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Abstract. Operational support assists users while process instances are
being executed, by making predictions about the instance completion, or
recommending suitable actions, resources or routing decisions, on the ba-
sis of the already completed process traces. Operational support can be
particularly useful is the case of medical processes, where a given pro-
cess instance execution may differ from the indications of the existing
reference clinical guideline. In this paper, we propose a Case Based Rea-
soning approach to medical process management operational support.
The framework enables the user to retrieve past traces by submitting
queries representing complex patterns exhibited by the current process
instance. Information extracted from the retrieved traces can guide the
medical expert in managing the current instance in real time. The tool
relies on a tree structure, allowing fast retrieval from the available event
log. Thanks to its characteristics and methodological solutions, the tool
implements operational support tasks in a flexible, efficient and user
friendly way.

1 Introduction

Operational support is a process management activity meant to assist users while
process instances are being executed, by making predictions about the instance
completion, or recommending suitable actions, resources or routing decisions, on
the basis of the already completed instances [1]. Operational support can be par-
ticularly useful in the case of medical processes, where a given process instance
execution may (significantly) differ from the indications of the existing reference
clinical guideline. Indeed, specific patient characteristics (e.g., co-morbidities,
allergies, etc.), or local resource constraints, may lead to deviations from the
default behavior, which need to be managed in real time. Prediction and recom-
mendation heavily rely on experiential knowledge, stored in the so-called “event
log” in the form of past process traces. Case Based Reasoning (CBR) [2], and
specifically the retrieval step in the CBR cycle, thus appears to be a very valuable
methodology for implementing these operational support tasks. The percentage
of retrieved traces that, e.g., were completed on time, can then be used to cal-
culate the probability that the current instance will complete on time too. A



similar approach can be adopted to estimate costs, or predict problems. More-
over, the best actions to execute next can also be extracted from the retrieved
traces.

In this paper we propose a case-based retrieval framework, where cases are
traces of process execution, aimed at enabling prediction and recommendation in
medical process operational support. In our framework, queries can be composed
of several simple patterns (i.e., single actions, or direct sequences of actions),
separated by delays (i.e., interleaved actions we do not care about). Delays can
also be imprecise (i.e., the number of interleaved actions can be given as a range).
To the best of our knowledge, an operational support facility like this is not
available in the tools described in the literature. Our framework relies on a tree
structure, called the trace tree, allowing fast retrieval, thus avoiding a flat search
for all the traces in the log that match the input pattern. The trace tree is a
sort of “model” of the traces, that we learn using a process mining technique we
recently implemented [3], and built in such way that it can be used as an index1.

The paper is organized as follows. In section 2 we illustrate our retrieval
approach. In section 3 we discuss related work. In section 4 we present our
concluding remarks and future work directions.

2 Trace retrieval

In our framework, trace retrieval relies on a tree structure, called the trace tree,
in order to avoid a flat search for all the traces in the log that match the input
query. In the following, we will first describe the trace tree semantics, and then
introduce our query language and, finally, our retrieval procedure.

Trace tree semantics. In the trace tree, nodes represent actions, and arcs
represent a precedence relation between them. More precisely, each node is rep-
resented as a pair < P, T >.

P denotes a (possibly unary) set of actions; actions in the same node are in
AND relation, or, more properly, may occur in any order with respect to each
other. Note that, in such a way, each path from the starting node of the tree to a
given node N denotes a set of possible process patterns (called support patterns
of N henceforth), obtained by following the order represented by the arcs in the
path to visit the trace tree, and ordering in each possible way the actions in
each node (for instance, the path {A,B} → {C} represents the support patterns
“ABC” and “BAC”).

T represents a set of pointers to all and only those traces in the log whose
prefixes exactly match one of the patterns in P (called support traces henceforth).
Specifically, prefixes correspond to the entire traces if the node at hand is a leaf.
In the case of a node representing a set of actions to be executed in any order, T is

1 While the motivations for defining such a novel mining algorithm, and its advantages
with respect to existing process mining literature contributions (e.g., ProM [4]), are
extensively discussed elsewhere [3], in this work we focus on its usage to support
case retrieval.



more precisely composed of several sets of support traces, each one corresponding
to a possible action permutation.

Since all traces start with a dummy common action #, the root node contains
the action #, paired to the pointers to all log traces.
Query language. In a tool implementing this framework, the user can issue
a query, composed of one or more simple patterns to be searched for. In turn,
simple patterns are defined as one or more actions in direct sequence. Multiple
simple patterns can be combined in a complex pattern, by separating them by
delays. A delay is a sequence of actions interleaved between two simple patterns;
the semantics is that we do not care about these actions, so they will not be
specified in the query. Instead, only their number will be provided, possibly in
an imprecise way (i.e., we allow the user to express the number of interleaved
actions as a range).

Formally, a query is represented in the following format:

〈(min1,max1)SP1(min2,max2)SP2...(mink,maxk)SPk(mink+1,maxk+1)〉
where:

– SPj is a simple pattern (i.e. a sequence of letters, representing the actions
we are looking for; these actions have to be in direct sequence);

– (minj ,maxj) is the delay between two items (i.e., two simple patterns, or a
simple pattern and the trace starting/ending point), expressed as a range in
the number of interleaved actions.

As an example, the query
〈(0, 0)B(0, 1)E(2, 2)Z(0, 1)〉
looks for action B, which has to start at the very beginning of the trace (just

after the start action # - all traces start with a dummy common action # in our
approach). This first simple pattern B must be followed (with zero or a single
interleaved action in between) by action E. E must be followed by two actions,
which we do not care about; after them, Z is required. Z can be the final action,
or can be followed by one additional action we do not care about.

For instance, in the stroke management domain, where we will test our ap-
proach, actions B, E and Z could correspond to “Arrival at the emergency de-
partment”, “Neurological examination”, and “Chest X-ray” respectively. Look-
ing for “Arrival at the emergency department” at the very beginning of the trace
allows the exclusion of all those patients that were first stabilized at home or
in the ambulance. The query then aims for searching for those situations where
“Neurological examination” is executed early, and before “Chest X-ray”; in fact,
this specific ordering is not mandatory, because “Chest X-ray” is a procedure
common to many different disease management processes, and may be executed
at different times, also depending on the availability of the X-ray machine. Sim-
ilarly, in some cases “Neurological examination” might be delayed, if the neu-
rologist is not available. The two actions between “Neurological examination”
and “Chest X-ray” would typically correspond to “CTA” and “ECG”, always
obtained to every patient in the case of a suspected stroke (but not explicitly
queried in the example).



It is worth noting that a query written as above corresponds to a whole
set of queries, each one obtained by choosing a specific delay value and specific
actions in each of the (minj ,maxj) intervals. Every query in this set can be made
partially explicit as a string, containing as many dummy symbols ∗ as needed,
to cover the corresponding delay length (where the dummy symbol is chosen
because we are not interested in the specific interleaved actions). For example,
the query above would correspond to the following four partially explicit queries,
whose length ranges from 6 to 8 actions (including #), where the dummy symbol
∗ has been properly inserted, according to the delay values information: #BE ∗
∗Z; #BE ∗ ∗Z∗; #B ∗ E ∗ ∗Z; #B ∗ E ∗ ∗Z∗

Since each ∗ could be substituted by any of the N types of actions recorded in
the log and/or existing in the application domain, the example query corresponds
to N2 + 2 ∗N3 + N4 totally explicit queries.

The problem is obviously combinatorial, with respect to the possible delay
ranges and action types. We thus believe that extensional approaches (in which
only explicit queries can be issued) would not be feasible in many domains.
Our query language, allowing for compact “intensional” queries, is therefore a
significant move in the direction of implementing an efficient and user-friendly
operational support tool.
Trace retrieval. In order to retrieve the log traces that match a query, we
have implemented a multi-step procedure, articulated as follows: (1) automaton
generation; (2) tree search; (3) filtering.

To generate the automaton, in turn, we implement the following procedure:

1. transform the query into a regular expression;
2. apply the Berry and Sethi [5] algorithm, to build a non-deterministic au-

tomaton that recognizes the regular expression above;
3. unfold the non-deterministic automaton;
4. transform the unfolded non-deterministic automaton into a deterministic

automaton [6].

Steps (1) and (4) are trivial. As regards step (1) note that our query language
is just a variation of regular expressions, useful to express delays and “do not
care” (i.e., dummy) symbols in a compact way. The cost of step (1) is linear in
the number of delays used in the query. Steps (2) and (3) use classical algorithms
in the area of formal languages. The cost of step (2) is linear in the number of
symbols in the query expressed as a regular expression (i.e., the output of step
(1) [5]), and the cost of step (3) is the product between the number of dummy
symbols in the query and the cardinality of the action symbols available in the
log. Step (4) substitutes each arc labeled by the dummy symbol in the automaton
with a set of arcs, one for each action in the event log. Although in the worst case
step (4) is exponential with respect to the number of states in the automaton
(i.e., the output of step (2)), note that the worst case is rare in practice [7].

Once the deterministic automaton has been obtained, it would be possible
to exploit it in a classical way, by providing all event log traces in input to it,
to verify which of them match the query. However, some of these traces may be
identical, or share common prefixes of various length, so that the straightforward



approach would lead to repeated analyses of the common parts. In order to
optimize efficiency, we have therefore proposed a novel approach, that provides
the trace tree as an input to the automaton. Each path in the trace tree may
index several identical support traces, that will be considered only once, thus
speeding up retrieval with respect to a flat search into the event log. Moreover, in
the tree common prefixes of different traces are represented just once, as common
branches close to the root (different postfixes can then stem from the common
branches, to reach the various leaves). These common parts will be executed on
the automaton only once, without requiring repeated, identical checks.

It is worth noting that providing a tree as an input to the automaton repre-
sents a significantly novel contribution, since in the formal languages literature
the input to be executed on the automaton is typically a string. The work in
[8] represents an exception, but the tree it exploits (a Patricia tree) has very
different semantics with respect to ours.

In detail, our approach operates as follows: the algorithm Search Process
(see algorithm 1) takes in input the trace tree T and the deterministic automaton
A, and provides as an output a set of pairs, composed of a trace tree leaf node
and a corresponding string. Notably, there could be several pairs having the same
leaf node. Each of the strings is an explicit instantiation of the query represented
by the automaton, verified by (some of) the support traces in the leaf node. The
output support traces are then provided as an input to the filtering step (see
below).

Basically, Search Process executes a breadth first visit of the trace tree; it
exploits the variable searching, defined as a set of triples, composed of a trace
tree node, an automaton state, and the string that has been recognized on the
automaton so far. Initially (line 4), searching contains the root (with the dummy
action #), paired to the initial state of the query automaton and to the empty
string. The visit procedure (lines 7-35) extracts one triple at a time from the set
searching. If the node in the triple contains a set of actions to be executed in
any order (line 9), we simulate all the permutations on the automaton, and save
the states we reach and the corresponding recognized strings into new states
set (line 12). If the node contains one single action, we simply simulate it on
the automaton, and save the state we reach and the corresponding string into
new states set (line 17). In both cases, the string saved in new states is the one
in the input triple properly updated with the newly recognized symbols.

After the simulation, if the node at hand is a leaf (line 20), then for each
item in new states we check whether the state component is a final state (lines
22-24); if this is the case, node and the string paired to the final state are saved
in the output variable result (line 23). Otherwise, if node is not a leaf, we pair
its children to all the items in new states, and save these objects into searching
(lines 27-33). The visit terminates when searching is empty, i.e., all tree levels
have been visited. The visit procedure is linear in the number of the trace tree
nodes.

Referring to our example query, providing the trace tree in figure 1 as an
input to the algorithm Search Process, after examining the root (which is triv-



ALGORITHM 1: Pseudo-code of the procedure Search Process.

1 Search Process(T, A)
2 Output: set of < node, string >
3 result ← {}
4 searching ←< root(T ), 0, empty >
5 repeat
6 tmp ← {}
7 foreach < node, state, string > ∈ searching do
8 new states ← {}
9 if node is an any-order-node then

10 foreach Perm ∈ permutation(node) do
11 foreach act ∈ Perm do
12 new states ← new states ∪ simulate(A, act,state,string)
13 end

14 end

15 end
16 else
17 new states ← simulate(A, action(node),state,string)
18 end
19 if new states 6= {} then
20 if node is a leaf then
21 foreach < state, string > ∈ new states do
22 if final(state) then
23 result ← result ∪ < node, string >
24 end

25 end

26 end
27 else
28 foreach n ∈ sons(node) do
29 foreach < state, string > ∈ new states do
30 tmp ← tmp ∪ < n, state, string >
31 end

32 end

33 end

34 end

35 end
36 searching ← tmp

37 until searching 6= {}
38 return result



ial), searching contains the children of the root A, B, and C, paired with the
state of the deterministic automaton, and with the string #. We simulate the
actions A, B, and C on the automaton. Only B (i.e., “Arrival at the emergency
department”) is recognized, generating a state saved in new states with the cor-
responding string #B (line 17). We then pair the children of node B (E, D,
D − E) to the item in new states and save these triples into searching (lines
27-33). In the stroke management domain, E corresponds to “Neurological ex-
amination” and D to “CTA”. Continuing the visit, particularly interesting is the
case of node D−E, which requires consideration of all the possible permutations
of actions D and E. Both the permutations DE and ED are initially recognized.
However, as the visit proceeds and node P −Z is reached (with P corresponding
to “ECG” and Z corresponding to “Chest X-ray”), it turns out that DE must
be followed by the permutation PZ to match the query; on the other hand, if
the choice ED is made, it must be followed by ZP . Indeed, the query imposes
some constraints that cannot be checked only locally, i.e., referring to a single node
along the branch. After this step of the visit (depth 5 in the tree), the recognized
partial strings paired to node P −Z are #BDEOPZ and #BEDOZP (with O
corresponding to “NMR”). Notably, the patterns #BDEOZP and #BEDOPZ
do not match the input query.

Fig. 1. Trace tree in the example.

If an output leaf node ends a branch which includes one or more nodes with
actions to be executed in any order, it is possible that only some of the permuta-
tions of these actions are acceptable to answer the query. However, the trace tree
leaf node indexes all the traces corresponding to the various support patterns
(i.e., considering all possible permutations). Therefore, the support traces must
be filtered.

To do so, without the need of operating directly on the input traces, we
exploit the fact that, in each node with actions to be executed in any order,
every permutation is explicitly stored, and each permutation indexes all and



only the support traces corresponding to it. Thus, the basic idea of our filtering
step is simple: for each output pair 〈 Node, String 〉 of the tree search step, we
navigate the trace tree from Node back to the root, maintaining, in each any
order node, only the (pointers to) the traces corresponding to String (this can
be easily done through the operation of intersection between sets of pointers).

The complexity of the filtering step is superiorly limited by the number of 〈
Node, String 〉 pairs identified as an output of the tree search step, multiplied
by the tree depth.

Obviously, if the leaf node ends a branch that contains no nodes with actions
to be executed in any order, the leaf support traces can be directly presented to
the user, and the filtering step is not required.

3 Related work

Operational support techniques are implemented in the open source framework
ProM [4] (developed at the Eindhoven University of Technology), which repre-
sents the state of the art in process mining research. In ProM, prediction and
recommendation are typically supported by replaying log traces on the transi-
tion system [9], a state-based model that explicitly shows the states a process
can be in, and all possible transitions between these states. The replay activity
allows calculation of, e.g., the mean time to completion from a given state, or
the most probable next action to be executed. In ProM’s approach, statistics on
event log traces are thus used for operational support, but the overall technique
is very different from the one we propose in this paper, and no trace retrieval on
the basis of complex pattern search is supported.

On the other hand, traces have been recently considered in the CBR litera-
ture, as sources for retrieving and reusing user’s experience. As an example, at
the International Conference on CBR in 2012, a specific workshop was devoted
to this topic [10]. In 2013, Cordier et al. [11] proposed trace-based reasoning,
a CBR approach where cases are not explicitly stored in a library, but are im-
plicitly recorded as “episodes” within traces. The elaboration step, in which a
case is extracted from a trace, is thus one of the most challenging parts of the
reasoning process. Zarka et al. [12] extended that work, and defined a similarity
measure to compare episodes extracted from traces. In these works, traces are
typically intended as observations captured from users’ interaction with a com-
puter system. Trace-based reasoning was exploited in recommender systems [13,
14], and to support the annotation of digitalized cultural heritage documents
[15]. Leake used execution traces recording provenance information to improve
reasoning and explanation in CBR [16]. In the Phala system [17], the authors
supported the generation and composition of scientific workflows by mining ex-
ecution traces for recommendations to aid workflow authors. Finally, Lanz et al.
used annotated traces recorded when a human user played video games in order
to feed a case-based planner [18].



All these approaches implement forms of reasoning on traces. However, to
the best of our knowledge, a tace-based CBR approach has never been exploited
for operational support in Medical Process Management.

4 Conclusions

In this paper, we have introduced a novel framework for trace retrieval, designed
to implement operational support tasks in a flexible, efficient and user-friendly
way. With respect to existing operational support facilities, our tool is more
flexible because it allows to search for traces that exhibit complex query patterns,
identified in the input trace. The tool is also efficient and user-friendly, since:

– by allowing for the use of (imprecise) delays in the query language, it enables
users to express a very large number of explicit queries in a compact way;

– by providing the trace tree as an input to the automaton:

• it speeds up retrieval relative to a flat search into the event log;
• it executes common prefixes of different traces only once on the automa-

ton, avoiding repeated, identical checks.

In the future, we plan to extensively test the overall framework on real world
traces, which log the actions executed during stroke patient management in a
set of Northern Italy hospitals.
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