Mining the log-tree of process traces: current
approach and future perspectives

L.Canensi
Department of Computer Science
Universita di Torino, Italy

Abstract—Logs recording the traces of execution of previ-
ous process instances can be exploited for different process
management tasks, such as prediction and recommendation in
operational support. Efficient retrieval of past traces can be very
important to achieve such tasks, while building a model of the
process from the log can support problem/anomaly detection
and, more generally, process analysis. Trace retrieval is gaining
attention in the Case Based Reasoning research community, but
so far it has been faced in a completely separate way from
the construction of a process model from the log; instead, we
propose an approach aiming at integrating these two goals. The
core notion of our proposal is the log-tree, which constitutes a
“bridge” between the notions of (log) index and process model.
We propose a mining algorithm to build it, and an algorithm
exploiting it for trace retrieval. Future extensions of our initial
contribution are also widely discussed.

I. INTRODUCTION

Nowadays, many organizations keep electronic track of
the processes they run. The recordings of completed process
instances are stored in the so-called event log, which maintains
the sequences (fraces henceforth) of actions executed at the
given organization, typically together with action execution
parameters (e.g., times, costs, resources). Event logs can be ex-
ploited for several different tasks. For instance, in operational
support (see [1], chapter 9), the log is exploited to assist users
executing a new process instance, e.g., to make predictions
about the instance completion (such as time to completion,
costs, use of resources, possible problems), or to recommend
suitable next actions, resources or routing decisions (in order,
e.g., to minimize costs or time to completion). Predictions and
recommendations heavily rely on the experiential knowledge
stored in the event log; we thus believe that the ability to
retrieve from the log those traces that are similar/equal to
the running process instance would be greatly beneficial in
these tasks. Indeed, despite the fact that traditional operational
support tools like the one in ProM (see [2]) typically operate
differently, i.e., by replaying log traces on the transition
system [3], [4], the problem of trace retrieval is recently being
considered in the area of Case Based Reasoning [5], where
process management is attracting increasing attention [6].

Notably, operational support often also provides prob-
lem/anomaly detection facilities, that, together with more gen-
eral process analysis tasks, require the abstraction of a process
model from the log (provided, e.g., through process mining

G.Leonardi,
S.Montani
and P.Terenziani
DISIT, Computer Science Institute,
Universita del Piemonte Orientale,
Alessandria, Italy

techniques [1]).

While, in general, trace retrieval (se, e.g., [7], [8], [9]) has
been faced in a completely separate way from the construction
of a process model from the log, in this paper, we propose an
approach aiming at integrating these two tasks.

The basic idea of our approach is quite simple: mining-like
techniques can be used in order to identify what we termed
the log-tree, which is, informally speaking, “something in the
middle” bridging an index of the traces and a model of the
process. Differently from a “pure” index, the log-tree gives
users an easy-to-interpret representation of the traces it refers
to. Differently from process models [1], the log-tree explicitly
indexes in its nodes all the traces in the log corresponding to
(the path from the root of the tree to) such a node. In this way,
the log-tree can be used both as a tool to achieve efficient trace
retrieval (see section III), and as a high-level representation to
analyze the processes in the organization.

From a slightly more technical point of view, it is important
to stress that, since each node in the log-tree indexes some (at
least one) traces in the log, our mining algorithm (discussed in
section II) has to grant that a 100% precision (i.e., precision =
1 [10]) is reached (which means that each path in the model
must correspond to at least one trace in the log). Achieving this
precision has several different implications on the model we
provide. From one side, the log-tree perfectly adheres to the
input traces: no path in the tree has no correspondent in the log
(other properties are discussed in section II). Such a property
may be highly desirable in several application domains. For
instance, in the medical context, if the miner precision is
limited, in the sense that it may also learn a path that never
appears in any input trace, this can be very harmful, since it
is vital that mining results are reliable as much as possible, in
order to facilitate the work of physicians and hospital managers
in guaranteeing the highest quality of care to each patient.
However, achieving a 100% precision somehow limits the
abstraction capabilities of the mining algorithm. Abstraction
causing some loss of precision may be helpful, especially in
applications where it is known that the input traces do not
cover all possible cases. In section IV-A we briefly explore
such a challenging issue, considering two specific examples
to compare the log-tree and the model provided by Heuristic
Miner [11] (as a representative of process mining approaches).
Then, in section IV-B we provide a hint of how we aim at

extending our approach to increase its abstraction capabilities
(at the prize of losing the 100% precision, and the indexing
facility). Finally, in section IV-C we identify a different line of
future research, which integrates our approach with standard
process mining techniques. The idea we propose is simple:
given its 100% precision, our log-tree can be used as a basis
to provide domain experts with a tool to identify and analyze
(in a quantitative and/or in a qualitative way) the (non 100%
precision) abstractions provided by the other process miners.

II. MINING THE LOG-TREE

In this section, we first introduce our representation formal-
ism; we then present the algorithm to mine the log-tree, and
finally we discuss the properties of the obtained data structure.

A. Representation formalism and semantics

Our mining algorithm takes in input the event log, and
outputs the log-tree, a data structure whose nodes represent
actions, and arcs represent a precedence relation between them.
Indeed, we exploit the temporal ordering of actions in the
traces to mine the log-tree. When more than one edge exit
a node, this node univocally represents a XOR splitting point,
while actions in AND (or, more precisely, to be executed in
any order) are collapsed into the same node.

Specifically, in the log-tree, each node is represented as a
pair < P,T >:

e P denotes a (possibly unary) set of actions; actions
in the same node are in AND/any-order relation. Note
that, in such a way, each path from the root of the tree
to a given node N denotes a set of possible process
patterns (called support patterns of N henceforth),
obtained by following the order represented by the
arcs in the path to visit the log-tree, and ordering
in every possible way the actions in each node (for
instance, the path {A,B} — {C} represents the
support patterns “ABC” and “BAC”).

e T represents a set of pointers to all and only those
traces in the log whose prefixes exactly match the
path from the root to one of the patterns in P (called
support traces henceforth). Specifically, prefixes cor-
respond to the entire traces is the node at hand is a
leaf. In the case of a node representing a set of actions
to be executed in any order, 7' is more precisely
composed by several sets of support traces, each one
corresponding to a possible action permutation. 7'
is typically a subset of the event log. Specifically,
every time a XOR splitting point is encountered, the
support traces are properly divided among the various
alternative paths.

An example log-tree is shown in figure 1.a. Numbers in
brackets in the nodes in figure 1.a provide the cardinalities of
support traces. Every edge connecting a node A to another
node B also stores the edge frequency of the sequence A > B
(A immediately preceding B), defined in the next subsection.

Details of the algorithm are presented in the next subsection
as well.

o R 7 I A I SR

B. Data structure and algorithm

The input event log is stored as a matrix with n rows and
m columns, where n is the number of traces in the log and m
is the maximum length of these traces. Each cell M atriz[i, j]
contains the j-th action of the trace ¢. Actions in the different
traces are aligned on the basis of their order of execution (i.e.,
the 7 index). All traces start with a dummy common action #.

Algorithm 1 builds the log-tree.

ALGORITHM 1: Mining pseudocode

Build-Tree (index,< P,T >) ;
nextP < getNext(index+1, T, a) ;
if nextP not empty then
nextActions < XORvsAND (nextP, T,) ;
foreach node < P',T' > € nextActions do
AppendSon(< P',T' >,< P,T >);
Build_Tree(index+ |P'|,< P',T' >);
end
end

The function Build_Tree in Algorithm 1 takes in input a
variable index, representing a given position in the traces (i.e.,
a column in the input matrix), and a node. Initially, it is called
on the first position, and on the root of the tree (which is
a dummy node, corresponding to the # action; thus, initially,
index=0, P = {#} and T is the set of all the traces).

The function getNext inspects the traces in 7 to find all
possible next actions. At this stage, “rare” patterns will be
ruled out. Specifically, if P = {A}, and B is a possible next
action, B will be provided in output by getNext only if the edge
frequency Er of the sequence A > B is above a user-defined
threshold «, where

6]

being |A > B| the number of traces in 7' in which A
is immediately followed by B (i.e., the cardinality of the
support traces of B), and being |T4| the cardinality of the
support traces of A in 7. On the remaining next actions, the
function XORvsAND applies the formula below in order to
identify which actions are in AND/any-order and which are in
XOR relation: we calculate the dependency frequency A — B
between every action pair < A, B > in nextP x nextP:

A%Bl< |A > B| |A > B| >

2 ZXGActT |A > X| ZYGActT |Y > B‘ (2)
where, always considering the traces in T, |A > B| is the
number of traces in which A is immediately followed by B,
|A > X]| is the number of traces in which A is immediately
followed by some action X (with X € Actp, being Actr
the set of all the actions appearing in the traces in 7'), and
|Y" > B| is the number of traces in which B is immediately
preceded by some action Y (with Y € Actr). After evaluating
the dependency frequency value A — B and B — A, we can
have 3 possible situations:

e if both the values are below a given (user-defined)
threshold 3, this means that A and B rarely appear in
the same trace, therefore they are in XOR relation;

e if A — B is above the threshold and B — A is below,
then A precedes B, and viceversa;

e if both the values are above the threshold, then A and
B are in AND/any-order relation.

The output nextActions of the function XORvsAND is a
set of nodes (P’,T’), one for each maximal set of actions
to be AND-ed. Note that, for each one of such sets P’, the
corresponding set T” of support traces is also computed. T’
is more precisely composed by several sets of support traces,
each one corresponding to a possible action permutation in P’.

Finally, each new node is appended to the log-tree (function
AppendSon), and Build-Tree is recursively applied to each node
(with the parameter index properly set).

C. Properties
By construction, the properties below hold for the log-tree.

Property 1: Trace Indexing. Each path (and sub-path) in
the log-tree indexes all and only its support traces in the log.

As a consequence of Property 1, Property 2 also holds.

Property 2: Precision. For each path in the log-tree there
is at least one support trace in the log. Thus, the precision [10]
of the log-tree is 1.

Each path in the log-tree represents a specific (set of)
temporally-oriented action paths (the support patterns of the
path). Ordering in the path represents strict ordering of actions
in the traces, while actions in the same node of a path
correspond to the fact that, in the traces, such actions are not
temporally constrained (i.e., they appear in any order in the
corresponding path). Thus, Property 3 also holds.

Property 3: Temporal Accuracy. The log-tree is tempo-
rally accurate, in that it models the temporal ordering of actions
in the input traces. Specifically, ordering between nodes in
the path represents temporal ordering of actions in the traces,
while actions in the same node frequently (up to a user-defined
threshold) occur in any order (at that point of the path) in the
log.

Finally, property 4 also holds.

Property 4: Context awareness. Since each node is a
pair < P, T > where T maintains the support traces, the
log-tree is context aware; indeed, the support traces of each
alternative path implicitly define the execution context of the
corresponding model branch.

III. TRACE RETRIEVAL

In order to retrieve log traces that correspond to a specific
process execution, we have implemented a procedure (see
algorithm 2) that takes in input a node N of the log-tree
(initially the root), a sequence of actions S to be searched
for in the tree (i.e., the query), and a set of support traces T’
(initially the entire log) which, in the end, will contain the
outcome of retrieval.

The algorithm calculates the set of traces, which exactly
match the sequence of actions S, or contain it as an exact
prefix. These traces are (a subset of) the support traces in a
node of the log-tree.

o % NN AR W N

L < =
m oA W N =D

16
17
18
19

ALGORITHM 2:
Retrieval_Process.
Retrieval_Process(N, S, T)
result < {}
foreach son € son(N) do
cond < null
foreach perm € get_permutations(son) do
if perm = first(|son|, S) then

| cond < son
end

Pseudo-code of the procedure

end

if cond # null then

if tail(|cond|,S) is empty then

| result = result U (T N get_support(cond,perm))

end

else
result = result U Retrieval_Process(cond,tail(|cond]|, S),
T N get_support(cond,perm))

end

end

end
return result

Basically, Retrieval_Process executes a depth-first
search in the log-tree. First the algorithm chooses the proper
son of N according to the sequence .S; in detail, for each son
of N (line 3), if one of the permutations of the set of actions
in son is equal to the head portion of S (line 5-8), son is
assigned to cond. The number of actions to be compared to
the head portion of S in function first (line 6) is provided by
the cardinality |son| of the number of actions to be executed
in any order in son (possibly 1).

If cond is not null (line 10) and the complete sequence
S has been analyzed (line 11), the algorithm calculates the
intersection between 7' and the support traces of node cond
that verify the permutation perm (function get_support, line
12) and adds it to result (line 12).

Otherwise (line 14), the function Retrieval_Process is
applied recursively to cond, to the tail portion of the sequence
S, and to the intersection between 7" and the support traces of
node cond that verify the permutation perm (line 15). Note
that if cond contains a single action, the function tail (in
lines 11 and 15) just returns the tail portion of .S obtained by
deleting the first element; otherwise, tail returns the sequence
obtained deleting from the head of S as many symbols as the
number of actions to be executed in any order in the node
cond. The output of the recursive call is then added to result
(line 15). Finally, result is returned (line 19).

A. Experiments

The speed up in trace retrieval provided by the use of the
log-tree as an indexation facility has been tested through some
experiments. Experiments were conducted on an 8 core i7-
4810MQ processor running at 2.8 GHz, equipped with 8 Gb
of RAM. Tests were run on a real world event log, containing
441 stroke patient management traces. The number of actions
in each trace ranged from 7 to 22 (15 as an average). The total
number of actions in the event log was 6686.

We executed 1000 random queries of length 5 (corre-
sponding to a 5-action trace prefix), 1000 random queries of

length 10, and 1000 random queries of length 15. The average
retrieval times for the different types of queries, resorting to
our approach, are provided in the first row in table 1. Retrieval
times resorting to a flat search are reported in the second row
of the table, for comparison.

As it can be observed, our approach was able to reduce
retrieval time in all the experiments, especially when working
on short queries (where it was 6.2 times faster than the flat
search). Indeed, a short query typically does not require to
visit the tree down to the leaves, and works on portions of the
data structure very close to the root, where the support trace
sets of the nodes are larger. The computational advantage when
working on longer queries was more contained (about 5 times
faster), but still relevant.

Even more significant advantages are foreseen in larger
event logs, and will be tested in the future.

IV. BRIDGING TRACE RETRIEVAL AND PROCESS MINING:
ANALYSIS AND FUTURE WORK

In this section, we first illustrate the differences between
our approach and “standard” process mining approaches from
the point of view of their abstraction capabilities; two examples
are shown, illustrating that a 100% precision is sometimes
required, while a higher abstraction level in the output model
is desirable in other cases. Then, we provide a hint of how
we aim at extending our approach to increase its abstraction
capabilities (at the prize of losing some precision, and the
indexing support). Finally, we identify a different line of future
research, where our log-tree can be used as a basis to provide
domain experts with a tool to identify and analyze the (non
100% precision) abstractions provided by other process miners.

A. Abstraction in log-trees and process models

In this section, we briefly compare our approach to “stan-
dard” process mining approaches. For the sake of clarity and
brevity, we will just refer to Heuristic Miner (HM) [11], that
can be considered as a significant representative as well as a
milestone in the area of process mining algorithms. Notably,
the goal here is just to emphasize what are the main differences
in terms of the kind of abstraction the approaches aim at
achieving. It is worth mentioning that HM, as well as several
other process miners, (and differently from the algorithm we
have proposed in section II) assumes the uniqueness of actions
(i.e., the fact that each action can appear only once in the
model).

In the following we will consider two simple examples,
which clearly highlight the consequences of this assumption,
and the resulting abstraction level. Each example consists of
a log, represented as set of pairs (pattern, trace number). For
instance, (#CAE, 10) represents the fact that the log contains
ten traces “#CAE”).

Ex. 1: (#CAE, 10), (#BAF, 10), (#CAF, 10)

Figure 1 shows the process model obtained by HM (in the
form of a Petri Net; figure 1.b) and the log-tree obtained by
our approach (figure 1.a) in Ex. 1. Since the log-tree is also
an index, so that a 100% precision is required, our approach
cannot generate any abstraction that is not supported by any
input trace. On the other hand, HM proposes a more abstract

model. Roughly speaking, HM abstracts that the process starts
with the execution of one action chosen between C and B (in
mutual exclusion), then A must be performed, followed by
either E or F. Thus, also the pattern BAE is captured by this
model, despite the fact that it never appears in the input log.

Ex. 2: (#AD, 1000), (#DB, 1000)

Because of the uniqueness assumption, HM is unable, in
Ex. 2, to distinguish between D in the first set of traces (i.e., D
in the context of being preceded by #A) and D in the second
set of traces (i.e., D in the context of being preceded by #
and followed by B). Thus, the process model in Figure 2.d is
given as output. Notably, besides the patterns #AD and #DB,
the output Petri Net also models the patterns #D and #ADB,
which do not correspond to any trace in the input log. Such
patterns are not mined by our approach (see Figure 2.c), since
it achieves a 100% precision.

There cannot be a neat conclusion concerning the above
comparisons. In general, there is no formal/automatic way of
deciding whether an abstraction not supported by the input
traces is desirable or not. For example, Tobin and Vogel [12]
propose a system that insures precision, enabling users to add
precise rules for abstraction. However, only domain experts
can judge (supposing that they indeed have enough domain
knowledge to do so).

However, there is an important fact that we want to remark:
our approach must not be seen in contrast to the standard
mining algorithms (like HM). Indeed, it has different goals, and
may be conciliated with standard algorithms to achieve further
objectives. This is the goal we want to achieve in our future
work, following two innovative lines of research, described in
the next two sections.

B. Domain-expert-driven abstraction (with loss of precision)

The first line of research we aim at pursuing consists in
extending our current approach with an additional optional
facility, to provide further abstractions. This would necessarily
lead to losing the 100% precision property, as well as the
indexing capability, in the resulting output model. However,
of course, the log-tree can be still maintained as the output of
an intermediate step of the overall mining process, and as an
independent indexing structure.

In detail, we aim at investigating two different ways to
achieve further (not 100% precision) abstractions.

The first option will generate a more abstract model by
applying to the log-tree a merging process, which will merge
identical nodes in the log-tree in order to enforce the unique-
ness assumption. As observed in section IV-A, this direction
is quite “in line” with many current process miners. However,
there is a main difference. While in classical process mining
the uniqueness assumption is used from the very beginning
(i.e., while analyzing the input log), here it is applied as a
second step. Notably the second step does not need to consider
the input log any more. It directly (and more efficiently) applies
to the output of the first step (i.e., to the log-tree, which might
be orders of magnitude smaller than the log).

The second option aims at deeply involving domain experts
in the achievement of (not 100% precision) abstractions. There
are two premises that make this move feasible:

TABLE I: Experimental results. Time is in msec.

Length-5 query

Length-10 query

Length-15 query

Log-tree 0.17

0.26 0.27

Flat 1.06

1.37 1.39

e the log-tree is already a “high-level” representation
of the log data. While it is not reasonable to assume
that domain experts directly operate on the log (whose
dimension is generally too large to allow human
processing), it is reasonable to think that they can look
at the log-tree, with the goal of analyzing it, and of
proposing new abstractions, visualizing and evaluating
the resulting model in an interactive way;

e given the reduced dimension of the log-tree (with
respect to the dimension of the log), computing new
abstractions from it would be in general a fast process,
suitable for an interactive session of work.

We thus aim at defining a suite of facilities to support
domain experts in the analysis of the log-tree, in the choice
of which parts of it should be further merged, and in the
inspection of the resulting model, in an interactive session of
work based on the “what-if” paradigm.

As an example, this approach will permit the identification
of loops, which (in the log-tree) are currently completely
unfolded in their iterations.

Notably, this will be an innovative approach in the area
of process mining, where many algorithms behave more like
“black-boxes”, out of domain experts control (possibly with
the exception of system parameters tuning, which, however,
is more a system manager task). This approach is likely to
provide interesting results in those areas where domain knowl-
edge is strong and consolidated enough to gain significant
benefits from a log-tree-based “what if” analysis (like, e.g.,
many medical ones).

C. Using our approach for analyzing loss-of-precision ab-
stractions

As widely discussed above, the log-tree only contains
100% precision abstractions. In some sense, it thus represents

Start (30) |
0.33 0.67
B (10) C (20)
(a)
110
A (10) A (20)
F (10) E (10) F (10)
c E
complete complete
Start A End
B F
(b) complete complete

Fig. 1: Example 1: Process models obtained using our approach (a) and using Heuristic Miner (b).

Start (2000)

(c) A (1000) D (1000)
1[0 110

D (1000) B (1000)
A B

complete complete

Start D
() » complete complete

End
complete . ()

(d)

Fig. 2: Example 2: Process models obtained using our approach (c) and using Heuristic Miner (d).

a “fully reliable” model of the input log. As such, it can be
used to analyze the not 100% precision abstractions provided
by other miners (like, e.g., HM). This facility can be obtained
by comparing the log-tree to the model provided by a different
miner, both quantitatively and qualitatively.

In the quantitative comparison, we plan to exploit a set of
graph distance calculation algorithms (such as [13], [14], [15],
[16], [17]), which differ for their capability of considering
semantic information on the models, or of distinguishing
between action nodes and control flow information. The most
suitable one will be selected case by case.

As for the qualitative analysis, interestingly it could be
performed interactively by domain experts. A tool will be
devised to help experts find the differences between the two
models, leaving them free in the evaluation of which not 100%
precision abstractions are “desirable” in their domain.

V. CONCLUSIONS

In many areas, logs recording the traces of execution of
process instances are used for trace retrieval, or for mining
a model of the process. In the current literature, such two
tasks have been managed independently of each other, and
relying on very different techniques. In this paper, we propose
an innovative approach aiming at integrating them. The core
notion of our proposal is the log-tree, which constitutes a
bridge between the notions of (log) index and of process
model. We propose a mining algorithm to build the log-tree,
and an algorithm exploiting it for trace retrieval.

Being also an index, the log-tree must have a 100% pre-
cision, thus (usually) providing less abstractions than process
models built by other process miners. However, our approach
is not in contrast to the standard mining algorithms (like HM).
Indeed, it has different goals, and may be conciliated with them
to achieve further objectives. In Section 4, we have identified
two new lines of research to do so, that we will explore in
our future work. Additionally, in our future work, we want to
investigate more flexible ways of providing trace retrieval on
the log-tree, along the line we proposed in the context of time
series retrieval [18].

We will also complete the implementation of our facility
as a plugin in the ProM 6(see [2]) framework.

ACKNOWLEDGMENTS

This research is partially supported by the GINSENG
Project, Compagnia di San Paolo.

REFERENCES

[1] W. V.der Aalst, Process Mining. Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

[2] H. Verbeek, J. Buijs, B. Dongen, and W. Aalst, “ProM 6: The Process
Mining Toolkit,” in Proc. of BPM Demonstration Track 2010, ser.
CEUR Workshop Proceedings, M. L. Rosa, Ed., vol. 615, 2010, pp.
34-39.

[3] B.F. V. Dongen, N. Busi, and G. M. Pinna, “An iterative algorithm for
applying the theory of regions in process mining.”

[4] V. Rubin, B. F. V. Dongen, E. Kindler, and C. W. Gnther, “Process
mining: A two-step approach using transition systems and regions,”
BPM Center Report BPM-06-30, BPM Center, Tech. Rep., 2006.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

A. Aamodt and E. Plaza, “Case-based reasoning: foundational issues,
methodological variations and systems approaches,” Al Communica-
tions, vol. 7, pp. 39-59, 1994.

M. Minor, S. Montani, and J. A. Recio-Garca, “Process-oriented case-
based reasoning,” Inf. Syst, pp. 103-105, 2014.

M. W. Floyd, B. Fuchs, P. Gonzalez-Calero, D. Leake, S. Ontanon,
E. Plaza, and J. Rubin, TRUE: Traces for Reusing User’s Experiences
Cases, Episodes, and Stories, International Conference on Case Based
Reasoning (ICCBR). Lyon, 2012.

A. Cordier, M. Lefevre, P.-A. Champin, O. Georgeon, and A. Mille,
“Trace-Based Reasoning — Modeling interaction traces for reasoning
on experiences,” in The 26th International FLAIRS Conference, May
2013. [Online]. Available: http://liris.cnrs.fr/publis/?id=5955

D. B. Leake and J. Kendall-Morwick, “Towards case-based support
for e-science workflow generation by mining provenance,” in Proc.
ECCBR 2008, Advances in Case-Based Reasoning, ser. Lecture Notes in
Computer Science, K. Althoff, R. Bergmann, M. Minor, and A. Hanft,
Eds., vol. 5239. Springer, 2008, pp. 269-283.

J.. C. A. M. Buijs, B. F van Dongen, and W. M. P.
van der Aalst, “Quality dimensions in process discovery: The
importance of fitness, precision, generalization and simplicity,” Int.
J. Cooperative Inf. Syst., vol. 23, no. 1, 2014. [Online]. Available:
http://dx.doi.org/10.1142/S0218843014400012

A. Weijters, W. V. der Aalst, and A. A. de Medeiros, Process Mining
with the Heuristic Miner Algorithm, WP 166. Eindhoven University
of Technology, Eindhoven, 2006.

J. Tobin and C. Vogel, “A user-extensible and adaptable parser archi-
tecture,” Know.-Based Syst., vol. 22, no. 7, pp. 516-522, oct 2009.

R. Dijkman, M. Dumas, and R. Garca-Banuelos, “Graph matching
algorithms for business process model similarity search,” in Proc.
International Conference on Business Process Management, ser. Lec-
ture Notes in Computer Science, U. Dayal, J. Eder, J. Koehler, and
H. Reijers, Eds., vol. 5701. Springer, Berlin, 2009, pp. 48-63.

M. LaRosa, M. Dumas, R. Uba, and R. Dijkman, “Business process
model merging: An approach to business process consolidation,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 2, p. 11, 2013.

S. Montani, G. Leonardi, S. Quaglini, A. Cavallini, and G. Micieli,
“Improving structural medical process comparison by exploiting domain
knowledge and mined information,” Artificial Intelligence in Medicine,
vol. 62, no. 1, pp. 3345, 2014.

R. Bergmann and Y. Gil, “Similarity assessment and efficient retrieval
of semantic workflows,” Information Systems, vol. 40, pp. 115-127,
2014.

S. Montani, G. Leonardi, S. Quaglini, A. Cavallini, and G. Micieli, “A
knowledge-intensive approach to process similarity calculation,” Expert
Syst. Appl., vol. 42, no. 9, pp. 42074215, 2015.

A. Bottrighi, G. Leonardi, S. Montani, L. Portinale, and P. Terenziani,

“A time series retrieval tool for sub-series matching,” Appl. Intell.,
vol. 43, no. 1, pp. 132-149, 2015.

