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Fibrosis can a)ect almost all tissues and organs, it o*en represents the terminal stage of chronic diseases, and it is regarded as a
major health issue for which e+cient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers in,ammatory
response that, in turn, promotes !broblast activation and pathological deposition of extracellular matrix. Acylated and unacylated
ghrelin are the main products of the ghrelin gene.(e acylated form, through its receptor GHSR-1a, stimulates appetite and growth
hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several
biological activities. Ghrelin peptides exhibit anti-in,ammatory, antioxidative, and antiapoptotic activities, suggesting that they
might represent an e+cient approach to prevent or reduce !brosis. (e aim of this review is to summarize the available evidence
regarding the e)ects of acylated and unacylated ghrelin on di)erent pathologies and experimental models in which !brosis is a
predominant characteristic.

1. Introduction

Repair of damaged tissues is a complex physiological pro-
cess that results in the deposition of extracellular matrix
(ECM) components by resident !broblasts [1]. Although the
deposition of ECM proteins is normally a transient event,
repeated tissue injuries in chronic pathologies or dysregu-
lation of this process can lead to !brosis and, eventually, to
organ dysfunction [2]. Fibrosis can a)ect almost all tissues
and organs, including heart, liver, kidney, lungs, and skin,
therefore representing amajor health issue for which e+cient
therapies are needed.

Regardless of the speci!c !brotic disease and organs
a)ected, the mechanisms involved in the progression of this
pathology are very similar. Indeed, damaged tissue repair
can be recapitulated in four overlapping phases, hemostasis,
in,ammation, proliferation, and remodeling in which several
cell types, closely interconnected to each other, play an
important role [3]. During the phases of hemostasis and
in,ammation, platelets secrete cytokines, including platelet-
derived growth factor (PDGF) and transforming growth
factor-! (TGF-!) that, in turn, recruit macrophages, neu-
trophils, and natural-killer cells to the site of injury. (ese
cells, besides removing dead cells, debris, and pathogens,

release cytokines that trigger activation and proliferation of
resident !broblasts, thus a)ecting ECM production [4]. For
example, macrophages release TGF-!1 that controls a wide
spectrum of activities, such as promoting !broblast di)er-
entiation into active myo!broblasts, inducing ECM protein
expression [5, 6], and repressing the expression of matrix
metalloproteinases (MMPs), key proteins able to degrade
several ECM components [7]. In addition, macrophages
release tumor necrosis factor-" (TNF-") and interleukin-1!
(IL-1!) that promote !broblast activation and !brotic tissue
deposition [2]. Tissue damage and in,ammation increase
reactive oxygen species (ROS) production, which, in turn,
contributes to !brosis, enhancing the secretion of !brogenic
factors [8].

Acylated and unacylated ghrelin are circulating peptide
hormones encoded by the ghrelin gene which are mainly
released from the stomach during fasting [9]. (e 117-amino
acid preproghrelin undergoes proteolytic cleavages leading to
the mature ghrelin peptides and to another biological active
peptide named obestatin [10]. (e acylated form, through
high a+nity binding to the growth hormone secretagogue
receptor type 1a (GHSR-1a), induces GH release and pro-
motes food intake, adiposity, and positive energy balance [11–
13]. Alongside its role in feeding and energy homeostasis,
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Table 1: Changes of acylated ghrelin, unacylated ghrelin, and obestatin blood concentrations in human pathological conditions leading to
organ !brosis.

Pathological condition Acylated ghrelin Unacylated ghrelin Obestatin Notes Reference

Chronic heart failure
(CHF)

↑ nd nd [46]↓ nd nd Acylated ghrelin levels positively
correlate with favorable prognosis [47]

Chronic hepatitis C ↓ nd nd Acylated ghrelin levels negatively
correlate with !brosis severity [48]

Alcoholic hepatitis ↓ nd nd Acylated ghrelin levels negatively
correlate with !brosis severity [48]

Nonalcoholic fatty liver
disease (NAFLD) nd nd = [90]

Nonalcoholic
steatohepatitis (NASH)

= ↑ = NASH versus non-NASH (among
NAFLD patients)

[50]↑ = ↑ Severe NASH (!brosis index ≥2) versus
not severe NASH (!brosis index <2)

Chronic obstructive
pulmonary disease (COPD) ↑ nd nd Acylated ghrelin levels positively

correlate with in,ammation [51]

Systemic sclerosis ↓ ↓ nd [52]

ghrelin exerts also many other biological activities, including
cardioprotection and enhancement of cardiac function [14],
a strong anti-in,ammatory activity [15], antioxidant activity
on several cell types and tissues such as liver, heart, and
lung [16–19], and neuroprotective activities [20].(e acylated
ghrelin anti-in,ammatory function mainly depends on its
direct e)ect on T lymphocytes and monocytes, in which it
inhibits the expression of proin,ammatory cytokines such as
IL-1!, IL-6, and TNF-" [21].

Acylation of ghrelin is essential for its binding to GHSR-
1a, since the unacylated form does not activate this receptor,
unless administered at very high concentrations, in which
case it acts as a functional agonist [22–25]. However, both
acylated and unacylated ghrelin share high a+nity binding
sites in a number of cell lines and tissues, where they mediate
several activities, such as protection from apoptosis and
oxidative injury [26–32], stimulation of cell di)erentiation
[33–36], induction of proliferation [30, 37–39], and protec-
tion of skeletal muscles from wasting [40–42]. (ese e)ects
suggest the presence of a not yet identi!ed common receptor
of both acylated and unacylated ghrelin. In addition, some
biological activities are elicited only by the unacylated but
not the acylated form of ghrelin, suggesting the existence of a
speci!c receptor for unacylated ghrelin [39, 43–45].

Circulating levels of acylated and unacylated ghrelin are
o*en altered in pathological states associated with !bro-
sis and this suggests a role for these hormones in tissue
homeostasis and/or in etiology of these conditions ([46–52],
Table 1).

2. Acylated and Unacylated Ghrelin as
Antifibrotic Factors

2.1. Heart. (e massive deposition of collagen in the
heart that occurs upon several stimuli, such as cardiomy-
ocyte death, in,ammation, hypertension-induced enhanced

workload, hypertrophy, or chemotherapy with doxorubicin,
plays a crucial role in cardiac remodeling a*er heart injury
and may contribute to ventricular arrhythmias, le* ventricu-
lar dysfunction, heart failure, and sudden cardiac death [53].

Together with in,ammation, cardiac !broblasts, themost
abundant cells in the heart, are the main players in cardiac
remodeling: upon injury they undergo proliferation and
synthesize collagen to replace the necrotic or apoptotic
cardiomyocytes [53].

Due to the antiapoptotic and anti-in,ammatory activity
of ghrelin, several researchers investigated the anti!brotic
e)ect of acylated and unacylated ghrelin in di)erent mod-
els of cardiac injury. Doxorubicin, an antibiotic used in
chemotherapy, alters cardiomyocytes energymetabolism and
induces their apoptosis, thus determining myocardial !bro-
sis, which eventually results in cardiomyopathy and conges-
tive heart failure [54]. Accordingly with the in vitro data on
the cardioprotective e)ect of acylated and unacylated ghrelin
against doxorubicin-induced apoptosis of cardiomyocytes
[26], it has been recently demonstrated that both peptides
are e)ective in inhibiting the cardiotoxicity of this drug also
in vivo [55, 56]. Unacylated ghrelin displays antiapoptotic
e)ects on cardiomyocytes through the activation of the
prosurvival ERK1/2 and PI3K/Akt signaling pathways ([26,
55], Figure 1). Acylated ghrelin seems to play an important
role in the regulation of autophagy, a cellular pathway
involved in protein and organelle degradation. Although this
cellular pathway is normally a protective mechanism, exces-
sive autophagy can destroy essential cellular components
and eventually induce apoptosis [57]. Doxorubicin treatment
induces oxidative stress, autophagy, apoptosis, and, !nally,
cardiac dysfunction and collagen deposition in the heart
[56, 57]. In this experimentalmodel of cardiac injury, acylated
ghrelin inhibits ROS-induced autophagy and cardiomyocyte
death through the inhibition of AMPK and activation of p38-
MAPK pathway ([56], Figure 1), thus leading to a decrease
of doxorubicin-induced !brosis and cardiac dysfunction.
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Figure 1: Schematic representation of the molecular pathways involved in the anti!brotic activity of ghrelin and unacylated ghrelin. See text
for details.

(e anti!brotic e)ects of acylated and unacylated ghrelin
have been demonstrated in other experimental models of
cardiac injury, such as isoproterenol administration, myocar-
dial infarction (MI), and spontaneous or diabetes-associated
hypertension [58–62].(e subacute injection in rats of the !-
adrenergic agonist isoproterenol induces myocardial injury
and !brosis and increases myocardial ghrelin expression and
plasmatic acylated ghrelin levels [58, 59]. In this model,
acylated ghrelin treatment ameliorates myocardial function
and reduces !brosis, although the mechanisms of such a
protection have not been elucidated [59]. (e unacylated
form of the peptide displays similar e)ects, suggesting that
the anti!brotic activity of ghrelin is mediated by both GHSR-
dependent and GHSR-independent pathways [59].

Ghrelin has a positive e)ect on cardiac remodeling and
cardiac function also in rats undergoing MI by coronary
artery ligation. MI induces a strong increase in tissutal IL-
1! and TNF-" that is inhibited by the chronic administration
of ghrelin [60]. Ghrelin also blunts the induction of MMP-
2 and MMP-9 that could be viewed as an inhibition of
overall !broblasts activity [60]. However, in spontaneously
hypertensive rats, the synthetic GH-secretagogue hexarelin
prevents cardiac !brosis by inducing, rather than by inhibit-
ing, MMP-2 and MMP-9 activity [61]. Notably, unacylated
ghrelin, despite reducing cardiac !brosis in diabetic mice,
has no e)ect on other MMPs involved in cardiac !brosis

development such as MMP-8 and MMP-13 [62]. (e e)ect
of unacylated ghrelin treatment was in fact investigated also
in db/db diabetic mice compared to nondiabetic mice [62],
since cardiac !brosis is also observed in diabetic patients
without hypertension [63]. In this model of diabetic mice,
unacylated ghrelin impairs collagen accumulation by upreg-
ulating adiponectin cardiac expression [62], which is known
to prevent myocardial hypertrophy and !brosis [64, 65].

2.2. Liver. In liver, hepatitis C or B viral infections, autoim-
mune diseases, alcohol abuse, and nonalcoholic fatty liver
disease (NAFLD) can progress to a severe !brotic disease
in which parenchymal tissue is replaced by nonfunctional
!brotic tissue, a condition de!ned as cirrhosis [66]. Removal
of the causative agent, such as viral infections, could revert
liver !brosis, but in the case of autoimmune diseases and
NAFLD the causative agent is not clearly de!ned and the
identi!cation of new agents that could modulate this process
is of pivotal importance [67].

In patients with alcoholic hepatitis and chronic hepatitis
C, plasmatic ghrelin levels are lower than in healthy subjects
and negatively correlate with the severity of !brosis ([48],
Table 1). Circulating ghrelin levels also correlate with other
hepatic !brotic diseases; however, in the case of patients
with NAFLD, a worsening of the !brotic stage is associated
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with high plasmatic concentration of both acylated and
unacylated ghrelin ([50], Table 1). Interestingly, a screening
of miRNAs expression in visceral adipose tissue of NAFLD
patients revealed that miR-132, of which the ghrelin gene is
a predicted target, is downregulated in nonalcoholic steato-
hepatitis (NASH) compared to non-NASH patients [68],
although a biological validation of this relationship still needs
to be performed.

Although the causative relationship between ghrelin cir-
culating levels and NAFLD is not de!ned, ghrelin might have
a therapeutic potential in this and other hepatic pathologies,
as demonstrated in several experimental models. (e most
used models to induce hepatic !brosis include CCl4 or
thioacetamide (TAA) administration to rodents, which lead
to oxidative stress-mediated liver cirrhosis [69]. Another
model to induce liver !brosis consists in bile duct ligation
(BDL), which causes accumulation of hydrophobic bile acids
in the liver, leading to ROS formation, oxidative damage,
in,ammatory cell accumulation, and the increase of serum
proin,ammatory cytokines [70]. In addition, NAFLD may
be reproduced in rats by feeding animals with a high-fat
diet, thus inducing liver fat accumulation, in,ammation, and
cellular necrosis [71]. In this model, ghrelin treatment blunts
the induction of TNF-" and IL-6 expression, counteracts
hepatic oxidative stress, and inhibits hepatic cell apoptosis
[72]. (e bene!cial e)ects of ghrelin on liver injury and
!brosis have been pointed out by other studies as well.
Indeed, in rats with chronic hepatic !brosis caused by BDL,
ghrelin administration prevents hepatic damage by blunting
the BDL-induced increase of TNF-", IL-1!, and IL-6 plasma
levels [73]. Moreover, ghrelin treatment impairs neutrophil
in!ltration and diminishes the amount of myo!broblast
accumulation in the injured liver [48, 73]. Accordingly, ghre-
lin downregulates the expression of collagen-"1 and TGF-!1 in primary hepatic stellate cells (HSC), the main hepatic
!brogenic cells [48], resulting in a diminished collagen
deposition [48, 73]. Ghrelin features anti-in,ammatory and
anti!brotic e)ects also in TAA-induced hepatic injury in
rats where it attenuates liver injury and collagen deposition
through inhibition of hepatic cell apoptosis and antioxidative
activity, in a way partially mediated by the induction of nitric
oxide (NO) [49].

Finally, the physiological role of the ghrelin gene in the
establishment of liver !brosis was investigated exploiting
ghrelin knock-out mice that display muchmore severe CCl4-
induced liver injury and !brosis compared to wild type
animals, suggesting that endogenous ghrelin is required for
a proper response to liver damage [48].

2.3. Kidneys. Ghrelin is expressed in kidneys and its expres-
sion is altered in pathological conditions such as glomeru-
lopathies, in particular in the proliferative form, in which
the immunoexpression of ghrelin is abated [74]. Moreover,
the expression of ghrelin negatively correlates with the
pro!brotic protein endothelin-1 and interstitial in,ammatory
cell in!ltration, suggesting that the loss of ghrelin could
contribute to the development of renal interstitial !brosis,
which is the common feature of di)erent end-stage renal
diseases [74].

(e renin-angiotensin system (RAS) is a well-known reg-
ulator of blood pressure and contributes to the development
of target organ damage due to hypertension. Angiotensin-II
(AngII) is themainmediator of RAS-induced chronic kidney
damage through multiple mechanisms, including promotion
of in,ammation, !brosis, oxidative stress, and senescence
[75]. Indeed, in the experimental model of chronic kidney
disease induced by AngII infusion, the kidneys display
increased ROS and an accelerated tissue senescence [76, 77].
In addition, treated mice express higher levels of TGF-!
and plasminogen activator inhibitor-1 (PAI-1) than saline-
infused animals [78]. In this model, ghrelin impairs renal
tubular damage, !brosis development, and senescence by
both reducing the oxidative stress and maintaining the
redox state. (is is mediated by the induction of UCP2 and
PGC1" that a)ect ROS production andmitochondriogenesis,
respectively ([78], Figure 1).

(e anti!brogenic activity of ghrelin was demonstrated
also in a rat model of renal damage obtained by unilateral
ureteral obstruction (UUO), which results in tubular injury
and cell death, with interstitial macrophage in!ltration [79].
In this model, ghrelin protects renal tubular cells from
apoptosis, impairs macrophage in!ltration, and reduces the
induction of the proin,ammatory cytokines IL-1!, TNF-", and monocyte chemoattractant protein-1 (MCP-1) [80].
Moreover, this work demonstrates that ghrelin attenuates
renal !brosis by inhibiting !broblast di)erentiation and
by blocking epithelial mesenchymal transition (EMT), thus
stabilizing the epithelial phenotype [80]. (e mechanisms
through which ghrelin elicits its anti!brotic activity involve
the reduction of collagen I/III, !bronectin, and "-SMA
expression via inhibition of the TGF-!1/Smad3 signaling
pathway [80].

2.4. Lungs. Lung !brosis occurs as a consequence of acute
lung injury leading to persistent respiratory failure. Lung
!brosis is usually di)erentiated into distinct types, includ-
ing di)use !brosing alveolitis, di)use interstitial !brosis,
and idiopathic pulmonary !brosis, which is considered the
most common and severe form of pulmonary !brosis [81].
Currently, there are no therapies to counteract acute lung
injury progression and lung transplantation remains the only
possible intervention in end-stage disease [81].

Acute lung injury is characterized by the damage of
the alveolar capillary barrier, neutrophil accumulation, and
the induction of proin,ammatory cytokines, followed by
devastating lung !brosis [82, 83]. In particular, the exfoliation
of alveolar epithelial cells from alveolar septa leads to the
activation of !broblasts and the subsequent massive ECM
deposition [82].

Cecal ligation and puncture (CLP), the most used tech-
nique to induce peritonitis and sepsis, also induces lung
injury and !brosis as direct consequence of hypoxemia,
neutrophilic in,ammation, and alveolar edema [83].

In CLP-treated rats, ghrelin attenuates acute lung injury
and mortality through inhibition of nuclear factor- (NF-)&B activity ([84], Figure 1). NF-&B is a transcription factor
that regulates gene expression of several cytokines, including
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TNF-", IL-6, IL-1, and IL-8 [85]. Accordingly, treatment with
ghrelin reduces pulmonary levels of TNF-" and IL-6 in CLP-
treated rats [84].

Another experimental model used to induce acute lung
injury in rodents is the intratracheal injection of bleomycin
that promotes massive cell death, neutrophil and lymphocyte
in!ltration, cytokine production, and !brosis [83, 86]. In
bleomycin-treated mice, ghrelin administration improves
animal survival in a dose-dependent manner and maintains
lung architecture by reducing !brosis [86]. (is anti!brotic
activity is due to the impairment of neutrophil in!ltration and
accumulation in bronchoalveolar lavage ,uid and through
the inhibition of proin,ammatory cytokines and of IGF-1
release, which promotes collagen production by !broblasts
[86]. In addition, the inhibition of alveolar epithelial cell
death, observed in ghrelin-treated mice, represents another
mechanism that contributes to ghrelin anti!brotic e)ects,
since the prevention of the denudation of alveolarmembranes
impairs the subsequent !brosis establishment [86].

In the same model of lung !brosis, the traditional
Japanese herbal medicine rikkunshito, known to stimulate
a strong secretion of ghrelin, reduces lung !brosis and
ameliorates the systemic cachectic condition [87]. However,
rikkunshito e)ects are only partially due to the associated
ghrelin increase, since it maintains its protective e)ects also
in mice devoid of the ghrelin gene [88].

2.5. Systemic Sclerosis. Systemic sclerosis, or scleroderma, is
an autoimmune chronic connective tissue disease character-
ized by extensive !brosis of the skin and internal organs,
including lungs, gastrointestinal tract, kidneys, and heart
[52]. Plasmatic levels of acylated and unacylated ghrelin are
lower in systemic sclerosis patients than in healthy controls
and even lower in patients with interstitial lung disease,
suggesting that acylated ghrelin levels inversely correlate with
tissue !brosis ([52], Table 1). Consistently, acylated ghrelin
treatment of !broblasts isolated from systemic sclerosis
patients reduces TGF-!1 expression and collagen production
[52].

Skin scleroderma might be experimentally induced in
mice by subcutaneous injections of bleomycin that result
in increased dermal thickness, a higher number of "-SMA-
positive myo!broblasts, and greater in!ltration of in,amma-
tory cells. All these e)ects are prevented by both acylated and
unacylated ghrelin [89]. Taken together, these data suggest
that restoring normal circulating acylated andunacylated lev-
els might e+ciently contrast the !brosis induced by systemic
sclerosis.

3. Conclusions

Fibrosis is an intrinsic response to chronic injury, main-
taining organ integrity when extensive necrosis or apopto-
sis occurs. With protracted damage, !brosis can progress
towards excessive scarring and organ failure. To date, no satis-
factory treatments are available. Anti-in,ammation strategies
are one of the possible therapeutic approaches to !brosis.
Acylated ghrelin has a potent anti-in,ammatory activity and

its ability to inhibit proin,ammatory cytokines expression
and release has been demonstrated by a large number of
studies, both in vitro and in vivo [15]. Most of the studies
on the anti!brotic e)ects of acylated and unacylated ghrelin
agree that the mechanism of action includes the reduction of
in,ammation. However, also their e)ect on oxidative stress
reduction plays a crucial role in repressing the formation
of !brosis, and their broad antiapoptotic activity surely
contributes inmaintaining organ structure and function.(is
has, however, raised a doubt that if they inhibit apoptosis also
in myo!broblasts, this could help, instead of hinder, !brosis
[67].

Circulating levels of ghrelin are o*en altered in patholo-
gies characterized by the presence of !brosis; however, it is
di+cult to discern a causative e)ect between ghrelin levels
and !brosis, as it is plausible that alterations in ghrelin
levels re,ect body mass and/or body energy metabolism.
(is is particularly possible in pathologies co-occurring with
cachexia, such as heart and renal failure, inwhich the increase
of ghrelin may represent a compensatory mechanism of the
organism in the attempt at re-establishing optimal energetic
balance or the establishment of ghrelin resistance [42]. How-
ever, in pathologies such as scleroderma, in which !brosis
a)ects the gastrointestinal tract, it cannot be excluded that
the altered levels of ghrelin are a direct consequence of the
altered gut condition.

Based on the studies reviewed herein, ghrelin, both in its
acylated and unacylated forms, acts at least at two di)erent
levels. On one side, ghrelin peptides reduce the in!ltration of
in,ammatory cells in the injured tissue and the subsequent
release of cytokines responsible for !broblast activation.
On the other side, they directly a)ect !broblast activity by
reducing collagen production through the inhibition of TGF-! signaling pathway.

In conclusion, ghrelin peptides and their analogues
appear to be promising in the treatment of !brosis, although
their safety and e+cacy in long-term use still need to be
elucidated.
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