually, a probability distribution over the partition A&B, A&~B, ~A&B, 

~A&~B will have more information, in the sense of Shannon (1948), when A and B are 

correlated. The formal definition of entropy is closely related to that of information, the two 

being inversely proportional. So when A and B are correlated, we have the analog of a 

system in a state of low entropy. This state is then to be explained in terms of some earlier 

event that prepares the system» (Hitchcock 2010). 
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6. Probability Raising is an Unnecessary Condition for Defining 

Causation 

If we wanted to summarize the preceding sections, we could say that a defi-

nition of probabilistic causation in terms of probability raising (or probabil-

ity modifying) should be accompanied by something like No-Screening off 

Condition, stating that C causes E just in case it raises the probability of E 

and there is no third factor (or conjunction of factors) C such that C screens 

off C from E. However, even this definition must face serious counter-

examples, notably those deriving from causes that do not raise (modify) the 

probability of their effects. One of the most well known examples is given 

by Skyrms (1980). In general, smoking is a positive cause of lung cancer. 

But suppose that, due to air pollution (which is also assumed to be another 

positive cause of lung cancer), city-dwellers tend to stop smoking in order to 

protect their lungs, whereas in the country people feel freer to smoke. Then, 

smoking is a positive cause of lung cancer, living in the country is negative 

cause of lung cancer and a positive cause of smoking; however, if the city 

air quality is bad enough to cause lung cancer to a high number of non 

smokers, then the frequency of lung cancer in the entire population can be 

lower among smokers than among not smokers; in this case smoking will be 

negatively correlated with lung cancer even if it is a positive cause of it.  

In this example, living in the country is a common cause of lung cancer 

(negative) and smoking (positive), but does not screens off lung cancer from 

smoking because smoking causally affects lung cancer in an independent 

way. Therefore, No-Screening-Off Condition is insufficient to restore the 

right causal picture. Other well known examples of contrast between prob-

abilistic influence and causal influence are given below, together with 

attempts to show how to overcome this problem. 

7. Hesslow Problem and Simpson’s Paradox 

A well known example of causation which is not reflected by probability 

raising is given by Hesslow (1976, 192): 

It is possible however that examples could be found of causes that lower the 

probability of their effects. Such a situation could come about if a cause could 

lower the probability of other more efficient causes. It has been claimed, e.g., 

that contraceptive pills (C) can cause thrombosis (T), and that consequently there 

are cases where Ct caused Tt’. But pregnancy can also cause thrombosis, and C 

lowers the probability of pregnancy. I do not know the values of P(T) and P(T/C) 

but it seems possible that P(T/C) < P(T), and in a population which lacked other 
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contraceptives this would appear a likely situation. Be that as it may, the point 

remains: it is entirely possible that a cause should lower the probability of its 

effect.  

In Hesslow’s example, we have causation unaccompanied by probabil-

ity-raising. In general, those cases in which two or more properties, which 

are positively or negatively correlated or independent from each other, 

exhibit a “sign reversal” – or become uncorrelated when we consider the 

subpopulations separately – are called “Simpson’s paradoxes”. Here we pre-

sent a typical example of Simpson’s paradox, following Pearl (2000). 

Imagine a drug trial (where some subjects are given the drug and the 

others are given a placebo) where the drug appears positively associated to 

recovery in the overall population, but negatively associated to recovery in 

the two subpopulations of males and females. 

Here the ‘factors’ are: Recovery, Drug, Female. The absence of each 

factor is represented, as usual, by the negation symbol ‘~’.The sign-reversal 

is represented by the following inequalities: 

i) P(Recovery | Drug) > P(Recovery | ~Drug) 

ii) P(Recovery | Drug & Female) < P(Recovery | ~ Drug & Female) 

iii) P(Recovery | Drug & ~Female) < P(Recovery | ~ Drug & ~Female). 

The data in following three tables show, respectively, the different frequen-

cies of recoveries of patients who received the drug with respect to those 

who received the placebo in the whole group (a), in the subpopulation of 

female patients (b) and in the subpopulation of male patients (c). 

 

Combined Recovered Not recovered Total Recovery rate 

Drug 20 20 40 50% 

No drug 16 24 40 40% 

 36 44 80  

(a) 

Females Recovered Not recovered Total Recovery rate 

Drug 2 8 10 20% 

No drug 9 21 30 30% 

 11 29 40  

(b) 
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Males Recovered Not recovered Total Recovery rate 

Drug 18 12 30 60% 

No drug 7 3 10 70% 

 25 15 40  

(c) 

If we look at the three tables, we see that (a) seems to point toward drug ef-

ficacy, as the rate of recovery is 10% higher among the treated patients. 

Therefore, it seems that we are justified in asserting: 

iv) P(Recovery | Drug) > P(Recovery | ~Drug). 

However, tables (b) and (c) show a recovery rate which is 10% lower both 

among female patients and among male patients, displaying a value reversal 

with respect to the mixed group: 

v) P(Recovery | Drug & Female) < P(Recovery | ~Drug & Female), 

vi) P(Recovery | Drug & ~Female) < P(Recovery | ~Drug & ~Female). 

In our example, the drug appears to be a positive cause of recovery in 

the overall population because male patients, who recover more often than 

female patients independently, also undergo treatment with higher fre-

quency. The larger proportion of treated patients and of recovering patients 

within the male population, therefore, masks, in the whole population, the 

true causal picture. However, if we investigate the effect of the drug in the 

two subpopulations separately, holding fixed the factor “sex”, that in this 

case results to be a confounding factor, the right causal picture emerges.  

The philosophical moral of these examples is that probability raising 

plus Screening Off are neither sufficient for analyzing causation nor for li-

censing correct causal judgements: it is also important that causal links are 

evaluated with respect to the ‘right’ populations. But how should we iden-

tify the right populations? Are there general rules to do so? Cartwright 

(1979, 423) suggests incorporating the requirement that probability raising 

is ascertained in causally homogeneous populations into the definition of 

probabilistic causation in the following way: 

 

Definition of probability: C causes E if and only if C increases the 

probability of E in every situation which is otherwise causally 

homogeneous with respect to E. 
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In more formal terms: 

 

Contextual Unanimity: C causes E if and only if P(E| C & B) > P(E| ~C 

& B) in every background context. 

Skyrms (1980) offers a weaker formulation of this principle, requiring 

that the alleged cause raises the probability of the presumed effect in at least 

a background context and lowers it in none. Background contexts are de-

fined as conjunctions of factors which are causally relevant with respect to 

the causal relation under enquiry. Due to this appeal to (other) causally rele-

vant factors, neither Cartwright’s nor Skyrms’ theories are to be considered 

as reductive theories of probabilistic causation. 

8. Causal modeling 

Starting from late ‘80, the research on the relationship between causal and 

statistical dependencies has become interdisciplinary, and it has undergone a 

strong mathematization, due also to the contribution from research in artifi-

cial intelligence, at least since the works by Pearl (1988, 2000) and Spirtes, 

Glymour & Scheines (1993). The result of this area of research is called 

causal modeling and, due to its ability to offer a systematized account of 

formerly sparse statistical, philosophical and mathematical results, has be-

come the state of the art concerning the approach to causal inference from 

statistical data in many scientific areas, with particular respect to epidemiol-

ogy and the social sciences. From a philosophical point of view, the 

research of causal modeling has yield an important clarification of many 

principles both of causal reasoning and on reasoning about causation, but at 

the same time has raised a lively debate on the validity of its methods and 

principles. In this section we will present a brief sketch of the theory. 

Our introduction starts with the definition of Bayesian networks. A 

Bayesian network is a mathematical object consisting of: 

i) a directed acyclic graph G, i.e., a set of nodes and a set of arrows that 

connect pairs of nodes, and in which there are not cycles (like X1  X2 

 X3  X1). Each node is associated to a variable, whose values repre-

sent the occurrence/non occurrence of events; for brevity, the terms 

“node” and “variable” are often used interchangeably. Variables can be 

binary (e.g. the variable FEVER having value 1 or value 0 represents 

the presence or the absence of fever), or range over richer sets of values 
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(e.g. BODY TEMPERATURE = 32, …, 41. The set of variables is 

denoted by “V”. The relations between subsets of variables are 

described as family relations: an arrow from X1 pointing directly to X2 

is said to be a parent of X2, where X2 is said to be a child of X1. The set 

formed by the children of X1, the children of children of X1, …, is called 

the set of the descendants of X1; 

ii) a probability distribution on the variables of G, such that for each 

node Y with parents X1, …, Xn is specified a conditional probability 

distribution P(Y | X1, …, Xn). 

An important assumption concerning the relationship between the graph 

and the probability distribution is the Markov Condition (MC):  

(MC)  In a Bayesian network any node is conditionally independent 

  of its non-descendants, given its parents.  

In figure 8.1, the probability of the node X5 is independent of its non-

descendants X1 and X4 conditionally on its parents X3 and X2. 

 

 

Fig. 8.1 

The Markov Condition turns out to be equivalent to a relation, called d-

separation, which allows a ‘reading’ of the independence relationships 

among the variables from the graph.
8
 Besides Markov Condition, two other 

conditions can be – and often are – assumed: 

                                                 
8
 For an introduction to d-separation see e.g. Scheines (2005).  
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Minimality – no edge can be removed from the graph with the resulting 

sub-graph violating the Markov condition, 

And 

 

Faithfulness – probabilistic independencies are due only to the holding 

of the Markov Condition, and not to incidental mutual cancellations of 

probability values. 

Originally Bayesian networks were devised as an useful tool for repre-

senting and inferring probabilistic dependencies. Given the close relation-

ship between probabilistic dependencies and causal dependencies, it is not 

surprising that they have been used also for causal reasoning. In order to be 

an useful tool in this area, however, Bayesian networks must be given a 

causal interpretation. Under such an interpretation, the arrows of the graph 

represent direct causal relationships. For causal Bayesian networks the 

following Causal Markov Condition (CMC) holds  

(CMC)  In a causal Bayesian network, any node is probabilistically 

  independent of its non-effects, conditional on its direct  

  causes. 

As Williamson (2009) points out, «CMC implies the Principle of Com-

mon Cause in the following version: if variables A and B are probabilisti-

cally dependent then one causes the other, or there is a set U of common 

causes in V which screen off A and B». He also remarks that this version of 

the Principle of Common Cause is also a consequence of Reichenbach’s 

own version «under a suitable mapping between events and variables». 

How does causal modeling fares with respect to problems like 

Hesslow’s problem and Simpson paradox? A general answer could be that 

by the constant request of making every step and assumption explicit, clas-

sical problems can be handled quite well: every step of the building of the 

model, and every causal assumption about both the causal scenario under 

enquiry and the inferential principles adopted in the process of drawing 

causal inferences will be expressed explicitly, helping to disambiguate what 

is hidden in Hesslow’s problem and Simpson Paradox. However, recent 

researches have made clear that good causal modeling requires good back-

ground causal knowledge, and some principles are still controversial. In 

cases à la Hesslow, for example, the possibility that the tendency of birth 
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control pills to (directly) cause thrombosis and the tendency of birth control 

pills to prevent thrombosis by preventing pregnancy (which in turns is a 

cause of thrombosis) is excluded by the Faithfulness Condition that, as we 

have seen, implies that the causal influences of a variable on another along 

different routes do not cancel each other. As many critics have pointed out, 

however, it is difficult to find metaphysical compelling reasons to accept 

Faithfulness, which seems therefore to be an object of methodological deci-

sions. 

As far as Simpson’s paradox is concerned, it is clear that it can “dis-

solve” once we condition on the variable “Sex” (= male, female): even it is 

not perfectly clear in what sense the sex is “a cause” of recovery, in Simp-

son’s scenario it causally influences both compliance to the treatment and 

recovery, so it should be held fixed and the “true” causal history is revealed 

by the disaggregated data. But it is not always easy to decide what factors 

should be hold fixed, and there are not methods based on purely statistical 

criteria for identifying confounders. The theory of causal modeling offers a 

powerful method to deal with confounding biases, based on the so called 

“back-door criterion” (see, for example, Pearl 2013). However, applying 

back-door criterion correctly requires the building of a “good causal model” 

and this, in turn, seems to require a large amount of (causal) background 

knowledge. It should not be surprising, therefore, that many authors work-

ing with causal models endorse a non–reductionist position. We will discuss 

later open questions in the metaphysics of probabilistic causation; here we 

just point out some cases in which the Markov Condition does not hold. The 

Markov Condition can fail for the following reasons: 

a) the variables are linked by intrinsically non-causal probabilistic 

dependencies, such as logical relations, mathematical relations (e.g. 

are connected by a mathematical equation), or semantic relations 

(e.g. synonymy); 

b) the variables are connected by a non-causal physical law; 

c) the set of variables V contains variables which are linked by a 

common cause that is not included in V: in this case V is said to be 

causally insufficient; 

d) the population is selected by a biased procedure; 

e) quantum mechanical systems. 
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Most of these cases are ruled out by explicit prescriptions: for example, 

Spirtes, Glymour & Scheines (1993) explicitly rule out causally insufficient 

sets of variables. They conceive principles as the Faithfulness Condition, the 

Sufficiency Condition and Causal Markov Condition neither as a dogma nor 

as parts of a reductive definition of causality, but rather as working hypothe-

ses stating that the «Markov Condition is not given by God; it can fail for 

various reasons [...]. The reliability of inferences based upon the Condition 

is only guaranteed if substantial assumptions obtains»
9
 

It is therefore clear that, in this framework, principles as the Faithful-

ness Condition, the Sufficiency Condition and Causal Markov Condition 

itself appear more as methodological principles than constitutive traits of 

causation. Moreover, from an epistemological point of view, the opinion 

that causal reasoning and causal ascertainment require a great deal of 

knowledge, seems rather uncontroversial; however, from an ontological 

point of view, there seems to be space for a strong contrast: on the one hand, 

even most “founding fathers” of causal modeling declare themselves anti-

reductionist (Pearl), or metaphysically “neutral” (Spirtes, Glymour and 

Scheines 1993); on the other hand, some authors (e.g. Papineau 1993, 2001; 

Spohn 2001; Thalos 2002) use causal modeling to argue in favour of reduc-

tionism
10

. Our last remarks will be devoted to this contrast of interpreta-

tions. 

9. Metaphysical Questions 

9.1. Are general causes reducible to particular causes? 

Any theory addressing the metaphysics of causation should specify what is 

connected by a causal link: events, tropes, states of the world? The problem 

of the nature of causal relata is common to all philosophical theories of cau-

sation, and it does not concern only probabilistic theories of causation. In 

causal modeling, the prevailing view, with notable exceptions, is that causal 

relata are events, and that events can be adequately represented by specific 

values of the variables in V. A specific and relevant question inside this 

framework is whether causal relations apply to types of events (as in 

«Drinking hemlock causes death») or to particular events (as in «Socrates’ 

drinking hemlock caused Socrates’ death»). Many authors agree on the op-

portunity of tackling type causation and token causation separately, but this 

                                                 
9
 Spirtes, Glymour and Scheines (1993, 9). 

10
 It should be noted that Spohn (2001) qualify its reductionism as epistemological. 
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attitude avoids the problem of deciding whether one of these two kinds of 

causation depends on the other, and consequently to which kind of causation 

we should assign ontological priority. In defending the independence of the 

two theories, Eells (1991) proposes some convincing examples of general 

causal statements which could be assigned a truth-value even in case no 

particular instance ever occurred (e.g. «Drinking a pint of plutonium causes 

death»). As we will see, the question of general/particular probability is 

linked to the chosen interpretation of probability. It is worth noting, how-

ever, that the technical machinery of causal modeling can be applied either 

to singular or to general causation. 

9.2. Are causes reducible to probabilities? 

Within causal modeling approach, the possibility of reducing causal 

dependences to patterns of probabilistic (in)dependencies seems to be ham-

pered by the so-called statistical indistinguishability of some patterns. 

Given three variables A, B, C and a probability distribution on the variables 

such that C screens off A from C, the three following graphs are compatible 

with the statistical data: 

i) A  C  B;

ii) A  C  B;

iii) B  C  A.

Fig. 9.2.1 

In other terms, the DAGs i)-iii) are all acceptable as representations of 

an unique set of probabilistic independence relations; however, the causal 

structures represented by each graph are quite different. It is therefore clear 

that in this case the statistical data alone underdetermine the causal picture; 

in such cases, we say that the graphs are statistically indistinguishable. 

Obviously, if we knew the temporal ordering of the variables, the 

underdetermination would vanish: e.g., if we knew that C occurred before A 

and B, it would be easy to recognize that C is the common cause of A and B 

and that the right graph is i) in figure 9.2.1 (at least if we accepted the as-

sumption that causes precedes their effects). But if we aim to the defend the 

metaphysical program of reducing causes to probabilities, we may not want 
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to be forced to accept the assumption of temporal precedence of causes; 

therefore, the fact that in situations as simple as the one picture in figure 

9.2.1 we are not able to elicit one causal structure seems to threaten any re-

ductionist program. A possible way out is given by what has been some-

times called “the third arrow strategy” (see for example Papineau 1993). It 

is based on the assumptions that when the set of probabilistic 

(in)dependencies let us in doubt between different causal structures, we can 

search for further variables that ultimately will reveal the “right” direction 

of the arrows between the variables under enquiry. 

Consider, again, figure 9.2.1 and suppose, as Papineau (1993, 240) sug-

gests, that there is some further variable (D) which satisfies the following 

probabilistic relationships:  

 D is not correlated with A;

 D is correlated with B and C;

 D’s correlation with B is screened off by C;

 D’s correlation with C is not screened off by anything.

If we assume that correlation is essential for causation, we can identify 

the correct diagram as the second chain in figure 9.2.1, otherwise) we 

should see D correlated with A.  

As shown by figure 9.2.2 the right causal structure is obtained as a part 

of a larger structure. 

D 

 

A  C  B 

Fig. 9.2.2 

In short, when causal judgement is made impossible from statistical 

indistinguishability, the third arrow strategy invites us to search new varia-

bles and new probabilistic independencies in order to give the right direction 

to our (causal) arrows. Papineau quotes a theorem by Spirtes, Glymour e 

Scheines stating that, assuming adequate screening off conditions, for any 

set of probabilistically related variables, there is a wider set such that the 
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conditions will fix the causal order of the original variables. He adds that 

«[i]t is of course a contingent matter whether such a possible wider set is 

actually available in every case, that is, whether, for any causally ambigu-

ous probabilistic structure […] there is always a wider structure […] which 

disambiguates it» (Papineau 1993, 241); however, if we assume that there 

are such wider structures, we accept a reduction of causes to probabilities. 

9.3. Objective and subjective probabilities 

Whether one considers causes reducible to probabilities or merely linked to 

them, one should ask herself what kind of probabilities are at stake. While 

technical theories of probabilistic causality such as Suppes (1970) and 

Spirtes, Glymour & Scheines (1993) are pluralistic, and as such admit dif-

ferent interpretations of probability and causality, other theories try to be 

more specific and to give a metaphysical characterization of causation. 

Contemporary philosophy of probability is unanimous in distinguishing (at 

least) two kinds of probability: physical probabilities, seen as parts of exter-

nal world and as such independent of our minds, and mental probabilities, 

which are defined with respect to epistemic agents. Frequency theories of 

probability (such as von Mises’ and Reichenbach’s), as well as propensity 

theories (such as Popper’s) belong to the first kind of theories, while 

personalist (such as de Finetti’s and Ramsey’s) and logical interpretations of 

probability (such as Carnap’s and Keynes’) belong to the second kind. 

An analogous distinction could be traced between interpretations of 

causation that see causes as related to our minds (such as Hume’s and 

Kant’s) and interpretations that see causes as features of the world. Com-

bining the interpretations, we would obtain, as observed by Williamson 

(2005) four kinds of combinations: 

 

a) Physical probabilities, physical causes 

b) Physical probabilities, mental causes 

c) Mental probabilities, physical causes 

d) Mental probabilities, mental causes. 

Williamson (2009) examines the various possibilities in depth; here we 

give just few short remarks on two points. 
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Firstly, if mental is intended as subjective, c) must be excluded, because 

we should impose a physical constraint (Principle of Common Cause, or 

Causal Markov Condition) on our probabilities, as the Causal Markov Con-

dition, where causality is interpreted physically, implies that the agent’s 

degrees of belief must satisfy certain independence relationships; therefore a 

physical interpretation of causality would conflict with a strict subjectivist 

notion of probability. 

Secondly, Williamson rejects a) on the basis of the counterexamples 

that can be raised against the Causal Markov Condition, when physically 

interpreted. There are two possible objections against the assumption of the 

Principle of Common Cause under a physical interpretation. The first one 

has been highlighted by the well known remark by Sober (2001) that if we 

observe, say, that the price of the bread in Britain and the level of the water 

in Venice have both been steadily rising since records began, we should be 

forced, by PCC, to induce a common cause of the two phenomena, which is 

obviously absurd. Against this, Papineau (2001) claims we should not look 

for causal links between factors that are not spatio-temporally correlated. He 

is prepared to accept the idea that, if we would be able to reconstruct the 

huge Bayesian network formed by probabilistic dependencies at the right 

level (where probabilities are interpreted as frequencies), this would be all 

that there is in causation. But what is the right level? This question brings us 

to the second main group of objections raised against the physical 

interpretation of PCC, i.e. the fact that PCC (and CMC) seem to not work in 

quantum mechanical systems
11

.

9.4. Macro-world and micro world, determinism and indeterminism 

Despite its ambitious title, this section will be very short, aiming exclusively 

to point to some work in progress. As already mentioned, some of the out-

standing authors in the field of causal modeling, like Spirtes, Glymour and 

Scheines, and Pearl, are not particularly disturbed by the (possible) failure 

of Causal Markov Condition in the micro-world; being non-reductionist 

they believe that even if some assumptions of causal modeling are not ap-

11
CCP fails for certain quantum systems involving distant correlations. For example, if we 

have two particles in the singlet state, and measure the spin of each in, say, the vertical 

direction, we will find that the probability of spin up equals the probability of spin down 

equals .5 for both particles. The probability that particle one is spin up while particle two is 

spin down is not .25 but .5, so the two measurement results are correlated. However, it can 

be shown that there is no (local) common cause that screens off the two measurement 

outcomes.(Hitchcock 2010) 
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plicable in some contexts, this is not a good reason to believe that that as-

sumptions are not applicable in other contexts. Causal modeling does not 

need to commit to indeterminism: Pearl assumes a Laplacean position, 

where Spirtes, Glymour and Scheines use the expression «pseudo-indeter-

minism» to refer to those situations that are deterministic, but such that we 

don’t have sufficient information for knowing all the relevant facts. How-

ever, the failure of Causal Markov Condition - and of the Principle of 

Common Cause - with respect to quantum phenomena could reveal itself a 

trouble-maker for a position that 

 adopts a physical interpretation of both probability and causality,

 states that causes are reducible to probabilities (and, possibly, that

there is a wide underlying Bayes Network corresponding to the cau-

sal structure of the world)

 places the fundamental level of causality in the micro-world.

However, the real import of the alleged incompatibility of CMC with 

quantum theory is controversial. On the one Side, Hausman & Woodward 

(1999) have argued against the legitimacy of considering EPR as a genuine 

counterexample to CMC; on the other hand, the fate of CMC could be 

linked to the chosen interpretation of quantum mechanics (see Suárez & San 

Pedro 2010). 

10. Conclusive remarks

From this very sketchy survey we might gain a general perspective on the 

area of recent research in probabilistic causality: on the epistemological and 

methodological side the mathematization linked to causal modeling had 

brought about a paradigm shift, and what once were revolutionary studies, 

now seem to be configuring as normal research, solving puzzles and apply-

ing causal modeling methods to new problems and disciplines. On the other 

hand, on the metaphysical side we still see many conflicting opinions. In 

particular, the multiplicity of links between probabilities, causes and the 

foundations of physics seems to sharply deny the Russellian description of 

causation as «a relic of a bygone age». 
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